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Abstract: Air pollution includes particle-bound polycyclic aromatic hydrocarbons (PAHs), which
eventually reach the placenta, triggering adverse perinatal outcomes through long-term exposure.
Lately, air pollution has increased over the Metropolitan Area of Medellin-Colombia (MAMC), but
its effects on pregnancy are still unknown. In this research, a real-time analysis of total airborne
PAHs was made using a photoelectric sensor for residential places influenced by the industrial and
traffic sources affecting the southern and northern MAMC during the second peak of the bimodal
tendency for PM2.5 emissions in this region. Additionally, individual PAHs were analyzed by
GC/MS coupled with pressurized hot water extraction methodology. The data were applied using
an inhalation intake model to assess pregnancy exposure. The average concentration of PAHs in the
southern MAMC was three times higher than in the northern MAMC, where the missed abortion
rate has been 1.4 times higher according to the database. Previous research indicates that PAHs act
as endocrine-disrupting chemicals (EDCs) during pregnancy and that even heavy congeners could
reside in umbilical cord blood. Finally, the annual series of missed abortion rates in the MAMC
exhibited a significant correlation with the annual average levels of PM2.5, which were associated
with PAHs through correlation analysis (r2 = 0.69, p < 0.01). While this significant correlation does
not imply causality, our results suggest an important connection between both variables, opening a
gap for a deeper understanding of how regions with high PAH convergence influence the missed
abortion rates in MAMC.

Keywords: air pollution; polycyclic aromatic hydrocarbons (PAHs); adverse perinatal outcome;
inhalation intake model; long-term exposure

1. Introduction

Particulate matter (PM) is produced by natural and human activities which pollute the
air [1,2]. Depending on its source, PM may include a diverse range of polycyclic aromatic
hydrocarbons (PAHs), which induce health problems, including endocrine disorders in
vulnerable populations, such as those of older adults, children, and pregnant women [3].
PAHs primarily emanate from sources such as fuel fossil combustion, forest fires, and
industrial emissions, posing a potential risk due to chronic exposure. For instance, in
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eastern China, PAH concentrations are mainly produced by industrial and traffic emissions,
presenting seemingly negligible cancer risks for adults but significantly heightened risks
for children. Additionally, residing within 50 m of a high-traffic road has been significantly
linked to spontaneous abortion (SAB) [4]. Thus, the screening of PAH levels for public
health studies should prioritize industrial and traffic emissions.

The impact of PAHs is particularly high in pregnant women because the physiolog-
ical changes in their bodies may increase the intake of air by 10%, leading to a similar
elevation of PAHs in the lungs [5,6]. As many airborne pollutants are in maternal blood,
PAHs have the potential to diffuse into the fetal environment through the placenta–blood
interchange [7,8]. Specifically, high concentrations of PAHs were found by E. Drwal and
coworkers in maternal blood, including the carcinogenic congener benzo[a] pyrene (BaP),
at concentrations of 0.75 ng × mL−1 [9]. Although PAHs decrease their concentration
four times upon crossing the placenta, this reduction does not prevent their impact on the
intrauterine growth restriction (IUGR) [10]. Also, researchers have reported risk values
associated with exposure to BaP and c-PAHs. Thereby, human exposure to approximately
1.6 ng × m−3 of BaP or 10 ng × m−3 of c-PAHs, including BaP, BaA, Bb + kF, BghiP, CHRY,
DahA and IND, has been linked to increased DNA adducts and decreased repair effi-
ciency [11]. These c-PAHs (5–7 rings and molecular weight between 252 and 300 g × mol−1)
are associated with breathable PM2.5. Therefore, congeners such as BaP, CHRY, IND, and
DahA, among others, may be found in the blood, placenta, and maternal–fetal cord white
blood cells in pregnant women exposed to air pollution [12,13]. For instance, in case studies,
BaP has been found at higher levels in the placentas of a preterm delivery group compared
to those of a full-term delivery group [14].

Air pollution increases pregnancy disorders such as the higher miscarriage rate ob-
served in most pollutant cities [15]. In developed countries, pregnancy outcomes and
maternal care are relevant, and missed abortion is a worldwide concern. However, missed
abortion etiology is a multifactorial issue in which air pollution plays a key role [15]. Also,
a significate relationship between c-PAH levels and a decreasing concentration of redox
biomarkers provides an indication of the oxidative stress pathways associated with preterm
labor [13].

