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A B S T R A C T

In today’s cyberattacks, botnets are used as an advanced technique to generate sophisticated and coordinated
attacks. Infected systems connect to a command and control (C&C) server to receive commands and attack.
Thus, detecting infected hosts makes it possible to protect the network’s resources and prevent them from
illicit activities toward third parties. This research elaborates on the design, implementation, and results of a
bot infection detection system based on Domain Name System (DNS) traffic events for a network corporation.
An infection detection feasibility analysis is performed by creating fingerprints. The traces are generated from
a numerical analysis of 13 attributes. These attributes are obtained from the DNS logs of a DNS server. It
looks for fingerprint anomalies using Isolation Forest to label a host as infected or not. In addition, on the
traces cataloged as anomalous, a search will be carried out for queries to domains generated by Domain
Generation Algorithms (DGA). Then, Random Forest generates a model that detects future bot infections on
hosts. The devised system integrates the ELK stack and Python. This integration facilitates the management,
transformation, and storage of events, generation of fingerprints, machine learning application, and analysis
of fingerprint classification results with a precision greater than 99%.
1. Introduction

Current attacks such as spam, Distributed Denial-of-Service (DDoS),
click fraud, malvertising/ad fraud, identity theft, and corporate es-
pionage have as common source Botnets [1]. Botnets are groups of
infected hosts (also known as bots) controlled by an attacker (botmas-
ter). Generally, users are unaware that a hidden backdoor on their host
is being used for criminal purposes, thus becoming the most significant
threat on the Internet.

Compromised machines establish a command and control (C&C)
channel from which malicious activities can be executed not only
towards the infected host but used to attack other hosts on the network.
In this context, different C&C architectures and communication tech-
niques have been developed by attackers to make any channel detection
and disruption process difficult. One of these techniques is using the Do-
main Name System (DNS) service to resolve domain names associated
with a C&C server. Therefore, detecting and blocking communications
with malicious domains will disrupt secret channels between victims
and controllers, thus limiting harmful effects on network resources [2].
Although significant efforts are made to detect botnets globally, little
is made to detect bot infections at the enterprise level [3,4].

∗ Corresponding author.
E-mail addresses: vicente.quezada@ucuenca.edu.ec (V. Quezada), fabian.astudillos@ucuenca.edu.ec (F. Astudillo-Salinas), luis.tello@unach.edu.ec

(L. Tello-Oquendo), paul.bernal@cedia.org.ec (P. Bernal).

Various network-based botnet detection techniques that are based
on how the traffic network behaves have been proposed [5]. A DNS
rule-based approach for Botnet detection (DNS-BD) is presented in [6],
which can increase the precision of DNS traffic-based botnet identi-
fication. By using the suggested DNS query and response rules, this
method based on DNS query and response behaviors, seeks to identify
any unusual DNS query and answer behaviors. Based on the sug-
gested flow analysis methodology, the authors of [7] classified network
traffic behavior and discovered botnet activity using a decision tree
with the reduced error pruning algorithm (REP Tree); the suggested
classification approach accurately detects the activities of known and
unidentified botnets even within a very narrow time frame. The authors
in [8] were able to recognize the aberrant traffic across a sizable
amount of typical network data during the communication stage with
the botnet server without prior knowledge of the botnets or servers.
Using similarity measurement and periodic botnet features, anomaly
score-based botnet detection is proposed in [8] as a method of detecting
botnet activities. To identify domain-flux botnets, DFBotKiller was
devised in [9], a negative reputation system that takes into account
vailable online 23 March 2023
389-1286/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2023.109725
Received 3 October 2022; Received in revised form 16 February 2023; Accepted 16
 March 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:vicente.quezada@ucuenca.edu.ec
mailto:fabian.astudillos@ucuenca.edu.ec
mailto:luis.tello@unach.edu.ec
mailto:paul.bernal@cedia.org.ec
https://doi.org/10.1016/j.comnet.2023.109725
https://doi.org/10.1016/j.comnet.2023.109725
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109725&domain=pdf


Computer Networks 228 (2023) 109725V. Quezada et al.
Fig. 1. Botnet architecture.

the history of both suspicious group actions and suspicious DNS traffic
failures.

Detecting bot-infected machines is vital for any organization to
combat security threats and take appropriate corrective actions. To
solve these issues, several studies propose different solutions and ar-
chitectures that capture network traffic and can work offline [10] and
online [3]. The authors of the last one proposed a new work based
on this. The authors called their framework DeepDAD [4]. From our
experience, these solutions are difficult to integrate into a corporate
network because, first, the security manager has to modify the policies
to incorporate a port mirroring; second, it is technically difficult to
enable this port mirroring for some corporate network architectures.
Furthermore, most existing solutions do not share source codes for
reproducibility purposes. The exception is DeepDAD [4]; the authors
of this work shared their source code in the github repository https:
//github.com/mannirulz/DeepDAD. Based on these observations, we
propose a solution that works online and uses real-time DNS logs to
detect botnets and feed these data into incident management systems
and provide alerts to security analysts. Also, we made our source codes
and a docker-compose available for quick integration into network
infrastructures.

To develop this study, we consider the data and infrastructure of
a corporate network named CEDIA. It is an internet service provider
for most of the higher education institutes in Ecuador. Its mission is
‘‘To work collaboratively to generate and strengthen research networks
at the national and international level, for the benefit of society’’. We
used CEDIA’s cloud services to implement the proposed real-time bot
infection detection system described in further sections.

1.1. Preliminaries

1.1.1. Botnet architecture
The typical architecture of a Botnet is presented in Fig. 1 and

consists of the following components:

• Bots: They are devices connected to the Internet that are infected
with malware and are controlled remotely.

• C&C Server: It is a server that controls bots on the network
through broadcast commands.

• Botmaster: It is a person who takes control of the C&C servers
and sends commands to bots of a Botnet.

