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Abstract—The inherent variability in the power production
of renewable energy sources (RES) limits the effectiveness of
energy management systems (EMS) since optimal dispatch on
power networks highly depends on the accuracy of predictors
associated with the energy output and load demand. Conse-
quently, power prediction tools for variable time horizons allow
for improving energy management decisions. In this context,
this work presents a detailed methodology for the deployment
of predictive models for the photovoltaic (PV) power output of
a small solar farm. The prediction models process a PV power
dataset’s time series using statistical techniques and neural
networks with long-short term memory (LSTM). Before the
data fitting, we develop a data preprocessing system, which
involves evaluating missing data in the time series and getting
descriptive analysis of the data set to either complete portions
or delete atypical data. The results strongly suggest that the
LSTM network performs better than the statistical model in
exchange for more considerable computation times for long-
term predictions.

Keywords— forecasting, LSTM, photovoltaic power gener-
ation, statistical methods

I. INTRODUCTION

Integrating renewable energy sources into power grids
has experienced significant growth in the last two decades.
Among these technologies, PV power systems have gained
a significant market share, mainly due to the price drops
associated with this technology. However, PV power gen-
eration is inherently associated with the variability of the
solar irradiance due to the stochastic nature of this resource,
which in weak networks could lead to the activation of the
low-frequency protections, severe voltage fluctuations, and
load damage, among other issues [1].

Renewable energy systems typically include energy man-
agement systems (EMS), which monitor and control power
production to maximize the exploitation of renewable re-
sources. A classic task integrated into an EMS is power dis-
patch. Nevertheless, the RES variability complicates achiev-
ing optimal dispatch due to its dependency on the accuracy of
power and load demand predictions. Consequently, accurate
power prediction systems in specific time horizons are highly
desired within the structure of an EMS [2].

Literate related to time series PV power forecasting classi-
fies prediction models into physical models, statistical meth-
ods, machine-learning algorithms, and hybrid approaches.

Physical models use stochastic processes and meteorological
information to perform power predictions; however, this
approach is complex to implement in a real-world scenario
due to the high amount of real-time data processing from
pretty accurate sensors. The statistical approach establishes
models from the correlation between the current and previ-
ous samples of the PV power generated. Machine learning
techniques use artificial intelligence (AI) algorithms, e.g.
artificial neural networks (ANN), fuzzy logic, etc. Finally,
hybrid models combine two or more techniques to obtain
more accurate predictions [3], [4], [5].

Several contributions to predicting power production in
PV systems develop methodologies associated with statistical
approaches and machine learning. For instance, authors of [6]
compare the performance of power forecasting methods asso-
ciated with an ARIMA model and a recurrent neural network
(RNA). The ARIMA model offered better performance than
the RNA; however, both models have an evident prediction
deficiency when the clear-sky index is low. References [7],
[8], present a similar approach and compare an ARIMA
model and an LSTM network. These models are trained with
time series extracted from different locations within the same
territorial space; in this context, the results show a notable
improvement in forecasts concerning those techniques trained
with data from a single location. Furthermore, authors of
[9] test an ARIMA model and an LSTM network and
show how the prediction quality improves when historical
data increases, especially in the LSTM network. Finally, in
[10], several statistical models are tested, such as ARIMA,
SARIMA, SARIMAX, ARIMAX, among others, in contrast
to an LSTM network, where the winner turns out to be the AI
technique; however, statistical models work well in situations
where access to data is limited, or there is very little prior
information.

This work presents a detailed methodology for designing
PV power prediction systems using statistical approaches and
an LSTM network. The training data set corresponds to real
data from a small solar farm. Despite its greater processing
time, the results show lower prediction errors for the LSTM
approach in more extended time frames.

The remainder of this document is organized as follows:
section II presents the methodology associated with the data
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Fig. 1: PV power time series from the solar farm

fitting of the training set and the two proposed approaches.
Section III presents the results of the proposed predictive
approaches. Section IV presents the conclusions of this work.

II. METHODOLOGY

The data set used for training, testing, and validation
corresponds to PV power from a small solar farm (15
monocrystalline panels) with a peak capacity of 20 kW. The
observations were captured with a sampling time of 1 minute
during 31 days of March 2022. Fig. 1 shows the PV power
time series of this solar farm.

Fig. 2 shows the overview of the methodology we use
throughout this work. There are four that briefly perform the
following:

• Data imputation: replacing missing data with substituted
values.

