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A B S T R A C T   

The mean transit time (MTT) of water is an essential descriptor of streamflow generation and catchment water 
storage. Research on how MTTs fluctuate over time and the variables influencing such variation is limited. In this 
study, bi-weekly stable isotopic data in precipitation and streamflow were used, together with daily records of 
hydrometeorological information, to investigate the temporal variability of streamflow MTTs. The data were 
collected over 8 years in a nested system of 8 tropical alpine catchments in the Zhurucay Ecohydrological Ob-
servatory in southern Ecuador (3,450 to 3,900 m a.s.l.). The temporal variability of streamflow MTTs was 
estimated using yearly periods and a 1-month moving window (i.e., 81 yearly calculated MTTs per catchment). 
The factors controlling the temporal variability of MTTs were identified using simple and multiple linear 
regression models with hydrometeorological parameters as explanatory variables. Results reveal that streamflow 
MTTs in all catchments were short (<1 year) and varied little among catchments (191.30 ± 47.10 days). A 
combination of hydrometeorological variables (i.e., precipitation, streamflow, and runoff coefficient) over 
antecedent periods up to 1 year was found to control MTT temporal variability. Overall, these findings point to 
the prevalence of low temporal variability of hydrological conditions in the investigated catchments. Our study is 
key to provide insights into the factors controlling the temporal variability of streamflow MTT in tropical 
catchments, overcoming data limitations of past investigations and with significant implications for improved 
water supply management.   

1. Introduction 

One of the most common catchment descriptors in hydrologic studies 
is the mean transit time (MTT) of streamflow. MTT is defined as the 
mean age of water that enters a catchment during previous precipitation 
events at the time of exit at an outlet point (i.e., streams, springs, soils; 
Mcguire & Mcdonnell, 2006). This hydrological descriptor contains in-
formation about water storage and the flow paths that water follows in a 
catchment (Mcguire & Mcdonnell, 2006). The MTT of stream water 
helps to better conceptualize the hydrological and biogrochemical pro-
cesses of a catchment (Burns et al., 2003). Hence, the MTT is a key 
hydrological parameter for risk assessment, contaminant remediation, 

land-use change, climate change, and improved management of water 
resources (Landon et al., 2000; Nystrom, 1985; Turner et al., 2006). 

MTT can be calculated by modeling the relationship between input 
and output signals of conservative tracers such as water stable isotopes 
(2H and 18O; Mcguire & Mcdonnell 2006) or chloride (Kirchner et al., 
2010). Among the most common methods to estimate the MTT of water 
are the lumped convolution approach (LCA), the Fourier method, and 
the sine save method (Benettin et al., 2015). These methods take 
advantage of the damping of the isotopic composition of streamflow 
relative to the temporal variation of the isotopic composition of pre-
cipitation due to mixing processes. The application of these methods 
could be difficult due to a range of uncertainties caused by the spatial 
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and temporal variability of the isotopic composition of water, the un-
availability of long-term tracer records, and low sampling frequency due 
to financial and logistical constraints (Hrachowitz, Soulsby, Tetzlaff, & 
Speed, 2009; Mcguire & Mcdonnell, 2006). Notwithstanding, the study 
of MTT is crucial, since it enables a better understanding of runoff 
generation processes and the hydrological behavior of a catchment. 

Several studies have focused on determining stream water MTT in a 
variety of environments worldwide, in tropical (e.g., Farrick and Bran-
fireun, 2015; Jacobs et al., 2018; Mosquera et al., 2016; Muñoz-Villers 
et al., 2016; Timbe et al., 2014) and non-tropical (e.g., Hale et al., 2016; 
Hrachowitz et al., 2009; Lyon et al., 2010; McGuire et al., 2005; Soulsby 
et al., 2006; Uchida and Asano, 2010; Vitvar and Balderer, 1997) 
montane catchments. Those investigations were usually limited by the 
availability of short-term tracer datasets (ranging from one to a few 
years), which did not allow identifying temporal changes in catchment 
hydrological function. Since MTTs vary in time due to seasonal and 
annual changes in hydrometeorological conditions (Birkel et al., 2015; 
Hrachowitz et al., 2009; Ma & Yamanaka, 2016), understanding those 
variations and their drivers is crucial to unraveling the change in hy-
drological behavior of a catchment. To date, most of the studies inves-
tigating the temporal variability of streamflow MTTs have been 
conducted in temperate regions. For example, Hrachowitz et al. (2009) 
applied a moving window approach to estimate the variability of 
streamflow MTTs over 8 years in two small catchments (~1 km2) in the 
Scottish Highlands. These authors found that the temporal variability in 
MTT was influenced by precipitation amount. Applying a similar 
approach over 10 years, Ma & Yamanaka (2016) investigated the tem-
poral variation of MTT for five temperate catchments (268–2173 km2) in 
central Japan, differing in slope, geology, and soil type. These authors 
reported that the estimated MTTs were longer during drier periods than 
during wetter periods, and were mainly controlled by geology. Another 
study was carried out in a boreal catchment in north Sweden (0.47 km2) 
using a 10-year isotopic data record (Peralta-Tapia et al., 2016). The 
authors determined a strong correlation between annual rainfall and 
MTTs during snow-free periods. In another study conducted in 4 
catchments in southeast Australia (8.7–323 km2) using 3 years of data, 
MTTs were found to be correlated with runoff coefficient (Cartwright 
et al., 2020). 