Located in the northwestern corner of tropical South America, the Metropolitan Area
of Medellin-Colombia (MAMC) is situated in the mountains of the Colombian Andes
within a narrow and deep valley with elevations ranging between 1400 and 2400 masl.
This valley has a maximum width of 17 km and an average length of 45 km, and its main
river flows predominantly from south to north. Also, the MAMC experiences prevailing,
low-level, north-to-south atmospheric winds [16], which are influenced by the northeast
trade winds that dominate the region’s climatology [17]. This wind pattern implies greater
rainfall over the southern MAMC compared to the northern [16]. The missed abortion rate
in the MAMC has recently increased, but the effect of air pollution on this tendency remains
unknown. Despite a decline in air quality over the past years, placing the MAMC among
the regions with the poorest air quality in Latin America [18], crucial information regarding
the primary sources and locations with a heightened risk (hazardous places for pregnancy
exposure) of airborne PAHs is still elusive. Also, the associations between the PAH impact,
the sources, and the meteorological factors have not been carried out in the MAMC.

This paper introduces a real-time tracking analysis conducted in the MAMC, employ-
ing both individual airborne PAHs and total congeners assessed by GC/MS, alongside
real-time monitoring. This real-time analysis was conducted to estimate exposure levels
in residential places influenced by traffic and industrial emissions and to offer insights
into the varying risks faced by individuals living under these conditions. Our aim was to
establish a preliminary association between the missed abortion rate and air quality in the
MAMC. The monitoring period spanned from September to October 2021, a critical season
for PM2.5 in the MAMC (see Figure 1b). This focused timeframe ensures the relevance of
the second peak of the bimodal tendency for PM2.5 emissions in the region.
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Figure 1. Typical tendency for concentration of PM2.5 in MAMC for 2021. (a) Diurnal concentration
of PM2.5. (b) Annual cycle of PM2.5 concentration. A bimodal tendency is shown by both cycles.

2. Materials and Methods
2.1. Study Area and Air Pollution Event during 2021

For the real-time monitoring of PAHs, three distinct locations were selected in both the
northern and the southern regions of the MAMC. The photoelectric sensor was deployed
exclusively in residential places (RES), residential areas influenced by traffic contribution
(RES + TRAF), and those residential areas affected by industrial sources (RES + IND). In
contrast, fixed air quality gauges were employed for PAHs analysis via GC/MS in both the
northern and southern MAMC. Refer to Figure 2. Additionally, recognizing the potential
influence of the distance between air pollution sources and pregnant women on adverse
perinatal outcomes, we strategically positioned our monitoring equipment. For exclusively
residential areas, we placed the monitoring equipment at a minimum distance of 50 m
from the emission sources, including vehicles and industrial emissions [4]. Conversely, the
residential places influenced by traffic and industrial activity were located at a distance of
less than 50 m from the emission sources (see Figure 2c,d).

2.2. Chemical and Reagents

The stock solution of PAH congeners (16 priority tests), 7 deuterated PAHs (quantifica-
tion purposes), and the stock solution of 16 individual PAHs were purchased from sigma
Aldrich (Purity > 99.5%). Similarly, the organic solvents such as hexane and methanol, em-
ployed for extracting and preparing the stock solution of PAHs, were purchased from sigma
Aldrich (Gas chromatography MS SupraSolv®, Darmstadt, Germany). Finally, the capillary
column (30 m, 0.25 mm, and 0.15 µm) was supplied by Restek Pure Chromatography.

2.3. Airborne PAH Analysis by GC/MS

Quartz filters for the particle-bound PAH analysis were supplied by the MAMC, which
oversees the air quality monitoring network. These filters were taken out of high flow
samplers (average flow of 1.13 m3 × min−1 for 24 h) deployed in representative locations
in both the southern and northern regions for PM2.5 collection. The sampled filters were
kept at −20 ◦C. Therefore, the filters were cut into small circular pieces (16 mm diameter)
and subjected to extraction using pressurized hot water extraction (PHWE) using a Thermo
Scientific® Dionex® ASE® 350 system (Thermo Fisher Scientific, Sunnyvale, CA USA). The
extraction process employed a 90:10 ratio of water to methanol at 200 ◦C and 2000 psi, with
a single extraction cycle.

