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Abstract: The forward method for modeling electric vehicles is one of the most suitable for estimating
energy consumption in different imposed driving cycles. However, a detailed description of the
methodology used for the development of electric vehicle models is necessary and is scarce in the
current literature. To fill this gap, this study focuses on highlighting the intrinsic characteristics
through a theoretical study with a mathematical model, complemented by demonstrative simulations
in Matlab/Simulink. The results show that the forward method can be estimated more accurately
based on the energy consumption of the electric vehicle. Moreover, this paper aims to be explicitly
descriptive for the development of more complex electric vehicle models to incorporate real driving
cycles, being able to size the drivetrain of the vehicle itself or develop ecological routes.

Keywords: electric vehicle; modeling; simulation; forward method; energy consumption

1. Introduction

Numerical simulation based on mathematical modeling is a general method to evalu-
ate the energy consumption of an electric vehicle (EV) on a certain route. The numerical
methods are widely applicable, from statistical models to evaluate the CO2 emissions,
kinematic models for the simulation of microscopic traces, or complex dynamic models
to determine the influence of components [1]. There is a variety of computational tools
that allow validation of the operation of EVs, focusing on responses to driving cycles [2].
The simulation process can be “backward” or “forward”, or even a combination between
them. The former is relatively easier to use/implement, while the latter is more complex
when adjusting to real driving cycles. Although there have been numerous studies that
address the “forward” method for the development of EV models, these studies do not
tackle a clear and concise description of the components involved in the development
of models and estimate their energy consumption based on the imposed driving cycle.
The study of the intrinsic characteristics of the forward method creates a starting point to
develop computational models based on artificial neural networks (ANN), with the aim of
determining the relationships between a series of factors that affect the energy consumption
of EVs as a function of input parameters.

There is a wide variety of EV models available in the literature (e.g., see [3–9] and
references therein), which, depending on the required detail of each component, can be
stationary, quasi-stationary, or dynamic. Ref. [3] presents the modeling and simulation
of a hybrid EV, while [4] focuses on the acoustic simulation of engines. In [5], the au-
thors present a flat dynamic simulation of vehicles based on a real driving cycle. In [6,7],
the modeling and estimation of the energy consumption of an EV is carried out, with
rechargeable storage systems [6] and accurate EV energy model estimation [7]. Likewise,
in [8,9], the authors focus on the modeling of high-performance powertrains, considering
simulation and validation [8], as well as transmission parameters [9]. Most EV models
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can be stationary, quasi-stationary, or dynamic, depending on the detail required of each
drivetrain component [10]. ADVISOR is a simulator developed by the National Renewable
Energy Laboratory (NREL), which combines the backward and forward methods [11].
AUTONOMIE is a simulator developed by the Argonne National Laboratory (ANL), which
uses the forward method [12,13]. Ref. [12] performs a validation model with dynamome-
ter test data using AUTONOMIE, whereas [13] studies the life-cycle and greenhouse gas
emissions resulting from different powertrain vehicles. These simulators simply allow data
entry through a graphical interface, showing the results after simulating the model, without
detailing the process for the development of EV models. Other studies use several software
programs to adjust the model according to the results required [14], even extending to
the public transport system, such as electric buses [15], to the energy management of
powertrains [16], and to models of hybrid vehicles [17,18]. In [19], an integrated simulation
of feed-forward hybrid EVs in Simulink and its use for energy management studies is
presented. Similarly, the authors of [20] investigated the efficient performance of a hybrid
with a variety of regenerative braking strategies. On the other hand, Ref. [21] presents a
comparison between the forward and backward approaches for the simulation of an EV,
while [22] carries out a comparative analysis between oriented forward and backward to
rear-facing models in powertrain component sizing. However, there are no studies that
show the methodology for developing an EV model based on the forward method, which
is the method that best fits reality. Most of the existing literature focuses on presenting
results of energy analysis based on models of EVs already performed or even by comparing
this analysis with different simulation methods (backward or combined), i.e., the load
state is compared at the end of the cycle, with EV emission modeling by the “forward”
and “backward” methods. However, none of these models allow the identification of the
involved components and the input variables to obtain a functional model by the “forward”
method. To fill the gaps in the available literature, this study highlights all these intrinsic
characteristics of the forward method. In addition, this study develops a model to estimate
the state of charge (SOC) at the end of the driving cycle. This model aims at serving as a
benchmark for analyzing more complex systems. In this regard, a theoretical study of the
mathematical model of each of the components involved (e.g., driving cycle, driver model,
powertrain, and multi-body vehicle model) is performed in this paper, thus serving to de-
velop models of real driving cycles taken through a GPS with more precise and real results,
as well as estimating the autonomy and energy consumption of the auxiliary elements of
electric vehicles at all times. For simplicity, the main contributions of the present work are
enumerated below:

• Highlighting the intrinsic characteristics of the forward method;
• Providing a systematic description of the blocks involved, together with their equations

and necessary considerations for the development of the model;
• Modeling, simulation, and validation of an electric vehicle by the forward method;
• Energy analysis of the electric vehicle before an Urban Dynamometer Driving Schedule

(UDDS) driving cycle.

The remainder of the paper is organized as follows: Section 2 presents the proposed
materials and methods, including a mathematical representation of components using the
forward method. Section 3 presents a case study with the results of the study. Finally, the
main conclusions are duly drawn in Section 4.

2. Materials and Methods

The methodology used in this paper is schematically depicted in Figure 1. Firstly, the
necessary background is presented, including a brief introduction to the forward method,
which allows us to clearly identify its intrinsic characteristics. Next, this method is used to
perform extensive simulations on a benchmark EV model, including the mathematical no-
tations and model description in Matlab–Simulink, in order to demonstrate the consistency
of the mathematical modeling.
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Figure 1. Schematic explanation of the proposed methodology.

