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Downscaling improves considerably the results of General Circulation Models (GCMs). However, little information is available
on the performance of downscaling methods in the Andean mountain region. The paper presents the downscaling of monthly
precipitation estimates of the NCEP/NCAR reanalysis 1 applying the statistical downscaling model (SDSM), artificial neural
networks (ANNs), and the least squares support vectormachines (LS-SVM) approach. Downscaledmonthly precipitation estimates
after bias and variance correction were compared to themedian and variance of the 30-year observations of 5 climate stations in the
Paute River basin in southern Ecuador, one of Ecuador’s main river basins. A preliminary comparison revealed that both artificial
intelligence methods, ANN and LS-SVM, performed equally. Results disclosed that ANN and LS-SVMmethods depict, in general,
better skills in comparison to SDSM. However, in somemonths, SDSM estimates matched themedian and variance of the observed
monthly precipitation depths better. Since synoptic variables do not always present local conditions, particularly in the period going
from September to December, it is recommended for future studies to refine estimates of downscaling, for example, by combining
dynamic and statistical methods, or to select sets of synoptic predictors for specific months or seasons.

1. Introduction

General Circulation Models (GCMs) are widely used to pre-
dict the impact of climate change on, for instance, the regional
precipitation trend. The resolution of these models, typically
around 2∘ × 2∘, is unsuitable for climate change impact
estimations at basin scale [1, 2]. Additionally, these models
do not capture well the subgrid processes, which can be very
complex in mountain regions, and fail to account properly
for the orographic features of those regions. Therefore, to
obtain projections of the impact of climate change at basin
scale, particularly in a mountain region, downscaling is a
must. In general, the downscalingmethods can be subdivided
into two large groups: dynamical downscaling (DD) and
statistical downscaling (SD) methods. On the one hand, the
DDmethods integrate a regional climatemodel (RCM) in the

GCM, which enables capturing the atmospheric phenomena
at a much higher resolution, in the order of tenths of
kilometers. The SD techniques, on the other hand, are based
on the determination of statistical relations between large-
scale synoptic predictors and local observations from ground
stations, which are considered to be stationary, an assumption
that might not be true for future climate projections. The
computational cost of thesemethods is low, they are relatively
easy to implement, and they present generally higher accu-
racy than dynamical models. Particularly when the aim is not
to understand the change in weather processes provoked by
climate change, the generation of future projections at basin
scale using SD methods might be convenient.

Several SD techniques exist and among them the sta-
tistical downscaling model (SDSM) is probably the most
widely used [3]. The SDSM approach facilitates the rapid
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Table 1: Stations used for the present study.

Code Station Regime Latitude (∘) Longitude (∘) Elevation (m asl) Annual precipitation (mm)
M141 El Labrado TM −2.732 −79.073 3335 1286
M139 Gualaceo BM −2.882 −78.776 2230 820
M138 Paute TM −2.800 −78.763 2194 750
M045 Palmas UM −2.716 −78.630 2400 1341
M137 Biblián BM −2.709 −78.892 2640 1001

development of multiple, low cost, single-site scenarios of
daily surface weather variables and is considered as a stochas-
tic weather generator on a daily scale. The limited use of
this technique in the Andean mountain region is perhaps
the consequence of its complex topography, location in the
tropical zone, and the influence of the warm and cold ENSO
phases, El Niño and LaNiña, respectively. All these influences
add complexity to the atmospheric processes, making the
representation by downscaling techniques more difficult.
Artificial neural networks (ANNs) are another SD technique
commonly used, however, to a limited extent, in the Andes
region. As stated by [4], the success of this technique is
primarily due to its ability to map highly nonlinear relations
between inputs and outputs of the model. Reference [5]
applied ANN for downscaling monthly precipitation and
temperature in the Paute basin in the Andes of Ecuador.
The application of ANN based SD was conducted in order
to evaluate the performance on seasonality representation
against DDusing a regional climatemodel,Weather Research
and Forecasting, WRF, model [6]. With respect to rainfall
representation, they found that although both downscaling
approaches represent qualitatively well seasonality in this
highly complex terrain, ANN estimates of rainfall were
more accurate than WRF estimates. This fact highlights
the applicability of ANN when the understanding of the
processes involved is not required. Another technique with
recent application for the downscaling of GCMs is SVM,
support vector machines [7]. In particular the least squares
support vector machines, LS-SVM [8], downscale GCM out-
put even better, mainly due to the reduction of the optimiza-
tion problem to the resolution of a linear system reducing
considerably the computational requirements. Despite SD
methods presenting greater accuracy thanDDmethods, from
a statistical point of view, they possess two handicaps: bias
and low variance. Normally, the quantile mapping (QM)
technique [9] is applied to improve the representation of the
distribution of derived applications.