The aqueous extract underwent liquid–liquid micro-extraction with ultrapure hexane
(Merck®, Darmstadt, Germany). The PAHs from the organic phase were identified by
a Thermo Scientific Trace® Ultra coupled to a mass spectrometry detector (ISQ) in the
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mode of selected ion monitoring (SIM) under electronic impact (70 eV). The separation of
PAH congeners occurred on a select PAH capillary column (30 m, 0.25 mm (about 0.01 in),
0.15 µm) with initial and final temperatures of 70 ◦C and 320 ◦C, respectively. Helium
served as the carrier gas (2 mL × min−1). Quantification was accomplished using seven
deuterated internal standards (ISTD) [19].
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Figure 2. (a) General location of the MAMC in northwestern tropical South America. (b) The MAMC
is placed in an inter-Andean and narrow valley. (c) Monitoring places for PAH analysis in northern
MAMC. (d) Monitoring places for PAH analysis in southern MAMC. Blue: exclusively residential
places (RES); red: residential places influenced by traffic vehicles (RES + TRAF); purple: residential
places influenced by industrial activities (RES + IND).

2.4. PAH Emission Sources

The emission sources in the southern and northern regions of the MAMC were assayed
according to the ratios between the concentrations of fluoranthene (FLU) and pyrene (PYR)
and plotted on the y-axis against the ratios between the concentration of benzo[a]anthracene
(BaA) and the sum of BaA and chrysene (CHR) on the x-axis. This analysis was based on
a previously established methodology to estimate PAH sources such as petrogenic, coal
combustion, and vehicular emissions (petrol or diesel) [20].
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2.5. Real-Time Monitoring of Total PAHs (Exposure Levels)

The real-time PAH analysis was conducted between September and November 2021 in
both the southern and northern regions of the MAMC. This timeframe coincides with the
second peak of the bimodal tendency for PM2.5 emissions in the MAMC (see Figure 1b).
Considering the geomorphological features and the predominant north-to-south wind
direction in the MAMC, the monitoring places were strategically selected in the northern
and southern regions (see Figure 2c,d). The total airborne PAH levels were monitored
using the photoelectric sensor PAS 2000 (EcoChem Analytics, League City, TX, USA) with a
UV radiation detector. The quantification range for the analytical method was from 0 to
4000 ng × m−3, with a lower threshold of 10 ng × m−3. The flow rate was 5 L × min−1,
which is similar to that of minute ventilation during breathing in pregnancy, and the device
was deployed in each monitoring place for 24 h. The real-time data were collected using
the PAHDAS software, outputting txt file, and were subsequently processed in Microsoft
Excel format (2016—v16.0) and the R Project for Statistical Computing ®.

2.6. Risk Assessment by Inhalation Intake for Pregnant Women

The risk of long-term inhalation exposure for pregnant women was assessed using the
inhalation intake model (Ia) [21]. See Equation (1):

Ia =
Ca × IRa × tEa × fE × ED

BW × Tave
(1)

where Ca is the contaminant concentration in air (mg × m−3), IRa is the inhalation rate
(m3 × h−1), tEa is the time dependent on the duration of exposure (h × day−1), fE is the
exposure frequency (day × year−1), ED is the exposure duration (years), BW is body
weight (kg), and Tave is the average period of exposure (day). The Ia model was applied
for the exposure in both the southern and northern regions of the MAMC, which allowed
the assessment of the maximum pregnancy risk exposure in the city. The body weight
parameter was defined based on the average weight of a woman in the MAMC (65 kg)
plus the recommended weight gain during pregnancy according to the World Health
Organization (WHO) guidelines (12 kg).

2.7. Correlation between Missed Abortion Rate and Averaged Levels of PM2.5 as an Indicator of
PAHs in the MAMC

The missed abortion rate data were extracted from the harmonized databases of Di-
rección Seccional de Salud de Antioquia (DSSA–https://dssa.gov.co/index.php/vigilancia-
en-salud-publica). Accessed on 20 march 2020. This comprehensive database, serving
both the northern and southern regions of the MAMC, includes only missed abortion
(miscarriage and stillbirth) and operates as a unified dataset. In this research, the missed
abortion rate in the MAMC was analyzed by applying a Student’s t-test to find the signifi-
cant differences (p < 0.05) of missed abortion between the northern and southern regions
of MAMC.

A correlation between PM2.5 and the total PAHs was estimated through real-time anal-
ysis of both parameters simultaneously. The PAH levels were analyzed by the photoelectric
sensor PAS 2000 (refer to Section 2.5), while the PM2.5 was analyzed using the continuous
particle analyzer PM2.5 BAM-1020 (Met One instruments, lnc., Grants Pass, OR, USA).
Both instruments were connected to a datalogger and to monitoring system georeferencing
capabilities. Furthermore, the annual variation data for PM2.5 were obtained from Sistema
de Alertas Tempranas del Valle del Aburrá (SIATA–https://siata.gov.co/siata_nuevo/
accessed on 20 March 2020).

