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Abstract: Power generation from photovoltaic solar systems contributes to mitigate the problem
of climate change. However, the intermittency of solar radiation affects power quality and causes
instability in power grids connected to these systems. This paper evaluates the dynamic behavior of
solar radiation in an Andean city, which presents rapid power variations that can reach an average of
7.20 kW/min and a variability coefficient of 32.09%. The study applies the ramp-rate control technique
to reduce power fluctuations at the point of common coupling (PCC), with the incorporation of an
energy storage system. Electric vehicle batteries were used as the storage system due to their high
storage capacity and contribution to power system flexibility. The application of the control strategy
shows that, with a minimum of five electric vehicle charging stations at the PCC, the rate of change
of the photovoltaic can be reduced by 14%.

Keywords: photovoltaic solar system; power fluctuations; electric vehicle batteries; ramp control

1. Introduction

The use of solar photovoltaic technology (PV) has been widely promoted for power
generation due to its free greenhouse gas (GHG) emission during operation, and its high
cost competitiveness versus fossil fuel power plants [1]. However, its use is limited by
the discontinuity of production due to non-deterministic seasonal variations and complex
predictability since it depends mainly on weather conditions. Therefore, a high level of
penetration of this technology in distribution networks can negatively affect the quality
and reliability of electric power service.

The high intermittency of the solar resource presents variations in time periods of
hours, minutes, and even seconds. This dynamic behavior causes fluctuations in the power
output of PV systems, which can be analyzed from several perspectives. A regulatory
framework that defines the requirements for connecting PV plants to the grid, and the
incorporation of energy storage systems at the point of common connection (PCC), can
help to reduce VA- ratios at this node [2].

From a regulatory point of view, several countries have established policies that
limit the technical aspects of PV systems. These regulations define a range for the active
power variation, also called the ramp rate [3]. This ramp rate is the percentage of the
nominal capacity of the PV plant in time intervals of minutes or seconds. For instance,
the German Association of Energy and Water Industries (BDEW) sets a ramp rate of 1%
of the nominal power per minute. The Romanian Energy Regulatory Agency (ANRE),
the Federal Regulatory Commission of United States Energy (FERC), and the Puerto Rico
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Electric Power Authority (PREPA) consider a ramp equal to 10%/min of the nominal power
of the PV plant [4].

On the other hand, energy storage systems (ESS) can also contribute to managing and
controlling the dynamic behavior of PV generation. With the increasing implementation
of PV systems in distribution networks, there is a need for large-capacity ESS temporarily
connected to the PCC as well. For instance, a study has developed an analysis of the impact
of introducing both PV systems and electric vehicles in the Portuguese grid [5]. The results
indicate a remarkable decrease of the generated surplus energy due to the excellent match
between the charging process and the PV production. Therefore, to ensure grid stability
and large-scale dissemination of PV systems, a good management of the charging system
of the battery bank of electric vehicles is necessary.

For this purpose, different techniques have been developed to control the electric
vehicle charging to smooth PV variations. The most commonly used techniques to smooth
the PV power output are the ramp-rate, moving average, and low pass filter techniques [6].
There are also studies that allow for PV power output smoothing using moving window
averaging techniques, which can be used in renewable generation to provide ancillary
services for more than 15 min [7].

In addition, there are studies based on the use of metaheuristics that allow for smooth-
ing PV power variations by determining the optimal filtering times using battery storage
systems (BES) [8]; however, this type of technique may require high computational re-
sources in implementation cases [9].

Regarding the ramp-rate control, studies have been carried out using simple, symmet-
rical, exponential, and hierarchical moving average. Algorithms based on Kalman filters
and lease square estimators, among others, are also used [10]. Among these methods, the
exponential moving average has been shown to require more battery capacitance, which is
required for PV power to be delivered to the grid with minimal losses [11].