This paper presents a comparative evaluation of down-
scaled GCM estimates of monthly precipitation at the scale
of a large river basin situated in the Andean mountain region
in southern Ecuador, applying SDSM and two artificial intel-
ligence (AI) techniques: artificial neural networks (ANNs)
and the least squares support vector machines (LS-SVM)
approach.The downscaled results were corrected for bias and
variance inflation applying the QM technique prior to the
comparative analysis. For the evaluation, historic data was
used.
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Figure 1: The study area Paute basin in the Andes of Ecuador.

2. Study Area and Data

The Paute River basin, tributary of the Amazon basin and
6148 km2 in size, was selected for the comparative evaluation
of the downscaling methods, a basin located between the
eastern and western cordillera of the Andes in Ecuador. The
basin is characterized by a high spatial and temporal variation
in precipitation that broadly can be classified into three
rainfall regimes, respectively, subregions with a uni-, bi-, and
three-modal precipitation pattern [10, 11]. Data of 5 rainfall
stations (see Table 1) were used of whom the geographical
distribution is given in Figure 1. The measured monthly
rainfall for the 30-year period 01-1980 to 12-2009 was used
to quantify the differences in the performance of the selected
downscaling methods. The dataset was split in a first set for
the calibration of themethods, encompassing 75% of the total
dataset, and the remaining 25% was used for the validation.
The results presented herein belong all to the validation set.
Quality control of the data was performed using double mass
curves on the time series with gaps not exceeding 20% of the
observations.The infilling of the datawas accomplished using
multiple linear regression with stations with higher Pearson
correlation [12].

NCEP/NCAR reanalysis 1 data [13] with 2.5
∘

× 2.5
∘

resolution was used as input.The selected synoptic predictors
for the SDSM and AI models are presented in Table 2.
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Table 2: Synoptic predictors.

# Synoptic predictors ANN/LS-SVM SDSM
(All stations) El Labrado Gualaceo Paute Palmas Biblián

1 Precipitation ∗ ∗ ∗ ∗ ∗ ∗

2 Pressure (surface) ∗ ∗ ∗ ∗

3 Relative humidity (surface) ∗ ∗ ∗ ∗ ∗

4 Specific humidity 700 hPa ∗

5 Sea level pressure ∗

6 Temperature 2m ∗ ∗ ∗ ∗ ∗

7 Potential temperature 700 hPa ∗ ∗ ∗ ∗

8 Zonal wind (surface) ∗

9 Omega 500 hPa ∗ ∗ ∗

10 Geopotential height 200 hPa ∗ ∗

11 Geopotential height 500 hPa ∗

12 Geopotential height 850 hPa ∗ ∗

3. Methods

The methodology of the present study encompasses the
following steps: (i) selection of the predictors, (ii) calibration
and validation of the SDSM and AI models, (iii) SDSM and
AI ensemble generation, (iv) bias correction by quantilemap-
ping, and (v) evaluation of results. SDSM can be conceived
as a weather generator model, while ANN and LS-SVM are
both transfer functions in statistical downscaling models.
Given the analogy between ANN and LS-SVM models, the
results of both formed one ensemble, which were compared
to the SDSM ensemble. Notwithstanding it is well known [14]
that a selection of predictors for specific months or seasons
might be a good option to improve the accuracy in climate
projections; in the present study only one set of predictors for
the whole year was considered given that the main interest
was the comparison of downscaling methods rather than the
analysis of climate projections.The samepredictorswere used
for the AI ensemble of ANN and LS-SVM models, and one
set of predictors in each station for the SDSMmodel. A more
detailed description of the tested downscalingmodels is given
in the following paragraphs.

3.1. Downscaling Using SDSM. SDSM is a hybrid between
a stochastic weather generator and a multilinear regression
method [14], forcing synoptic-scale weather variables to local
meteorological variables using statistical relationships. In
order to be better in agreement with the variance of the
observed time series, stochastic techniques are used to arti-
ficially inflate the variance of the downscaled weather time
series. The reader is referred to [3] for a detailed description
of the SDSM technique, an approach widely used for the
downscaling of large-scale meteorological, hydrological, and
environmental variables.

