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ABSTRACT 

Continuous time series of precipitation and temperature considerably facilitate and improve the 

calibration and validation of climate and hydrologic models, used inter alia for the planning and 

management of earth’s water resources and for the prognosis of the possible effects of climate change 

on the rainfall-runoff regime of basins. The goodness-of-fit of models is among other factors 

dependent from the completeness of the time series data. Particular in developing countries gaps in 

time series data are very common. Since gaps can severely compromise data utility this research with 

application to the Andean Paute river basin examines the performance of 17 deterministic infill 

methods for completing time series of daily precipitation and mean temperature. Although 

sophisticated approaches for infilling gaps, such as stochastic or artificial intelligence methods exist, 

preference in this study was given to deterministic approaches for their robustness, easiness of 

implementation and computational efficiency. Results reveal that for the infilling of daily precipitation 

time series the weighted multiple linear regression method outperforms due to considering the ratio of 

the Pearson correlation coefficient to the distance, giving more weight to both, highly correlated and 

nearby stations. For mean temperature, the climatological mean of the day was clearly the best 

method, most likely due to the scarcity of weather stations measuring temperature, and because the 

few available stations are located at different elevations in the landscape, suggesting the need to 

address in future studies the impact of elevation on the interpolation. 

Keywords: Infilling, deterministic infill methods, time series, daily rainfall, mean daily temperature, 

Andean Paute river basin. 

 

 

RESUMEN 

Series continuas de precipitación y temperatura facilitan y mejoran considerablemente la calibración y 

validación de modelos hidrológicos y climáticos, utilizados entre otras cosas, para la planificación y 

manejo de recursos hídricos y el pronóstico de los posibles efectos del cambio climático en el regimen 

lluvia-escorrentia de las cuencas hidrográficas. La bondad de ajuste de los modelos está entre los 

factores que dependen de la continuidad de las series temporales. En países en vías de desarrollo los 

vacíos en las series temporales de variables climáticas es común. Ya que los vacíos en las series 

temporales pueden comprometer severamente la utilidad de los datos, este estudio aplicado en la 

cuenca del río Paute en los Andes Ecuatorianos, examina el desempeño de 17 métodos determinísticos 

de relleno de datos diarios de las variables precipitación y temperatura media. A pesar de la existencia 

de métodos de relleno más sofisticados como métodos estocásticos o métodos de inteligencia artificial, 

en este estudio se dio preferencia a métodos determinísticos por su robustez, facilidad de 
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implementación, y eficiencia computacional. Los resultados revelan que para rellenar series 

temporales de precipitación diaria, el método de regresión lineal múltiple ponderada es el mejor, 

debido a la consideración de la razón entre el coeficiente de correlación de Pearson y la distancia con 

respecto a otras estaciones como factor de ponderación, dando mayor importancia a las estaciones más 

cercanas altamente correlacionadas. Para temperatura, la media climatológica del día fue claramente el 

mejor método, posiblemente debido a la escacez de datos de estaciones cercanas localizadas también 

en elevaciones diferentes, sugiriendo la necesidad de considerar en futuros estudios el impacto de la 

elevación en la interpolación de datos. 

Palabras clave: Relleno de datos, métodos determinísticos de relleno, series temporales, precipitación 

diaria, temperatura media del día, cuenca del río Paute Andean. 

 

 

1. INTRODUCTION 

 

As stated by Harvey et al. (2010) time series of rainfall and river flow are vitally important assets, 

critical to the sustainable management of water resources and serving as indicators of past 

hydrological variability and fundamental contributors to hydrological models for future behavior 

prediction. The completeness of records is a crucial component of their utility. Even very short gaps 

preclude the calculation of important summary statistics, such as monthly runoff totals or n-day 

minimum flows, and inhibit the analysis and interpretation of flow variability. In fact hydrologic 

studies require complete time series data preferably collected over a long period of several stations, 

especially in large basin studies, spread out across the whole region of interest (Yozgatligil et al., 

2013). According to this and other authors (Beauchamp et al., 1989; Hanson et al., 2004; Gould et al., 

2008; Mwale et al., 2012) having complete datasets one can form inferences based on equally spaced 

observations, preserving the statistical information of the system. As stated by Ng and Panu (2010) 

incomplete datasets raise the level of complexity and uncertainty in modeling. Encountering missing 

information in meteorological time series is inevitable, particular in developing and economic 

emerging countries. If data gaps are big, incomplete time series may hide the pattern of the data, and 

they may considerably distort the results of any statistical analysis. To avoid the effect of missing data 

on the results of climatological studies it is essential to handle meticulous the optimal infilling of 

missing data. 