In a tropical setting, Birkel et al. (2016) investigated the temporal 
variability of streamflow MTTs in a humid forested catchment (30 km2) 
in Costa Rica. These authors applied a lumped convolution model to a 
short-term isotopic tracer dataset (2 years) using a monthly moving 
window to estimate streamflow MTTs over 4-month time spans. Even 
though this is, to our best knowledge, the only study to date that 
investigated the temporal variability of MTTs in the tropics, the reported 
MTTs could present large uncertainties since estimated MTTs were 
longer than the data records used for model calibration, particularly 
during dry periods (i.e., MTTs varied between 5 and 12 months). Wind 
direction was reported as the most important meteorological variable 
influencing the temporal variability of MTTs in this topical catchment. 

Considering the limited information on the temporal variability of 
MTTs in tropical settings, we aim to fill this knowledge gap by taking 
advantage of a unique long-term tracer dataset in precipitation and 
streamflow collected over 8 years across a nested system of 8 tropical 
alpine (Páramo) catchments in Southern Ecuador. To this end, the spe-
cific objectives of this study are:  

1) To estimate the temporal variability of MTTs across a nested system 
of tropical alpine catchments; and 

2) To identify which hydrometeorological conditions control the tem-
poral variability of MTTs across the catchments, if any. 

2. Materials and methods 

2.1. Study area 

The study site is the Zhurucay Ecohydrological Observatory (ZEO; 
3◦4′S, 79◦14′W), located on the western slopes of the Andean mountain 
range in southern Ecuador (Fig. 1). The observatory has a drainage area 
of 7.53 km2 with an elevation ranging from 3,505 to 3,900 m a.s.l. The 
ZEO is located in a tropical alpine (Páramo) ecosystem. The local climate 
is primarily influenced by continental air masses stemming from the 
Amazon basin, which originate mainly in the Atlantic Ocean (Esquivel- 
Hernández et al., 2019; Zhiña et al., In production). Annual precipitation 
is 1,345 mm at 3,780 m a.s.l. Precipitation shows low seasonality and is 
mainly composed of drizzle (Padrón et al., 2015). According to these 
authors, the wettest period lasts from March to May and the least wet 
period from August to October. Mean annual temperature is 6 ◦C, mean 
relative humidity is 93.6 % (Córdova et al., 2015), and solar radiation is 
4,942 MJ m− 2 per year (Carrillo-Rojas et al., 2019) at 3,780 m a.s.l. 
Annual actual evapotranspiration is 622 mm (Ochoa-Sánchez et al., 
2019). Although the temporal varbility of MTTs in the study region has 
not yet been investigated, an analysis of the spatial variability of MTTs at 
the study site was conducted previously (Mosquera et al., 2016). This 
study showed that MTTs varied between 4 and 9 months, and that their 
spatial variability across the observatory was controlled by average 
slope. 

The geomorphology of the study catchments is U-shaped with an 
average slope of 17 %, as a result of glacial activity (Mosquera et al., 
2015). The geology is compacted and dominated by the Quimsacocha 
and Turi formations, characterized by volcanic rock deposits compacted 
during the glacial activity of the last Ice Age (Coltorti & Ollier, 2000). 
Both formations date from the Late Miocene (Pratt et al., 1997). Li-
thology in the Quimsacocha formation is composed of basaltic flows 
with plagioclases, feldspars, and andesitic pyroclasts, whereas the Turi 
formation is composed of tuffaceous andesitic breccias, conglomerates, 
and horizontally stratified sands (Hungerbühler et al., 2002). 

The main soil types in Zhurucay are classified as Andosols and His-
tosols (IUSS Working Group WRB, 2015), formed by the accumulation of 
volcanic ash in combination with the humid-cold climate conditions 
(Quichimbo et al., 2012). These soils of volcanic origin present a high 
organic matter content, low bulk density, high-water retention capacity, 
low pH, and low phosphorus availability (Buytaert et al., 2006; Marín 
et al., 2018). Andosols cover approximately 70 % of the ZEO and are 
mainly located on the hillslopes, whereas the Histosols cover the 
remaining area and are mostly found at valley bottoms and flat areas 
(Mosquera et al., 2015). The vegetation type is highly correlated to the 
spatial distribution of the soils. Andosols are mainly covered by tussock 
grasses (Calamagostris sp) and Histosols are associated with the presence 
of cushion plants (Plantago rigida, Xenophyllum humile, and Azorella spp.) 
that grow in the valley bottoms in permanent wet zones, known as 
Andean wetlands. A small area (5 %) of ZEO is covered by Polylepis 
forests and pine plantations. Anthropogenic land use and management 
are limited to extensive livestock grazing in the lower part of the 
observatory. 