Partial correlation at a significance level of 𝑝 = 0.05 was
used to select the predictors that capture best for each of the
climate stations the effect of global climate. Precipitation data
from the reanalysis products was evaluated as the predictor
that considerably helped improving the downscaling. For
the climate stations Biblián, Paute, and Gualaceo, 5 predic-
tors were identified, of whom 4 are similar: precipitation,

pressure, relative humidity, and the temperature 2m above
the surface. For the Palmas station, the only station with a
unimodal regime, the best results were obtained using three
predictors, namely, precipitation, potential temperature at the
700 hPa level, and the geopotential height at the 850 hPa level.
Table 2 provides the list of the selected predictors as a function
of the downscaling technique and station.

Using the selected predictors, daily precipitation was
downscaled. Given the low match with the observed time
series of daily data, monthly time series were generated. At
the monthly scale the precipitation time series in the study
basin are continuous; months with zero precipitation are not
present even during the dry months. Regarding the SDSM
model, 20 versions were applied [15].Then, the median of the
simulated results was calculated as the representative value
for the ensemble of the SDSMmodel variants.

3.2. Downscaling Using ANN. An artificial neural network
(ANN) is composed of several interconnected layers of
processing units (the neurons) that transform inputs into
outputs. The inputs at the neurons are multiplied by weights
and then inserted into an activation function. ANNs are
characterized by their topology, and probably themostwidely
known neural network is the multilayer perceptron (MLP).
It consists of multiple layers of adaptive weights with full
connectivity between inputs and hidden units and between
hidden units and outputs. MLP is feed-forward artificial
neural network mapping sets of input data onto a set of
appropriate outputs.

The neural network toolbox of Matlab [16] was used,
and optimization of the neural network was pursued using
the Levenberg-Marquardt method, minimizing the mean
square error. The performance of a total of four ANNs was
tested, respectively, a model considering either one or two
intermediate neural layers, and a linear or sigmoidal transfer
function in the neurons (Table 3). For the input layer all
networks had 12 neurons (equal to the number of predictors;
see Table 2) and for the network with one hidden layer
8 neurons were used, which was determined by trial and
error. In a similar way for networks with two hidden layers,
respectively, 9 and 5 neurons were used.
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Table 3: Artificial intelligence models.

Model Type Transfer function
1

Ann

Linear & 1 hidden layer
2 Sigmoidal & 1 hidden layer
3 Linear & 2 hidden layers
4 Sigmoidal & 2 hidden layers
5

LS-SVM
Linear

6 Polynomial
7 Radial basis functions

3.3. Downscaling Using LS-SVM. Support vector machines,
SVM [7], solve nonlinear classifications and estimations of
functions and densities using quadratic programming. A
least squares support vector machine, LS-SVM [8], is a
reformulation of a SVM replacing the solution of the convex
quadratic programming problem by the solution of a set of
linear equations. As explained by [8] it is possible to adopt
into LS-SVM the robustness, sparseness, and weightings.

Due to the fact that LS-SVM has more recent application
than ANN and SDSM techniques for the downscaling of
GCMs, we present here a succinct description of LS-SVM
theory. For a more in deep description of LS-SVM see [8].

Let us consider 𝑥 ∈ R𝑛 and 𝑦 ∈ R; the LS-SVM model,
mapping the 𝑥 into a feature space, is

𝑦 = 𝑤
𝑇

𝜑 (𝑥) + 𝑏. (1)

The optimization problem can be stated as

min
𝑤,𝑒

Γ (𝑤, 𝑒) =
1

2
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𝑇
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, (2)

where 𝑒 and 𝛾 are the error and the regularization parameter,
respectively. The minimization of the cost function Γ(𝑤, 𝑒) is
subject to the constrains:

𝑦
𝑖
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𝑖
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. (3)

The Lagrangian of the optimization is
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where 𝛼
𝑖
are the Lagrangian multipliers.

After considering the conditions for optimality:
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We obtain the matrix equation:
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𝑖𝑗
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𝑇

𝜑(𝑥
𝑗
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𝐼 is the identity matrix.

