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Simple Summary: The role of human papillomavirus (HPV) in cervical carcinogenesis is widely
documented; however, with an increasing number of scientific publications on the molecular and
cellular mechanisms activated by the virus and, specifically, by high-risk HPVs (HR-HPVs) that
are involved in the development of uterine cervical cancer (CaCU) and its precursor lesions, we
consider it is important to present a review of scientific articles that address ten of the mechanisms
associated with at least seven of the fourteen hallmarks of cancer recently proposed. Understanding
the mechanisms activated by HR-HPVs in the context of the distinctive physiological capabilities of
cancer will allow the identification of clinically relevant biomarkers to improve the diagnosis and
treatment of CaCU.

Abstract: Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identi-
fied as necessary factors in the development of cancer of the lower genital tract, with CaCU standing
out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs
during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen dis-
tinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These
mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to
uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms,
loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell
protein function, and acquisition of the mesenchymal phenotype.

Keywords: HPV; uterine cervical cancer; viral load; viral physical state; integration; methylation; metastasis

1. Introduction

According to data published by the International Agency for Research on Cancer of
the World Health Organization (IARC-WHO; Globocan 2020), worldwide, uterine cervical
cancer (CaCU) is the fourth most common cancer and the third cause of death in women.
In Latin America, it is not only the third most common cancer, but also the third cause of
death in the female population [1–3].
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Seventeen years have passed since the first marketing of vaccines against the human
papillomavirus (HPV) was authorized. However, a recent report from the WHO indicates
that, to date, only 60% of the member states of the organization have introduced the HPV
vaccine in their national vaccination schedule and that until 2021, only 13% of girls in the
world had completed the planned vaccination schedule [4]. Therefore, CaCU continues
to be a global public health problem, with a particularly high burden in low- and middle-
income countries (LMICs), such as Mexico and Ecuador, where the incidence and mortality
rate of CaCU occupy an alarming second place [1].

For this reason, in the current review, we present an outline of a series of distinctive
molecular multi-step mechanisms that are involved in the carcinogenic process of the cervix
and that could be considered as molecular targets for the timely treatment of neoplasms
caused by HPV.

2. Human Papillomavirus Infection

HPVs are small icosahedral viruses, approximately 50 to 60 nm in diameter, non-
enveloped, containing a circular double-stranded DNA genome (between 7000 and
8000 bp) (see Figure 1), infecting mucosal and skin epithelia in a specific manner and
inducing cell proliferation [5–7].
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entific Inc., Waltham, MA, USA) for the identification of the ORFs of each of the HPV16 genes. 
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functional regions. The first is a “non-coding upstream regulatory region”, also known as 
the long control region (LCR) or upper regulatory region (URR). This region contains the 
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Figure 1. Schematic representation of the structure of the HPV type 16 (HPV16) genome and its
long control region (LCR) as a representative model of genital HPVs. The red vertical lines indicate
the position of the 112 CpG sites along the viral genome. The bottom of the schematic illustrates
the segments into which the LCR is divided as well as the cellular transcription factors that bind to
it [8–15]. To illustrate the genomic structure of HPV16, the latest update of the genomic sequence
was used, with NCBI Reference Sequence NC_001526, as well as PISMA software for the localization
of each of the CpGs sites [16] and Vector NTI® Express Designer Software v1.5.1 (Thermo Fisher
Scientific Inc., Waltham, MA, USA) for the identification of the ORFs of each of the HPV16 genes.