2.2. Hydrometeorological information 

A nested monitoring approach was used for the collection of water 
level data at seven tributary subcatchments (M1-M7) and the outlet of 
the ZEO (M8; Fig. 1). For the estimation of discharge, V-notch weirs 
were used to measure water level at the outlet of the tributary catch-
ments, whereas a rectangular weir was used at the outlet of the catch-
ment. A Schlumberger DI500 water-level sensor (Kent, WA, USA) with 
an accuracy of ± 5 mm was installed at each site. The Kindsvater-Shen 
Equation (United States Bureau of Reclamation, 2001) was used to 
convert water levels into discharge (Moore, 2004). Four Texas Elec-
tronics rain gauge tipping buckets (TE-525MM; Dallas, TX, USA) were 
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used to record precipitation with a resolution of 0.1 mm. Water level and 
precipitation amount were recorded at 5-min intervals from May 2011 
to December 2018. The Thiessen Polygon Method was used to estimate 
precipitation depth for each of the study catchments. 

Meteorological variables were monitored using a Campbell Scientific 
meteorological station (Logan, UT, USA) situated at site P1 (Fig. 1). Air 
temperature and relative humidity were measured with a CS-215 probe, 
with an accuracy of ± 0.3 ◦C for temperature and ± 2 % for relative 
humidity. Wind speed was recorded using a Met-One 034B Winset 
anemometer with an accuracy of ± 0.11 m s− 1 and solar radiation was 
recorded with an Apogee CS300 pyranometer with an accuracy of ± 5 
%. The collected meteorological variables were also used to calculate 
daily reference evapotranspiration during the study period using the 
FAO-56 Penman-Monteith equation (Allen et al., 1998). 

2.3. Collection and analysis of water samples 

Water samples from streamflow and precipitation were collected 
from May 2011 to December 2018 for isotopic analysis. During this 
period the samples were collected at an event-based (sub-daily) to 
biweekly frequency, except in 2016 when samples were collected on a 
monthly basis. Grab samples were taken directly from the streams at the 
locations where water levels were measured (M1-M8; Fig. 1). Precipi-
tation samples were gathered with a circular funnel (diameter of 16 cm) 

connected to a glass bottle of 1,000 mL at P1 (Fig. 1). The glass bottle 
was covered with aluminum foil for insulation of direct solar radiation to 
prevent isotopic fractionation by evaporation. A sphere of 4 cm diameter 
was placed into the funnel and a 5 mm layer of Vaseline oil was added to 
minimize evaporation effects (IAEA, 1997). Precipitation and stream-
flow water samples were collected in 2 mL amber glass containers, 
covered with parafilm, and stored unexposed to sunlight (Mook & 
Rozanski, 2000). 

The stable isotopic composition of the collected water samples was 
measured using a cavity ring-down spectrometer L1102-I (Picarro, USA) 
with a precision of 0.1 ‰ for O18. PICARRO secondary reference stan-
dards were used in the analysis: ZERO (δ18O = 0.3 ± 0.2 ‰), MID (δ18O 
= − 20.6 ± 0.2 ‰), and DEPL (δ18O = − 29.3 ± 0.2 ‰) (Zhiña et al., 
2022). Samples of the same water type were analyzed consecutively to 
minimize memory effects (Penna et al., 2010). Six sample injections 
were carried out to determine the isotopic composition of each water 
sample. Following the manufacturer’s recommendation to further 
diminish memory effects, the measurements from the first three in-
jections were discarded. Of the last three injections, the maximum dif-
ference of δ18O was calculated and compared with the analytic precision 
of the equipment, as well as with the standard deviation of the isotopic 
composition of the standards used for analysis. Quality control of the 
results was carried out, and samples that presented measurement dif-
ferences greater than those values were reanalyzed. Organic 

Fig. 1. The nested system of the eight catchments (M1-M8) and the location of the rain gauges (P1-P4) in the Zhurucay Ecohydrological Observatory, south-
ern Ecuador. 
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contamination of the isotopic signal was checked with the ChemCorrect 
1.2.0 software (Picarro, 2010). In accordance with the Vienna Standard 
Mean Ocean Water, the results are provided in delta notation (δ) and 
expressed per mil (‰; Craig, 1960). 

2.4. Mean transit time modelling 

The MTT of streamflow was estimated using the lumped convolution 
approach (LCA), which assumes steady-state conditions in the hydro-
logical system (Amin & Campana, 1996; Małoszewski & Zuber, 1982). 
To cope with this assumption, only water samples collected during 
baseflow conditions were used for the analysis (i.e., samples collected 
during rain events were discarded; McGuire et al., 2002). In recent 
years, alternative metrics have been developed to overcome the limi-
tations of the steady-state assumption, as catchments do not always 
present stationary conditions (Kirchner, 2016a, 2016b). However, it has 
been demonstrated that the ZEO presents a relatively high degree of 
homogeneity as a result of the low temporal variability of precipitation 
(Padrón et al., 2015), high atmospheric humidity throughout the year 
(approximately 94 %; Córdova et al., 2015), compact geology, and the 
relatively homogeneous properties of the soils (Mosquera et al., 2015). 
Consequently, the steady-state assumption of the LCA was considered 
valid for the study area (Lazo et al., 2019). 