Finally the LS-SVMmodel for function estimation is

𝑦 (𝑥) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝐾(𝑥
𝑖
, 𝑥) + 𝑏. (7)

A Bayesian framework with three levels of inference was
developed for the optimization of parameters [8]. The LS-
SVMlab tool [17] developed in Matlab applying three Kernel
tuning options (linear, polynomial, andRBF)was usedwithin
the ensemble of AI methods.

3.4. Bias Correction Using the Quantile Mapping Approach.
First the predictors were selected, followed by the application
of the multiple compositions of the SDSM model and the 7
AI models, 4 ANNs, and 3 LS-SVM models (Table 3). The
output distributions of the ensemble of SDSM models and
the 7 AI models were grouped into two distinct populations.
Both these populations were corrected for bias and variance
inflation applying the quantile mapping technique. The QM
applied to SDSM population distributions is from now on
called the SDSM QM and the QM applied to AI the AI QM.

The quantile mapping technique for bias correction and
variance inflation can be regarded as a statistical transforma-
tion of the original distribution into a reference probability
distribution. It aims to find the function that maps the
distribution of themodel variables into the distribution of the
observed variables. Basically three types of approaches exist
to find themapping function; they are adjustment (i) based on
theoretical distributions, (ii) based on parametric transfor-
mations, and (iii) based on nonparametric transformations.

After evaluation of several transformations the power
parametric transformation was applied because of its good
results and the parsimony of the model [9]. The power
parametric transformation is defined as

𝑃
∗

0

= 𝑏 (𝑃
𝑚
− 𝑥
0
)
𝑎

, (8)

where 𝑃∗
0

and 𝑃
𝑚
are the corrected modeled and modeled

variables, and 𝑎, 𝑏, and 𝑥
0
are parameters to be determined.

To find the parameters 𝑎, 𝑏, and 𝑥
0
, the tool 𝑅 QMAP

was used [18]. For SDSM QM and AI QM the parameters
obtained after QM adjustment are presented in Table 4.

3.5. Criteria for Model Evaluation. For the qualitative assess-
ment of the used methods of downscaling the long-term
monthly mean precipitation of both ensembles, the SDSM
and AI, was compared with the long-term monthly mean
observed precipitation, and for the quantitative evaluation
statistical metrics of the distributions of the time series of
observed and modeled values for the validation period were
calculated. In addition to the statistical metrics, Box-Whisker
plots presenting both ensembles versus the observations were
drawn. This type of graphical representation was selected
because, in addition to the median, the Box-Whisker plot
depicts the extreme values, respectively, the minimum and
maximum (the caps at the end of each box), and the outliers
falling more than 1 time of the interquartile range above the
third or below the first quartile (the points in the graph).



Advances in Meteorology 5

Table 4: Quantile mapping parameters for artificial intelligence and
SDSM ensembles.

Model Stations Parameters
𝑎 𝑏 𝑥

0

AI

Biblián 0.03280 1.83727 0.87053
El Labrado 0.00820 1.98426 −8.57836
Palmas 0.00334 2.21628 6.04480
Gualaceo 0.31943 1.40124 16.92140
Paute 0.02791 1.94766 0.03257

SDSM

Biblián 0.00986 2.08840 3.21195
El Labrado 0.39313 1.19070 −45.84738
Palmas 0.00056 2.46774 −13.06023
Gualaceo 0.00077 2.62716 −1.14051
Paute 0.04141 1.80403 3.91130

As statistical metrics the following were used:

(1) Pearson correlation (𝑅): to evaluate the linear corre-
lation.

(2) Mean bias (MB): to evaluate the mean (the 50th
percentile) difference betweenmodeled and observed
distributions.

(3) The root mean squared error (RMSE): to evaluate the
error between modeled and observed time series.

(4) The interquartile relative fraction (IRF): to evaluate
the modeled variability representation relative to the
observed:

IRF =
𝑄
𝑚

3

− 𝑄
𝑚

1

𝑄
𝑜

3

− 𝑄
𝑜

1

, (9)

where IRF is the interquartile relative fraction. A
value of IRF > 1 represents overestimation of the
variability, IRF = 1 is a perfect representation of the
variability, and IRF < 1 is an underestimation of
the variability; 𝑄𝑚

3

and 𝑄𝑜
3

and the 75th modeled and
observed percentile;𝑄𝑚

1

and𝑄𝑜
1

and the 25thmodeled
and observed percentile.