2.1. Background

The backward simulation calculates the power demand of various components ac-
cording to the driving cycle, to be posteriorly distributed among power sources in order
to meet the vehicle’s demand. Finally, the energy consumption of the motor and batteries
is obtained [16]. In contrast, in the forward simulation, the model determines the energy
demand in the process of the driving cycle, to transmit the energy demand to the vehicle
controller. This controller receives the signal and considers the current state of the vehicle
components to optimize and determine power allocation, together with the output of each
power source. The movement flow is transferred from the driving system, passing through
the transmission to the tire module. Then, by means of equations that model the driving
module, the real speed that is transmitted to the driver is calculated to form a closed cycle.
Figure 2 represents a simple scheme of the simulation process by the “forward” method.
The driving cycle provides the speed to pass through the driver model, which controls the
longitudinal interfaces of the vehicle (accelerator and brake pedal), based on the difference
between the object and the vehicle speed. The battery supplies the motor with energy and
the motor provides a torque that, through the kinematic chain, transfers the movement to
the wheels, where the traction maintains the propulsion force. The position returns to the
driving cycle to find a target speed, closing the calculation loop.
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2.2. Mathematical Modeling of the Forward Method

This section provides the mathematical foundations of the forward method, as well as
the explanation of the blocks depicted in Figure 2.

2.2.1. Driving Cycle Model

To estimate the SOC of on-board batteries and EV driving range, simulation models
are based on internationally legislated driving cycles, and some represetative examples are
as follows: Federal Test Procedure 72/75 (FTP 72/75), the New European Driving Cycle
(NEDC) (see Figure 3a), the Japanese Cycle 08 (JC08), the Worldwide Harmonized Light
Duty Cycle (WLTP), the 15-mode test cycle of the Economic Commission for Europe (ECE
15), and the UDDS (see Figure 3b), among many others. All of them differ in the sections of
acceleration, braking, speed, cycle duration time, etc. [22–26].
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In 2019, Europe adopted the WLTP as standard, thus rendering obsolete the NEDC.
This cycle tests vehicles on longer routes, higher accelerations, and higher speeds; however,
it is still believed that it does not fit reality. EVs are initially tested on a dynamometric
bench in different driving cycles; one of the most important is the UDDS, which simulates
driving in urban areas intermittently, starts the vehicle and accelerates it to the maximum
speed allowed and stops it again. It is used to measure the energy consumption in the
city. In the development of EV models for simulation, the UDDS cycle is conventionally
used, by which the EV is subjected to multiple test cycles until the battery is completely
discharged and stops by itself, thus providing preliminary autonomy. This study applies
this driving cycle and not the obsolete NEDC cycle or the WLTP homologation cycle.

2.2.2. Driver Model

The controller module is suitable for the forward simulation model, by allowing the
simulation model to form a closed-loop system, for which the PID controllers (Proportional,
Integral, Derivative) are used, as observed in Figure 4. The forward method requires a
driver model that acts as an accelerator/brake pedal actuator to follow the target speed
(imposed driving cycle). For this, various controller models can be used; one of the most
common is the PID controller, whose scheme is shown in Figure 4 [27]. The PID controller is
based on repetitive tests and experience to determine the output values. The control system
has a minimum static error between the actual simulation speed and the target speed; this
error is necessary to maintain the torque of the drive wheels, because the changes in the
simulation speed are always a function of the changes in the target speed [28]. If the PID
parameters are properly calibrated, the delays will be slight and the motor drive torque is
set efficiently; otherwise, the delays will be longer and could even cause a system discharge.



Electricity 2022, 3 206Electricity 2022, 3, FOR PEER REVIEW 5 
 

 

 

Figure 4. PID controller. 

The transfer function of the PID controller is given by Equation (1). 

k s =kp+
ki

s
+kds (1) 

where kp is the proportional coefficient, ki is the integral coefficient, and kd is the de-

rivative coefficient. 

In [29], the authors compared the conventional PID control with the linear square 

scheme (LQR), determining that LQR may outperform the conventional PID control. In 

particular, the scheme shown in Figure 5 was considered, taking values A = [1, 0, 2, 0], B 

= [1, 0], C = [0, 1], K = [12.2912, 31.6228], and gain for the entry step 31.6228 for the LQR. 

With these settings, it is observed in Figure 6 that the LQR controller improves the over-

shoot and settling time compared to the PID controller that takes values of P = 0.00012, I = 

0.00047, and D = 0.000068 [30]. However, the PID controller has a shorter response time, 

being better behaved with fast speed transitions, maintaining a minimum error between 

the target and real speeds. On the basis of this conclusion, it is enough to apply a PID 

controller that performs the function of the pedal (acceleration/brake) to follow the target 

speed profile. 

 

Figure 5. Scheme for the simulation of the PID and LQR controller. 

 

Figure 6. Simulation result for a step of the PID and LQR controller. 

  

       

        
 

 

   
     

  

          
     

 
−

 

 
 

      

.

.

...

Figure 4. PID controller.

The transfer function of the PID controller is given by Equation (1).

k(s) = kp +
ki

s
+ kds (1)

where kp is the proportional coefficient, ki is the integral coefficient, and kd is the deriva-
tive coefficient.

In [29], the authors compared the conventional PID control with the linear square
scheme (LQR), determining that LQR may outperform the conventional PID control. In
particular, the scheme shown in Figure 5 was considered, taking values A = [1, 0, 2, 0],
B = [1, 0], C = [0, 1], K = [12.2912, 31.6228], and gain for the entry step 31.6228 for the
LQR. With these settings, it is observed in Figure 6 that the LQR controller improves the
overshoot and settling time compared to the PID controller that takes values of P = 0.00012,
I = 0.00047, and D = 0.000068 [30]. However, the PID controller has a shorter response time,
being better behaved with fast speed transitions, maintaining a minimum error between
the target and real speeds. On the basis of this conclusion, it is enough to apply a PID
controller that performs the function of the pedal (acceleration/brake) to follow the target
speed profile.
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2.2.3. Brake Model

The braking force is proportional to the torque generated at the wheels. In order to
stop the tire, a force must be applied that is contrary to the rotation movement, which is
calculated in (2). In fact, Equation (2) calculates the necessary braking for just one wheel, it
being necessary to multiply this result by the total number of wheels in order to obtain the
necessary total braking force in the vehicle [31].