1.1.2. Life-cycle of a bot-infected host
The behavior of an infected host is analyzed in [11]; a general

pattern is established that can be described in four phases as detailed
in the following.
2

Fig. 2. Life cycle of a botnet [11].

• Exploitation phase: The botmaster infects a victim host by ex-
ploiting an existing software vulnerability. The infection goes
hand in hand with some fraud towards the victim to execute a
malicious code on his machine. The connection to the remote
server is established only after the compromised machine issues
a DNS lookup command, seeking to assign an IP address to its
remote server.

• Gathering phase: The bots continuously connect to their botmas-
ter via a C&C server. The botmaster equips its bots with a DNS
lookup functionality to make queries and locate the C&C server.
IPs constantly migrate to prevent server IPs from being included
in security blacklists, thus hiding their address behind a domain
name. As a result, the bots will continue to communicate with the
botmaster. This communication can occur once the DNS request
to the C&C server is resolved.

• Attack execution phase: The bot group performs malicious ac-
tivities on the target machines by receiving commands from the
C&C servers provided by the botmaster.

• Update and maintenance phase: The botmaster instructs the
bots to update their binaries from time to time for better coor-
dination. Furthermore, botmasters must frequently migrate their
C&C server location to evade various bot detection techniques.

The flow of these phases in the life cycle is presented in Fig. 2. The
DNS traffic analysis on this life-cycle has the potential as a technique
to detect botnets [11]. Thus, this technique is considered a promising
field of research to combat botnet threats.

1.1.3. Botnets and DNS
As mentioned before, the life cycle of a botnet depends mainly on

the domain name resolution of the C&C servers. Attackers or botmasters
use domain name services to hide their C&C IP addresses so that the
botnet is reliable and easy to migrate from server to server without
raising suspicions. Thus, botnet detection techniques based on DNS
traffic analysis are the most used in their detection [11]; among these
techniques, Domain Generation Algorithms (DGA)-based detection and
bot-infected hosts detection are the most widely used nowadays.

• DGA-based detection: It attempts to differentiate the domains
queried in a network that are algorithmically generated (malig-
nant) from regular domains. DGA-generated domains are pseudo-
random names because they are incomprehensible to humans.
Domains do not form phrases that can make sense of a real
address.

• Bot-infected hosts detection: It attempts to detect bot-infected
machines on a network instead of finding the C&C server. The
main focus of these techniques is to list the infected hosts on a
network.

https://github.com/mannirulz/DeepDAD
https://github.com/mannirulz/DeepDAD
https://github.com/mannirulz/DeepDAD


Computer Networks 228 (2023) 109725V. Quezada et al.

.

1.2. Contribution

We build a real-time system that allows detecting infected hosts
in an active corporate network. The software tools and procedures to
achieve this objective are presented. It focuses on detecting bot-infected
hosts, using hourly DNS fingerprinting of active hosts on the network.
Unsupervised learning is applied to these tracks focused on anomaly
detection. In addition, we implement a detection technique using a
randomness measurement algorithm for a DGA-based domain with a
whitelist; the DGA-based algorithm is based on [10,12,13]. Finally,
supervised learning seeks to generate a model to detect possible bot
infections on future footprints.

For reproducibility, it is worth mentioning that the algorithms and
procedures devised were implemented on the OS Ubuntu 20.04.1 LTS.
These algorithms can be found on the collaborative development plat-
form GitHub in the following link https://github.com/fabianastudillo/
bndf.

The main contributions of the study can be summarized as follows:

• A novel architecture for real-time bot infection detection is de-
vised. It exploits data from log servers and uses DNS fingerprint-
ing and machine learning for effective detection. Furthermore, it
can be deployed quickly.

• Network event generation, digestion, and analysis tools based on
the ELK stack for network intrusion detection are developed and
provided for reproducibility.

• Thirteen attributes from DNS logs were identified.
• Anomalies’ detection related to bot infections is elaborated con-

sidering fingerprints generated from DNS log events.
• Implement an algorithm based on machine learning to detect

DGA-based domains in an active corporate network.

The rest of the article is organized as follows: a literature review
focused on botnet detection based on DNS flow analysis is carried out
in Section 2. The architecture and techniques used for the project are
presented in Section 3. The implementation, evaluation, and results
analysis are presented in Section 4. Finally, the conclusions and future
works are covered in Section 5.

2. Related work

There are several botnet detection mechanisms proposed in the
literature. In the review article [14], the authors summarize the tech-
niques. They divide the technologies of botnet detection into three
categories based on honeypot analysis, communication signatures, and
abnormal behavior. Instead, the authors of [15] divide into honeynet
and intrusion-based detection techniques; inside the last one are in-
cluded the signature and the anomaly-based detection techniques. Our
work is into the anomaly-based detection technique. According to the
review article [14], the anomaly-based detection techniques are: deep
learning, complex networks, swarm intelligence, statistical analysis,
distributed approach, and finally, combination method. Although not
explicitly mentioned, machine learning is also found.

Regardless of the method, input data is needed to feed the botnet
detection methods; the techniques use network traffic for example, the
authors of [16,17]. But using this kind of traffic several features have to
be extracted and the more traffic, the more processing. Another reason
is that DNS request is usually the first step to contact the C&C server
of the bots; these are controlled by the bot master, and the detection
of the DNS request is effective in detecting the bots. Actually, most of
the state-of-the-art use DNS traffic as input data.

Several DNS-based botnet detection techniques are examined in [11]
This study explores solutions and directs future research toward pas-
sive botnet detection techniques based on traffic analysis of DNS to
achieve adequate detection mechanisms. In this context, [2] presents
3

the state-of-the-art of problems and challenges of detecting botnets
based on DNS. Consequently, a new classification for DNS-based bot-
net detection techniques is introduced and categorized as flow-based
detection, anomaly-based detection, DGA communication detection,
and bot-infected hosts detection on a network. Emphasis is placed on
the last two methods as new research approaches. With this previous
classification, some studies are presented below.