The data for missed abortion and PM2.5 spanned the period from 2012 to 2020, focus-
ing on pregnant women aged 25–34 years in both the northern and southern regions of the
MAMC, irrespective of their specific residential locations when experiencing missed abor-
tion. The data were graphed for descriptive statistical analysis, tendencies, and differences

https://dssa.gov.co/index.php/vigilancia-en-salud-publica
https://dssa.gov.co/index.php/vigilancia-en-salud-publica
https://siata.gov.co/siata_nuevo/
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in the missed abortion rate between the south and the north by a Pearson correlation for
tendencies study.

2.8. Diurnal Cycle of Winds and Air Temperature in the MAMC

To investigate the impact of meteorological factors on PAH concentrations in the
MAMC domain, we used hourly data obtained from the ERA-5 reanalysis downscaled
at 12.5 km within the spatial domain of 5.75 N–6.75 N/76 W–75 W (https://cds.climate.
copernicus.eu/cdsapp#!/home accessed on 10 July 2023). Our focus centered on estimating
the diurnal cycles (i.e., the averaged values at a sub-daily timescale) of the wind velocity
and temperature at low-pressure levels (825–875 hPa) over the MAMC. Specifically, we
conducted a detailed analysis and visualization of the wind vectors along with the tem-
perature fields for the months of September, October, and November 2021. These months
are pertinent to the event under investigation, which encompasses both total PAHs and
individual analyses by GC/MS.

2.9. Data Analysis

The data were plotted using the GraphPAD Prism 7.0 and R project. The differences in
the missed abortion rates between both the southern and northern regions were assessed
using a Pearson correlation (confidence interval >95%). Finally, real-time PAH data were
processed in Microsoft Excel format (2016—v16.0) and the R Project.

3. Results
3.1. Analysis of Airborne PAHs (Exposure Levels)

The select PAH capillary column effectively separated all the PAH congeners, with
identification based on the target ions outlined in Table 1. Overall, the validation data
demonstrated acceptable values for the quantification of particle-bound PAH through
GC/MS analysis and PHWE. Notably, PHWE showed a robust recovery method (>60%)
using spiked deuterated surrogates. The limits of detection (LOD) and quantification
(LOQ), as well as the linearity, were significant for our quantification purposes (see Table 1).
Additionally, the assessments of the homoscedasticity and even the r2 = 0.99 indicated a
good linearity. See Table 1.

Table 1. Chromatography parameters and validation. The quantification method was carried out by
deuterated internal standard (ISTD)-ACP-d10, CHRY-d12, NAP d8, Perylene-d12, and PHE-d12.

PAH Congeners Rings
Molecular

Weight
(g × mol−1)

tR (Min) Target
Ion

LOD
(µg × L−1) LOQ Range

(µg × L−1) r2

Naphthalene (NAP) 2 128.17 3.30 128 6.1 18.4 3–300 0.996
Acenaphthylene (ACPY) 3 152.19 4.79 152 2.9 10.0 3–300 0.995

Acenaphthene (ACP) 3 154.21 4.95 153 7.0 22.0 3–300 0.997
Fluorene (FL) 3 166.22 5.77 166 30.8 90.0 3–300 0.995

Phenanthrene (PHE) 3 178.23 8.37 178 4.0 12.0 3–300 0.991
Anthracene (ANT) 3 178.23 8.50 178 16.5 50.0 3–300 0.999

Retene (RET) 3 234.34 13.25 202 15.0 45.1 3–300 0.995
Fluoranthene (FLU) 4 202.26 12.82 202 15.0 45.1 3–300 0.994

Pyrene (PYR) 4 202.26 13.99 202 10.0 30.0 3–300 0.997
Benz[a]anthracene (BaA) 4 228.29 19.52 228 16.5 50.0 3–300 0.998

Chrysene (CHRY) 4 228.28 19.88 228 33.0 100.0 3–300 0.999
Benzo[b,] fluoranthene (BbF) 5 252.31 24.62 252 22.3 67.0 3–300 0.993
Benzo[k]fluoranthene (BkF) 5 252.31 24.72 252 20.0 60.3 3–300 0.997

Benzo[a]pyrene (BaP) 5 252.31 26.37 252 33.0 100 3–300 0.996
Dibenz[a,h]anthracene (DahA) 5 278.35 31.74 278 60.8 180.0 3–300 0.996
Indeno[1,2,3-cd] pyrene (IND) 6 276.33 31.73 276 23.7 71.0 3–300 0.996