(5) The absolute cumulative bias (ACB): to evaluate the
bias of the 25th, 50th, and 75th percentiles; or
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3
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𝑜

3

 , (10)

where ACB is the absolute cumulative bias. A value
of ACB = 0 is a perfect representation of the three
percentiles (resp., the 25th, 50th, and 75th percentile)
of modeled and observed distributions, while under-
or overestimation indicates a divergence of ACB from
zero to positive values.

4. Results and Discussion

4.1. Evaluation of SDSM and AI Ensembles

4.1.1. Relative Performance of ANN and LS-SVM Models. As
mentioned before, ANN and LS-SVM models were grouped

Table 5: Statistical metrics for ANN and LS-SVM ensembles.

Station Metric ANN LS-SVM

El Labrado

Pearson correlation 0.49 0.58
IRF 0.59 0.53

Mean-bias 4.20 6.16
Cum bias 31.63 37.79
RMSE 40.73 37.63

Gualaceo

Pearson correlation 0.70 0.71
IRF 0.55 0.40

Mean-bias −2.29 −0.21
Cum bias 33.41 41.70
RMSE 34.82 35.33

Paute

Pearson correlation 0.55 0.54
IRF 0.41 0.31

Mean-bias −9.90 −8.34
Cum bias 44.16 48.21
RMSE 31.61 31.04

Palmas

Pearson correlation 0.25 0.45
IRF 0.45 0.53

Mean-bias −1.85 7.87
Cum bias 36.99 37.81
RMSE 52.44 47.51

Biblián

Pearson correlation 0.67 0.65
IRF 0.57 0.54

Mean-bias −18.39 −7.05
Cum bias 52.34 35.49
RMSE 44.75 40.97

into one ensemble considering both models as transfer
function based models. Although previous studies [19, 20]
demonstrated the relative superior performance of SVM
based downscalingmethods over other approaches including
ANN based methods, we compared for the first time in the
region, to the best of our knowledge, an ANN ensemble
against a LS-SVM ensemble to evaluate their downscaling
performance.The ensembles were not bias corrected in order
to evaluate their actual performance. Table 5 presents the
values of 𝑅, RMSE, MB, IRF, and ACB comparing ANN
and LS-SVM ensembles. In El Labrado and Paute station
similar results of both ensembles are obtained. However,
both ensembles for Gualaceo station underrepresent the
variability. IRF is 0.55 and 0.40 for ANN and LS-SVM,
respectively.Therefore LS-SVMrepresents 15% less variability
than ANN ensemble. TheMB for ANN is −2.29mm whereas
for LS-SVM it is −0.21mm, which in monthly scale is very
low. The ACB metric for ANN is 33.41mm whereas for LS-
SVM it is 41.70mm, meaning that although the MB is lower
for LS-SVM, the bias in the 25th and 75th percentiles is higher
than for the ANN ensemble. In Palmas station 𝑅 is 0.25 and
0.45, respectively, for the ANN and LS-SVM ensembles. IRF
values of 0.45 and 0.53 for ANN and LS-SVM are obtained,
indicating a greater representation in variability by the latter
approach. However, MB values of −1.85 and 7.87 mean that
LS-SVMpresents more bias in the 50th percentile than ANN.
For Biblián station,MB is −18.39mm and −7.05mm andACB
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Table 6: Statistical metrics for artificial intelligence and SDSM ensembles.

Station Metric AI SDSM AI QM SDSM QM

El Labrado

Pearson correlation 0.58 0.37 0.58 0.38
IRF 0.49 1.00 0.87 1.14

Mean-bias 4.37 −41.49 −3.24 −0.54
Cum bias 38.23 126.89 12.19 9.96
RMSE 37.70 65.41 41.67 51.44

Gualaceo

Pearson correlation 0.74 0.53 0.72 0.50
IRF 0.52 0.46 1.04 1.03

Mean-bias −1.01 10.28 4.33 1.85
Cum bias 34.02 47.50 7.35 9.01
RMSE 33.92 38.26 32.87 44.86

Paute

Pearson correlation 0.59 0.47 0.57 0.47
IRF 0.36 0.47 0.80 0.89

Mean-bias −10.46 1.14 −4.26 1.34
Cum bias 47.61 31.73 15.59 7.77
RMSE 30.60 30.26 31.13 35.03

Palmas

Pearson correlation 0.44 0.16 0.44 0.14
IRF 0.52 0.54 1.12 1.02

Mean-bias 7.39 16.31 0.97 −3.66
Cum bias 38.14 56.93 8.77 12.28
RMSE 47.45 56.09 55.73 66.62

Biblián

Pearson correlation 0.66 0.46 0.67 0.45
IRF 0.61 0.56 1.29 1.25

Mean-bias −11.12 −2.87 −1.21 1.66
Cum bias 35.01 29.99 18.91 17.30
RMSE 41.73 44.89 39.87 51.81

52.34mm and 35.49mm for ANN and LS-SVM ensembles,
respectively, meaning a strong bias for the ANN ensemble
with respect to LS-SVM ensemble.