Braking force (FF) =
Nf
rd

(2)

where Nf is the braking torque (N), rd is the radius of the tire (m).
The ratio that determines the recoverable energy by means of regenerative braking is

general and applies to any driving cycle [32]. The regenerative braking energy efficiency
ηrb is defined by Equation (3) [33,34].

ηrb[%] =
Erecoverable[kWh]
Eavailable[kWh]

(3)

where Erecoverable[kWh ] is the energy recovered during braking and Eavailable[kWh] is the
maximum energy available to be recovered during braking.

The available energy is calculated using Equation (4).

Eavaliable[kWh] =
∫ t

0
PWheels

(−)(t) dt (4)

where PWheels
(−)(t) is the negative part of the power in the wheels in [kW].

2.2.4. Electric Motor Model

The output power of the alternating current electric motor depends on its efficiency,
which is modeled as a quasi-static efficiency map that depends on the output speed and
torque, with the efficiency of the inverter considered constant. With these premises, the
output power (Pem) can be calculated by Equation (5) [35].

Pem = min
(

Pinv·ηem(Wem·Tem)· Pinv

ηem(Wem·Tem)

)
(5)

where Pinv is the power of the inverter (W), Wem is the angular speed of the electric
motor (rad/s), Tem is the torque of the electric motor (Nm), and ηem is the electric motor
efficiency (%).

During simulation, the electric motor controller receives a power demand and adjusts
the torque output to supply it. Since the current speed of the motor cannot change instanta-
neously, the theoretical torque is calculated by the controller based on the current speed
of the motor and the power demand, and then finds the current efficiency of the motor
from the efficiency map. However, it is also possible to resort to specific parameters of
the electric motor by replacing the efficiency map with values of maximum torque and
maximum power—see Equation (5)—and considering the motor loss constants (kc, ki, and
kw) for the loss of power, power output is limited by the capacity of the electric motor, with
the following equations:

Pem = Tem·Wem (6)

Ploss = kc·Tem
2 + ki·W + kw·W3 + C (7)

Pin = T·W + Ploss (8)

Pout ≤ Pmax (9)

Pmax = Pmax(Wm) (10)
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2.2.5. Transmission Model

The drivetrain system transmits the movement obtained by the electric motor to the
wheels as shown in Figure 7, which is modeled by (11) and (12).

Tel−em =
rd
ηg·G

·Ft (11)

Tem−el = ηg·
( rd

G
·Ft

)
(12)

where ηg is the transmission efficiency (%), Ft is the pulling force (N), G is the transmission
ratio [36].
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Equation (11) is used when the electric motor is delivering mechanical power (Tel−em)
and Equation (12) is used when the electric motor is receiving mechanical power (Tem−el) [37].
Likewise, the relationship between the linear speed “v” of the electric vehicle and the
angular speed Wem of the motor in (rad/s) can be obtained by Equation (13).

Wem = G
v
rd

(13)

Finally, the transmission force is obtained with Equation (14).

Ftr = (Tem − TLoss)·
G
rd

− FTf (14)

where TLoss is the friction losses associated with the torque.

2.2.6. Battery Model

The battery modeling can be addressed in various ways, the most used being the
electric and physical electrochemical models [38,39]. The equivalent electrical model is
simple to build and adjust, giving good results in estimating voltage, current, SOC, and heat
rate [40]. On the other hand, it is possible to express the physical model of the battery based
on electrochemical phenomena. However, this method can be complex and computationally
expensive, and is also commonly used to evaluate its behavior outside the predetermined
temperature range of the batteries. Another key aspect of this modeling is the ability to
use models of physics-based (as opposed to empirical) aging that give insight into the
growth rate of the cathode film, the lithium coating, and the insulation of the material due
to cracking [41,42]. In summary, the objective is to estimate the energy consumption of
the EV throughout a driving cycle but not to estimate the aging of each battery cell or the
degradation of the performance of the system over time. Thus, it could be more feasible
to use the equivalent electrical model for battery [43]. Through the equivalent electrical
model, this type of charging and discharging behavior is represented in an electrical circuit
using the resistive battery model, as shown in Figure 8. The battery model in the simulation
is not subjected to a deep discharge (below 20%) nor until all energy is exhausted (0%); it is
only subjected to the analysis of the state of charge at the end of the UDDS cycle.
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The maximum battery power denoted by pmax points out the maximum power that
the storage set can exchange with the system, and is given by Equation (15).

pmax = Vve
Voc − Vve

Rint
(15)

where Voc is the open circuit voltage (V), Vve is the minimum motor controller voltage or
the minimum battery voltage, and Rint is the charge and discharge resistance. The charge
or discharge current is calculated with Equation (16).

I =
Voc −

√
Voc2 − 4Rint·P
2Rint

(16)

where P is the charging/discharging power of the batteries. The SOC of the batteries can
be estimated using Equation (17).

SOC =
Ahmax − Ahused

Ahmax
(17)

where Ahmax is the maximum capacity of the battery bank and Ahused is the used capacity
of the battery bank.

2.2.7. EV Global Model
Longitudinal Dynamics

For EV modeling, the inertia and resistances of the vehicle must be represented.
Longitudinal dynamics analyzes the behavior of the vehicle when it is subjected to speed
fluctuations in the longitudinal plane, neglecting the lateral acceleration [44]. In this
case, the vehicle moves in a straight line, accelerating, braking, or changing the slope.
Longitudinal dynamics is affected by different resistances, such as rolling, aerodynamics,
and slope resistance [45]. To analyze these factors, a vehicle moving on an inclined plane
and in a straight line is considered.