The LCA is based on the application of a predefined transit time 
distribution (TTD) that represents the transit times of all water mole-
cules within catchment storage. This can be mathematically expressed 
by the convolution integral (Eq. (1)), which transforms the input tracer 
signal (precipitation) into the output tracer signal (streamflow; Małos-
zewski & Zuber, 1982): 

δout(t) =
∫ ∞

0
g(τ)δin(t − τ)dτ (1)  

where τ is the integration variable representing the MTT of the tracer 
through the system, t is the time of interest, which means the time of exit 
from the system, δout(t) is the tracer composition at time t at the system’s 
outlet, g(τ) is the TTD, and δin(t − τ) is the input tracer composition at the 
time (t − τ). 

TTDs are theoretical transfer functions representing the flow system 
(Małoszewski & Zuber, 1982; Mcguire & Mcdonnell, 2006). A previous 
MTT investigation at the study area presented a detailed assessment of 5 
different TTDs and identified the exponential model (EM) as the one that 
best represents the hydrological behavior of the ZEO catchments (Lazo 
et al., 2019; Mosquera et al., 2016; Stockinger et al., 2016; Timbe et al., 
2015). This study therefore used the EM, which represents the hydro-
logical system as a well-mixed reservoir with the following equation: 

g(τ) = 1
τ exp

(− t
τ

)
(2)  

where τ is the MTT of water in the system, which is the only parameter 
calibrated for the EM. Given the different time resolutions at which data 
were collected (sub-daily to monthly), the model was run at the coarsest 
resolution (i.e., monthly). This decision was made to homogenize the 
dataset, but also to avoid introducing uncertainties by filling data gaps 
during periods when only monthly data were available (i.e., 2016) and 
to avoid comparing MTTs which were estimated using data collected at 
different temporal resolution (Stockinger et al., 2016; Timbe et al., 
2015). To this end, precipitation isotopic data collected at finer temporal 
resolution were volume-weighted using their corresponding rainfall 
amounts and converted into a monthly time series. 

Since a significant proportion of runoff in most catchments is 
generated by water that does not carry the signal of recent rainfall 
(Renshaw et al., 2003), stream tracer response depends on the actual 
tracer mass flux. For this reason, a mass-weighted input function was 
used to take into account previous water recharge to the catchments 
(Mcguire & Mcdonnell, 2006): 

δout(t) =
∫∞

0 g(τ)ω(t − τ)δin(t − τ)dτ
∫∞

0 g(τ)ω(t − τ)dτ
(3)  

where ω(t) is a recharge mass variation function. The recharge function 
was estimated using precipitation amounts corresponding to the 
monthly δ18O composition of precipitation. 

The MTT was estimated for the whole study period (May 2011- 
December 2018). MTTs were also estimated for periods of one year 
using a monthly moving window for all catchments (M1-M8). The yearly 
time scale of analysis was chosen because MTTs at the ZEO are shorter 
than one year for all catchments (Mosquera et al., 2016). Thus, since the 
LCA assumes steady-state conditions, it is assumed that a 1-year period 
of analysis is enough to fulfil this assumption. Regarding the monthly 
moving window, yearly MTTs were estimated for periods starting at 
different months. For example, if the first MTT was estimated for the 
period May 2011-April 2012, the following was estimated for the period 
June 2011-May 2012, and so on. This framework was adopted to 
investigate the temporal variability of MTTs for all catchments. 

The Kling-Gupta Efficiency coefficient (KGE) was used to assess the 
model’s performance. The KGE is a goodness of fit metric between the 
observed and simulated data, in this case streamflow isotopic compo-
sition (Gupta et al., 2009). This metric was chosen because within a 
single objective function, it takes into consideration correlation, vari-
ability, and bias error. The KGE coefficient ranges from -∞ to 1, where 
negative values indicate a poor model performance, a value of zero in-
dicates that the mean is a better representation of the system than the 
model, and a value of one indicates a perfect fit of the model. In the 
present study, models with KGE values higher than 0.45 were consid-
ered good predictions (Timbe et al., 2014). Initially, a Monte Carlo 
sampling procedure was employed to conduct 10,000 simulations using 
a value for parameter τ, which was randomly selected from a uniform 
distribution (Beven & Freer, 2001). Given that the stable isotopes of 
water allow estimating MTTs of water of up to 5 years and the model was 
run at a monthly time scale, the range of τ values used for model cali-
bration varied between 0 and 65 months (i.e., 0–5 years). Once the 
parameter value that yielded the highest KGE was identified, the model 
was run again using a narrowed parameter range until at least 1,000 
behavioral solutions, i.e., simulations with at least 95 % of the highest 
KGE were obtained (Timbe et al., 2014). The Generalized Likelihood 
Uncertainty Estimation (GLUE) was used to quantify the uncertainty of 
the model predictions (Beven & Binley, 1992) as the 5 and 95 % limit 
bounds of the behavioral solutions (Timbe et al., 2014). 