For a qualitative evaluation of ANN and LS-SVM ensem-
bles the Box-Whisker plots for the results during the valida-
tion period are presented in Figure 2. For El Labrado station
both ensembles similarly represent the median, although
the low variance is clearly showed, as measured by IRF in
Table 5. For Gualaceo and Paute stations both ensembles
represent less variance, with LS-SVM presenting lower val-
ues. The percentiles above 75th are strongly underestimated
in both stations making the necessity of correction on the
distribution of the ensembles evident. In Palmas station
both ensembles underrepresent the variance, and the median
is rightly represented by ANN but overestimated by LS-
SVM. Finally for Biblián station the variance is strongly
underestimated as well as the higher percentiles. The median
is better represented by LS-SVM and underestimated by
ANN ensemble. Bothmethods were able to perform similarly
well for the downscaling of monthly precipitation in the
selected stations. In addition, comparison of the quantitative
analysis based on the statistical metrics and the qualitative
analysis based on Box-Whisker plots shed light on the relative
performance of ANN and LS-SVMmethods.

4.1.2. Comparison of SDSM and AI Ensembles. Once the
ANN and LS-SVM ensembles were evaluated, in a next step
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Figure 2: Box plots for ANN and LS-SVM ensembles evaluated in
station El Labrado (M141), Gualaceo (M139), Paute (M138), Palmas
(M045), and Biblián (M137).

the derived SDSM and AI ensembles were compared after
QMcorrection. Table 6 depicts for the 5 climate stations in the
Paute River basin, of which data were used, the comparison
between the SDSM and AI versus SDSM QM and AI QM.
The evaluation between both sets is based on the statistical
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Figure 3: Monthly precipitation box plots for artificial intelligence
and SDSM ensembles bias corrected. Results evaluated in station El
Labrado (M141), Gualaceo (M139), Paute (M138), Palmas (M045),
and Biblián (M137).

metrics R, RMSE, MB, ACB, and IRF. For El Labrado station
SDSM QM presents lower correlation than AI QM with
0.38 and 0.58 values. Although SDSM QM presents a lower
bias than AI QM, the RMSE of AI QM is a bit lower. For
Gualaceo station 𝑅 for AI QM and SDSM QM are 0.72 and
0.5. RMSE as in El Labrado station is lower for AI QM than
for SDSM QM with 32.87 and 44.86, respectively. For Paute
station also 𝑅 is higher for AI QM with 0.57 and 0.47 for
SDSM QM, although the ACB is higher for AI QM with
15.59 and 7.77 for SDSM QM. For Palmas there is a marked
difference in 𝑅 values with 0.44 for AI QM and 0.14 for
SDSM QM, depicting for the former a lower RMSE than
the latter. Similar for the Biblián station is the 𝑅 value for
AI QM higher than for SDSM QM, respectively, 0.67 versus
0.45. Analogous to the Palmas station, a lower RMSE value
for AI QM equal to 39.87 was obtained compared to the
calculated RMSE of 51.81 for SDSM QM.

All other metrics in Table 6 present similar values. The
stronger differences arise generally in the RMSE and 𝑅

statistical metrics, which might be related to the fact that
QM corrects only the characteristic of the distribution, as
can be seen in Figure 3. This figure presents the monthly
precipitation Box-Whisker plots for AI and SDSM ensem-
bles bias corrected for the 5 climate stations. As can be
observed the distributions are fairly alike. From the analysis
for all stations AI QM presented higher values of 𝑅 than
SDSM QM. Similarly AI QMpresents better agreement with
the observed data with the exception of the Paute station.
This fact might point to a slightly better representation of
the observed monthly precipitation distribution by AI QM
ensemble, for this specific region.