The aerodynamic drag is a force acting on objects moving in a fluid opposite to their
motions, which is calculated with Equation (18) [27].

Fa =
1
2
ρ·A·Cd·v2 (18)

where ρ is the density of air, A is the frontal area of the EV, Cd is the drag coefficient that
depends on the shape of the vehicle for a particular vehicle Cd and varies between 0.3 and
0.4, and v is the speed of the EV.

Two other parameters are of importance when modeling the longitudinal dynamics:
the rolling and slope resistance. The first coefficient refers to the resistance force of the
rotational movement of the tire in contact with the surface, which is denoted by Frr and can
be calculated with Equation (19), while the slope resistance is denoted by Frp and is given
by (20). Finally, it is worth mentioning that the pulling force Ft is given by (21) [27,46].

Frr = m·g·Cr· cos θ (19)
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Frp = m·g· sin θ (20)

Ft = m·a + m·g·Cr· cos θ+
1
2
ρ·A·Cd·v2+m·g· sin θ (21)

where m is the mass of the EV, g is the gravity acceleration, Cr is the coefficient of friction,
θ is the angle of inclination between the EV and the surface, and a is the acceleration of
the EV.

Multibody

In this section, the multibody modeling that represents each individual component of
the EV based on their lateral and vertical physical properties is analyzed. Three degrees
of freedom are considered for this theoretical study; however, it is worth mentioning
that other, more sophisticated models can represent up to 94 degrees [47]. To express the
complete block of the multibody, in this paper, the mathematical models of the vehicle
frame, suspension, and wheels are considered.

The frame vehicle is modeled as a rigid body on which the translational displacement
in the three directions of the fixed coordinate system (x, y, z) and the rotary movement
around the three axes (ϕ, χ, ψ) are represented, in order to obtain the output vector
X = [x y z ϕ χ ψ]T. These movements occur due to the effect of rolling resistance

(
Ffr

Rij

)
, tire

forces
(

Ffr
xij

, Ffr
yij

)
, and tire forces on the frame suspension

(
Ffr

Zsij

)
[48]. For the calculation

of the angular displacement, Euler’s Law is applied. In addition, the angular accelerations
of the vehicle can be obtained through the centroidal inertia matrix and the moments
exerted by the forces on the body [49]. To obtain the angular accelerations of EV (w p),
Equation (22) is applied.

wp =
·
E


·
ϕ
·
χ
·
ψ

 + E

 ..
ϕ
..
χ
..
ψ

 (22)

where
·
E is the Euler derivate function, ϕ represents the rotation on the x-axis, χ represents

the rotation on the y-axis, and ψ represents the rotation on the z-axis.
For the suspension model, the position vectors rcg

sij must initially be established for
each vertex Rsij with respect to the coordinate system of the center of gravity, with the aim
of determining the overall displacement, as shown in Figure 9. The reaction force of the
suspension on the frame can be calculated by using Equation (23).

Fzsij
= FKsij

+FBsij
Ksij

(
dzuij − dzsij

)
+ Bsij

[ ·
Zuij −

( ·
Z + ro

sij
(z)
)]

(23)

Finally, the mathematical modeling of the wheels complements the multibody model.
In this sense, the behavior of the wheels significantly affects the performance of the vehicle
due to the horizontal forces and moments generated [50]. In addition, the wheels support
other types of efforts by having to hold up the weight of the vehicle, as well as the forces
of aerodynamic load and mass transfer during braking or turning of the vehicle [49].
Experimental methods are used to simplify and model the tire. One of the most used and
well-known is the Pacejka model. This model relates the longitudinal force (Fx), the lateral
force Fy, and the alignment moment (Mz) with the drift angle (α) and the drift ratio (κ)
of the wheels by means of a set of formulas to interpolate all data. First, the centers of
rotation of the wheels

(
Qij
)

are defined in the horizontal plane with respect to the origin

of the frame coordinate system by means of the position vectors q f r
ij . Figure 10 details the

dimensions of the vehicle [50].
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Figure 10. Definition of the equivalent speed at the center of rotation of the wheels.

Lastly, it is necessary to rotate the horizontal forces of the front wheels by the angle of
twist δw around the z-axis, as shown in Equation (24). To sum up, the different sub-blocks
involved in EV modeling are depicted in Figure 11, for simplicity. Ffr

xij
Ffr

yij
0

= Rfr
w(δw)

 Fw
xij

Fw
yij
0

 (24)

where Ffr
suij

represents the position vector of each component applied from the suspension

on the chassis and the wheel, respectively, Ffr
wij

represents the position vector of each
component applied from the wheels on the chassis, and Ωij is the angular velocity of
the wheels.
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2.3. Simulation

A modeling of the EV is developed with the forward method approach (Figure 12),
which comprises all the blocks described throughout the study, using longitudinal dynamics
for vehicle modeling. The cycle used is the UDDS (see Figure 3b) and the input values are
collected in Table 1.
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Figure 12. Simulation blocks used in Matlab–Simulink for numerical results.

Table 1. Vehicle specification (Ford Focus Electric 2013) and estimates considered for the simulation.