2.5. Evaluation of the factors controlling the temporal variability of MTTs 

The analysis of the hydrological and/or meteorological (herefter 
referred to simply as “hydrometeorological”) factors controlling the 
temporal variability of MTTs was conducted for each of the study 
catchments (M1-M8). The following hydrological variables (16 in total) 
were used as potential predictors of the temporal variability of MTTs: 
runoff coefficient, specific discharge (maximum, minimum, median, 
cumulative, and average), and non-exceedance streamflow rates (Q10 to 
Q90, and Q35 defined as the threshold to classify low flows at the ZEO 
catchments; Mosquera et al., 2016). In addition, the subsequent mete-
orological variables (24 in total) were assessed: precipitation amount 
(maximum, median, cumulative, and average), air temperature 
(maximum, minimum, median, and average), relative humidity (mini-
mum, median, and average), solar radiation (maximum, minimum, 
median, and average), wind speed (maximum, minimum, median, and 
average), and evapotranspiration (maximum, minimum, median, cu-
mulative, and average). Given the small drainage area of the ZEO 
catchment (<10 km2), it was assumed that the spatial variation of 
evapotranspiration is similar in all catchments (M1-M8), also because of 
the uniformity in the spatial distribution of vegetation and soils (Mos-
quera et al., 2016). Previous research in the study area showed that net 
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radiation related to temperature is the major factor controlling evapo-
transpiration (Ochoa-Sánchez et al., 2020). In addition, the variation of 
air temperature decreases with altitude that has an average thermal 
gradient of 0.5 to 0.7◦ C per 100 m (Castaño, 2002; der Hammen and 
Hooghiemstra, 2000). Therefore, the variation in evapotranspiration 
among the catchments is expected to be small across the ZEO (Mosquera 
et al., 2016). 

Since the yearly-estimated MTTs can vary as a function of current 
and/or antecedent hydrometeorological conditions, we aggregated the 
aforementioned hydrometeorological variables (40 in total) for the 
actual conditions (i.e., for the same period in which the MTT estimation 
was conducted) and 16 antecedent periods (up to 12 months before the 
period in which the MTT estimation was carried out) to create 680 po-
tential predictors of MTT termporal variability for each of the nested 
catchments. The aggragation procedure is described below using the 
MTT estimated for the period January 2017-December 2017 as an 
example. The hydrometeorological variables were aggregated for the 
following periods: the same period for which the MTT was estimated (or 
the actual period) and the antecedent periods December 2016- 
November 2017, November 2016-October 2017, October 2016- 
September 2017, September 2016- August 2017, August 2016- July 
2017, July 2016-June 2017, June 2016-May 2017, May 2016-April 
2017, April 2016-March 2017, March 2016- February 2017, February 
2016-January 2017, January 2016-December 2016 (i.e., yearly periods 
starting 1 to 12 months before the MTT estimation period), yielding the 
first 12 antecedent periods. 

The hydrometeorological variables were also aggregated for ante-
cedent periods that included the same period used for the estimation of 
the MTT plus the 3, 6, 9, and 12 previous months (refered to as 0 + 15, 0 
+ 18, 0 + 21, and 0 + 24 antedecent periods, respectively). Following 
the previous example for the MTT estimated for the period January 
2017-December 2017, the hydrometeorological variables were aggre-
gated as follows: the period October 2016-December 2017 (i.e., a 15 
months period including the MTT estimation period plus 3 months back, 
or 0 + 15 antecedent period), the period July 2016-December 2017 (i.e., 
a 18 months period including the MTT estimation period plus 6 months 
back, or 0 + 18 antecedent period), the period April 2016-December 
2017 (i.e., a 21 months period including the MTT estimation period 
plus 9 months back, or 0 + 21 antecedent period), and the period 
January 2016-December 2017 (i.e., a 24 months period including the 
MTT estimation period plus 12 months back, or 0 + 24 antecedent 
period), yielding four additional antecedent periods. 

Assuming steady-state conditions, and since MTTs at the ZEO during 
the period 2011–2014 were shorter than one year (Mosquera et al., 
2016), aggregation of the hydrometeorological variables up to 1-year 
before the period in which MTTs were estimated was considered as an 
appropriate antecedent period that could influence the MTTs of the 
nested catchments. Since hydrometeorological data were not available 
previous to the study period, 57 out of the 81 MTT estimations per 
catchment were used in the statitical analyses to account for the po-
tential influence of antecedent conditions on MTT temporal variability. 