 The National Meteorological and Hydrological Institute of Ecuador (INAMHI) collects since 

August 1961 systematically meteorological and surface hydrological data. Unfortunately political 

instability and economic constraints resulted at one hand that data monitoring is discontinuous, often 

of short duration, and that parallel other governmental and non-governmental institutions started 

collecting rainfall and temperature data. This situation is very prevalent for developing and economic 

emerging countries as stated by Gyau-Boake and Schultz (1994), Ilunga and Stephenson (2005), and 

Adeloye (2011). The main factors responsible for gaps and inconsistencies in available time series 

data include temporary absence of observers, use of different equipment, and the poor and infrequent 

calibration of sensors, the malfunctioning of equipment, among other factors, which can be very 

different from data collector to data collector. Dispersion in efforts, absence of coordination, poor 

follow-up and inconsistency in data storage are responsible that the time series of meteorological data 

in Ecuador are incomplete, often of short duration, and heterogeneous. As stated by Adeloye (1996, 

2011) the low quality and incompleteness of time series data strongly hinders and effects the planning, 

operation and management of water resources systems, hindering the calibration and validation of 

modeling tools and their use for predicting the hydrological responses under changed climate 

conditions. A way to redress the issue in existing time series data is infilling the gaps using one of the 

many available techniques. Of course, it is evident that countries with a low monitoring profile in 

future should give more active policy attention to consistent monitoring, data storage and sharing. 

 The purpose of this paper is exploring the performance of 17 deterministic infilling methods with 

respect to completing the time series of daily precipitation and mean daily temperature, collected in 

different stations in the Andean Paute river basin. Performance is measured using 3 metrics. The paper 

is organized as follows: Section 2 gives an overview of infilling methods, with justification why for 
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this study only deterministic methods were selected. Section 3 is devoted to a detailed description of 

the study area, the infill methods and time series used. Results and discussions are presented in the 

Section 4, and Section 5 presents conclusions and prospects for future research. 

 

 

2. INFILLING METHODS 

 

Fifty three (53) precipitation stations are available in the Paute river basin, but after quality control 

only the time series data of 14 stations met the acceptance criteria. This clearly indicates that major 

effort is needed to better coordinate between the different stakeholders involved in data monitoring, so 

that as from today more and better information is available that is useable as to study for example the 

effect of climate change on the basin hydrology. According to the World Meteorological Organization 

(WMO) for model calibration and validation at least a time series of 30 years is needed, for which 

often the record period 1960 to 1990 is selected. The infill methods described in literature can be 

grouped in three major classes: (i) the deterministic, (ii) stochastic and (iii) artificial intelligence 

methods. A brief description of each group is given in the following. 

 

2.1. Deterministic methods 

Deterministic methods are mathematical models that always produce the same output from a given 

initial condition, and neither contemplates the existence of randomness nor attribute a probability of 

occurrence. A simple deterministic method is the imputation of the arithmetic mean of the 

corresponding day value of the stations near the station where infill is required. This method is 

suitable for areas where the variable under consideration possesses small spatial variability (Ramos-

Calzado et al., 2008). Dingman (1994) suggests selecting the stations based on sound meteorological 

judgment and expertise. The inverse distance weighting method (IDW) is probably the most 

commonly used to estimate missing data in hydrology and geographical sciences (Di Piazza et al., 

2011). The success of this method depends on the existence of a positive spatial autocorrelation 

(Vasiliev, 1996). Therefore one problem of the IDW method is the arbitrary selection of time series 

data from neighboring stations (Di Piazza et al., 2011). Besides, Xia et al. (1999a) examined six 

methods for estimating missing climatological data: simple arithmetic averaging, inverse distance 

interpolation, normal ratio method, single best estimator, multiple regression analysis and universal 

kriging. The multiple regression analysis predominantly gave the best estimation for temperature, 

water vapor pressure and wind speed. On the contrary, Wagner et al. (2012) compared the 

performance of the spatial interpolation approach to infill precipitation time series data applying seven 

methods, including the deterministic Thiessen polygon method, the stochastic, and statistical and 

geostatistical approaches. From this evaluation the methods based on regression showed the best 

performance. 