The current study evaluates the dynamic behavior of PV solar energy generation under
conditions of high variability of solar irradiation caused by the characteristic cloudiness
of the mountainous region of the Andes. For this purpose, the application of a control
strategy to reduce power fluctuations in the PCC is presented, also incorporating the ESS
of the battery bank of electric vehicles. Thus, an analysis of the dynamic behavior of solar
irradiation is carried out in an Andean city. As a result, an energy management system
(EMS) is developed to reduce the variations of the output PV power, applying the algorithm
proposed for the case study determining the changes of the power of the charging system
of an electric vehicle, under instructions of the EMS. The main contributions of the article
are as follows:

• Use of the ramp-rate algorithm in scenarios of high variation of PV power.
• A 14% reduction in the rate of change of PV power variation.
• Application of ramp-rate control in EV charging.
• Decrease in voltage in terminals on customer bars, in scenarios with high PV and

EV penetration.

This study is an extension of the article “Charge management of electric vehicles from
unwanted dynamics in solar photovoltaic generation” presented at the IV Ibero-American
Congress of Smart Cities.

2. Power Photovoltaic Fluctuations

Photovoltaic (PV) systems use solar power as their primary resource for energy pro-
duction. Their production capacity depends mainly on the variability of the incident solar
radiation on the surface of the PV panels. Therefore, the output energy can reach values
above or below the required power demand [12]. The fluctuating behavior of the output
power is related to weather conditions, especially to the density of the cloudiness between
the panel surface and the sun [13].

It is necessary to use maximum power point tracking (MPPT) techniques [2] to opti-
mize the energy supplied by the PV solar system. There are several MPPT algorithms, such
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as perturb and observe (P&O), incremental conductance (IC), fuzzy logic control (FLC),
and fractional short circuit current (FSC), among others [14]. Regardless of variations in
weather conditions, these methods seek to extract the maximum energy from the PV array
(PV module + DC/AC converter) [2], In addition, these algorithms can reduce the variation
of output energy, reducing the efficiency of the system, an aspect that compromises the
profitability of the solar system.

The dynamic behavior of solar radiation in the measurement area shows fluctuations
with periods in the order of hours, minutes, or even seconds. These variations depend mainly
on the cloud density, with an atypical behavior, as shown in Figure 1. The data in the figure
come from the meteorological station available at the microgrid laboratory of the University
of Cuenca (Campus Balzay) [15], which is located in the city of Cuenca-Ecuador, belonging to
the mountainous region of the Andes at the coordinates 2◦53′31.0′′ S 79◦02′18.7′′ W.
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The city of Cuenca presents the typical meteorological behavior of the Andean moun-
tain regions with only two seasons. Between March and April and October and November
is the rainy season, and June and July are the dry seasons. These particular conditions
influence the behavior of solar irradiation and temperature [2].

The study developed by [2] presents an analysis of the dynamic behavior of solar
radiation for this same Andean city, and the results showed that the PV power ramp-rate
can reach between 50% and 70% of the nominal power of the system in intervals close to
15 s. This study evaluates the use of electrical-type storage systems with supercapacitors at
the point of common coupling (PCC) to reduce the variations in PV power output. Using
this technology, the decrease in the power ramp rate was nearly 6.66 times. Moreover,
among other technologies of energy storage that could be used for this purpose include
batteries, fuel cells, and recently, electric vehicle (EV) batteries [6,13,16].

The energy storage system (ESS) of EV batteries contributes to the flexibility of the
power system. This storage system helps to store excess electricity and provide ancillary
services to the grid, such as frequency regulation, peak demand reduction, and improved
operation and reserve capacity to secure the grid [17]. From a technical point of view,
the massive insertion of EVs plays an important role in the integration of PV solar power
generation systems into existing distribution grids. It constitutes a feasible solution for the
control and reduction of PV power fluctuations in the PCC. For instance, an evaluation
found that the good process matching between EV charging and PV generation makes it
possible to manage the surplus energy produced by this source [17].

Despite the benefits of the high share of EVs in controlling PV power fluctuations, it
can affect power quality and grid reliability. The EV charging process causes an increase
in the load profile during peak hours, overloading of power system components, voltage
deviations, harmonics, and system stability problems [18].
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3. Methodology

This section introduces the methodological approach and data sources that form the
basis of this analysis. First, a brief description of the components of the energy management
system (EMS) is presented. This system is used to test the control technique. Next, the
power ramp-rate algorithm is presented.