Description Parameter Value Unit

Vehicle mass m 1700 kg
Vehicle front area Af 2.42 m2

Wheel radius rd 0.321 m
Transmission ratio G 7.82:1 -
Drag coefficient Cd 0.26 -
Rolling resistance coefficient Cr 0.013 -
Maximum torque electric motor Tmax 250 Nm
Maximum power electric motor Pmax 107 kW
Motor torque loss constant kcm 0.12 s/kgm2

Motor work loss constant kim 0.01 J
Motor inertia loss constant kwm 1.2 × 10−5 kgm2

Battery capacity E 23 kWh
Voltage VOC 350 V
Internal resistance Rint 0.1 Ohm
SOC initial SOC 80.7 %

3. Results and Discussion

This section presents the results and discussion of the simulations performed on
Matlab–Simulink, in which all the parameters and forces interacting on the EV and the
energy of the vehicle at the end of the imposed driving cycle can be estimated, as observed
in Figure 13. The EV profile is similar to the UDDS route, which is passed to the driver
model. The PID controller converts the error into signals for the accelerator and brake
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pedal. Therefore, its representation is observed in detail throughout the driving cycle, as
seen in Figure 14. Figure 15 shows the SOC of the battery bank throughout the driving
cycle. The initial state of charge was considered equal to 80.7% and, after completing the
route (1369 s), declined to 74.3%, being therefore reduced by 6.4%. Figure 16 shows the
battery voltage variation thorughout the driving cycle. The average voltage required is
340 V, with the maximum capacity of the battery being 350 V, a capacity that is not exceeded
during the driving cycle.
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Figure 15. Battery charge status at the end of the UDDS drive cycle.

Figure 17 shows the battery current variation thorughout the route. The average
current required is 50 A; the current is proportional to the speed, and if the speed increases,
more current is demanded. In Figure 18, a comparison of the variation in the speed and
the variation in the battery power is shown. It can be seen that the velocity changes are
proportional to the battery power. Table 2 shows the energy results of the EV using the
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method proposed for the UDDS cycle; for a distance of approximately 12 km, the battery
has been discharged by almost 25%.
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Table 2. Energy analysis of the EV.

Parameter UDDS Cycle

Distance 11.99 km
SOC at the end of the cycle 74.3%

Energy consumed 2209 kWh
Power loss in the electric motor 0.429 kWh

Transmission power loss 0.221 kWh
Battery power loss 0.0324 kWh

Undoubtedly, this is a method used by many studies for the modeling and simulation
of an EV for charging and discharging estimation throughout the driving cycle. This
study focuses on the model development process in general, and not on developing each
component in its complex form, as in Ref. [35], where electric motors are designed and
analyzed for applications in plug-in EVs, or in [51,52], where the regenerative brake is
studied and modeled. Similarly, in Ref. [53], the authors model other complementary and
important components, such as the converter DC/DC and inverter. After understanding
the process of forward modeling, it is possible to include it in the integral simulation chain,
replacing the basic components, including energy management systems, by analyzing the
effect of temperature on a system’s energy storage [54]; thus, it will be possible to obtain
more accurate and realistic estimates.

The multibody modeling of the vehicle in the actual literature is neglected, not provid-
ing much difference compared to the longitudinal modeling, when estimating the energy
consumption. The multibody modeling of the vehicle depends on the results that are re-
quired; on the other hand, this modeling is ideal for analyzing the dynamic performance of
each component (suspension, chassis, and tire) and even for analyzing the lateral behavior
of the steering system. The multibody modeling involves sub-models that depend on
the degrees of freedom, its modeling being much more complex. In Ref. [47], the authors
analyze a model with 94 degrees of freedom. Longitudinal dynamics is favorable for
estimating energy consumption, because it can include a slope profile together with the
speed profile to be input parameters to the driver’s model, and it can also incorporate the
consumption of auxiliary elements of the EV, such as electric motors for the steering system,
air conditioning, pumps, etc.

When comparing the characteristics of the backward and forward methods, a peculiar-
ity of the latter stands out, since the acceleration of the vehicle is expressed as a function of
the accelerator position, unlike the backward method, where the force required to accelerate
the vehicle is determined only from the speed cycle. For this reason, the forward method
is a more complex and accurate method, which serves to develop real-time eco-driving
systems and eco-routes that can improve energy efficiency to extend the EV’s travel range,
as studied in [43]. Table 3 compares autonomy with the simulation of a more accurate
model from the Matlab/Simulink library, adjusting the input values of Table 1, and also
with [14], a reference used for the validation of the model.

Table 3. Comparison with different EV models.

Parameter Developed Model Matlab Model Ref. [14]

Distance 11.99 km 11.98 km 11.99 km
SOC at the end of the cycle 74.3% 77.97% 75%

Energy consumed 2209 kWh 2078 kWh 2145 kWh
Autonomy 4.45 kWh/100 km 1.22 kWh/100 km 0.97 kWh/100 km

The model developed in this study has higher energy consumption per hour than the
Matlab models and [14]. These EV models (Matlab, Ref. [14]) are more complex and apply
control algorithms for the drivetrain and for battery energy management; it incorporates
components such as BMS, sensors, regenerative braking, etc., leading to greater accuracy
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in estimating energy consumption. The battery charge status for the EV model from the
matlab/simulink library is shown in Figure 19 and for the EV model from [14] it is shown
in Figure 20. The three models are developed by the same method (forward), but there is a
large difference in energy consumption, especially in the model developed in this study. It
should be noted that this study focuses on highlighting the development process of the EV
model by the forward method, but not on developing a model that improves consumption
autonomy. For the estimation of autonomy, values from the United States Environmental
Protection Agency (US EPA) are used.
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4. Conclusions

A detailed study of the modeling and simulation of the EV is presented considering
the forward method for its development, highlighting the intrinsic characteristics. One
of the aspects that clearly differs compared to the backward method is the model of the
driver, who acts as an acceleration and braking pedal to follow the imposed target speed.
Driver modeling can be achieved by different controllers: the classic PID, Pole Location
Controller, Linear Quadratic Regulator (LQR), and Observer Based Controller (OBC). LQR
is one of the controllers that best adjusts the throttle position; therefore, it is compared
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with the PID controller, looking at their response time to a simple step. The LQR controller
improves the overshoot, while properly adjusting the PID controller reduces the response
and stabilization time; for this study, a PID controller is used, where the results do not show
a greater error between the target speed and the real speed of the vehicle. The use of one
controller or another depends on the results required and the type of vehicle.