The HPV genome is organized similarly to chromatin [17] and is divided into three
functional regions. The first is a “non-coding upstream regulatory region”, also known as
the long control region (LCR) or upper regulatory region (URR). This region contains the
p97 core promoter along with cis-enhancer elements that include binding sites for the viral
proteins E1 (E1BS) and E2 (E2BS)—required for the commencement of HPV replication—
and binding sites for several cellular transcription factors, including Sp1, YY1, TEF-10,
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AP1, Oct-1, NF1, KRF-1 and glucocorticoid response elements (GREs), required for the
initiation of transcription [8–15,18]. The second is called the “early (E) region” and consists
of the open reading frames (ORFs) for E1, E2, E4, E5, E6 and E7, where the E1, E2 and
E4 proteins are mainly associated with replication, transcription, and viral integration.
The E5 protein regulates cell proliferation and apoptosis and facilitates the activity of E6
and E7, while E6 and E7 act as oncoproteins and are associated with cancer development
and progression [19–21]. The third region is known as the “late region (L)”, comprises
40% of the viral genome and includes the ORFs L1 and L2 that encode the viral capsid
proteins [22].

In 1983, Harald Zur Hausen and his working group established, for the first time,
the relationship between HPV and CaCU [23], but it was not until 1995 that the IARC-
WHO evaluated and considered HPV as a biological agent with carcinogenic risk for
humans [24,25]. Currently, there are 229 different types of HPV [26,27], classified by the
IARC-WHO into three groups according to their oncogenic potential. Group 1, referred to
as ‘carcinogenic or oncogenic’ (also called high-risk or HR-HPV), includes types 16, 18, 31,
33, 35, 39, 45, 51, 52, 56, 58 and 59. Of these types, HPV 16 and 18 are considered to be the
most important for their association with CaCU. Group 2, referred to as intermediate-risk,
is subdivided into Group 2A, called ‘probably carcinogenic’, which includes only HPV 68,
and Group 2B called ‘possibly carcinogenic’, which includes types 26, 53, 66, 67, 69, 70, 73
and 82. Group 3, called ‘not classifiable as carcinogenic (low risk)’, includes types 6, 11, 40,
42, 53, 54 and 57 [28–32].

To date, only viral types in Group 1 (HPVs or HR-HPVs) have been associated with
the development of both CaCU and other types of cancer, including anogenital cancers
(penis, vulva, and vagina) and cancers of the head and neck [28,33–35]. In addition to
this, a recent study showed that almost one in three men worldwide are infected with at
least one type of genital HPV and around one in five men are infected with one or more
types of HR-HPV (14). This indicates that men frequently harbor genital HPV infections,
emphasizing the importance of incorporating men in efforts to control HPV infection and
reduce the incidence of HPV-related diseases in both men and women [36].

3. Cellular Tropism

The uterine cervix is divided into three regions, i.e., the exocervix (also called ecto-
cervix), the endocervix and the squamocolumnar junction (SCJ) or transformation zone
(considered a misnomer for a benign process, since the term “transformation” is cur-
rently used in oncology to refer to malignant neoplastic transformation). The ectocervix is
composed of a non-keratinized stratified squamous epithelium and contains four pheno-
typically distinct cell populations: epithelial stem or stem-like cells, located in the basal
and parabasal layer, and differentiated cells, located in the intermediate and superficial
layers. The endocervix is lined by a single layer of mucinous columnar cells (also referred
to as columnar epithelium or glandular epithelium). The SCJ is the transition area between
the ectocervix and the endocervix and consists of endocervical squamous metaplasia cells,
which include endocervical reserve cells (a specialized type of tissue stem cell) and possibly
cuboidal cells located, more precisely, in the squamocolumnar junction, which have the
capacity to divide and renew [37–41].

John Doorbar [42] extensively described the cellular tropism of HPV. His findings
allowed us to establish that in the case of non-keratinized stratified squamous epithelium,
the presence of a micro-wound is required that allows infectious virions to access the
basal layer and specifically infect stem-like cells. Once infected, the stem-like cells form
a reservoir of infection, and in these cells, the viral genome is maintained in an episomal
state with a low copy number; as the cells divide, they produce daughter cells that are
pushed towards the epithelial surface, giving rise to transient productive infections possibly
progressing to high-grade neoplasia or squamous cell carcinoma [42–44]. Conversely, it is
suggested that HPV can also infect mucinous columnar cells, reserve cells and cuboidal
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cells located in the SCJ and endocervix, where infection of these cell types is associated with
different patterns of disease progression and the development of adenocarcinoma [45–48].