In [18], the authors present techniques for botnet detection based
on analyzing the flow and anomalies of the DNS traffic. First, 23 char-
acteristics are extracted from the net DNS flow. Later, the legitimacy
of the domain name is determined using machine learning and thus
detecting botnets. From the applied machine learning algorithms, Ran-
dom Forest achieved an accuracy (ratio between the correct predictions
obtained and those predicted) of 99%.

Most botnets based on DNS protocol adopt DGA; these botnets can
change the domain randomly to hide themselves. A tool that takes
advantage of the behavior of a DGA communication named DBod is
presented in [1]. It is assumed that out of multiple domains queried,
only a few domains are associated with an active C&C. Therefore,
the job looks for NXDomain or failed query surge anomalies using
clustering techniques.

In [19], a method to detect DGA domains from massive DNS queries
is presented. It uses six dictionaries: English, French, German, Spanish,
Russian, and Japanese. Based on these dictionaries, the randomness
of the domains is estimated through a lexical analysis, achieving a
precision of 90%. Other studies have also been developed in detecting
DGA-based domains, such as [13]; this work was improved in [13].
The study considers a language-independent deterministic algorithm.
It seeks to detect incomprehensible domain names based on general
sonic axioms, such as the number of consequent vowels, the number of
consequent consonants, and the domain’s entropy. Depending on the
analyzed family, the algorithm achieves precision values above 90%.
The method is proposed as an efficient first alarm for recognizing botnet
communications.

Other authors also use the DGA techniques. In [20], the authors
present BotHook; it is a supervised machine learning approach for
botnet detection using DNS query data. They conclude that Support
Vector Machine (SVM) gives the best outcome among other machine
learning techniques; the tool used by the authors is WEKA. The authors
of [21,22] propose a botnet detection architecture based on an artificial
neural network and machine learning, respectively.

A methodology for detecting host anomaly behavior (i.e., for detect-
ing hosts infected by bots) is presented in [23]. It looks for chains of
attack patterns or Kill Chain to detect C&C channels, pharming, and IP
spoofing DDoS botnets. The scheme creates behavior profiles for each
host on the network. However, it requires a large amount of storage and
computational capacity since all network traffic is considered. In [24],
the term DNS fingerprint is introduced as a host’s DNS communication
behavior profile. Each behavioral fingerprint uniquely identifies its
corresponding user and is immune to time change. This way, a user
has an invariable DNS behavior pattern on the network. Furthermore,
with the generated fingerprints of the hosts, it is sought to detect new
flows that would become abnormal behaviors in the network.

BotDAD [3] is introduced as a new anomaly-based detection tech-
nique, which considers the DNS fingerprint of hosts per hour and
tries to find anomalous behavior of a machine. First, fingerprints are
generated by extracting 15 characteristics from the DNS flow for each
host. Then, a detection engine based on an anomaly search is made with
the fingerprints generated. Finally, a Random Forest machine learning
algorithm is trained to classify clean and infected hosts in future cap-
tures. A continuation of the work done in [3] is presented in [25]. The
machine-learning algorithm of the BotDAD anomaly detection engine
is improved for future fingerprints. Thus, a new tool called DeepDAD is
created using multilayer neural networks [4]; in this work, the authors
conclude that multi-feature anomaly detection is a better measure of
detecting malicious hosts in a network, and that deep neural networks

have slight yet significant improvements compared to random forest.

https://github.com/fabianastudillo/bndf
https://github.com/fabianastudillo/bndf
https://github.com/fabianastudillo/bndf
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Fig. 3. Architecture of the solution from the processes perspective.
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The authors of [26] propose a botnet detection method by using a
ybrid of particle swarm optimization (PSO) algorithm with a voting
ystem. The PSO algorithm is employed to select features, and the vot-
ng system is used to identify botnets and classify samples. According to
he authors, the method improves the accuracy by an average of 0.42%
nd 0.17% in the ISOT data set and the Bot-IoT data set, respectively,
ompared to the other methods investigated.

The works using the DNS query to feature extraction are [27–30].
he authors of [27] propose an optimized ML-based framework to de-
ect botnets based on their corresponding DNS queries; the framework
onsists of using information gain as a feature selection method and
enetic algorithm (GA) as a hyperparameter optimization model to tune
he parameters of a random forest (RF) classifier. The approach of au-
hors of [28] is to process the timing information of the generated DNS
ueries to identify the existence of the group activity behavior (i.e., bots
ehavior) by measuring the level of similarity between periodic hosts.
he paper [29] examines the abnormality of DNS traffic during the
otnet lifecycle to extract significant enriched features. These features
re further analyzed using two machine learning algorithms. The union
f the output of two algorithms proposes a novel hybrid rule detection
odel approach. In recent years, Botnet attacks towards the Internet

f Things (IoT) have been considered to be the attacks with the most
xtensive impact on Internet infrastructure; the authors of [30] de-
igned an IoT device detection systems to detect the devices infected
y botnets using the traffic based on DNS.

. Bot detection architecture based on machine learning

The generic architecture of a network anomaly detection system is
omposed of four main modules, namely:

– Traffic capture: In this module, live network traffic is captured
using some sniffer;
– Information processing: This module filters the relevant param-
eters during capture and feature extraction from the captured
data; it also takes care of the conversion, normalization, and
discretization of the filtered data type into information in a format
readable by other modules;
– Anomaly detection: This module is the heart of any network
anomaly detection system; it attempts to detect the occurrence
of any intrusion, whether online or offline; if the attack belongs
to a known type, it can be detected using a misuse detection
approach. Unknown attacks can be detected with the anomaly-
based approach using an appropriate matching mechanism or
4

classifier; l
– Notification: This module is responsible for generating an alarm
based on the indication received from the anomaly detection en-
gine. In addition to indicating the occurrence of an attack, alarms
are helpful for further analysis. For example, alarms should in-
dicate any background information that justifies the generated
alarm.