The starting point of the EMS in Figure 2 corresponds to the database of the historical
information of the PV solar power system, which is obtained from the records of the
supervisory control and data acquisition (SCADA) system of the microgrid laboratory of
the University of Cuenca [15]. This PV system, also available in this laboratory, has four
strings of 15 panels of the poly-Si type connected in series. Each one has a nominal power
of 250 Wp, reaching a total of 15 kWp. The array is managed by a two-level three-phase
DC/AC converter with Pulse Wide Modulation [2]. The system is connected directly to the
distribution grid and is operated by an MPPT algorithm.
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Figure 2. Energy management system.

The dynamic behavior of PV systems presents a wide range of power fluctuations over
short periods. An increasing insertion of these systems can lead to instability in the grid [1].
Therefore, the study applies the method of control of ramp-rate power and uses the storage
system of the EV battery bank to manage these power fluctuations. According to the EMS
diagram (Figure 2), the charging system has the function of modifying the supply power to
the batteries according to the dynamic behavior of the PV generation.

The range of the charging power variation (PEV) must be within the established limits,
which come from the electrical characteristics of the vehicle model and what SAE J1772
norm states [19]. The maximum PEV follows the standard of the single-phase slow charge of
some EV models. The minimum PEV considers the power obtained with the lowest current
level necessary to start the charging process. Hence, the variation range goes from 7.2 kW
to 1.32 kW, due to the restrictions of the J1772 standard. Finally, 50% of the power range
sets a reference level for this variation; for example, if an EV has a maximum charging
power of 6.5 kW, the set power is 3.91 kW.

Changes in the PEV may not be immediately reflected in the EV battery system, as
was the case in the study that developed some tests with two different models of EVs. The
goal was to assess their battery system response time [20]. With a 30% to 50% variation of
the duty cycle, this system reacted in 2 and 0.68 s, respectively. Therefore, to observe the
reaction of this parameter in the case of the study will take different values.

The method developed for the ramp-rate algorithm calculates the PV power ramp rate
(Equation (1)) (RPV) and constrains its value to the PV power ramp limit for this case study
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(Equation (2)) (RLIM). The condition of RLIM is to keep the active power variation below
10% of the nominal power per minute. This condition considers the regulations accepted
by PREPA since the Republic of Ecuador has no statutes in this regard. The algorithm of
ramp-rate control applied for the study is presented in Figure 3.

RPV =
∆PPV

∆t
=

PPV [n]− PPV [n− 1]
t[n]− t[n− 1]

[
W

min

]
(1)

RLim = 10%
PPV nom

min
= 10%

15 kW
min

= 1500
W

min
(25 W/s) (2)

In Equation (1), n represents the discrete sampling time. This paper considers a discrete
sampling time of 1 s, which means that every second a value of PV power is read.
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Following the operation process of the ramp-rate (RR) algorithm shown in Figure 3, it
starts by reading the PV output power. Then, it sets RLIM. Therefore, according to Equation (2),
with a solar generation capacity of 15 kWp, the maximum supported rate of change in this
study reaches |RR| < 1.5 kW/min. The algorithm evaluates whether RPV is greater or less
than the desired limit to estimate the dynamic power fluctuations at the PCC. As a result of
this evaluation, the PEV may increase, decrease, or remain unchanged.

For the case where RPV > |RLIM| is satisfied, PEV changes the quantity given by the
constrained PV power and follows the instantaneous behavior of the slope of the PV output.
Conversely, if RPV is less than RLIM, then the charging power does not change. Finally, the
PV power at the PCC comes from the difference between the PV output power and the EV
charging power.
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4. Results
4.1. Dynamic of Photovoltaic Power Generation

The presence of cloudiness between the panel surface and the sun is the most important
factor in the dynamic behavior of PV generation. During the study period, PV power recorded
an average variation of 0.52 ± 0.7 kW/min, with a coefficient of variation of 13.3%.

The study develops a probabilistic analysis of the daily data of the instantaneous
variations of the PV system output power. Figure 4 shows the data used, which correspond
to September. The information indicates a high level of variability over the 30 days, with a
mean variation of 7.20 kW/min, a standard deviation of 2.32 kW/min, and a coefficient of
variation of 32.09%.
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The highest average fluctuations were recorded on the 28th of September. This day
presents a maximum and average rate of 8.95 kW/min and 67 W/min, respectively. Con-
versely, the day with the average profile of solar radiation is the 6th of September. This day
records a maximum variation level of 9 kW/min, with a mean rate of 36 W/min.