Importantly, most research models of HPV-associated cervical carcinogenesis focus on
the non-keratinized stratified squamous epithelium, while the columnar epithelium of the
endocervix and the metaplastic epithelium (which contains reserve cells and cuboidal cells)
of the SCJ have received less attention. Evidence of this difference in research focus is that
the mechanism by which HR-HPV infects stem-like cells is widely known. Specifically, these
cells are characterized by expressing α6β4 integrin receptors, the epidermal growth factor
receptor (EGFR), the keratinocyte growth factor receptor (KGFR) and heterotetrameric
annexin A2/S100A10 (A2t) receptors, which are necessary for the entry of virions into the
cell [49–51]. On the other hand, in the case of the epithelia of the endocervical region and
the SCJ, it is only known that reserve cells that have a CK17/p63 phenotype are easily
accessible targets for HPV infection [52–55].

4. Genetic Predisposition to Cervical Cancer

Several genome-wide association studies (GWASs) in different populations have pro-
vided evidence that there is a certain genetic susceptibility associated with the development
of CaCU. A GWAS study of the British population identified certain single-nucleotide
polymorphisms (SNPs) in the PAX8, CLPTM1L and HLA genes, with the SNPs rs10175462
in PAX8, rs27069 in CLPTM1L and rs9272050 in HLA-DQA1 being strongly associated
with the risk of developing CaCU [56]. Another GWAS study of the Saudi population
determined that the SNPs T10C in the GFB1 gene and G399A in the XRCC1 gene were asso-
ciated with a 1.5-fold increase in the risk of developing CaCU [57]. Some studies reported
that functional SNPs in codon 72 of TP53 and SNP609 in the NQO1 gene are associated
with the risk of developing CaCU [58]. Finally, the homozygous CC genotype in the SNP
rs4646903 of the CYP1A1 gene—which participates in genetic repair mechanisms—and the
CT heterozygous genotype in the SNP rs1801133 of the MTHFR gene—which participates
in cellular detoxification—are not only associated with the development of CaCU and
high-grade dysplasia, but may also contribute to disease progression [59].

5. Viral Load

Initially, the detection of HR-HPV viral load was used as an additional test to relate
the viral copy number to an active infectious process and reduce false-negative results in
HPV diagnostic assays [60]. Other studies correlated the viral load of HR-HPV with the
age of the patient, histological severity, multiple viral types, the area of the cervical lesion
and the sampling method (endocervical and exocervical) [61,62]. The viral load has also
been proposed as a significant marker of progression towards precancerous lesions, that is,
as the viral load increases, the risk of cervical lesions increases. The risk is further enhanced
if the HPV genotype is high-risk, if the viral infection is persistent during the cervical
disease, and if recurrent infections are contracted with different HPV genotypes [63–66].
For example, recent studies reported that a high viral load of HR-HPVs, specifically HPV16,
is significantly related to a higher risk of developing CIN2+, suggesting that viral load
could be a relevant biomarker to identify women with high susceptibility to developing
precancerous lesions in the uterine cervix [67–69].

6. Viral Physical State

At the outset of viral infection in the stem-like cells of the ectocervix, the HPV genome
persists as a naked nucleic acid (also called an episome), and it depends on the host
cell to enable replication. This occurs in the nucleus, with the genome replicating as
an extrachromosomal element each time the cell divides [70]. As infected cells differentiate
and move towards the surface of the epithelium, high levels of viral DNA are replicated,
packaged into virions, and released from the surface of the epithelium as virus-laden
squamous cells [47], thus completing the viral life cycle.
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Conversely, it was reported that during the infectious phase, HPV can remain in its epi-
somal form, integrate into the genome of the host cell or even be present in
a coexisting state (episomal/integrated) [71–74]. In 1987, Awady and collaborators ana-
lyzed the integration of HPV16 in the SiHa cell line and reported, for the first time, the
deletion of 251 nucleotides of the viral sequence within the ORFs E2 and E4 (viral inte-
gration site), and a deletion in chromosome 13 of 4.8 kb of the cellular genomic sequence
(integration site in the cellular genome) [75]. Another study on invasive CaCU samples
carried out by Kalantari and collaborators reported that the HPV16 genome was integrated
between the E1 and E2 regions and that the integration site in the cellular genome was
located in the chromosomal regions 1q25, 3q28, 6p25, 11p13 and 18q22 [76]. In Figure 1
illustrates the region of breakage and integration in the HPV16 genome.