 

2.2. Stochastic methods 

Stochastic methods provide probabilistic estimates of the outcome, in contrast to deterministic 

methods. There are many studies that have dealt with these methods for infilling of climate time series 

data (Ashraf et al., 1997; Di Piazza et al., 2011; Teegavarapu and Chandramouli, 2005; Yozgatligil et 

al., 2013). Most of these studies focused on the comparison between the deterministic and stochastic 

infill methods. Findings revealed that depending from the datasets sometimes one method outperforms 

the other; however the high computational cost of stochastic methods has been highlighted as a major 

constraint. Also Ashraf et al. (1997) compared deterministic and stochastic methods (Inverse Distance 

Weighted, Kriging and Co-Kriging) to infill gaps in precipitation time series, and found that stochastic 

methods in general perform better. At the other hand, Teegavarapu and Chandramouli (2005) worked 

on filling gaps in precipitation datasets, by improving the IDW method and the development of 

databased models using concepts of artificial neural network (ANN) and stochastic interpolation by 

Kriging. Results showed the advantages of these methods when compared to traditional schemes. At 

the other hand, Di Piazza et al. (2011) compared different spatial interpolation techniques to create 
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complete monthly precipitation series. The algorithms used for interpolation were the IDW method, 

regression methods, ANNs and geostatistical models such as ordinary and residual kriging. Results 

revealed that the linear regression residuals between precipitation and elevation, incorporated into an 

ordinary kriging model gave the best results. Some authors used the elevation in stochastic methods to 

produce better results in the interpolation of climate variables. Because the lack of a significant 

correlation between the annual precipitation depth and the elevation, in this study elevation was not 

considered as additional parameter not withstanding the considerable elevation differences present in 

the Paute river basin. Further, Diodato and Ceccarelli (2005) compared three methods of interpolation, 

IDW, linear regression and co-kriging, concluding that the latter is the best method when considering 

the elevation. One of the main limitations of spatial interpolation methods used to infill climate time 

series is that they neglect the space-time structure of the time series (Di Piazza et al., 2011). 

 

2.3. Artificial intelligence methods 

Modern methods of artificial intelligence are also widely used for infilling weather data time series, 

especially ANNs and support vector machines (SVM) (Mwale et al., 2012; Khalil et al., 2001; Mileva-

Boshkoska and Stankovski, 2007). These methods have a complex mathematical formulation, 

consequently more difficult to be implemented, and require intensive calculations with high 

computational cost; however they are effective especially when dealing with non-linear relations 

(Dawson et al., 2002). For example, Yozgatligil et al. (2013) used methods based on ANNs and 

multiple imputation strategies (MI) to fill monthly series of precipitation and temperature. Results 

showed that the creation of a Monte Carlo Markov Chain algorithm based on expectation-

maximization (EM-MCMC) performed better and reduced the uncertainty of the results. Further, 

Khalil et al. (2001) presented an alternative approach to fill streamflow time series data using ANNs 

and a data grouping approach. The results indicated that ANN models showed good performance 

infilling streamflow time series data when performing a grouping of seasonal periods. Coulibaly and 

Evora (2007) conducted a comparison of six different types of ANN for filling daily time series of 

precipitation and temperature. The results clearly indicated that the multilayer perceptron (MLP) 

network was the most effective in filling missing daily precipitation and daily maximum and minimum 

temperature data. Also, a combination of ANN and stochastic methods can be found in Demyanov et 

al. (1998), where residues of the ANN are analyzed applying an ordinary Kriging method. Results 

showed good performance in representing the statistical characteristic of climate variables, besides 

representing adequately large-scale structure, periodicity and small-scale effects. Recently, Kim and 

Pachepsky (2010) presented a new technique to reconstruct missing daily precipitation data by 

combining ANNs with regression trees (RT). The RT+ANN method significantly improved accuracy 

and was more robust when compared with RT and ANN alone. This method was also more accurate 

and robust in streamflow predictions with reconstructed precipitation. Despite having multiple 

methods to infill data gaps in climate time series, this paper focuses on the evaluation and comparison 

of deterministic methods because they are computationally efficient, robust especially when dealing 

with extreme events or high spatial variability as the Andes (Ramos-Calzado et al., 2008), and are 

easy to implement compared with more sophisticated techniques. These strengths make them very 

useful especially in countries with poor monitoring tradition where gaps of information in 

climatological and hydrologic time series are ubiquitous. 