Additionally, an essential element is a human analyst, responsible
or analyzing, interpreting, and taking necessary actions based on
he alarm information provided by the detection engine. The analyst
lso follows the necessary steps to diagnose the alarm information as
post-processing activity to support the update of the reference or

rofile.
Based on the model mentioned above, we proposed a novel architec-

ure for a real-time bot infection detection system that includes event
apture, event management, fingerprint generation, and machine learn-
ng for the anomaly detection modules. This architecture is illustrated
n Fig. 3. The modules that intervene in the data processing, generation
f DNS fingerprints, and anomaly detection are presented with their
espective processes to obtain the desired output. The system is based
n the DNS log capture. DNS logs are sent to a log server, and this
orwards the logs to the BotNet Detection Framework (BNDF). The
NDF performs the filtering storage, anomaly detection using the logs,
nd visualization. The system acts offline in a steady state. This state
akes ten days to analyze all the DNS traffic and generates a trained
odel using random forest. After this stage, the system can be run

n online mode. In this mode, the calculated fingerprints are sent to
he trained model and marked as bot or clean. We could not compare
esults with related works since the source codes of the algorithms are
ot shared for reproducibility purposes. Furthermore, the related works
perate offline, and the detection is not dynamic, which makes the
omparison unfeasible. Note that this work aims to be the baseline so
hat modules can be added to our framework in the future (the code
s available on github platform) and the algorithms can be compared
ffectively. The different implemented algorithms were the best ones in
he state-of-the-art after analyzing the discussion and results provided.

In the following, we elaborate on the main features of each archi-
ecture component.

.1. DNS event capture

The architecture has been designed to use several DNS servers. All
hese servers send their logs to a Graylog server. This Graylog server in
EDIA forwards the logs to the BNDF virtual machine implementing

our dockers: Logstash, Elasticsearch, Kibana, and Python (machine

earning module). A brief description of each tool follows:
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Table 1
Relevant fields of DNS events stored in Elasticsearch.

Field Description Types

dest_ip destination IP address various
dn.sld second level mastery various
dn.tld top-level domain various

dns.rcode return code NOERROR
NXDOMAIN

dns.rrname domain name consulted various

dns.rrtype type of resource record requested

A
AAAA
PTR
MX

dns.type Event type query
answer

src_ip source IP address various

Graylog: It is a centralized Log Management System (LMS) that pro-
vides a means to aggregate, organize, and make sense of all this
data [31].

Logstash: It is a free and open server-side data processing pipeline that
ingests data from many sources, transforms it, and then sends it
to a ‘‘stash’’ [32].

Elasticsearch: It is a distributed, RESTful search and analytics engine
capable of addressing many use cases. It centrally stores the data
for lightning-fast search, fine-tuned relevancy, and powerful
analytics that scale easily [32].

Kibana: It is a free and open user interface that lets us visualize the
Elasticsearch data [32].

Python: It is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective
approach to object-oriented programming [33].

When used generically, the term encompasses a larger system of log
collection, processing, storage, and searching activities. In this case, the
input module listens to a specific port by Graylog Extended Log Format
(GELF).

This architecture has been proposed because in the information and
communications technology (ICT) department of the corporate network
CEDIA a Graylog server that stores DNS event logs is implemented.

3.2. ELK stack modules for DNS event management

The ELK stack will manage the GELF events generated by Graylog.
Logstash will extract top-level and second-level domains from the
domain name (TLD and SLD, respectively). Elasticsearch, in turn, serves
as a storage base and search engine for future queries. Finally, Kibana
is the visual interface to interact with the data and query lab. Projects
such as SELKS [34], and those described in [35,36] demonstrate the
correct operation of using Elasticsearch, Logstash, Kibana, and Suricata
as a set; in our case, we use the first three tools and replace Suricata
by the DNS log server.

The records obtained by processing the events generated by Graylog
with Logstash have the characteristics detailed in Table 1 referring to
a log type answer, where several fields are typical of Elasticsearch to
5

be able to index and manage the stored events.
3.3. DNS fingerprint generation

The detailed methodology in [3] is considered to develop this
architecture component. It consists of three modules: (1) DNS Fea-
ture Extractor, (2) Host Profiler, and (3) Fingerprint Generator. The
DNS feature extractor module processes the DNS logs (e.g., number
of transactions, Host IP, FQDN, number of domain tokens, request
type, length of FQDN, request timestamp, and the DNS server IP) and
response parameters (e.g., transaction number, Host IP, FQDN, query
type, answer code, TTL, resolved IP, and response timestamp) that are
useful for fingerprint generation. The output of the DNS extraction
module, or the request and response parameters, are parsed by the host
profiler module. Organizing the requests from each host into a schema
creates a DNS profile for every host on the network. Each host’s DNS
request is further categorized using FQDN. A host can make several
requests for the same FQDN by using a list. The typical DNS query reply
message has many answer records. A list is kept up to date to manage
these answer records for a specific DNS query request. An in-memory
profile of all the hosts that used the DNS service is obtained when
the processing is complete. Then, the DNS fingerprint generator module
parses the in-memory host profile, creating a unique DNS fingerprint
for each host in the network.

Up to 15 attributes can be obtained from the captured data using
Suricata and port mirroring [10]. However, when DNS logs are used as
input, IP-based attributes such as the number of cities of resolved IP
addresses and the number of countries of resolved IP addresses cannot
be captured. As a result, 13 attributes are obtained that allow denoting
behavior of bot-infected hosts. The attributes are generated by the flow
of DNS events which are used to create the footprints. The fingerprints
are generated for each active host, and intervals of one hour for ten
days are considered. Each of the attributes is presented below with its
respective description.

3.3.1. Attributes based on DNS requests
• Number of DNS requests per hour (𝑃1): It gives an early insight

into whether or not a host is infected. Bot-infected machines tend
to have more requests per hour than usual.