• Descriptive analysis: statistical analysis of the data.
• Model fit: data adjustment to SARIMA and LSTM

models
• Evaluation: metrics evaluation to validate the models

A. Insertion of missing data

A preliminary step for analyzing a time series is to pre-
process the dataset. Most real scenario datasets have missing
data and atypical information, among other problems, which
need to be handled beforehand [11]. For instance, as seen in
Fig 1, there are portions of data lost in the time series, which
can be associated with sensor’s malfunction/disconnection.

There are several ways to complete the information within
a time series. According to literature, traditional ways are:
imputation by moving or fixed average, imputation by ex-
ponential filtering, and imputation through random values

Fig. 2: The work process for the adjustment of time series
prediction models

Fig. 3: Steps to decompose a time series

between the maximum limits and minimum of the time series
[12], [11]. In this work, we use the imputation by fixed mean
where missing data is the average of the observations of the
series in similar time moments.

B. Descriptive analysis of the time series

To gain a better understanding of the behavior of the time
series, a preliminary statistical analysis is performed based on
a graphical approach and decomposition of the time series,
which according to [11], [12], consists of four components:

1) Trend
2) Cyclic component
3) Seasonal component
4) Random component
Fig. 3 presents the steps we applied for decomposing the

PV power time series. Fig. 4 shows three out of the four
components of the time series from Fig. 1. These graphs
allow concluding the following:

• The series’ trend has variations over time, suggesting a
non-constant mean and variance.

• The presence of a clear seasonality with an extension of
1440 samples (1 day), which is precisely the length of
a day sampled at 1-minute intervals.

• The existence of high variability is undoubtedly associ-
ated with the stochastic movement of the clouds.

The graphic description of Fig. 4 provides accurate infor-
mation about the behavior of the time series. However, it
does not indicate the relationship between one sample and
another, which is critical for adjusting a statistical model.
Consequently, it is essential to use the simple autocorrela-
tion function (ACF) and the partial autocorrelation function
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Fig. 4: Components of the time series of photovoltaic power



(PACF) to establish statistical relationships between instants
of time [13], [12], [14].

The correlograms of the time series of Fig. 1 allow
determing the following:

• A slow ACF decay is a sign that the mean and variance
statistics are not constant. Consequently, the time series
is not stationary.

• A significant lag in the ACF, in multiples of 1440,
indicates the seasonality of the series for every 1440
samples.

• According to the PACF, the number of significant lags
is eight samples.

C. Adjustment of the SARIMA and LSTM models

1) SARIMA model: In [14] is stated that the adjustment
of this type follows the Box-Jenkins methodology, which
encompasses three aspects: the identification of model com-
ponents, the estimation of its parameters, and the evaluation.

To determine the parameters in a SARIMA model, the
ACF and PACF have an exponential decay behavior with
damped sinusoids. In addition, they include a differentiation
operation that helps to find the stationary version of a
series [14], [12], [13], [2]. Usually, a time series does not
differ more than twice; if this happens, the time series
requires some previous operation (smoothing). Additionally,
the model considers a seasonal component where the order
of the AR and MA components depends on the number of
significant delays that appear in the time lag associated with
the period.

In the previous section, the ACF and PACF of the original
time series describe an exponentially slow decay process,
which is directly associated with a non-stationary process.
Therefore, the need to apply differentiation at the level of the
non-seasonal component is essential. The ACF and PACF of
Fig. 5 were obtained by performing this first-order operation.
As a result, these correlograms are more similar to the shapes
described for a SARIMA model and allow us to deduce the
information from Table I, where the maximum degrees of
every component of this model are shown.

Values from Table I allow to find, iteratively, the best
SARIMA model by varying the components order within
these ranges, then , estimating its parameters, and evaluating
the results of every iteration through the evaluation metrics.
The best model is selected by evaluating the prediction error
of every iterative model.

2) LSTM neural network: For the adjustment of the LSTM
neural network, two architectures are considered. The first is
mentioned in [15] and implies using a deep neural network
for PV power forecast. This network comprises an input

TABLE I: Maximum degrees of each of the components of
the SARIMA model

Component Seasonal
component

Non-seasonal
component

AR 8 1
MA 4 1

Differentiation 1 1
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Fig. 5: Time Series Correlation Functions with First Order
Differentiation

layer, 2 LSTM layers of 469 hidden units, and a third layer
of 338 neurons, which are separated by dropout layers with
probability 0.2, 0.15, and 0.41. In addition, this architecture
also has a fully-connection layer and, finally, a regression
layer, which calculates the loss of the mean square error of
the predicted value versus the actual value.