Benzo[ghi]perylene (BghiP) 6 276.33 33.65 276 23.7 71.0 3–300 0.999

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
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Low levels of light PAHs were found in both the northern and southern regions; in
contrast, the heavier PAHs showed higher amounts (see Figure 3). Individual PAHs were
detected in the PM from the MAMC, revealing significant differences between the northern
and southern regions with regard to the total PAH congeners. Additionally, the spatial
differences in the levels of heavy PAHs were notable. In particular, the total concentration
of individual PAH congeners showed a concentration of 5.3 ng × m−3 in the northern
MAMC and 16.82 ng × m−3 in the southern MAMC, indicating that the southern region
experienced PAH levels 3.2 times higher than the northern ones (see Figure 3). Similarly,
the total levels of heavy PAHs in the northern region were measured at 1.33 ng × m−3,
while the southern region showed markedly higher levels of 12.39 ng × m−3. Heavy
PAHs are widely studied because of their carcinogenic potential effect (c-PAHs). The main
c-PAH congener, BaP, showed levels of 0.35 ng × m−3 in the southern regions, while in the
northern region they were 0.07 ng × m−3 (see Figure 3).
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The analysis of PAH emission sources, particularly vehicular emissions, highlighted
vehicular combustion as the predominant contributor to the levels of PAH congeners,
as illustrated in Figure 4. The pollution emission sources in the MAMC were identified
through diagnostic ratios between the PAH congeners [20,22]. This analysis, depicted in
Figure 4, underscores vehicular emissions, both diesel and petrol, as significant contributors
to airborne PAHs. Specifically, our results emphasize petrol emissions as the primary source.
Consequently, residential areas influenced by traffic (RES + TRAF) may be regarded as
presenting a higher risk.

In the southern MAMC, the levels of BaP were lower than the established risk value
associated with DNA repair disruption (Table 2). However, the c-PAH levels exceeded
the thresholds, potentially impacting DNA repair as a marker for genetic damage. See
Table 2 for reference values. In contrast, in the northern MAMC, the concentrations of
BaP and c-PAHs did not exceed the established risk values for exposure. The identified
differences between the northern and southern regions underscore the need for further
studies to comprehensively assess the risk of the genetic implications and potential health
issues associated with airborne PAH exposure in the southern MAMC.
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Table 2. Thresholds values for DNA damage by DNA adducts due to PAH exposure [19].

Northern
(ng × m−3)

Southern
(ng × m−3)

Values May Affect DNA Repair
by DNA Adducts (ng × m−3)

Value of BaP 0.07 0.372 1.6
Value of c-PAHs 1.48 12.39 10

3.2. Real-Time PAH Monitoring

During the air pollution event analyzed in the MAMC, the exposure levels of PAHs
showed a diurnal variation in both the northern and southern regions of the MAMC (see
Figure 5). In general, higher concentrations of PAHs were observed in the RES + IND and
RES + TRAF places compared to purely residential areas (RES). This pattern reveals the
contribution of these substances by anthropogenic activities. Figure 5 specifically illustrates
that the RES + TRAF and RES + IND monitoring places show higher levels of total airborne
PAHs compared to the RES places, displaying a bimodal behavior with morning and
afternoon peaks. Further real-time analysis of the airborne PAHs revealed that during rush
hours, the total PAH concentrations in the RES places exceeded 50 ng × m−3, while the
RES + TRAF and RES + IND places reached values three times higher (>150 ng × m−3) (see
Figure 5). Similarly, the total airborne PAHs in the southern region were slightly higher
compared to those of the northern MAMC. Approximately, the diurnal cycle of PAH levels
peaks between 06:00 and 10:00 LST (morning peak) and 16:00 and 20:00 LST (afternoon
peak). The afternoon peak aligns with the rush hour and reflects the average diurnal
patterns of air pollution in the MAMC [23].

The diurnal concentration of PM2.5 (Figure 1a) and the annual cycle of PM2.5 con-
centration (Figure 1b) revealed a bimodal tendency and depicted the typical patterns of
PM2.5 levels in the MAMC at diurnal and annual timescales. The diurnal PAH analysis in
Figure 5 also showed a similar trend.