 

 

3. MATERIALS AND METHODS 

 

3.1. Study area and data 

The performance of the 17 deterministic infilling techniques was assessed using time series data of the 

Paute river basin. The catchment is of high economic and ecologic value covering an area of 6148 km
2
 

including the lower part eastwards towards the Amazon plateau. The basin is located in the inter-

Andean depression between the western and the eastern sides of the cordillera in south Ecuador, 

draining into the Amazon basin. Its elevation ranges between 500 and 4680 m above mean sea level. 

Around 40% of the basin is covered with Páramo, a very fragile ecosystem (Célleri et al., 2007). The 



MASKANA, Vol. 5, No. 1, 2014 

Revista semestral de la DIUC  103 

 

Paute river basin fosters several hydroelectric projects, such as the Amaluza (1075 MW), El Labrado y 

Chanlud (38,4 MW), Mazar (162,6 MW) and Sopladora (500 MW), generating roughly 50% of the 

national hydroelectricity production (Salazar and Rudnick, 2008). The southern region of Ecuador 

depends directly upon the hydro-ecological services of the basin. 

 The climatology of the basin is very diverse, presenting the typical inter-Andean bi-modal 

seasonality of rainfall in the central part, with peaks in March-April and October-November, and a 

profound dry season in July and August (Bendix and Lauer, 1992; Mejía et al., 1996; Célleri et al., 

2007). The seasonality is mainly convective in nature due to the interplay of the intertropical 

convergence zone responsible for the rainy seasons and the Walker circulation accountable for the 

tendency to subsidence and high pressure inhibiting cloud formation in the dry season. Amazon 

influence to the east of the basin, accompanied by moist easterlies, shifts the rainy season to June-July-

August (JJA) (Laraque et al., 2007). The remainder of the year is continuously rainy. To the higher 

elevations, on the western side of the basin a weak rainfall peak in June-July is present, departing from 

the typical inter-Andean seasonality (Bendix and Lauer, 1992), advective in nature with lower rain 

rates in contrast to higher amounts of rainfall during the convective peaks in the March-April-May 

(MAM) and September-October-November (SON) seasons. During ENSO periods, precipitation in the 

costal plains is strongly influenced, but no link between ENSO and the annual rainfall in the inter-

Andean valleys, as the Paute basin, has been detected (Rossel and Cadier, 2009; Célleri et al., 2007). 

 Daily precipitation data of 53 stations and mean temperature of 13 weather stations, for the period 

January 1981 to December 2010 were used for this study. The stations are operated by the National 

Institute of Meteorology and Hydrology, INAMHI, and the datasets made available by El Grupo de las 

Ciencias de la Tierra y del Ambiente of Universidad de Cuenca. 

 

3.2. Methods 

Selection of stations 

In this study the quality of time series was checked on the following three criteria: (i) gaps in the time 

series, (ii) homogeneity of the time series, and (iii) the importance of the station. 

 

Gaps quantification 

The first criterion applied to control the quality of the data was checking the gaps in the time series of 

precipitation and temperature. The percentage of gaps threshold for the whole study period was limited 

to 25% of the data. Recommendations found in literature advise lower thresholds, as 10% (Baddour 

and Kontongomde, 2007), but due to the scarcity of the data the presented value was considered. The 

next step in the assessment of the quality is the detection of outliers. For outlier detection a logarithmic 

transformation of the daily data was performed and data exceeding the range               
            was considered outlier (Montgomery and Runger, 2011). In the proposed range,    

is the first quartile or the 25
th
 percentile, and    is the third quartile or the 75

th
 percentile. The datasets 

were logarithmic transformed as to bring the distribution closer to a normal distribution, because the 

histogram of daily precipitation data presented a positive skewness. 

 

Homogeneity check 

The second applied quality criterion is assessment of the homogeneity of the data time series. For 

considering homogeneous a climate time series, it is necessary that variations in the data are caused 

only by variations in climate rather than other external factors (Aguilar et al., 2003). External factors 

that might cause inhomogeneities in data are: monitoring stations relocations, changes in 

instrumentation, changes of the surroundings, instrumental inaccuracies, and changes of observational 

and calculation procedures (Costa and Soares, 2008). Especially for stations in remote locations with 

limited access to retrieve information, checking for homogeneity of the data is strongly recommended. 