Considering the aforementioned data aggregation procedure, a total 
of 425 hydrometeorological variables were used to evaluate potential 
associations with the estimated MTTs for each catchment. As a first step, 
the Pearson correlation analysis (r) was conducted. The T-test at a 95 % 
confidence level (p < 0.05) was used to assess the statistical significance 
of the correlations. Because more than one predictor variable was found 
to be acceptably correlated (r > 0.5) with the MTTs, a multicollinearity 
analysis was carried out to avoid unreliable predictions caused by the 
use of two or more highly correlated explanatory variables (Yu et al., 
2015). A correlation matrix among the independent variables was used 
to exclude redundant variables. For this purpose, a threshold of coeffi-
cient of determination (R2) >0.75 was applied (Siegel, 2016). Then, the 
variance inflation factor (VIF) criteria of less than or equal to 3 was 
applied to the remaining variables. This analysis prevented overfitting 
issues, which could potentially obscure important relations among 

variables (Lin et al., 2011). Following the multicollinearity analysis, 
multiple linear regression (MLR) analysis was carried out through a 
forward criterion using the root mean square error (RMSE) as objective 
function (Montgomery et al., 2015). The forward criterion starts without 
any predictor variable, and then adds additional variables one by one as 
the RMSE decreases (Derksen & Keselman, 1992). The MLR was 
implemented in R studio software version 4.0.2 using the Caret library. 
To assess the robustness of the MLR results, leave-one-out cross-vali-
dation was applied (LOOVC; Efron, 1983; Stone, 1974). Given 57 MTT 
estimations were available for each study catchment for all antecedent 
conditions, MLR models up to 5 variables were considered, since a 
threshold of one variable per ~ 10 observations is recommended (Austin 
& Steyerberg, 2015; Vittinghoff & McCulloch, 2007). The performance 
of the models was evaluated using R2 and adjusted R2 (R2

adj), the Akaike 
Information Criterion (AIC), p-values of the F-test and the mean absolute 
error (MAE). R2 assumes that every explanatory variable in the model 
helps to explain the variance in the dependent variable, whereas R2

adj 
gives the percentage of variation explained by only those explanatory 
variables that affect the dependent variable and penalizes the addition 
of independent variables (Pham, 2019). As a criterion of information of 
the parsimony, the model with a smallest value for the Akaike Infor-
mation Criterion (AIC) was selected (Akaike, 1974). The F-test at a 95 % 
confidence level (p < 0.05) was used to assess the statistical significance 
of the regression models. The following two criteria were used to 
identify the model that best explained the temporal variability of MTTs: 
adjusted R2>0.5, and MAE less than half the standard deviation of the 
MTTs during the period of analysis (Santhi et al., 2001). 

3. Results 

3.1. Hydrometeorological and isotopic characterization 

Hydrometeorological conditions of catchment M6, considered 
representative of the hydrological behavior of the ZEO (Lazo et al., 
2019) and tropical alpine (Páramo) catchments in Southern Ecuador 
(Ramón et al., 2021), for the period May 2011-December 2018 are 
shown in Figures 2 and S1 in the Supplementary Material. During this 
period, precipitation was uniformly distributed, and the reaction of 
streamflow to precipitation was flashy (Fig. 2a). Mean annual precipi-
tation (reported as mean value ± standard deviation) for the entire 
period was 1,222 ± 22 mm and ranged from 1,035 to 1,335 mm. The 
driest years were 2013 (1,035 mm) and 2014 (1,175 mm), while the 
wettest years were 2011 (1,335 mm) and 2012 (1,312 mm). Precipita-
tion during the wettest months varied from 161 mm (February 2011 and 
May 2014) to 236 mm (March 2017), while during the driest months 
precipitation ranged from 24 mm (August 2016) to 51 mm (February 
2014). Annual average streamflow (Fig. 2b) was 648 ± 42 mm and 
varied from 548 mm (2018) to 780 mm (2011). 

The temporal variation of reference evapotranspiration (ET) for the 
study period is shown in Fig. 2b. Mean annual ET was 694 ± 64 mm, 
ranging between 589 mm (2018) and 791 mm (2013). Fig. S1 shows the 
temporal variability of air temperature, relative humidity, solar radia-
tion, and wind speed. Annual air temperature was 6.1 ± 0.2 ◦C and 
varied between 6.4 ◦C (2016) and 5.9 ◦C (2012). Mean annual relative 
humidity ranged between 94.8 % (2015) and 89.9 % (2011), with an 
average of 92.9 ± 1.6 %. Mean annual solar radiation was 145.4 ± 11.9 
W m− 2 and varied from 163.2 W m− 2 (2011) to 131.9 W m− 2 (2014). 
Annual wind speed varied between 4.2 m s− 1 (2015) and 3.4 (2017), 
presenting an average of 3.7 ± 0.3 m s− 1. 