The results of the forward method can estimate the energy consumption of the EV, as
well as the energy losses in the components. In this particular case, the input data (Table 2)
were obtained as a result after fulfilling the driving cycle UDDS 1396 s, with a distance
traveled of 11.99 km. The SOC dropped from 80.7% to 74.3%, with energy consumption of
2209 kWh and energy losses in some components, such as the electric motor, of 0.429 kWh,
the transmission of 0.221 kWh, and the battery of 0.0324 kWh.

The simulation was also compared with other more precise models (Table 3); one of
them was an existing model in the Matlab library (Powertrain Blockset version 1.10), and
we also compared it with the reference [14], which uses the AUTONOMIE simulator. For all
of them, the same values are adjusted. From the outset, where there is a notable difference
is in the autonomy; the model developed in this study consumes more energy, having an
autonomy of 4.45 kWh/100 km, and the one that consumes the least is the one that uses the
AUTONOMIE simulator, with a consumption of 0.97 kWh/100 km.

Future research can focus on these concepts to develop computational models based
on artificial neural networks (ANN) to determine the relationships between a series of
factors that affect the energy consumption of EVs depending on the input factors, where
it is determined a weight for each factor based on its relative importance using training
algorithms. ANN can also be used to predict driving behavior by classifying driving
patterns using Global Positioning System data, being an extremely important approach
method as it is data-driven and self-adaptive.

Author Contributions: Conceptualization, C.M.; Data curation, C.M.; Formal analysis, C.M.; Funding
acquisition, F.J.; Investigation, C.M.; Methodology, P.A.; Project administration, F.J.; Resources, P.A.;
Software, P.A.; Supervision, M.T.-V. and F.J.; Validation, M.T.-V.; Visualization, M.T.-V.; Writing—
original draft, P.A.; Writing—review and editing, P.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was supported by the Ibero-American Postgraduate University Asso-
ciation (AUIP) through the Academic Mobility Program between Andalusian and Ibero-American
universities 2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pettersson, P.; Jacobson, B.; Bruzelius, F.; Johannesson, P.; Fast, L. Intrinsic differences between backward and forward vehicle

simulation models. IFAC PappersOnLine 2020, 53, 14292–14299. [CrossRef]
2. Ibrahim, A.; Jiang, F. The electric vehicle energy management: An overview of the energy system and related modeling and

simulation. Renew. Sustain. Energy Rev. 2021, 144, 111049. [CrossRef]
3. Gao, D.W.; Mi, C.; Emandi, A. Modeling and Simulation of Electric and Hybrid Vehicles. Proc. IEEE 2007, 95, 729–745. [CrossRef]
4. Li, H.; Xu, P.; Cao, C.; Hu, D.; Yan, X.; Song, Z. Acoustic Simulation of the Electric Vehicle Motor. J. Phys. Conf. Ser. 2021,

2095, 12031. [CrossRef]
5. Miranda, M.; Silva, F.; Lourenço, M.; Eckert, J.; Silva, L. Electric vehicle powertrain and fuzzy controller optimization using a

planar dynamics simulation based on a real-world driving cycle. Energy 2022, 238, 121979. [CrossRef]
6. Aymen, F.; Alowaidi, M.; Bajaj, M.; Sharma, N.; Mishra, S.; Sharma, S.K. Electric Vehicle Model Based on Multiple Recharge

System and a Particular Traction Motor Conception. IEEE Access 2021, 9, 49308–49324. [CrossRef]

http://doi.org/10.1016/j.ifacol.2020.12.1368
http://doi.org/10.1016/j.rser.2021.111049
http://doi.org/10.1109/JPROC.2006.890127
http://doi.org/10.1088/1742-6596/2095/1/012031
http://doi.org/10.1016/j.energy.2021.121979
http://doi.org/10.1109/ACCESS.2021.3068262


Electricity 2022, 3 218

7. Miri, I.; Fotouhi, A.; Ewin, N. Electric vehicle energy consumption modelling and estimation—A case study. Int. J. Energy Res.
2021, 45, 501–520. [CrossRef]

8. Adegbohun, F.; Von Jouanne, A.; Phillips, B.; Agamloh, E.; Yokochi, A. High Performance Electric Vehicle Powertrain Modeling,
Simulation and Validation. Energies 2021, 14, 1493. [CrossRef]

9. Yaxin, G.; Yi, F. Transmission Parameter Matching and Simulation Verification of Pure Electric Vehicle. J. Phys. Conf. Ser. 2021,
1965, 12015. [CrossRef]

10. Chen, L.; Li, Z.; Yang, J.; Song, Y. Lateral Stability Control of Four-Wheel-Drive Electric Vehicle Based on Coordinated Control of
Torque Distribution and ESP Differential Braking. Actuators 2021, 10, 135. [CrossRef]

11. Wipke, K.B.; Cuddy, M.R.; Burch, S.D. ADVISOR 2.1: A user-friendly advanced powertrain simulation using a combined
backward/forward approach. IEEE Trans. Veh. Technol. 1999, 48, 1751–1761. [CrossRef]

12. Kim, N.; Douba, M.; Kim, N.; Rousseau, A. Validation Volt PHEV Model with dynamometer test data using Autonomie. SAE Int.
J. Passeng. Cars Mech. Syst. 2013, 6, 985–992. [CrossRef]

13. Lewis, A.M.; Kelly, J.C.; Keoleian, G.A. Vehicle lightweighting vs. electrification: Life cycle energy and GHC emissions results for
diverse powertrain vehicles. Appl. Energy 2014, 126, 13–20. [CrossRef]

14. Lee, D.; Rousseau, A.; Rask, E. Development and Validation of the Ford Focus Battery Electric vehicle model. SAE Tech. Pap. 2014,
1, 1–9. [CrossRef]

15. Hou, J.; Guo, X. Modeling and Simulation of hybrid electric vehicles using HEVSIM and ADVISOR. In Proceedings of the IEEE
Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008. [CrossRef]

16. Jiang, C.D.; Cheng, L.; Fengchun, S. Study on forward simulation model for extended-range electric bus. In Proceedings of the
Third World Congress on Software Engineering, Wuhan, China, 6–8 November 2012. [CrossRef]