The homogeneity was checked on monthly data, since daily time series can be very noisy. The 

package RHTestsV3 (Wang et al., 2007; Wang, 2008a; Wang, 2008b) was used to detect and adjust 

for multiple change points that exist in time series data possessing first order autoregressive errors. 

The change point detection test is based on the penalized maximal F-test, which allows the time series 
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being tested to have a linear trend throughout the whole period of the data record. The trend estimates 

are robust to the first-order autocorrelation of the respective series, because the annual cycle, linear 

trend, and lag-1 autocorrelation of the time series were estimated in tandem through iterative 

procedures (Wan et al., 2010). 

 

Importance of station 

Besides the amount of gaps and homogeneity, another used quality criteria is the spatial importance of 

the station, which considers the relative position of the station with respect to others. Stations located 

near the center of the basin, where normally the density of stations is greater than near the border, are 

less important than those located close to the border of the basin. Furthermore, stations located near 

the border are important in the case of gridded interpolation based data generation. A plus sign (+) was 

assigned to the most important stations by location. 

 

Deterministic methods for gaps infilling 

Deterministic methods for infilling gaps were applied to daily time series of precipitation and mean 

daily temperature. Table 1 presents a summary of the applied infill methods with their respective 

abbreviation. A brief outline of each method is given in the following. 

 

Table 1. List of the 17 deterministic infilling methods with their respective code. 

# Infill method Code 

1 Average value nearer stations by distance AVNSd  

2 Average value nearer stations by R AVNSR  

3 Climatological mean of the day CMD 

4 Nearest neighbour value by distance NNVd  

5 Nearest neighbour value by R NNVR 

6 Inverse distance weight power 1 IDW+1 

7 Inverse distance weight power 2 IDW+2 

8 Inverse distance weight power ½ IDW+1/2 

9 Linear regression with the nearest station by distance LRNd 

10 Linear regression with the nearest station by R LRNR  

11 Linear regression with the nearest station by R/d ratio LRNR/d 

12 Multiple linear regression weighted by distance power -1 MLRWd-1 

13 Multiple linear regression weighted by distance power -2 MLRWd-2 

14 Multiple linear regression weighted by R power 1 

 

MLRWR+1 

 15 Multiple linear regression weighted by R power 2 

 

MLRWR+2 

16 Multiple linear regression weighted by R/d ratio power 1 MLRWR/d+1 

17 Multiple linear regression weighted by R/d ratio power 2 MLRWR/d+2 

Legend: R = Pearson coefficient; d = distance 

 

Average value nearer stations by distance d (AVNSd). Missing data are obtained by arithmetically 

averaging data of the closest weather stations around the station of interest (Xia et al., 1999b; 

Bennett et al., 2007), applying Eq. 1. 

 

     
   

 
   

 
 Eq. 1 

 

Where      is the estimated value of the missing data,    is the value of the same parameter at the 

i
th
 nearest weather station and n is the number of the nearest stations, from which information was 

used for the estimation of the missing value. 
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Average value nearer stations by the Pearson coefficient R (AVNSR). The Pearson correlation 

coefficient, R, is a measure of the linear relationship between two random variables. R is an index 

that can be used to measure the degree of relationship of two variables. The R values are 

converted into weights by using the weighting formula for the i
th 

R; where n is the total number of 

stations (Dumedah and Coulibaly, 2011; Bennett et al., 2007). Estimation of the missing variable 

is computed as the weighted sum of the available variable-values (n) and their respective weights 

(w) (Eqs. 2 and 3). 

 

   
  

   
 
   

 Eq. 2 

           

 

   

 Eq. 3 

 

Climatological mean of the day (CMD). This method uses the long-term average value of the 

same day of interest.      is the estimated value,    is the value of the variable for the i
th
 day of 

year j, and T is the number of years data are available (Narapusetty et al., 2009). The output of 

Eq. 4 is simply a temporal average of the j
th
 day value. 

 

       
    

 
   

 
 Eq. 4 

 

Nearest neighbor value by d and R (NNV). Observations from neighboring stations are used in 

missing data reconstruction. It has been proposed to use geometrical distances to the stations and 

to apply the data from the closest station. However, the method gives poor results when the 

climate variable under analysis has a high spatial variability. For this reason, in this study a 

modified version of the criterion was used imposing conditions on the correlation coefficient 

(Ramos-Calzado et al., 2008). 