4.2. Evaluation of Intra-Annual Precipitation Seasonality Rep-
resentation. Whereas in previous section the entire distribu-
tion of downscaled estimates was evaluated, in the following
the representation of seasonality is evaluated. Although the

evaluation of seasonality representation might not help to
quantify, for example, flooding events, it is very important
for issues related to water availability for hydroelectricity
generation, drinking water availability, and agriculture. Fur-
ther, the evaluation of seasonality representation is of special
importance in the study region due to the low resolution
of GCMs, unable to depict the precipitation regime due to
mesoscale influences [5].

4.2.1. The Added Value of Quantile Mapping. The QM cor-
rection parameters for the power parametric transformation
applied to AI and SDSM ensembles are presented in Table 4.
The comparison of the multiyear monthly mean (mymm)
precipitation of the SDSM with the SDSM QM ensemble
is presented in Figures 4(a)–4(e). As shown in Figure 4(a),
SDSM applied to the El Labrado station fails to capture
the observed seasonality. However, the performance, bias,
and variance improved considerably after applying QM.
Seasonality applying SDSM to the Gualaceo (Figure 4(b))
station is less correctly presented and fails to capture the
maximum inApril and overestimates precipitation during the
dry season in August. Application of QM only corrects the
representation in August, but not in April. The ensemble of
SDSM compositions represents well seasonality but under-
estimates significantly the November precipitation depth.
Application ofQM improves the representation of seasonality
but does not improve the November estimate. The SDSM in
Paute station represents seasonality well, but underestimates
significantly the maximum in November. QM applied to
SDSM in Paute improves the performance of seasonality,
yet fails to improve the representation of the November
precipitation (Figure 4(c)). The SDSM approach calibrated
to the observations of the Palmas station (Figure 4(d)), a
station with unimodal regime (UM), depicts fairly correct
seasonality notwithstanding the limited spatial extent of the
UM regime and the poor representation of the mesoscale
influences in the synoptic predictors. Application of QM
negatively affects the SDSM representation during the first 6
months of the year but improves slightly the representation
during the remaining period of the year. The seasonality of
the Biblián station (Figure 4(e)) is properly represented by
the SDSM ensemble and as well as the SDSM QM. Only the
November peak in precipitation is captured by neither SDSM
nor SDSM QM.

The comparison of mymm of the AI with the AI QM
ensembles is presented in Figures 4(f)–4(j).TheAI emsemble
underestimates precipitation in April, overestimate it in July
and August, and underestimate it in November, although
at some extent it represents seasonality. QM improves the
intra-annual variability, but still the November maximum
is not correctly estimated. The AI ensemble in Gualaceo
(Figure 4(g)) station captures well both peaks in April
and November but underestimates precipitation in August.
The estimation in August is considerably improved after
correction of the bias and the inflation of the variance. In the
Paute station (Figure 4(h)) are both the peaks, respectively, in
April and November, and the minimum in August were well
captured by the AI ensemble, while QM further improves the
distribution of the median of the monthly precipitation. The
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Figure 4: Continued.
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AI
AI_QM

0

20

40

60

80

100

120

140

160

180

200

Pr
ec

ip
ita

tio
n 

(m
m

)

O
ct

ob
er

M
ar

ch

Se
pt

em
be

r

M
ay

Ju
ne Ju
ly

Au
gu

st

Ap
ril

Fe
br

ua
ry

N
ov

em
be

r

D
ec

em
be

r

Ja
nu

ar
y

(j)

Figure 4: Multiyear monthly mean precipitation for SDSM ensemble and SDSM ensemble bias corrected (a–e) and multiyear monthly mean
precipitation for AI and AI bias corrected (f–j).

AI ensemble represents poorly the distribution of the Palmas
station (Figure 4(i), UM regime), even after QM application.
For the Biblián station (Figure 4(j)) the AI QM captures the
April peak one month earlier but fails to correctly depict the
magnitude of the November peak.

Results clearly reveal that the application of QM to
the output of both modeling approaches, SDSM and AI,
overall improves the representation of seasonality, as well
as the representation of rainy and dry periods. However,
both approaches underestimate the median value of the
precipitation depth inNovember.This fact could indicate that
the set of synoptic predictors do not include a variable that
is related to an enhancement of precipitation in this period.
Further studies are needed to determine the variables and
related phenomena.

Table 7: Pearson correlations between observations and SDSM QM
and AI QMmodels.