17. He, Y.; Rios, J.; Chowdhury, M.; Pisu, P.; Bhavsar, P. Forward powertrain energy management modeling for assessing benefits of
integrating predictive traffic data into plug-in-hybrid electric vehicles. Transp. Res. Part D Transp. Environ. 2012, 17, 201–207.
[CrossRef]

18. Lin, C.; Filipi, Z.; Wang, Y.; Louca, L.; Peng, H.; Assanis, D.; Stein, J. Integrated, Feed-Forward Hybrid Electric Vehicle Simulation
in SIMULINK and its Use for Power Management Studies. SAE Tech. Pap. 2002, 1, 1–15. [CrossRef]

19. Qin, D.; Deng, T.; Yang, Y.; Lin, Z. Regenerative braking simulation research for CVT hybrid electric vehicle with ISG based on
forward modeling. Electr. Eng. 2008, 19, 618–624.

20. Delavaux, M.; Lhomme, W.; Mcgordon, A. Comparison between Forward and Backward approaches for the simulation of an
Electric Vehicle. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Lille, France, 3–5 September 2010.

21. Mohan, G.; Assadian, F.; Longo, S. Comparative analysis of forward-facing models vs. backward-facing models in powertrain
component sizing. In Proceedings of the IET Hybrid and Electric Vehicles Conference, London, UK, 6–7 November 2013.
[CrossRef]

22. Zhao, X.; Zhao, X.; Yu, Q.; Ye, Y.; Yu, M. Development of a representative urban driving cycle construction methodology for
electric vehicles: A case study in Xi’an. Transp. Res. Part D Transp. Environ. 2020, 81, 102279–102301. [CrossRef]

23. Kurnia, J.C.; Sasmito, A.P.; Shamim, T. Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated
driving cycle conditions. Appl. Energy 2017, 206, 751–764. [CrossRef]

24. Seers, P.; Nachin, G.; Glaus, M. Development of two driving cycles for utility vehicles. Transp. Res. Part D Transp. Environ. 2015,
41, 377–385. [CrossRef]

25. Yuhui, P.; Yuan, Z.; Huibao, Y. Development of a representative driving cycle of urban buses based on the K-means cluster
method. Clust. Comput. 2019, 22, 6871–6880. [CrossRef]

26. Ye, K.; Li, P.; Li, H. Optimization of hybrid energy storage system control strategy for pure electric vehicle based on typical
driving cycle. Math. Probl. Eng. 2020, 2020, 1365195–1365207. [CrossRef]

27. Kiyakli, A.O.; Solmaz, H. Modeling of an electric vehicle with Matlab/Simulink. Int. J. Automot. Sci. Technol. 2019, 2, 9–15.
[CrossRef]

28. Ali, R.; Furqan, A.; Ho, K.S. Design of fuzzy logic tuned PID controller for electric vehicle based on IPMSM using Fluxweakenning.
J. Electr. Eng. Technol. 2018, 13, 451–459. [CrossRef]

29. Saeed, M.; Ahmed, N.; Hussain, M.; Jafar, A. A comparative study of controllers for optimal speed control of hybrid electric
vehicle. In Proceedings of the International Conference on Intelligent Systems Engineering, Islamabad, Pakistan, 15–17 January
2016. [CrossRef]

30. Heidari, A.; Etedali, S.; Javaheri-Tafti, M. A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD.
Front. Struct. Civ. Eng. 2018, 12, 44–57. [CrossRef]

31. Ma, Z. Parameters design for a parallel hybrid electric bus using regenerative brake model. Adv. Mech. Eng. 2014, 6, 760815–760824.
[CrossRef]

32. Bin Peeie, H.M.; Ogino, H.; Oshinoya, Y. Skid control of a small electric vehicle with two in-wheel motors: Simulation model of
ABS and regenerative brake control. Int. J. Crasheorthiness 2016, 21, 396–406. [CrossRef]

33. Liu, Z.; Ortmann, W.J.; Nefcy, B.; Colvin, D.; Connolly, F. Methods of measuring regenerative braking efficiency in a test cycle.
SAE Int. J. Altern. Powertrains 2017, 6, 103–112. [CrossRef]

34. Zhu, Y.; Wu, H.; Zhen, C. Regenerative braking control under sliding braking condition of electric vehicles with switched
reluctance motor drive system. Energy 2021, 230, 120901. [CrossRef]

http://doi.org/10.1002/er.5700
http://doi.org/10.3390/en14051493
http://doi.org/10.1088/1742-6596/1965/1/012015
http://doi.org/10.3390/act10060135
http://doi.org/10.1109/25.806767
http://doi.org/10.4271/2013-01-1458
http://doi.org/10.1016/j.apenergy.2014.03.023
http://doi.org/10.4271/2014-01-1809
http://doi.org/10.1109/VPPC.2008.4677457
http://doi.org/10.1109/WCSE.2012.49
http://doi.org/10.1016/j.trd.2011.11.001
http://doi.org/10.4271/2001-01-0-1334
http://doi.org/10.1049/cp.2013.1920
http://doi.org/10.1016/j.trd.2020.102279
http://doi.org/10.1016/j.apenergy.2017.08.224
http://doi.org/10.1016/j.trd.2015.10.013
http://doi.org/10.1007/s10586-017-1673-y
http://doi.org/10.1155/2020/1365195
http://doi.org/10.30939/ijastech..475477
http://doi.org/10.5370/JEET.2018.13.1.451
http://doi.org/10.1109/INTELSE.2016.7475142
http://doi.org/10.1007/s11709-016-0382-6
http://doi.org/10.1155/2014/760815
http://doi.org/10.1080/13588265.2016.1147731
http://doi.org/10.4271/2017-01-1168
http://doi.org/10.1016/j.energy.2021.120901