 

Inverse distance weight (IDW). The inverse distance weighting method estimates the missing 

value of an observation,     , using the observed values at other stations applying Eq. 5 

(Teegavarapu et al., 2009; Bennett et al., 2007). 

 

     
     

   
   

   
   

   

 Eq. 5 

 

Where      is the estimated value; n the number of stations;    the observation at station i,    the 

distance from the station to the i
th
 station, and k the power of distance, referred to as a friction 

distance ranging between 0,5 and 2. 

 

Linear regression with the nearest station by d, R and by the ratio R/d (LRN). In this method the 

nearer station is selected by the closets distance, the higher Pearson coefficient, or the higher ratio 

of the Pearson coefficient and the distance (Dumedah and Coulibaly, 2011; Xia et al., 1999b; 

Villazón and Willems, 2010). The value in the nearer station is defined   . Then a linear fit 

between the target station      and the selected station is calculated to obtain the parameters a and 

b. 

 

             Eq. 6 
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Multiple linear regression weighted by d, R and by the ratio R/d (MLRW). In multiple linear 

regression, a linear combination of two or more predictor variables is used to explain the variation 

in a response (Abatzoglou et al., 2009). In essence, the additional predictors are used to explain 

the variation in the response not explained by a simple linear regression. Several powers are used 

to identify the best performing one. The weight used is the distance, the Pearson coefficient or the 

ratio of the Pearson coefficient to the distance, with power k. The coefficients    and    are 

calculated as a linear fit between      and    (see Eq. 7). 

 

      
   

             
 
   

    
  

   

 Eq. 7 

 

For the methods using data of several stations four stations (n = 4) were used for the infilling of 

precipitation, assuming that one station is representative of one cardinal direction. This criterion might 

be important in case of directionality of precipitation. For temperature two stations (n = 2) were 

considered because of the scarcity of stations at diverse elevations, and taking into account that too 

distant stations could affect the prediction of closer stations. 

 

Statistical metrics for the evaluation of methods 

For the performance assessment of the 17 infilling methods 1,5% of the data in the time series was 

sampled at random and considered for further comparison with infilled values (Kotsiantis et al., 2006). 

The comparison between infilled and observed values was quantified by the mean error (ME), the 

mean absolute error (MAE) and the root mean square error (RMSE). For precipitation, these metrics 

of error were quantified for respectively bi-modal and uni-modal stations. For temperature all stations 

were considered together because the seasonality of temperature is similar in the bi- and uni-modal 

regime. The three metrics of error (Eqs. 8, 9 and 10) were valuated seasonally and annually. 

 

     
         

 
   

 
 Eq. 8 

      
           

 
   

 
 Eq. 9 

        
           

  
   

 
 Eq. 10 

 

In these equations                  are the mean error, the mean absolute error and the root mean 

square error, respectively for each of the 17 infilling methods (k varies from 1 to 17).     is the i
th
 

infilled value of method k, n is the number on sampled values not considering gaps, and      is the 

observed value corresponding to the i
th 

value. 

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1. Selection of stations 

For precipitation the cumulative percentage of gaps in the period January 1981 until December 2010 

for the 14 selected stations out of a total of 53 stations is presented in Fig. 1. This figure clearly reveals 

that for some stations an increase in percentage of gaps is noticeable in the 90’s in comparison to other 

decades. The percentages include the outliers that finally were considered as gaps. Figure 2 depicts for 

the temperature stations the cumulative percentage of gaps in the period 1981-2010. From the 13 

weather stations with temperature data only 5 stations had daily observations after the early 90s. For 

this reason the evaluation of gaps, homogeneity and spatial importance was only developed for these 
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stations. From Fig. 2 it can be derived that since 1982 all 5 stations became fully operative. The 

cumulative percentages encompass the gaps due to outliers’ detection. 

 

 

 

Figure 1. Cumulative percentage of gaps for the 14 selected precipitation stations. 

 

 The quality criteria applied to the available time series data of precipitation are summarized in 

Table 2. The percentage of gaps was derived for the entire study period. The identified 

inhomogeneities are presented in the sixth column and the last column presents the importance of the 

station by location. The Paute station present one minor inhomogeneity and does not justify rejection 

of the station. The stations Ricaurte, Gualaceo and Sigsig-INAMHI present weak inhomogeneities and 

are important by location. Since only 14 rainfall stations were retained it is evident that the density of 

stations is low; especially in the northern and western part of the basin. 