• Number of distinct DNS requests per hour (𝑃2): DGA malware-
infected hosts tend to have more distinct requests than regular
hosts.

• Increased number of requests for a single domain (𝑃3): It helps
to detect the existence of a DNS tunnel in which confidential
information is transferred through this protocol.

• Average number of requests per minute (𝑃4): It helps to detect
malware-infected machines that do not use short bursts of DNS re-
quests but regularly contribute to DNS requests through a suspend
interval. It is calculated by dividing the number of requests sent
by the host’s time and using the domain name resolution service.

• Highest number of requests per minute (𝑃5): It helps to detect
malware-infected bots that use a short burst of DNS requests to
communicate with the C&C server. The DGA algorithms generate
multiple URLs.

• Number of MX record queries (𝑃6): It is an indicator of spam-
based botnets on the network.

• Number of PTR record queries (𝑃7): It helps to detect hosts with
abnormal behavior on a network and possible infection.

• Number of different DNS servers consulted (𝑃8): It helps to
detect machines with abnormal behavior on the network. It is rare
for a standard system to query more than one DNS server.

3.3.2. Domain-based attributes
• Number of different TLDs queried (𝑃9): It effectively detects

DGA-based bots that generate not only random domains with
different SLDs but also different TLDs.

• Number of different SLDs consulted (𝑃10): It is an indicator of

the presence of DGA-based bots on the network.
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Table 2
Example of DNS fingerprint data set obtained from classifier module.

@timestamp IP P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P15

2022-07-12T20:00 190.x.x.x1 235737 11762 1877 7604.41 9555 0 3184 1 201 2652 20.04 442 0.058
2022-07-12T20:00 190.x.x.x2 204655 6306 12440 6601.77 9877 1 364 1 168 1964 32.45 76 0.034
2022-07-12T20:00 190.x.x.x3 120977 6062 11306 3902.48 5309 0 251 1 156 1999 19.95 100 0.054
2022-07-12T20:00 190.x.x.x4 116319 6501 8619 3752.22 5377 0 415 1 137 1536 17.89 59 0.058
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Fig. 4. Flowchart for obtaining the attributes to generate the DNS fingerprints.

• Uniqueness ratio (𝑃11): It is the ratio between the number of
requests sent and the number of different requests sent, assuming
that the host has sent at least 100 requests per hour.

.3.3. Attributes based on response
• Number of failed queries/NXDOMAIN (𝑃12): It is an indicator of

host infection on the network. In domains generated by DGA, of
several queries made, only one or none is resolved. In this way,
many failed queries are generated, which generates a response
code equal to NXDOMAIN.

.3.4. Attributes based on mapping (FQDN-IP)
• Flow ratio (𝑃13): It is the proportion of the different requests sent

to the different resolved IP addresses, provided that the host has
sent at least 100 queries and has received at least 100 responses.

The Python programming language is used to access Elasticsearch as
n external client. Elasticseach’s search and analytics engine obtains the
NS attributes required for each host; this will generate the DNS finger-
rints of the hosts for hours. Fig. 4 presents the flowchart to generate
he fingerprints; it performs queries from Python to Elasticsearch.

An example of a data set obtained from the DNS fingerprint gener-
tion component is illustrated in Table 2. Each line represents a host’s
ingerprint and has the date, the IP, and the attributes (𝑃1 to 𝑃13); the
ate and the IP have been added for better visualization and analysis.
hus, each line is a unique host fingerprint for a specific date and time.

.4. Anomaly detection

With a DNS fingerprint data set of hosts, the search for an anomaly
etection engine classifies the fingerprints. The classification will be
n two categories: bot or clean, depending on the presence or absence
6

f an anomaly. The amount of benign traffic that is greater than the
mount of malicious traffic must be considered a premise for network
nomaly detection. The classification thresholds will vary depending
n the nature of the network on which the system is implemented.
o, the anomaly detection engine will do it with unsupervised machine
earning.

The scikit-learn machine learning library in Python presents a sec-
ion dedicated to outlier and novelty detection. In the context of
utlier detection, anomalies∕outliers cannot form a dense group. There-
ore, the estimators assume that outliers∕anomalies are in low-density
egions [37]. The Isolation Forest algorithm has been used, which
cikit-learn developers recommend due to its efficiency for moderately
igh-dimensional data sets; in this case, 13.

.4.1. Domain name analysis: Randomness detection in domain names
Most DGA-based domain names contain meaningless strings that are

ifficult to pronounce or read due to their generation’s algorithmic
ature and the avoidance of matching existing domain names. The
xistence of consonants or sequential vowels (considering the letter
‘y’’ as a vowel) and a high entropy are presented as characteristics of
andomness in a domain [10,12,13].

The Shannon’s entropy 𝐻 can be calculated as 𝐻 = −
∑𝑛

𝑖=1 𝑝𝑖 log 𝑝𝑖,
here 𝑝𝑖 is an element of the probability distribution 𝑃𝑛 = (𝑝1,… , 𝑝𝑛)
ith 𝑝𝑖 ≥ 0 for 𝑖 = 1,… , 𝑛 and ∑𝑛

𝑖=1 𝑝𝑖 = 1.
Algorithm 1 measures the randomness of domain names. This algo-

ithm will be used as a support tool applied to the fingerprints detected
s abnormal. It seeks to determine queries to domains that follow
andomness patterns typical of domains generated by DGA. A filter is
ade of those domains with no response (NXDOMAIN) to reduce the
umber of verified domains. The hypothesis is that a bot generates a
lood of queries with DGA-based domains until one of these is resolved.

e use the Algorithm 1 and the thresholds established in [10] for
ntropy values 𝐻 , the maximum number of sequential vowels 𝑆𝑉 , and
he maximum number of sequential consonants 𝑆𝐶. High accuracy for
lassifying domain names as usual or DGA-based is achieved. One of
he future works is to improve this algorithm.
Algorithm 1: Randomness Measuring Algorithm

Input : Domain name
Output : Normal Domain Name or DGA-based Domain Name
Parameters: H, domain’s length, SC, SV

1 if (H ≤ 2) and (domain’s length < 5) then
2 return Normal domain name;
3 else
4 if (H ≤ 3.24) then
5 return Normal domain name;
6 else
7 if (SC < 4) or (SV < 4) then
8 return Normal domain name;
9 else
10 return DGA-based domain name;
11 end
12 end
13 end

3.5. Classifier for autonomous detection

The output of the anomaly module presents a data set with data
labeled as bot or clean. This data set enables the ability to train a
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Table 3
Minimum, average, and maximum values of the DNS attributes (Att) of the fingerprints.