Station AI QM SDSM QM
El Labrado 0.741 0.516
Gualaceo 0.946 0.672
Paute 0.730 0.629
Palmas 0.788 0.593
Biblián 0.691 0.532

4.2.2. Representation of Monthly Variability by Downscaled
Results. To compare the representativeness of SDSM QM
and AI QM, the correlation of the mymm time series
with the observed values is shown in Table 7. For all
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Figure 5: Continued.
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Figure 5: Comparison of SDSM and AI ensembles bias corrected (a, c, e, g, i) and Box-Whisker plots for SDSM and AI ensembles bias
corrected, from January through December (b, d, f, h, j).

stations AI QM presents greater Pearson correlation coeffi-
cient than SDSM QM. The multiyear median observed and
estimated monthly precipitation depth, using, respectively,
the SDSM QM and AI QM model ensembles are presented
in Figures 5(a), 5(c), 5(e), 5(g), and 5(i). For the graphical
presentation the Box-Whisker plot type was selected, as to
show in addition to themedian the variation in estimates (see
Figures 5(b), 5(d), 5(f), 5(h), and 5(j)).

For the El Labrado station (Figures 5(a) and 5(b)) the
observed interquartile range is higher for the period of
January to April, with lower values in August and September.
It is worthwhile noticing that although AI QM captures
seasonality, the intra-annual variability is not captured. Even
for some months SDSM QM captures the variability better,
as is the case for March.This fact suggests that an assessment

for SD should be based on several models. The median
and interquartile range are relatively well captured for the
Gualaceo station (Figures 5(c) and 5(d)); the variability of
the months from January to September is similar for the
SDSM-QM and AI QM estimates. October and November
variability is different for the two models, but the median
is well represented. The variability and the median are
better represented by AI QM and slightly overestimated by
SDSM QM in the period of June to August. Figures 5(e)
and 5(f) depict the results for the Paute station, illustrating
that both models relatively well represent the median and
interquartile ranges in the period of January to September but
fail to do so for the period of October to December. This fact
highlights the need to further explore the relation between
the synoptic conditions and rainfall. Neither the SDSM QM
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nor the AI QM model estimates correctly the median of
the Palmas station (Figures 5(g) and 5(h)), the only station
with a unimodal regime. Because both model approaches
indistinctly overestimate or underestimate the median in
some months, it might be worthwhile to examine more in
detail the representation of an ensemble of both models.
The interquartile range of each month is relatively well
represented except in a distinct number of months, such as
January, April, June, July, September, and October.This could
mean that in those months the influences of the mesoscale
factors are not properly represented in the synoptic variables.
An option for its remediation could be a methodology in
which the influences of mesoscale factors are considered, for
example, dynamic downscaling, followed by the application
of statistical downscaling to regional predictors. However,
further studies are necessary to support the applicability of
such an approach inmountain regions. For the Biblián station
(Figures 5(i) and 5(j)), the two approaches overestimate
precipitation in the period of January to March. AI QM
captures adequately the median from April to December,
with exception of November, as was the case for the other
stations. Overall, the AI QMdepicts fairly well the variability,
except for October and November, whereas SDSM QM
underestimates the variability throughout the year.

5. Conclusions

The evaluation of downscaling methods in mountain regions
is of major importance due to the misrepresentation of cli-
mate by GCMs. The low resolution of GCMs limits the accu-
rate prediction of the probable impacts of climate change at
basin scale. In the present work, the applicability of monthly
precipitation downscaling of global climatemodels by SDSM,
and methods of artificial intelligence, as neural networks and
least squares support vector machines, was studied. Also a
comparative analysis of the applied downscaling methods
was conducted. Comparative analysis revealed that with
respect to the downscaling of monthly precipitation neural
networks and least squares support vector machine models
perform equally. Considering the statistical metrics, such as
Pearson correlation, root mean square error, and percentiles
biases, overall the artificial intelligence methods showed
better skills in relation to SDSM, although, in some stations
and somemonths, the importance of considering bothmodel
approaches was necessary in order to derive robust conclu-
sions. In general, although the representation of precipitation
from January to August is adequate, especially in November,
both approaches failed to represent precipitation in some
stations. Further analysis of the synoptic conditions for
this period is therefore recommended and a methodology
considering downscaling with specific predictors by month
or season might be advisable. From the analysis on Palmas
station, a station with important mesoscale influences, we
could derive that further evaluation of a methodology of
downscaling using dynamic and statistical methods in cas-
cade could help capture features that GCMs are not able to
represent.
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