 

Table 2. List of retained precipitation stations. 

# Station Code 
Elevation 

(m a.s.l.) 

% gaps 

1981-2010 

Homogeneity 

Shift date* 
Importance 

1 Ricaurte M426 2545 1 Oct-00 + 

2 Sevilla de Oro  M431 2360 8   

3 Sayausí  M427 2780 1  + 

4 Mazar rivera M410 2450 7  + 

5 Chanín M414 3270 5  + 

6 Paute M138 2194 8 Oct-00  

7 El Labrado M141 3335 9  + 

8 Cumbe M418 2720 4  + 

9 Jacarín M197 2700 24   

10 Palmas M045 2400 17  + 

11 Gualaceo M139 2230 11 Jan-09 + 

12 Sigsig INAMHI  M424 2600 6 Jan-09 + 

13 Peñas Coloradas  M217 2321 19  + 

14 Biblián M137 2640 26   

* Shift date: date detected of mean-shift, although a change in the distribution without a shift in the mean could go undetected 

(Wang et al., 2007). 
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Figure 2. Cumulative percentage of gaps for the 5 selected temperature stations. 

 

Table 3. List of retained temperature stations. 

# Station Code 
Elevation 

(m a.s.l.) 

% gaps 

1981-2010 

Homogeneity 

Shift date* 
Importance 

1 Palmas M045 2400 22  + 

2 Biblián M137 2640 26  + 

3 Paute M138 2194 10  + 

4 Gualaceo M139 2230 14  + 

5 El Labrado M141 3335 10  + 

* Shift date: date detected of mean-shift, although a change in the distribution without a shift in the mean could go undetected 

(Wang et al., 2007). In temperature time series all stations retained are homogeneous during the period of study. 

 

 Table 3 summarizes the quality criteria applied for the selection of the temperature stations. The 

percentage of gaps holds for the entire study period. The sixth column in the table presents the date of 

identified inhomogeneities and the last column the importance of the station by location. Biblián 

station, with 26% of gaps, surpassing by 1% the threshold of 25% is considered because of the lack of 

data. Temperature data did not present inhomogeneities during the study period, and most retained 

stations are located in the center of the basin. 

 

4.2. Evaluation of the deterministic infilling methods  

For infilling the gaps in the precipitation and temperature time series, 17 methods were applied. The 

evaluation of their performance was quantified by the ME, MAE and RMSE, between sampled 

observed values and infilled values. The sampled values roughly represent 1,5% of the data (Kotsiantis 

et al., 2006). The list of the 17 evaluated deterministic infilling methods is given in Table 1. 

 

Precipitation 

For precipitation the performance of the infilling methods is presented separately for the bi-modal 

(BM) and the uni-modal (UM) stations because it was observed that metric errors differed between 

them especially during the rainy season JJA. Figures 3 and 4 present the ME, MAE and RMSE for 

respectively the BM and UM precipitation stations, and are calculated as the annual and seasonal 

average infilling errors. 
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Figure 3. ME, MAE and RMSE of the annual (a) and seasonal (b = DJF; c = MAM; d = JJA;              

e = SON) average infilling errors of daily precipitation for bi-modal stations. 
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Figure 4. ME, MAE and RMSE of the annual (a) and seasonal (b = DJF; c = MAM; d = JJA;              

e = SON) average infilling errors of daily precipitation for uni-modal stations. 
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Figure 5. ME, MAE and RMSE of the annual (a) and seasonal (b = DJF; c = MAM; d = JJA;              

e = SON) average infilling errors of mean daily temperature. 
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 For precipitation is the averaged annually value of RMSE lower for the infill methods [12, 13, 16, 

17], and this for the BM and UM stations (Figs. 3a and 4a). All of these methods are multilinear 

regression methods, the first two weighted by R and the second two weighted by the R/d ratio, and the 

two weight powers (1 and 2). Annually ME is similar for all methods in BM and UM stations with 

exception of the [1, 2, 6, 7, 8] methods. Those methods present higher values for the UM stations. 

From the Figs. 3a and 4a it is clear that RMSE is more sensible than MAE and ME, that RMSE and 

MAE depict a similar pattern for respectively the BM and UM stations, and that for both station types 

the error value of RMSE and MAE is larger than for ME. 