By utilizing the Capture-HPV NGS method using tumor biopsies of patients with
CaCU, it was determined that HR-HPVs are inserted into intact and repeated regions
of the cellular genome, specifically in MYC, NUDT15, MED4, ITM2B, RB1 loci, LPAR6,
KLF5, KLF12, PIBF1, RB1, AKT3, SST, ID1, LPP, AFF3, BCL6, CCAT1, CCAT2, RAB11A,
RAB22A, MAST4 and MAP2, among others [77]. By considering these findings coupled
with results from women with normal cytology, those positive for HR-HPV and those
with an integrated viral physical status [78,79], we can hypothesize that the integration of
the viral genome at the start of infection in the target cell, will not only lead to genomic
instability but also induce the development of a malignant neoplastic process (see Figure 2).
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Figure 2. Schematic representation of the molecular mechanisms induced by HPV during the
carcinogenic process of the uterine cervix. Both the viral load and the integration phenomenon
induce the activation of the methylation machinery, which results in the regulation of the expression
of viral genes and cellular genes. Loss of E2 function, either by methylation of the E2SB regions
or by deletion of the viral genome during the integration phenomenon, causes the deregulated
expression of the E6/E7 oncoproteins, which will consequently induce uncontrolled cell proliferation,
evasion of cell death, activation of the angiogenic process and the acquisition of the mesenchymal or
metastatic phenotype.
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7. Initiation of Epigenetic Mechanisms

In general, it is understood that tumor-associated DNA viruses are organized into
nucleosomes to regulate the expression of their genes through histone modifications,
particularly, histone acetylation. Methylation of the viral genome occurs during infec-
tion as a cellular defense mechanism against the entry of foreign genomes [80,81]. In
this section, we highlight the most relevant epigenetic mechanisms induced by HPV
during carcinogenesis.

7.1. Activation of the Cellular Methylation Machinery

The first studies referring to HPV DNA methylation were carried out in the LCR of
the viral genome using different techniques. One of these involved methylation-specific
PCR (MSP), which made it possible to report different methylation states (hypomethylated,
hemimethylated and hypermethylated) depending on the amplification specificity of the
primers [82–87]. Another comprised bisulfite sequencing PCR (BSP), which allowed report-
ing of the methylation patterns or methylation frequencies (%) of each of the CpG sites of
the LCR [88–94].

Based on different publications alluding to the methylation of the LCR of HR-HPVs
and given the premise that the methylation machinery is activated as a defense mechanism
against foreign genomes, the question is raised as to how HR-HPVs activate the cellular
methylation machinery. Based on previous studies, it can be inferred that HPV activates the
methylation machinery through two physical mechanisms. The first occurs during HPV
infection, when the entry of the viral particles into the target cell activates the methylation
of the viral DNA via DNA methyltransferase 1 (Dnmt1). Following the differentiation of the
host cell, the viral LCR is hypomethylated to regulate the expression of viral genes during
the normal viral life cycle in the non-keratinized stratified squamous epithelium [95–98].
The second mechanism involves the integration of the viral genome, which activates the
cellular methylation machinery again. However, during this process, methylation occurs
only in regions where the viral genome is integrated into tandems, and the distal viral
genomes are transcriptionally active and hypomethylated [94,99–101].