The mean δ18O isotopic composition of precipitation during the 
study period was − 10.3 ± 3.6 ‰ (max: − 1.2 ‰; min: − 24.9 ‰), 
depicting a large temporal variability, with isotopically depleted values 
during the wettest periods (March-May), and enriched values during the 
less wet ones (August-October; Fig. 2c). The δ18O isotopic composition 
in streamflow was more attenuated (mean value: − 10.7 ± 0.1 ‰; 
Table 1) than in precipitation. The isotopic variability of stream water 
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was similar in all catchments, except for M7, whose isotopic composition 
strongly resembled that of precipitation. This is because catchment M7 
functions as a shallow pounded wetland in which precipitation water 
rapidly leaves the catchment (Correa et al., 2018; Lazo et al., 2019; 
Mosquera et al., 2016). 

Fig. 3 shows box plots of the hydrological variables which were 

aggregated for the same periods used to estimate the MTTs of the studied 
catchments. Average streamflow (Qmn) was 1.87 ± 0.30 mm day− 1 and 
varied between 2.13 ± 0.25 and 1.61 ± 0.28 mm day− 1 (Fig. 3a). Me-
dian streamflow (Qmd) was on average 1.08 ± 0.26 mm day− 1, varying 
from 1.25 ± 0.23 to 0.81 ± 0.22 mm day− 1 (Fig. 3b). Average maximum 
streamflow (Qmx) was 18.65 ± 3.19 mm day− 1 and ranged from 21.29 
± 3.41 to 15.59 ± 2.69 mm day− 1 (Fig. 3c). Average minimum 
streamflow (Qmin) was 0.12 ± 0.07 mm day− 1, varying between 0.05 
± 0.02 and 0.30 ± 0.13 mm day− 1 (Fig. 3d). Catchments M3, M4, and 
M5 had a higher Qmin than the other catchments. In catchment M4, 
Qmin was 50 % higher than catchments M3 and M5. The variation of 
Qmin was similar in catchments M1, M6, M7, and M8. Low flows (Q10- 
Q30) in catchments M3, M4 and M5 were higher than in the rest of the 
catchments (Fig. 3e-3 g), while intermediate streamflow rates (Q40-Q60) 
varied from 0.70 ± 0.06 to 1.22 ± 0.13 mm day− 1. Intermediate 
streamflow was approximately 50 % higher in catchments M1-M5 than 
in the other catchments (Fig. 3h–j). High streamflow rates (Q70-Q90) 
were similar for all the catchments (Fig. 3k–m). Their average values 
were 1.68 ± 0.18 mm day− 1 (Q70), 2.77 ± 0.26 mm day− 1 (Q80), and 
4.04 ± 0.41 mm day− 1 (Q90). Mean (Pmn) and median (Pmd) precipi-
tation were similar in all catchments, except in M7, where precipitation 
was 11 % lower compared to the catchment average (Fig. 3n–o). The 

Fig. 2. Time series of hydrometeorological and stable isotopic data in the period May 2011 – December 2018. (a) Daily precipitation and streamflow; (b) daily 
evapotranspiration (ET), and (c) δ18O isotopic composition of precipitation and streamflow of catchment M6 collected from event-based (sub-daily) to monthly 
frequency (the triangles show the δ18O isotopic data collected during rainfall events). The white/light gray shaded areas indicate calendar years. 

Table 1 
Summary statistics of the δ18O isotopic composition of precipitation (P1) and 
streamflow (M1-M8) samples collected during the period May 2011–May 2018.  

Sampling Station Altitude 
(m a.s.l) 

# 
samples 

δ18O Streamflow (‰) 

Average SE Max Min 

M1 3,840 349  − 10.7  0.06  − 6.8  − 18.0 
M2 3,840 359  − 10.5  0.06  − 7.2  − 15.4 
M3 3,800 329  − 10.8  0.05  − 8.7  − 16.3 
M4 3,800 382  − 10.6  0.06  − 8.1  − 16.5 
M5 3,800 307  − 10.7  0.06  − 8.6  − 16.4 
M6 3,780 293  − 10.5  0.07  − 8.4  − 16.2 
M7 3,820 286  − 9.5  0.14  − 5.4  − 16.6 
M8 3,700 404  − 9.9  0.06  − 7.5  − 14.3 
P1 3,779 310  − 10.3  0.24  − 1.2  − 24.9 

Abbreviation: SE standard error. 
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Fig. 3. Box plots of the hydrological variables for each of the studied catchments (M1-M8) during the period May 2011 – December 2018 using a monthly moving 
window. The box represents the median and the interquartile range, the whiskers represent 1.5 times the interquartile range, and the black dots represent the 
outliers. Abbreviations: Qmn mean streamflow; Qmd median streamflow; Qmx maximum streamflow; Qmin minimum streamflow; Q10, Q20, Q30.…, Q90 
streamflow rates as the frequency of non-exceedance; Pmn mean precipitation; Pmd median precipitation; RC runoff coefficient. 