 During DJF the RMSE of the different methods for both BM and UM stations varies considerably 

(Figs. 3b and 4b). The methods [12, 13, 16, 17] score best (lowest value for RMSE). All methods 

perform similarly with respect to the ME criteria. The linear and especially the multilinear methods 

perform well for the three metrics and this for all seasons (MAM see Figs. 3c and 4c; JJA see Figs. 3d 

and 4d; SON see Figs. 3e and 4e). In summary the analysis reveals that based on the ME, MAE and 

RMSE values, for both the BM and UM stations, that MLRWd-1 (#12), MLRWd-2 (#13), 

MLRWR/d+1 (#16) and MLRWR/d+2 (#17) are the best performing methods. In case one single 

method should be used for the annual and seasonal analysis, the MLRWR/d+2 (#17) would be most 

advisable, because the weighting considers R and d as factors of influence, and power 2 weights more 

close stations, which is most appropriate for study regions with high spatial variability, as is the case 

in the Paute basin. 

 

Temperature 

For temperature the BM and UM stations are considered as one group, because of the temperature 

similarity in both regions. Figure 5 depicts the ME, MAE and RMSE for the 17 infilling methods 

applied to the mean daily temperature time series, calculated respectively for the annual (Fig. 5a) and 

the seasonal (Figs. 5b, c, d, e) average infilling errors. The lowest RSME value for the annual average 

infilling error is obtained with method [3] (Fig. 5a). The calculated ME is similar for the methods [3, 

6, 7, 8]. For MAE the lowest value is obtained by method [3], followed by the linear and multiple 

linear regression methods. For the seasonal mean daily temperature in the DJF (Fig. 5b) and MAM 

(Fig. 5c) seasons four methods [3, 9, 12, 13] score equally well with respect to RMSE and ME. During 

the JJA (Fig. 5d) and SON (Fig. 5e) season only the CMD method scores best for all three metrics. 

The lack of temperature stations might account for the poor performance of the regression methods, 

given stations are located too far apart. Therefore, for infilling gaps of temperature the lowest values 

of ME, MAE, and RMSE are realized by filling gaps with the long-term average of the same day of 

interest. 

 

 

5. CONCLUSIONS 

 

The research presented in this paper aimed assessing the performance of 17 deterministic infilling 

methods applied to the daily time series of precipitation and mean daily temperature, with application 

to the Paute basin, a highly variable region in the Andes mountain range in south Ecuador. Because of 

the robustness, the simplicity in implementation and computational efficiency, given also the 

complexity of the study area and the limitations in number of useable monitoring stations, preference 

was given to the deterministic methods over the more sophisticated techniques, such as the stochastic 

and artificial intelligence methods. The tested methods included the climatological mean, the nearer 

neighbor value, the average neighbor value, the inverse distance weighted, and the linear and 

multilinear regression methods. Useable stations were selected using the following tree criteria: (i) a 

maximum gaps threshold of 25% in the period January 1981 to December 2010; (ii) data homogeneity, 

and (iii) the relative importance of the station by location. Fourteen stations out of 53 available 

stations were selected for precipitation, and 5 out of 13 stations for temperature. The performance of 

the infilling methods was quantified by the mean error, the mean absolute error and the mean square 

error for annual and seasonal averages of infill errors in a random sample of 1,5% of the data. 
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 The results for daily precipitation show that in general multiple linear regression methods 

outperform the others, annually and in all seasons. Specifically the multiple linear regression weighted 

by the ratio (R/d)
2
 is the best performing method, consistently showing good performance in contrast 

to the linear regression with the nearest station by Pearson coefficient. The latter performed during 

some seasons similar as the multiple linear regression methods, but annually they performed inferior. 

For temperature the results show that the best performing infilling method for mean daily time series 

was the climatological mean of the day, annually and seasonally. The low performance of multiple 

linear regression methods might be the consequence of the low number of temperature stations and the 

scattering of the stations in a very heterogeneous region, affecting the difference between stations. 

 A shortcoming in this study, which will be the subject of further research, is that the elevation 

was not taken into account as a factor for interpolation. Also, in further work a comparison between 

the best performing deterministic methods with more sophisticated artificial intelligence methods as 

neural networks, support vector machines, and stochastic methods as Kriging and co-Kriging, will be 

pursued. 
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