Findings published by Fernández et al. [102] on the DNA methylomes of HR-HPVs
suggest that the viral load and the integration of the viral genome could play an important
role in inducing different methylation patterns as the disease evolves. For example, in
this study, the HeLa (derived from an adenocarcinoma that contains between 10 and 50
integrated copies of HPV18 per cell), SiHa (derived from a grade II cervical squamous cell
carcinoma containing from 1 to 2 integrated copies of HPV16 per cell), and Ca Ski (derived
from a cervical squamous cell carcinoma that contains between 500 and 600 integrated
copies of HPV16 per cell) cell lines were used [102–104], and it was found that the HPV18
genome in HeLa cells is mostly demethylated, with site-specific methylation only in the E2
and L1 regions, while in SiHa cells, the HPV16 genome is demethylated in the LCR, E6, E7
and E1 regions, with methylation in the E2/E4, E5, L2 and L1 regions. Interestingly, in Ca
Ski cells, it was found that the majority of HPV16 genomes are hypermethylated, and only
a few are hypomethylated, suggesting that the latter are those which are transcriptionally
active [102].

7.2. Histone Rearrangement

Favre and collaborators were the first to describe that the HPV genome is associated
with the canonical histones H2A, H2B, H3 and H4 [17]. It was reported that the E2, E6 and
E7 proteins of HR-HPV have the capacity not only to bind to the CBP/p300 coactivator
complex and inhibit its histone acetyltransferase (HAT) activity, but also to block the ability
of p300 to activate p53-responsive promoter elements. This results in the deregulation of
cellular signaling, which decreases genome stability and favors the cellular transformation
process [105–108].
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8. Loss of E2 Protein Function

It is generally understood that the oncogenic HPV E2 protein is a negative regulator
of the expression of the E6 and E7 oncogenes [72]. It is understood that the loss of E2
function can occur in two ways: the first is through the integration process, where breaks
in the E1/E2 regions lead to the functional loss of the E2 gene [72,76,109,110]; and the
second involves the methylation of the CpG sites located in the E2BSs of the HPV LCR,
specifically, E2BS1, E2BS3 and E2BS4, which results in the activation of the p97 promoter
and the subsequent loss of the repressive function of the E2 protein on the transcription of
E7/E6 [96,111–114]. Therefore, the loss of E2 function could be considered a key step in
carcinogenesis.

9. Deregulated Expression of the E6/E7 Oncogenes

Various studies reported that the loss of E2 function—either due to the phenomenon
of viral genome integration or due to the methylation of the E2BSs in the HPV LCR—is
associated with the overexpression or the aberrant expression of E6 and E7 [102,115–117].
However, these same studies mentioned that there was no significant difference when
comparing the expression levels of the E6/E7 oncogenes in samples that expressed E2 and
contained HPV genomes in a purely episomal state or in a coexisting state, with those in
samples that contained HPV genomes in a purely integrated state, without E2 expression.
This indicates that methylation at specific sites of the E2BSs in the LCR plays an important
role not only in the loss of E2 function in those samples harboring transcriptionally active
E2 genes, but also in regulating the expression level of E6/E7. This suggests that the
overexpression of the E6/E7 oncogenes can be favored only in cases where the following
criteria are met: (1) there is a high number of viral genomes in the episomal state with intact
E2 genes and with site-specific methylation in E2BS-I and -II; (2) there is a low or moderate
viral load, and the viral genomes are integrated at distal sites in a single copy and probably
under the control of strong promoter regions in the host cell genome [102,117].