Besides, the analysis determined that the dynamic behavior of PV generation presents
a greater variability between 11:00 and 15:00, which corresponds to the times when the
sun is at its highest altitude. In this time interval on the 28th, the ramp rate reaches values
above 8 kW/min. Figure 5 shows the behavior for these two days.

4.2. Energy Storage System

An assessment of the required number of EVs connected at the PCC to reduce instanta-
neous PV variations determined that a total of five charging stations are required near this
node. The amount of power that the EMS must compensate for to reduce PV fluctuations is
divided by the set of EVs connected. Therefore, the algorithm will designate the same level
of charging power for each EMS.

The response of a single EV charging system to the dynamic behavior of the PV power
generation is shown in Figure 6. It is observed that the charging profile stays within the
desired range. Two areas are marked in Figure 6 to highlight the performance of the
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ramp-rate algorithm. In section A, the charging system detects rapid changes in the PV
output power above the desired limit. Hence, it starts to vary its charging power. In contrast,
in section B, it is observed that the variation in PV generation grows slowly, and is almost
constant; therefore, the change in the charging system power is small. For both scenarios,
the charging power varies following the same direction of the power PV rate of change. In
addition, the PEV tends to return to the charging reference point after each control action. The
variation of PEV allows the EMS to ensure a PV power ramp rate of 25 W/s at the PCC.
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In addition, the study also evaluates the case of having a single point of charge at
the PCC. The results showed that the limits of the PEV prevent the EMS from completely
restricting the PV power ramp rate. The charging system attempts to compensate for
fluctuations but it saturates. The power ramp is larger than variation range of the system.

4.3. Photovoltaic Power Fluctuations

Figure 7a presents the rate of variation of the PV system power generation for the
28th of September (the most critical day), while Figure 7b shows the behavior on the 6th
of September (average day). These plots allow us to better interpret the performance of
the algorithm under study. The PV fluctuations on the most critical day exceed the limit
close to 10.3%, reaching a maximum variation of 8.98 kW/min. With the application of the
control technique, considering the same time response for the EV charging system and the
sampling time of the PV system, the power fluctuations decrease by 8.8%. The ramp then
reaches a maximum of 1.53 kW/min. This result shows a favorable response of the EMS to
the dynamic behavior of PV generation.

In the case of the average day, the PV generation shows a low level of power variations.
The fluctuations over the limit ramp were 6.8%. The maximum rate reached 9.34 kW/min
between 10:00 and 12:00. The power variations reduced by 4.8%, reaching a maximum ramp
of 1.52 kW/min. This result indicates that this day will require less charge management
from the EMS.

The relationships between the response time of the charging system, the reduction of PV
fluctuations, and the number of EVs connected in the PCC are presented in Figure 8. According
to the trend observed in the graph, when the response time increases, the proportion of PV
fluctuations greater than the ramp-rate limit also increases, but it is observed that the addition
of charging stations in the PCC does not show a significant effect on the smoothness of
these fluctuations. Therefore, for a response time of 1 and 2 s, the group of five charging
stations achieved 97.23% and 96.53% reduction in the rate of change, respectively. The group
of 10 charging stations achieved 97.1% and 96.53% reductions, respectively.

Figure 9 presents the final result of the mitigated PV fluctuations injected directly
into the grid for both days. The power measured at the PCC demonstrates a significant
reduction of the fluctuating dynamics of the PV generation. In Figure 9a, two different
areas are enlarged in which the softening effect of the ramp-rate control strategy can be
better appreciated. It can be seen negative values of the power injected in the PCC, which
indicate that the power flow at this node has been reversed. The PV generation is not
sufficient to supply the charging demand of the group of EVs. Therefore, the missing power
comes from the external energy sources connected to the PCC.
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Moreover, Figure 9b includes the rate of change of PEV for the average day. As
described above, the dynamics of the charging power follow the behavior of the PV
generation.
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5. Application Scenario in a Low-Voltage Network Feeder

To test the performance of the algorithm and its contribution to an electrical distribution
network, a simulation was carried out in OpenDSS and Matlab of the IEEE European Low-
Voltage Test Feeder case, analyzing two cases: (1) distributed photovoltaic generation and
electric vehicles and (2) single PV and EV (see Figure 10). EVs are modeled as 7.2 kW× 14 loads
and PV systems have powers of 5 kW × 14 for case 1 and 70 kW × 1 for case 2. The values
were selected for illustrative purposes and the simulation can be downloaded at https://github.
com/davilamds/EVRampControl (accessed on 31 May 2022).