Electricity 2022, 3 219

35. Yilmaz, M. Limitations/capabilities of a electric machine technologies and modeling approaches for electric motor design and
analysis in plug-in electric vehicle applications. Renew. Sustain. Energy Rev. 2015, 52, 80–99. [CrossRef]

36. Park, G.; Lee, S.; Jin, S.; Kwak, S. Integrated modeling and analysis of dynamics for electric vehicle powertrains. Expert Syst. Appl.
2014, 41, 2595–2607. [CrossRef]

37. Fajri, P.; Lee, S.; Prabhala, V.A.; Ferdowsi, M. Modeling and Integration of electric vehicle regenerative and friction braking for
motor/dynamometer test bench emulation. IEEE Trans. Veh. Technol. 2016, 65, 4264–4273. [CrossRef]

38. Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A comprehensive review of battery modeling and state estimation
approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 100015–110033. [CrossRef]

39. Meng, J.; Luo, G.; Ricco, M.; Swiercynski, M.; Stroe, D.I.; Teodorescu, R. Overview of lithium-ion battery modeling methods for
state-of-charge estimation in electrical vehicles. Appl. Sci. 2018, 8, 659. [CrossRef]

40. Seaman, A.; Dao, T.S.; McPhee, J. A survey of mathematics based equivalent circuit and electrochemical battery models for hybrid
and electric vehicle simulation. J. Power Sources 2014, 256, 410–423. [CrossRef]

41. Li, J.; Wang, D.; Deng, L.; Cui, Z.; Lyu, C.; Wang, L.; Pecht, M. Aging modes analysis and physical parameter identification based
on a simplified electrochemical model for lithium-ion batteries. J. Energy Storage 2020, 31, 101538–101551. [CrossRef]

42. Choi, W.; Shin, H.C.; Kim, H.C.; Choi, J.Y.; Yoon, W.S. Modeling and applications of electrochemical impedance spectroscopy (Eis)
for lithium-ion batteries. J. Electrochem. Sci. Technol. 2020, 11, 1–13. [CrossRef]

43. Abdollahi, A.; Han, X.; Raghunathan, N.; Pattipati, B.; Balasingam, B.; Pattipati, K.R.; Bar-Shalom, Y.; Card, B. Optimal charging
for general equivalent electrical battery model and battery life management. J. Energy Storage 2017, 9, 47–58. [CrossRef]

44. Da Lio, M.; Bortoluzzi, D.; Pietro Rosati Papini, G. Modeling longitudinal vehicle dynamics with neural networks. Veh. Syst. Dyn.
2020, 58, 1675–1693. [CrossRef]

45. Esmailzadeh, E.; Vossoughi, C.R.; Goodarzi, A. Dynamic modeling and analysis of a four motorized wheels electric vehicle.
Veh. Syst. Dyn. 2001, 35, 163–194. [CrossRef]

46. Juhala, M. Improving vehicle rolling resistance and aerodynamics. In Alternative Fuels and Advances Vehicle Technologies for Improved
Environmental Performance; Folkson, R., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 462–475.

47. Hegazy, S.; Rahnejat, H.; Hussain, K. Multi-body dynamics in full vehicle handling analysis. Proc. Inst. Mech. Eng. Part K. J.
Multi-Body Dyn. 1999, 213, 19–31. [CrossRef]

48. Blundell, M.; Harty, D. The Multibody System Approach to Vehicle Dynamics, 2nd ed.; Elsevier Butterworth Heinemann: New York,
NY, USA, 2004; Volume 1, pp. 30–160.

49. Lo, R.; Massaro, M.A. Symbolic approach to the multibody modeling of road vehicles. Int. J. Appl. Mech. 2017, 9, 17500685.
[CrossRef]

50. Milliken, M.F.; Milliken, D.L. Race Car Vehicle Dynamic, 2nd ed.; Society of Automotive Engineers: Warrendale, PA, USA, 1994.
51. Wang, J.; Qiao, J.; Qi, Z. Research on control strategy of regenerative braking and anti-lock braking system for electric vehicle.

In Proceedings of the World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 1–7 November 2013. [CrossRef]
52. Yu, C.; Shim, T. Modeling of comprehensive electric drive system for a study of regenerative brake system. In Proceedings of the

American Control Conference, Washington, DC, USA, 17–19 June 2013. [CrossRef]
53. Moreno, P.; Blanco, M.; Lafoz, M.; Arribas, J.R. Educational Project for the teaching of control of electric traction drives. Energies

2015, 8, 921–938. [CrossRef]
54. Rahimirad, P.; Masih-Tehrani, M.; Dahmardeh, M. Battery life investigation of a hybrid energy management system considering

battery temperature effect. Int. J. Automot. Eng. 2019, 9, 2966–2976.

http://doi.org/10.1016/j.rser.2015.07.033
http://doi.org/10.1016/j.eswa.2013.10.007
http://doi.org/10.1109/TVT.2015.2504363
http://doi.org/10.1016/j.rser.2020.110015
http://doi.org/10.3390/app8050659
http://doi.org/10.1016/j.jpowsour.2014.01.057
http://doi.org/10.1016/j.est.2020.101538
http://doi.org/10.33961/jecst.2019.00528
http://doi.org/10.1016/j.est.2016.11.002
http://doi.org/10.1080/00423114.2019.1638947
http://doi.org/10.1076/vesd.35.3.163.2047
http://doi.org/10.1243/1464419991544027
http://doi.org/10.1142/S1758825117500685
http://doi.org/10.1109/EVS.2013.6914823
http://doi.org/10.1109/ACC.2013.6580897
http://doi.org/10.3390/en8020921

	Introduction 
	Materials and Methods 
	Background 
	Mathematical Modeling of the Forward Method 
	Driving Cycle Model 
	Driver Model 
	Brake Model 
	Electric Motor Model 
	Transmission Model 
	Battery Model 
	EV Global Model 

	Simulation 

	Results and Discussion 
	Conclusions 
	References