10. Regulation of Host Cell Protein Function

It was reported that the E6 oncoprotein of HR-HPV can evade cell death by apoptosis
through two pathways. The first is through the proteasomal degradation of p53 via its
association with the ubiquitin ligase UBE3a (E6AP) [118–120]. The second is through the
interaction of E6 with hADA3—a protein that functions as a coactivator of p53-mediated
transactivation for a variety of target promoters—where E6 induces the degradation of
hADA3, thus inactivating the function of p53 and overriding the arrest of p14ARF-induced
cell growth, despite the presence of normal levels of p53 [121,122]. Conversely, it is widely
accepted that the E7 oncoprotein of HR-HPVs plays two main roles to induce the transform-
ing and proliferative process in cells. Firstly, it binds with members of the retinoblastoma
protein (pRb) family, such as p107 and p130 [123], which promotes the transcriptional activ-
ity of E2F transcription factors, thus regulating cell cycle entry and the progression from the
G1 phase to the S phase of the cell cycle [124]. Secondly, it destabilizes pRb via degradation
through the ubiquitin–proteasome pathway, leading to oncogenic transformation [125].

Table 1 exemplifies host cell proteins that interact with HPV proteins and their effect
on different cellular mechanisms.

Table 1. Host cell proteins that interact with HPV proteins.

Modulated Mechanisms Host Cell Proteins HPV Protein References

Increased cell proliferation
A4, Bap31, EGFR, ErbB4 E5 [126–129]
CYLD, DLG1, DVL2, MPDZ,
PTPN13, PTPN3 E6 [130–139]
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Table 1. Cont.

Modulated Mechanisms Host Cell Proteins HPV Protein References

B-Myb/MuvB complex, BRG1, CDK2,
CHD4, Cyclin A, Cyclin E, E2F1, E2F6,
HDAC1, HDAC2, p107, p130, p27KIP1,
pRb, PTPN14, SMAD1-4

E7 [140–157]

Evasion of the immune
response

Calnexin, HLA-I heavy chain, E5 [158,159]
IRF3, TRIM25, TYK2, USP15, IRF3 E6 [160–163]
IRF1, IRF9, IKKα, IKKβ, NLRX1, TAP1 E7 [164–170]

Loss of p53 function (due to
inactivation or degradation) hADA3, BCCIPβ, CBP, E6-AP, p300 E6 [106,107,118,119,121,171,172]

Loss of function of pRb (due
to inactivation or degradation) Calpain, Cullin 2, ZER1 E7 [173–175]

Inhibition of apoptosis p53 E6 [118,176–179]

Defective DNA repair BARD1, BRCA1, MGMT, XRCC1 E6 [180–183]
BRCA1 E7 [182]

Epigenetic reprogramming CARM1, PRMT1, SET7, DNMT1 E6 [184,185]
p300, pCAF, SRC1, DNMT1, HDAC1,
HAT E7 [105,157,186–189]

Increased cell survival
AIF, BAK, Caspase-8, FADD, TNFR1 E6 [190–194]
GSTP1, IGFBP-3, Siva E7 [195–197]

Immortalization of host cell c-Myc, hTERT, NFX1-123, NFX1-91 E6 [198–201]

Table adapted from Scarth et al. [202].

11. Acquisition of the Mesenchymal Phenotype

An established feature of solid tumors which are not associated with oncogenic viruses
is the acquisition of a mesenchymal phenotype. This is characterized by the overexpression
of N-cadherin, vimentin, fibronectin, Twist, FOX C2, SOX 10, MMP-2, MMP-3, MMP-9,
Snail and Slug (currently designated as Snai1 and Snai2, respectively, by the HUGO Gene
Nomenclature Committee) and a decrease in the expression of E-cadherin (currently desig-
nated as CDH1 by the HUGO Gene Nomenclature Committee), desmoplakin, cytokeratin
and occludin [203,204]. Nevertheless, Hellner and collaborators [205] reported that both
E6 and E7 induced the expression of N-cadherin and that the expression of E7 in primary
human foreskin keratinocytes (HFK) induced elevated levels of vimentin and fibronectin, as
well as reduced levels of CDH1, while the levels of the regulators Twist and Snai1 remained
unchanged. Another study performed in a NIKS cell model demonstrated that HPV E7
not only induced the expression of Dnmt1 but also was associated with the suppression
of CDH1 expression. However, despite the expression of Dnmt1, no methylation of the
CDH1 promoter region was observed, nor was any alteration observed in the expression
of the negative regulators of CDH1 (Snai1/Snai2) [206]. Furthermore, a study utilizing
Madin–Darby canine kidney (MDCK) cells proposed that both E6 and E7 of HPV16 could
play an important role in the epithelial–mesenchymal transition (EMT) process by inducing
the expression of the transcriptional factors Snai2, Twist, ZEB1 and ZEB2 and reducing
CDH1 expression [207].