By simulating the two cases indicated cases, the results of the power of the substation
and the busbar voltages in the bars of the for customer 349 were obtained. Tests included
the test of the base case (Base); test of the base case where EVs are connected without PV
generation and without control (Only Evs); tests from case 1 of Evs connected to the system
with photovoltaic generation and without the charge control algorithm (EV without control

https://github.com/davilamds/EVRampControl
https://github.com/davilamds/EVRampControl
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and PV case 1); and tests with connected Evs, PV generation, and control algorithm for
both case 1 as for case 2.
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The following scenarios were analyzed:

• Base case;
• Base case only with connected Evs, no PV generation and no control;
• Case 1 (distributed EV and PV) without charge control;
• Case 1 (distributed EV and PV) with charge control;
• Case 2 (distributed EV and PV) with charge control.

The power of the substation was analyzed in the mentioned cases, where the effect
of PV generation and Evs on the network was observed (see Figure 11a). It is observed
that the base power has its maximum in the case where only Evs are connected without
the contribution of PV generation around 10:00, and that it reaches negative values that
correspond to the fact that PV generation covers the system demand. For case 1, it is
observed that the power generated by several PV systems allows for the power to be
delivered by the substation to be the lowest of all scenarios, and in case 2, it is observed
that the power delivered by the PV system is not enough to supply the demand, requiring
the contribution of the main system.
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Additionally, when reviewing the behavior of the voltage at the customer bus (see
Figure 11b), a similar behavior is observed, where the voltage at the terminals improves
both in case 1 and case 2 with respect to the base case; however, for the case 2, the maximum
voltages are lower.

Table 1 shows a summary of the results of the simulations. It is observed that the
maximum power at the substation considering EVs and PV generation occurs in case 2
when the PV generation is located at a single point of the system, and the minimum power
in case 1 where the generation is better distributed. Regarding the voltage at the customer
terminals, case 2 has a better performance, having maximum and minimum voltages with
less variation.

Table 1. Simulation results.

Base Only
EVs

Ev without
Control and
PV Case 1

EV with
Control and
PV Case 1

EV with
Control and
PV Case 2

Max 60.92 110.67 73.87 64.15 88.45
Min 3.05 10.54 −18.94 −27.42 7.64Power

[MVA] Average 21.77 40.86 25.77 17.93 32.77

Voltage
[V]

Max 254.55 255.61 260.74 260.30 255.50
Min 246.19 242.12 242.12 244.68 244.47

Average 250.59 248.44 250.23 251.11 249.38

6. Conclusions

The study shows the typical behavior of solar radiation in an Andean city, which
presents a wide range of variations within seconds. This high variability of solar radiation
conditions the power production capacity of the PV solar system. The average of the
maximum fluctuations recorded in the month of September reached 48% of the nominal
power per minute. The EMS used in the study includes the application of the ramp-rate
control strategy and the incorporation of the charging system of a group of five EVs.
The developed model allows for managing the charging process following the dynamic
behavior of the PV generation. Therefore, depending on the capacity and characteristics
of the radiation in the area under study, the storage system can increase and decrease its
power by 99% without saturating. In the study, it is possible to reduce the rate of change of
the power in the PCC by about 14%, with the use of an energy storage system based on
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the batteries of EVs. The application of the proposed algorithm to the IEEE case shows an
improvement in the response of the customer bus voltage and in the power of the system
main transformer.

7. Future Work

The action of varying the charging set-point in an EV can have an impact on battery
aging, so it is necessary to investigate whether different charging control algorithms can
damage or improve battery performance. A review of ramp-rate techniques and their
application to high-penetration networks of both EVs and PV generators is also required.
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