Att Description Minimum Average Maximum

𝑃1 Number of DNS requests per hour 100 456.371 463930
𝑃2 Number of different DNS requests per hour 1 57.689 53908
𝑃3 Most requests for a single domain per hour 2 75.923 183248
𝑃4 Average number of requests per minute 1.695 13.418 7605.41
𝑃5 Most requests per minute 2 54.12 15111
𝑃6 Number of MX record queries per hour 0 0 2869
𝑃7 Number of PTR record queries per hour 0 8.615 87555
𝑃8 Number of different DNS servers queried per hour 1 1 4
𝑃9 Number of different TLD domains queried per hour 0 6 329
𝑃10 Number of different SLD domains consulted per hour 0 27.786 7063
𝑃11 Uniqueness ratio per hour 1.023 5.945 18708
𝑃12 Number of failed/NXDOMAIN queries per hour 0 0 10160
𝑃13 Hourly flow rate 0.0 0.246 71.0
Fig. 5. Captured DNS events.

supervised machine learning algorithm. The purpose is to have an
autonomous system for detecting future infected hosts on the network
in less time. The Random Forest algorithm [3] was used to train and
test the data in the classifier module.

4. Results and analysis

4.1. Captured data

The data is captured following the procedure presented in Sec-
tion 3.3 for ten days. Fig. 5(a) depicts the volume (obtained from
Kibana) of the DNS indexes generated by days, which add up to
52.4 GB. Fig. 5(b) illustrates the number of DNS events generated from
a quantity perspective. There are peaks of around 8 million events
in 3 h, yielding a total of 687,526,874 events during the ten days of
ata capture. These events will allow generating of the hosts’ DNS
7

ingerprints per hour.
Fig. 6. Number of active hosts on the network per hour.

4.2. Generation of DNS fingerprints

The application of the DNS fingerprint generator module allows
obtaining values of interest, such as the number of active hosts on
the network; its behavior per hour is shown in Fig. 6. The minimum,
maximum, and average data captured by the hosts on the network are
578, 1149, and 705, respectively. Hosts that meet the cache condition
and have at least 100 queries per hour will generate the fingerprint
data set.

The obtained fingerprints are added to a new index in Elasticsearch.
The tool counts 86,993 fingerprints generated for the ten days of
traffic capture. The traffic was generated by 4687 hosts interacting on
the network and meeting the project conditions. Table 3 shows each
attribute’s minimum, average, and maximum values.

4.3. Anomaly detection

The number of trees that best fits the data can be defined from the
parameters of the Isolation Forest algorithm. The relationship between
tree growth and computational complexity is directly proportional.
Fig. 7 depicts the amount of data classified as anomalies as a function
of the number of trees from 2 to 1000. A trend of difficulty in isolating
anomalous values is observed as the number of trees in the model
increases. The number of anomalies found ranges from 5694 to 10,089.

The experiment considers 70 as the number of trees in the model.
It is the first peak when the number of anomalies is 6303. From a
cybersecurity point of view, it is better to have some false positive

detection than to ignore possible intrusions. Another parameter of the
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Table 4
Some hosts and their percentage of footprints cataloged as bots.

IP # Bot footprints # Total footprints Percentage

190.15.X.X 52 52 100
190.15.X.X 240 240 100
190.15.X.X 240 240 100
45.182.X.X 240 240 100
192.188.X.X 240 240 100
201.159.X.X 240 240 100
192.188.X.X 229 240 95
143.255.X.X 205 240 85
201.159.X.X 192 240 80
143.255.X.X 166 240 69
201.159.X.X 148 240 61
190.96.X.X 128 240 53
192.188.X.X 123 240 51
200.12.X.X 117 240 48
201.234.X.X 92 193 47
190.15.X.X 104 240 43
192.188.X.X 104 240 43
45.235.X.X 101 240 42
190.15.X.X 98 240 40
192.188.X.X 88 234 37
192.100.X.X 84 225 37
q
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Table 5
Footprints.

Type # Footprints Percentage

Clean 81462 93.6%
Bot without DGA 5531 6.4%
Bot with DGA 323 0.003%

Fig. 7. Number of samples classified as anomalies based on the number of trees.

lgorithm is the contamination, which is set to automatic so that the
lgorithm draws its threshold between normal and abnormal [38].

The footprints cataloged as a bot and clean based on their attributes
as been visualized. Fig. 10 shows the classification of the footprints
ccording to the attributes (from 10a to 10m) considering a logarithmic
cale. This scale allows us to observe how the highest density of points
re clean footprints and based on this dense area; the algorithm draws
hresholds. Values that exceed the thresholds will be classified as bot.
n analysis of the numerical values of the footprint attributes was
reviously carried out in Table 3. The graphs that stand out are Fig. 10f
nd Fig. 10h, corresponding to the number of queries to MX records
nd the number of different DNS servers consulted. The 𝑃6 attribute’s
verage value is 0, so only the anomalous values are highlighted in red.
or attribute 𝑃 , its value for all traces is 1; all hosts are making their
8

8 f
ueries to the local DNS server. For this reason, the unique value is
resented as a line.