It is widely accepted that a common characteristic of tumors associated with oncogenic
viruses—such as Epstein–Barr virus (EBV), human papillomaviruses (HPV) and hepatitis
B and C viruses (HBV, HCV)—when acquiring the mesenchymal phenotype, is the sup-
pression of CDH1 expression [208]. The interaction of viral oncoproteins with Dnmt1 plays
an important role in suppressing the expression of CDH1 via methylation of its promoter
region [209]. However, since reports showed that HPV may or may not methylate the
CDH1 promoter region—despite inducing Dnmt1 overexpression and promoting its activ-
ity [206,210–212]—and given the fact that HPV does not significantly alter the expression of
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negative regulators of CDH1 [203,205,206], the question arises as to how HPV participates
in regulating CDH1 expression and in inducing a mesenchymal phenotype.

Following the premise that both E6 and E7 of HPV have the ability to induce the
expression of, bind to and stimulate the methyltransferase activity of Dnmt1 [185,189]
and that E7 interacts with Mi2β, as well as with HDAC1 and HDAC2, to modulate the
expression of cellular genes and viral genes by chromatin rearrangement [157,213], and
knowing that the cell lines HeLa (adenocarcinoma of the cervix), SiHa (squamous cell
carcinoma) and Ca Ski (squamous cell carcinoma of the cervix) are representative of the
most common types of CaCU with HR-HPV infection and have different viral load and
different epithelial origin, our working group previously reported that HR-HPVs can
induce a mesenchymal phenotype by negatively regulating the expression of CDH1 through
different pathways in which E7, Snai1 and epigenetic mechanisms are involved [214]. For
example, in HeLa cells, it was found that E7 suppresses the expression of CDH1 via total
methylation of the CDH1 promoter region and overexpression of Snai1, most likely forming
an E7/Snai1/Dnmt1 repressive complex. Similarly, in SiHa cells, methylation of 17.65%
of the CDH1 promoter region was observed, with significant expression of Snai1, which
gave rise to a slight expression of CDH1; this suggests that CDH1 may be regulated by
a complex consisting of E7/Snai1/HDAC1. Conversely, the Ca Ski cell line did not exhibit
a mesenchymal phenotype, since it showed a high level of expression of CDH1, without
methylation of its promoter region, and low levels of expression of Snai1 and Snai2 [214].
Our results demonstrated that HR-HPVs can regulate the expression of TEM markers in
different ways, most likely depending on the infected epithelium and the viral load.

Figure 3 provides a representative diagram of the main molecular hallmarks that have
been reported during the carcinogenic process of CaCU.
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12. Conclusions

HR-HPVs, through their oncoproteins E6 and E7, are responsible for the cellular changes
linked to the development of CaCU. During the process of viral genome replication—whether
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as an episome, integrated or coexisting in the episomal and integrated states—modifications
are generated in the host cell machinery, which induce genomic instability and the develop-
ment of the carcinogenic process. In this review, we described ten mechanisms activated
by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least
seven of the fourteen distinctive physiological capacities of cancer in a newly established
model [215]. Specifically, the mechanisms involved are among those that promote epige-
netic modifications, instability in the host cell genome, sustained proliferative signaling,
replicative immortality, resistance to cell death, evasion of the immune response and
activation of invasion and metastasis. Therefore, improved understanding of the viral
oncogenic mechanisms will allow us to develop new tools for the early diagnosis of cer-
vical lesions and to identify other therapeutic targets with a focus on the early phases of
cervical malignancy.
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