A second architecture is proposed by [16], that recom-
mends an ANN with an input layer, an LSTM layer of
200 hidden units, a fully connected layer with an output of
50 sequential data serving as input to a dropout layer of
probability 0.5, which connects to a fully connected second
layer that delivers the predicted output. Finally, the prediction
quality is measured with a regression layer.

The MATLAB Deep Learning Toolbox tool was used to
train each architecture. Table II summarizes the training
options we used. Some key points to take into consideration
for the network training process are:

• Separate the data in a proportion of 70% for the training
phase, 10% will serve as model validation data, and 20%
will be test data for future predictions.

• The form of test for the network will be in a closed
loop. The only known data the network will have for
future predictions are the first 1440 data of the test time
series.

• The reason for initializing the network with 1440 data
is directly associated with the ACF of the original series
since the first 1440 data have a strong relationship with
each other.



TABLE II: LSTM Network Training Options

Option Value Description

Training
algorithm

adam Adaptive moment estimation algorithm. Adjusts learning rates
by optimizing the loss function, with consideration of a
moment term

MaxEpochs 100 Maximum number of epochs
GradientThreshold 1 Limit gradient burst to avoid training divergence
InitialLearnRate 0.005 Specifies the initial learning rate of the training
LearnRateSchedule piecewise Update the learning rate every certain number of epochs
LearnRateDropPeriod 50 Indicates the number of epochs in which the previous param-

eter modifies the learning rate
LearnRateDropFactor 0.2 Learning rate reduction factor
SequencePaddingDirection right Right truncation direction, to prevent later time units from

influencing earlier time predictions
ValidationFrequency 10 The frequency with which the algorithm performs validation

tests

D. Models evaluation

There are several ways to validate the performance of a
prediction model. The indicators we used for evaluation in
this work are described below:

• For statistical models, an evaluation metric is the
Bayesian Schwarz Information Criterion (BIC) which
is calculated by Eq. (1), where T corresponds to the
observations used for the estimation, k is the number
of predictors, the term k + 2 considers the predictor
coefficients k, the intercept and the variance of the
residuals. The idea of this criterion is to penalize the
fit of the model (SSE) depending on the number of
parameters that need to be estimated and the amount of
total data of the time series [14].

BIC = T log

(
SSE

T

)
+ 2(K + 2)log(T ) (1)

• Statistical metrics, such as root mean square er-
ror (RMSE) and normalized root mean square error
(NRMSE), are the leading measures of model evalua-
tion [3], [4], [5]. These metrics are calculated through
equations (2) and (3), respectively.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (2)

NRMSE =

√
1
N

∑N
i=1(yi − ŷi)2∑N
i=1 yi

2
∗ 100 (3)

where yi is the actual value, ŷi is the prediction value, and
N is the total number of data.

III. RESULTS AND DISCUSSION

The models’ evaluation consists in applying the predictive
approaches to the dataset (see Fig. 1) corresponding to the
solar farm under study. Discussion about the predictions is
based on the analysis of the evaluation metrics discussed in
subsection II.C. For instance, Fig. 6 shows the evolution of
the BIC versus the NRMSE for different SARIMA models.
If the fit quality were evaluated solely by the root mean

0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135

NRMSE (%)

0.85

0.9

0.95

1

1.05

1.1

1.15

B
IC

10
5 Evolution of the information criteria concerning the NRMSE

SARIMA(3,1,3)X(1,0,1)
1440

SARIMA(3,1,3)X(0,0,1)
1440

SARIMA(1,1,1)X(0,0,1)
1440

SARIMA(1,1,1)X(0,1,1)
1440

SARIMA(7,1,3)X(0,1,0)
1440

SARIMA(5,1,5)X(0,1,0)
1440

Fig. 6: Evolution of the BIC of the adjusted SARIMA models

TABLE III: Value of the adjusted SARIMA model coeffi-
cients

Parameter Value Standard error

c -2.08E-05 6.84E-05
AR{1} 0.3611 0.019017
AR{2} 0.85954 0.0082965
AR{3} -0.3479 0.01172

SAR{1440} 0.65942 0.0018554
MA{1} -0.59855 0.018773
MA{2} -0.87783 0.010533
MA{1} 0.51207 0.013237

SMA{1440} -0.64896 0.0033403
Variance 0.70009 0.0013656

square error, every model would have performed excellently
since the estimation error is less than 1%. However, when
analyzing the BIC, it can be noticed that models with either
excessively high orders (e.g(7, 1, 3)× (0, 1, 0)1440) or exces-
sively low orders (e.g(1, 1, 1)× (0, 0, 1)1440) have relatively
poor performances. This means that although the prediction
error is low, it is inadequate for the number of terms in the
model. Consequently, the optimal model that was obtained
through this criterion is a SARIMA (3, 1, 3) × (1, 0, 1)1440.
Table III show the SARIMA model parameters.