Using ERA-5 hourly data, Figure 6 depicts the diurnal wind and temperature cycle at
825–875 hPa, averaged for September–October–November (SON) of 2021. From 8 pm to
8 am, as the temperature decreases in the MAMC, the atmospheric wind flows from the
north to the south (see Figure 6). As the temperature increases between 8 am and 2 pm,
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easterly and southeasterly winds dominate, enabling the transport of aerosols. Finally,
from 2 pm to 8 pm (Figure 6), when the temperature reaches its maximum values, easterly
winds prevail, but a southerly wind component emerges in the northern MAMC.
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Due to minimum temperatures in the early morning (Figure 6, 2 am–8 am), a larger
stable layer forms in the southern MAMC. After 8 am, as temperatures rise, the aerosols
are resuspended to higher elevations in the southern MAMC. The resuspended aerosols
remain during the morning until the onset of easterly winds. Thus, if the elevated aerosols
reach the mountain tops, the aerosols may be depurated. In contrast, if the aerosols remain
below the tops of the mountains, they are re-transported to the north when the wind shifts
in that direction (2 pm–8 pm, Figure 6). After 8 pm, as the temperature drops and the
northeasterly winds prevail, the aerosols are deposited again, reaching higher levels, and
forming a stable layer in the southern MAMC (Figure 6). Similarly, a small stable layer is
formed in the northern MAMC, but the temperature gradients and wind direction move
the aerosols southward, allowing some amounts to be depurated by the winds because
the northern temperatures are higher, leading to higher elevations of aerosols and their
depuration to the west.

3.3. Inhalation Intake Risk Assessment for Pregnant Women

The inhalation intake risk model showed elevated values in the southern MAMC
compared to the northern MAMC, with the highest risk observed in RES + TRAF and RES +
IND. The risk assessment for the comparison of the pregnancy exposure to PAHs between
the northern MAMC and the southern MAMC is presented in Table 3. The Ia value was
estimated by applying Equation (1). In the southern MAMC, the inhalation intake in RES +
TRAF and RES + IND was three times higher than in RES (see Table 3). Additionally, the
total of the airborne PAHs in the southern MAMC was 3.2 times higher than in the northern
region (see Figure 2). Consistently, the data on the missed abortion rates in the MAMC
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reveal a twofold higher ratio in the south compared to the north [23]. This fact suggests a
potential relationship between vehicular and industrial emissions and increased exposure
during pregnancy.

Table 3. Risk assessment for airborne PAHs (Ia).

Monitoring Place Location Ia (µg × (kg × day)−1)

RES
Northern

0.10
RES + TRAF 0.09
RES + IND 0.28

RES
Southern

0.11
RES + TRAF 0.31
RES + IND 0.29

Rochelle and coworkers showed significant associations between living within a
distance of 50 m from a high-traffic road and spontaneous abortion (SAB) [4]. Additionally,
Perera et al. found that airborne PAHs may be associated with miscarriage mechanisms
because some congeners were bound to DNA (PAH–DNA adducts) in maternal–fetal cord
white blood cells [11]. Therefore, the association between SAB and airborne PAH exposure
should be considered in the risk assessments for pregnant woman.

Low levels of RET congener in the MAMC indicate that forest fires are not the principal
source of PAH emission. For more details, see Figures 2 and 3. In fact, the predominant
sources of airborne PAHs detected around RES areas are associated with fuel burning from
traffic and industries [24]. Vehicular emissions, specifically those from petrol fuel, emerge
as the main source for airborne PAHs in the MAMC (see Figure 3), and, as previously
presented, the heavier congeners, such as Bb + kF, BeP, BaP, IND, DahA, and BghiP (c-
PAHs), showed the highest differences between the northern and southern regions in the
MAMC. These congeners are typically detected in PM2.5 and PM10 due to their greater
lipophilic properties related to the IUGR at levels exceeding 40 µg × m−3 through exposure
in the first gestational month [25].

3.4. Implication of Air Pollution Exposure on Pregnancy in the MAMC

Globally, PAHs are recognized as key air pollutants impacting pregnancy outcomes
and are often associated with PM2.5. The missed abortion rate in the southern MAMC
during 2005–2020 was 1.4 times higher than in the northern MAMC (see Figure 7).
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While the annual data for total PAHs in recent years may be unavailable in the
MAMC, the PM2.5 data are accessible. Through continuous monitoring of the northern
to the southern MAMC regions (see Figure 8a,b), the significant correlation estimated
between PAHs and PM2.5 (r = 0.69, p < 1% in Figure 3b) highlights their unequivocal
association in this region [26]. The relation of PM2.5–PAHs is also influenced by the effects
of meteorological conditions and/or source emission variability [26].
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Figure 8. Analysis of tendency of PM2.5 in recent years in the MAMC vs. % missed abortion
in women (24−34 years old). (a) Comparative series between PM2.5 and PAHs in MAMC (black
line PM2.5 and redline total PAHs). (b) Correlation between airborne PAHs and PM2.5 (moderate
correlation r2 = 0.69). (c) Comparative series between missed abortion and PM2.5 in MAMC (dashed
line % missed abortion and continuous line PM2.5).