Other values of interest are the classification percentages based
n the total footprints. Table 5 presents the values for the number
f footprints classified as clean and bot, the percentage for the total
umber of footprints, and the number of hosts within this classification.

The system can compare the total footprints a host has generated
gainst the footprints of the same host classified as anomalies. A
ingerprint is considered to represent the behavior of a host at a specific
ime. In this context, a host with many footprints classified as bad
enotes that its general behavior over time only differs from most hosts
n the network. Thus, their behavior will always be abnormal. Table 4
hows some hosts with the most traces cataloged as anomalous and
heir percentage compared to the total number of traces generated.
t is observed as is the case of the hosts 190.15.X.X and 45.182.X.X
hose percentage of footprints cataloged as anomalous is 100%. Some

Ps can be servers; internal networks are behind these addresses, which
ould explain their discordant number of requests compared to an IP
ssociated with a host. This analysis allows us to consider taking some
ction on these IPs to have more homogeneous data.

We can perform a visual comparison of a clean host and an infected
ost at the same time. From the general point of view of net traffic, an
nomaly may not be visible, as shown in Figs. 11(a) and 11(b). How-
ver, the infected hosts’ detection method allows for finding anomalies
n the same data set by analyzing them individually. Figs. 11(c) and
1(d) illustrate the DNS traffic of a host classified as clean, which
enotes sequentiality in its queries. In Figs. 11(e) and 11(f) the DNS
raffic of a host cataloged as a bot is shown, and its query pattern
enotes some communication peaks in bursts. Cases A and B presented
n Fig. 11 present a comparison of the traffics: net, of a clean host and
f the hosts 190.15.X.X and 190.15.X.X cataloged as bot, for the times
2/17/2021: 08: 00: 00 and 02/11/2021: 16: 00: 00, respectively.

.4. Verification of queries to DGA domains

The failed queries are searched for those whose SLDs have randomly
enerated characteristics for the traces cataloged as anomalous. In [10],
uthors evaluated the randomness meter with a data set of DGA family
omains and around the first 200 thousand domains of the Alexa
uery ranking. However, in an internal network, there may be own
omain names that the algorithm has classified as suspicious and, at

irst glance, appear legitimate. The human factor is necessary to analyze
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Table 6
Suspicious SLD domain names for some IPs.

IP SLD

192.188.X.X cgablcehfnrdpzi, epmsqkjbkgwnv, w42f4ctqv4, chxvlothvb,
othvbyopsakbg, uyrrfqqbodu, lnyrczvmoyzro, crwdcntrl,
xnycmjmulrsopfmm3x, brtqvyhbpskluz, zqnvkbwhhfwpf, dbankcdn

200.7.X.X tdfilrvxsqwzli, zdwlgulhfflczk, uyqeztwyfiyusx, wkpzxttbaw,
rmrjalyqztfbn, ywarpjtnr, ztsvvxmuohahskz, uyteuylflbiey, wlhhspuscfrg,
loswletnvlmv, nmethhafuqgl, qdzpkxrdnkn, tynswlnduizdjw, geqjcjjvx,
ujjqlcvehuj

190.15.X.X zhuvcruhoolkegc, elkbphh, nkgfcdvzyuq, ttvnw, uihcazcnvwey,
hdltormauqgmff, ryrunxfjfah, zthhymxm, wmvfuemoczf, gnebxwcinkcma,
szawvtxekdovej, xubytfhk, hzujwglxdbt
Table 7
Confusion matrix for the Random Forest model with
25 trees.

Real/Predicted Bot Clean

Bot 367 33
Clean 15 8867

Table 8
Classification report for the Random Forest model with 25 trees.

Parameters Precision Sensivity F1-score Support

Bot 0.98 0.96 0.97 1726
Clean 1.00 1.00 1.00 22016
accuracy 1.00 23742
macro avg 0.99 0.98 0.98 23742
weighted avg 1.00 1.00 1.00 23742

the existence of domains with a random character; this would be a new
filter that supports classifying a host as infected. Thus, Table 6 shows
the SLDs’ extraction for some fingerprints that were classified as a bot
and had more than ten not resolved domains with DGA characteristics.
This behavior is repetitive in time for the footprints associated with the
hosts in the table, with new groups of random SLDs appearing each time
(see Fig. 8).

4.5. Machine learning

The number of trees in the Isolation Forest algorithm determines the
learning precision of the algorithm. Fig. 9 illustrates the impact of the
number of trees with two metrics: the classification precision and the
processing time required to classify 9282 footprints that represent the
30% of the data set.

It can be observed how increasing the number of trees in the model
improves the accuracy of the classification algorithm; however, this
increment is not linear due to the random nature of the algorithm.
Fig. 9 also presents the processing time of the algorithm as a function
of the number of trees. Again, a direct relationship is observed between
the number of trees in the model and the training time; the fewest trees
used in the model have the lowest computational cost for a similar
accuracy.

The precision and processing time values are considered a function
of the number of trees. For this experiment, we consider the accuracy
of 0.995 in the model, achieved using 25 trees. Table 7 details the
confusion matrix obtained. The false-positive rate is low, considering
a large number of fingerprints correctly classified as clean. The false-
negative rate is higher compared to the number of bot footprints. An
active host on the network generates a large number of footprints.
Therefore, if there is a bot infection with the algorithm’s accuracy rate,
the probability that at least one fingerprint (associated with a host-bot)
will be cataloged correctly is high. With this analysis, the performance
of this module is considered satisfactory.
9

Fig. 8. Detected bots by day.

Fig. 9. Precision parameters and training time as a function of the number of trees
for the Random Forest algorithm.

It is worth mentioning that the results obtained may vary depending
on the nature of the network on which it is working. Thus, what could
turn out to be an irrelevant attribute for the traffic of this project
could be an attribute of great importance for detecting bot infections
in another network.