We proceed similarly with the evaluation of LSTM net-
works. Table IV shows the metrics obtained during ad-
justment. It can be considered that both networks had an
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acceptable fit, with an NRMSE below 1%. However, unlike
the SARIMA models, it is impossible to determine which
network to use clearly. That is why the final selection between
the statistical model and the neural networks is based on the
quality of the closed-loop predictions and the computation
time. Figures 7, 8, and 9 show the quality of the predictions
of each model graphically.

The three models present a reasonably good prediction
quality at the metric level. Nevertheless, it is crucial to high-
light essential points such as the statistical model gradually
loses precision, as samples are forecasted beyond a seasonal
period, and this is directly reflected in the evolution of the
RMSE, as seen in Fig. 7, from the second forecast day,
this parameter increases and tends to keep increasing as the
forecast advances in time. This behavior is directly associated
with the nature of the model since it considers non-seasonal
relationships of up to 3 past samples and seasonal ones with
a period of 1440. However, something important to highlight
is its computational speed, which is significantly lower than
the machine learning techniques.

On the other hand, neural networks present a better per-
formance when predicting time instants beyond a seasonal
period, as shown in Fig. 7, the RMSE tends to remain
constant over time, and this was to be expected thanks to
the goodness of the memory of the LSTM layers. However,
the computational cost increases significantly, and for this
time series, an architecture with a single LSTM layer is more
accurate and less expensive.

Fig. 9 shows the dispersion of the residuals of the models.

TABLE IV: Prediction model evaluation metrics

Metric
SARIMA Network with

an LSTM layer
(net1)

Network with
three LSTM
layers (net3)

Fit Prediction Fit Prediction Fit Prediction

RMSE 0.837 4.126 0.199 2.885 0.204 2.828
NMRSE [%] 0.098 1.169 0.112 0.767 0.114 0.752

Time [s] 7200 18 900 209 1200 1032
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Fig. 9: Dispersion of the residuals of each of the predictive
models

It can be seen how machine learning techniques present much
more precise prediction results with slight variability since its
box is located centered at the origin, and the whiskers are
not at an alarming distance apart from the median. In simpler
words, the predictions made by the neural networks are pretty
similar to the real ones and have little variability, something
that does not happen with the statistical model since its box
is centered on a value different from zero, approximately
2kW, and a distance separates their whiskers concerning the
median, this indicates that the average prediction error is
around 2kW with high variability. An important feature that
can be seen in this graph is the number of values that are
outside the upper and lower limits in the 3 models. This
behavior can be considered normal since the real-power value
can be affected by the stochastic movement. of the clouds
at that instant in time, causing an unexpected increase or
decrease in power and thus generating an outlier.



IV. CONCLUSIONS

This work presents the adjustment of predictive models
based on traditional statistical techniques and machine learn-
ing. Both techniques operate adequately depending on the
approach that is intended to achieve. For instance, we are
looking for long-term predictions where we do not have
continuous access to the data. The LSTM network performs
better than a statistical predictor, in addition to the potential
advantage of evolving and adjusting to eventual changes in
the time series at the cost of increasing the computation time.
On the other hand, if the prediction horizon is not long and
prediction speeds are needed, implying decision-making in
short periods, the SARIMA model is a potential candidate
due to its low computational cost.

Projecting the results to the area of interest, which is the
optimal energy management in systems with high penetration
of renewable sources, the LSTM network can be imple-
mented for techniques that involve the commitment of the
generation unit in such a way that the available power is
predicted in a time horizon of 1 or 2 days to program an
optimal dispatch of power. On the other hand, the SARIMA
model can be beneficial in shorter time horizons, in the order
of minutes, to take corrective actions, through a battery bank,
in the variability of the renewable resource.

In conclusion, the choice of one technique over another
depends on the purpose of the prediction. LSTM networks are
preferred for long-term predictions, while SARIMA models
are more suitable for short-term predictions. The ability to
quickly adjust to changes in the time series as well as the
low computational cost make both techniques ideal for energy
management in systems with high penetration of renewable
sources. As such, they can be used together to create a
robust system that is capable of accurately predicting and
responding to changes in energy demand and supply.
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