It is well known that PAHs primarily stem from combustion sources that involve
the incomplete pyrolysis of fossil fuels or, more generally, carbonaceous materials [27].
However, we found that vehicular combustion in the MAMC is the predominant source
of PAHs in the air; this is supported by a significant correlation with primary combustion
sources (see Figure 3). Additionally, lower levels of RET in the MAMC indicate that forest
fires are not the principal source for PAH emissions, which emphasizes the relevance of
vehicular contributions (see Figure 3). Therefore, PM2.5 exposure serves as a meaningful
indicator of PAH exposure in the MAMC (Figure 8).

Expanding on these results, the annual series of missed abortion rates (2012–2020)
in the MAMC showed a significant correlation with the annual average levels of PM2.5
(Pearson r = 0.80, p < 0.01) (see Figure 8c). Although this significant correlation does not
imply causality, the analysis suggests an important connection between both variables.
For instance, the critical year of 2016, which is marked by heightened air pollution in
the MAMC, coincides with the highest missed abortion rate. In 2016, the average PM2.5
concentration exceeded 33 µg × m−3, corresponding to a missed abortion rate of 10.3%
(for ages ranging between 25 and 34 years old). Briefly, 2016 serves as an inflection point
for both variables: prior to 2016, the PM2.5 levels were directly proportional to the missed
abortion rate (uptrend), while after 2016, both series decreased (downtrend) (see Figure 8c).

Locally, within the MAMC, we found a preliminary association between PM2.5 (asso-
ciated with PAHs) and the missed abortion rate. The MAMC has shown a missed abortion
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rate of around 10% (2005–2016) among healthy women without comorbidities, aged be-
tween 25 and 34 years. Spatially, the missed abortion rate showed clear differences between
the southern and the northern MAMC. The total PAH concentration in the southern region
was 3.2 times higher than in the northern region; this is mainly attributed to industrial
activities and vehicular traffic (see Figure 2).

4. Discussion

Given that the MAMC is located in the tropics (around 6.2 N), the diurnal temperature
range exhibits more variability than the annual range and thus impacts the diurnal patterns
of PAHs [28]. Specifically, the higher morning peak of PAHs may be attributed to the
complex interactions between the surface temperature (night/early-morning gradient),
thermal inversion, and condensation, which influence the dynamic of the gases and particles
in the boundary layer. Additionally, a stable layer formed by condensed air particles
in the early morning is resuspended due to temperature changes in the MAMC [29].
Also, the prevailing trade winds transport PM2.5 from the north to the south, potentially
carrying PAHs from industrial/traffic sources along the predominant north–south wind
pathway. Therefore, the levels of PAHs identified in the MAMC may represent a risk due
to long-term exposure. The southern MAMC probably poses a higher risk for short-term
exposure during pregnancy (see Figure 7). Figure 9 shows a suggested conceptual model for
aerosol transport in the MAMC at a diurnal timescale which is consistent with the diurnal
levels of PM2.5 reported in Sistema de Alertas Tempranas del Valle del Aburrá (SIATA–
https://siata.gov.co accessed on 20 March 2020). This conceptual model also helps to
explain why heavy congeners for PAHs, such as BaP, DahA, and IND, were predominantly
found in the southern MAMC. Overall, higher PM2.5 levels are found in the southern
MAMC between 23:00 and 7:00 am compared to the northern MAMC when the stable
layer forms. The wind analysis reveals that despite some of the industries and the high
number of vehicles per citizen found in the northern MAMC, the prevailing trade winds
have an influence over the MAMC, moving from the north to the south of the valley and
contributing to the transport of PM [30,31].
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At a global scale, the PM2.5 and the airborne PAHs have been linked with an increasing
of the missed abortion rate [27]. Our previous study found that a mixture of PAH congeners
associated with PM2.5 in the MAMC (see Figure 3), such as ANT, FLU, PYR, and BaP at
low levels, may affect gestational hormone production, such as progesterone and β-hCG in
a placental cell line, potentially explaining placental dysfunction and adverse pregnancy
outcomes [32]. Certain PAHs associated with PM2.5, such as BaP, PYR, FLU, and ANT,
were shown to induce hormone disorders in a placental cell line in that previous study [32].
While this is a cellular model, similar pathways linking miscarriage to air pollution exposure
have been reported [33]. Furthermore, we previously evaluated the toxicity of PM in the
MAMC, and the results indicated that PM decreased cell viability and induced reactive
oxygen species (ROS) production. Both effects trigger DNA damage and the production of
inflammatory mediators and are also involved in neurological diseases and even newborn-
related issues [34]. For this reason, public health strategies in the MAMC should focus on
the suitable management of PM2.5, an important source of particle-bound PAH emissions.