With the values of the confusion matrix, statistical weights have
been obtained that help understands the algorithm’s quality.
Table 8 reports precision, sensitivity, and F1 score values. The system
trained the detection model with many footprints (the number of
clean footprints is much more significant than the bot footprints); the
algorithm performs better for fingerprints whose behavior is within
normal limits.
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Fig. 10. Classification of footprints based on their attributes on a logarithmic scale.

Scikit Learn allows us to break down the importance of each param-
eter for learning the model developed. Table 9 shows the importance
values (Weight) of the parameters for the algorithm. The most impor-
tant parameter to classify a footprint as a bot or clean is the number
10
Fig. 10. (continued).

of different SLD domains a host consults per hour. Next, there are
parameters such as the number of different requests per hour, total
requests per hour, and average requests per minute; these parameters
are related to the number of requests a host makes. The parameters
referring to the geographic locations of the resolved domains are also
relevant to the model. A similar percentage of importance has the
highest number of requests for a single domain, the number of PTR
queries per hour, the highest number of requests per minute, and the
number of failed queries. The irrelevant attribute is the number of
different servers consulted, whose value was the unit for all the tracks.
For this architecture, no-host tried communicating with another DNS
server other than the local one.
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Fig. 11. DNS traffic cases A and B for net, clean, and bot.
Table 9
Importance of the attributes (Att) for the Random Forest model with 25 trees.

Att Description Weight

𝑃4 Average number of requests per minute 0.137
𝑃9 Number of different TLD domains queried per hour 0.113
𝑃10 Number of different SLD domains consulted per hour 0.11
𝑃7 Number of PTR records queries per hour 0.096
𝑃2 Number of different DNS requests per hour 0.083
𝑃3 Highest number of requests for a single domain per hour 0.064
𝑃11 Uniqueness ratio per hour 0.061
𝑃12 Number of failed / NXDOMAIN queries per hour 0.046
𝑃6 Number of MX record queries per hour 0.04
𝑃5 Most requests per minute 0.035
𝑃8 Number of different DNS servers queried per hour 0.022
𝑃13 Hourly flow rate 0.019
5. Conclusions

Detecting DNS traffic anomalies in the network allows for defining a
methodology to detect bot-infected hosts. A botnet’s life cycle depends
on the DNS service as a tool to resolve domains of C&C servers and
establish connections with bots. It also allows to migration of the IP
addresses of the C&C servers and avoids blacklists. Current research
fields for DNS-based botnet detection focus on the bot-infected host
and DGA-based detection techniques. This project addressed these tech-
niques, the first by creating fingerprints of the hosts based on 13 DNS
parameters, and the second, through an algorithm for measuring the
randomness of a domain based on the entropy value and the number
of vowels and sequential consonants.

The proposed architecture allows a system implementation that
captures and generates events using a Graylog and Logstash server. The
system processes the captured events offline. Thus, the system does not
represent any threat to the regular operation of the network. The results
obtained do not contemplate a corrective action on the network. In-
stead, the project is presented as an alert system for detecting anomalies
in DNS events that denote activities related to bot infection in hosts.

The integration of the tools and processes allowed complete man-
agement of DNS events of a production network. Graylog and Logstash
proved to be powerful tools for capturing traffic and generating DNS
events, reducing the need for direct interaction with the raw flow
of the network. Integrating the ELK stack as SIEM allowed better
management of DNS events, such as eliminating irrelevant fields and
dividing domains into levels. Integrated fields proved to be essential
attributes when training a machine learning model. Using Python, it
was possible to take advantage of the Elasticsearch search and analytics
engine and generate DNS fingerprints based on stored events.

The conducted methodology contemplates extracting 13 DNS pa-
rameters per hour from the hosts to generate fingerprints and applying
ML to detect anomalies. In 10 days 241 hosts generated 687,526,874
11
events that led to the creation of 32,182 DNS fingerprints. The Isolation
Forest model with 110 trees classified 2287 as anomalous, representing
7% of total footprints belonging to 58 hosts. A Random Forest model
was trained using 25 trees with the classified tracks, achieving an
accuracy of 0.995.

It was observed as the method of detecting infected bot hosts. It
detects traffic anomalies that do not appear when analyzing the total
network traffic and are a typical pattern of bot communications. Also,
applying a domain randomness detection algorithm on the footprints
classified as bots has been allowed to verify the existence of several
failed queries, such as bursts. Hosts made queries to domain names with
random characteristics, typical of DGA bots.

The model generated by Random Forest provided information on
the level of importance each feature of the footprints has for detecting
footprints belonging to bots. This information is consistent with the
theory. A bot’s communication search with its botmaster generates
increases in DNS queries on an infected host. In turn, in an attempt
to evade security elements, variety is generated in domain names. The
machine learning algorithm is sensitive to these parameters, and due to
its high precision, the system is considered efficient for detecting future
bot-infected hosts in said network.

6. Future work

CEDIA corporation manages the computational and network re-
sources to expand the system’s application field within a framework of
tool development focused on cybersecurity. Thus, this work opens the
way to projects around log analysis as a security intrusion detection
method. At the same time, it allows working on a real-world network
in a stable platform for capturing and processing network events.

Our solution allows for implementing more DNS event generation
and traffic analysis points to enrich the fingerprint data set. The sys-
tem’s distributed architecture permits having several points sending
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DNS logs as event generators. These events can be sent to Logstash
through agents like Filebeat. This solution is applicable to those hosts
whose behavior is always abnormal. Thus, this host could be replaced
by the set of hosts it represents.

Also, we can generate a whitelist of internal domains. In this way,
applying the domain randomness detection algorithm reduces its false-
positive rate; this improves the detection technique for bots based on
DGA to help enhance the infection detection rate. We plan to explore
other security intrusion detection techniques based on log analysis. The
same framework can be used to detect crypto miners.

On the other hand, the proposed framework is implemented only
using machine learning. However, the idea is to implement different
techniques, including deep learning. We want to compare the current
implementation with, for example, generative adversarial networks
(GAN) [39,40].
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