https://siata.gov.co
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Implementing basic protective measures such as air masks has proven effective in reducing
reproductive disorders during air pollution events.

Additionally, the Ia in the southern MAMC was shown to be higher than that in the
northern region. In our cross-sectional study, the missed abortion rate in the south was
1.5 times higher than in the north; therefore, our results suggest a potential association
between airborne PAHs and missed abortion in the MAMC. The exclusively residential
areas (RES) located 50 m from vehicle and industrial emission sources showed lower
exposure to PAHs by pregnant women. Additionally, we found higher concentrations
of total PAHs in residential places with traffic and industrial influences, indicating that
sources such as vehicles and industries in proximity to pregnant populations may elevate
the risk of adverse perinatal outcomes. Nevertheless, it is crucial to note that this study is
preliminary, and more extensive research should be conducted in the future to validate and
expand upon these findings and to establish safety perimeters.

Human mobility was identified as a potential bias in this research, as pregnant
women’s exposure to PAHs might be influenced by mobility across various places. How-
ever, the primary exposure likely occurs in their residential places where they spend most
of their time. Those limitations introduce uncertainties that should be dealt with in future
studies. To overcome these challenges, advanced techniques such as remote sensors and
geospatial big data analysis should be employed to accurately assess mobility patterns [35].
Finally, older individuals, pregnant women, and children should be considered as vul-
nerable populations during air pollution emergencies in the MAMC. In particular, safety
perimeters in cities should be considered to prevent adverse pregnancy outcomes [36]. The
missed abortion rate has been not deeply studied in the MAMC, and future research should
include comorbidities as an additional study variable.

5. Conclusions

In this study, we conducted comprehensive air quality assessments in the Metropoli-
tan Area of Medellin-Colombia, examining the levels, sources, and health implications
of airborne polycyclic aromatic hydrocarbons (PAHs), with a particular focus on their
association with PM2.5 and the potential impact on pregnancy outcomes.

Airborne PAH exposure in the MAMC was assessed using inhalation intake modelling
(IIM) to identify receptor places for the risk assessment for pregnant women residing in the
region. Also, through a cross-sectional application in the last 15 years, the missed abortion
rate series were correlated with the average levels of PM2.5. This longitudinal analysis
allowed us to discern potential associations between air quality and perinatal outcomes.
Finally, by contrasting northern and southern of regions of the MAMC, the PAH levels were
compared with the missed abortion rate to identify the role played by the predominant
direction of low-level atmospheric winds within the narrow valley where the MAMC is
located. Despite the southern MAMC exhibiting a better employment rate, access to the
health system, and per capita incomes, it unexpectedly reports a higher missed abortion
rate than the northern MAMC. This fact suggests a potential association of missed abortion
in the southern MAMC with the increased industrial and vehicular emissions, which are
possibly exacerbated by the influence of trade winds.

The southern PAH levels are higher than those in the northern MAMC and coincide
with a significant correlation between PM2.5 and missed abortion rates. As traffic and
industrial activities are identified as the primary sources of PAHs in the MAMC, we
suggest establishing safety perimeters for pregnancy development and ensuring that they
are located far away from emission sources. Our findings highlight petrol emissions as
the primary contributor to airborne PAHs, suggesting that transitioning to alternative
fuels should be considered because the narrow morphology and thermal inversion in this
valley decreases the atmospheric depuration. However, the industrial emissions should
be controlled by the environmental authorities; the location of industries in the northern
MAMC should also be evaluated, as dominant trade winds transport pollutants from the
north to the south, influencing air quality. The highest risk was found in the southern
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MAMC, implying that more intensive protection measures are required there. This higher
risk may be related to the industrial and traffic sources influenced by air pollution dynamics
in the MAMC.
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