Fig. 4. Observed and simulated δ18O streamflow isotopic composition during the period May 2011 – December 2018 for catchments: (a) M3, (b) M6, and (c) M7. The 
green shaded area represents the 5–95% confidence limits based on the mean transit time (MTT) parameter values used in the simulations. The white/light gray 
shaded areas indicate yearly periods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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mean runoff coefficient (RC) of all catchments was 0.56 ± 0.06. RCs 
varied between 0.50 and 0.64, with the highest found for catchment M5 
and the lowest for catchment M8 (Fig. 3p). 

Box plots of the meterological variables and ET aggregated for the 
same periods used to estimate the MTTs are shown in Fig. S2 as Sup-
plementary Material for brevity. Average air temperature (Tmn) was 6.1 
± 0.2 ◦C, ranging from 5.8 to 6.5 ◦C. Average relative humidity (RHmn) 
was 93.3 ± 1.1 % and varied between 91.2 and 95.1 %. Solar radiation 
(SRmn) varied between 130.6 and 164.1 W m− 2, with an average of 
143.6 ± 9.0 W m− 2. Average wind speed (WSmn) was 3.7 ± 0.2 m s− 1, 
ranging from 3.3 to 4.3 m s− 1. Average ET (ETmn) was 1.9 ± 0.1 mm 
and fluctuated between 1.6 and 2.0 mm. 

3.2. Mean transit time modelling 

Results of the MTT analysis using the whole dataset (i.e., May 2011- 
December 2018) for a subset of catchments with different degree of 
attenuation of the isotopic composition of streamflow, which can be 
considered as “representative” of the diversity of water transport and 
mixing mechanisms across the nested catchments are shown in Fig. 4. 
Catchments M3 (Fig. 4a), M4, and M5 had the longest MTT (9.5 ± 1.2 
months) ranging from 8.6 months (258.6 days) to 10.8 months (324.4 
days). Intermediate MTT values were identified for catchments M1, M2, 
M6 (Fig. 4b), and M8 (6.6 ± 1.2 months), varying between 5.3 months 
(158.9 days) and 8.1 months (244.2 days). Catchment M7 presented the 
shortest MTT (1.6 months or 49.1 days; Fig. 4c). All estimated MTTs 
were shorter than 1 year, and in all cases, the goodness of fit of the 
objective function was higher than the threshold for model acceptance 
(i.e., KGE > 0.45; Fig. 4). 

Analysis of the MTTs estimated for yearly periods using a monthly 
moving window resulted in 81 model fits per study catchment. Results of 
this analysis for catchment M6 are shown in Fig. 5. For this catchment, 
the average (±standard deviation) value of the MTTs were 5.9 ± 1.4 
months (175.5 ± 41.7 days). KGE values of the associated simulations 
were higher than the threshold for model acceptance, ranging between 
0.45 and 0.77 (Fig. 5). MTTs ≥ 4 months and < 8 months accounted for 
87.6 % of the total, while 7.4 % and 5.0 % were higher than 8 months 
and shorter than 4 months, respectively. The longest MTTs were 
observed from late-2014 to mid-2015, while the shortest occurred in 
early-2014 and from mid-2017 until the end of the study period 
(December 2018; Fig. 5). A similar temporal variability of MTTs was 
observed for the rest of the ZEO catchments using the monthly moving- 
window approach (see Fig. S3 in the Supplementary Material). 

Yearly estimated MTTs for all study catchments indicate the domi-
nance of short MTTs (i.e., 96 % of them were shorter than 1 year) across 

the ZEO (Fig. 6a), associated with generally acceptable KGE values 
varying between 0.51 ± 0.15 and 0.82 ± 0.05 (Fig. 6b). Similar to the 
results using the complete dataset, catchments M3 (9.3 ± 2.3 or 278.1 
± 68.3 days), M4 (7.9 ± 2.1 months or 236.6 ± 63.1 days), and M5 (8.0 
± 1.9 months or 239.9 ± 56.0 days) presented the longest MTTs 
(Fig. 6a). Catchments M1 (7.1 ± 2.1 months or 213.2 ± 63.8 days), M2 
(5.3 ± 1.1 months or 159.1 ± 33.9 days), M6 (5.9 ± 1.4 months or 
175.5 ± 41.7 days), and M8 (5.8 ± 1.3 months or 175.3 ± 37.5 days) 
showed intermediate MTT values. The shortest MTTs were found at M7 
(1.8 ± 0.4 months or 52.4 ± 12.1 days). 

Fig. 5. Yearly estimated mean transit times (MTTs) using a monthly moving window for catchment M6 (gray bars) during the period May 2011 – December 2018. 
The MTTs correspond to the parameter value that yielded the highest Kling-Gupta Efficiency coefficient (KGE) value during the simulations (blue line). The dashed 
red line represents the KGE value of 0.45 considered in this study as a threshold between good (values above) and poor (values below) model simulations. The figure 
only shows the beginning date of each yearly moving window (i.e., the MTT and KGE values corresponding to August 2014 were obtained for the simulation period 
August 2014 – July 2015). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Box plots of the (a) yearly estimated mean transit times (MTTs) using a 
monthly moving window for catchments M1-M8, and (b) their corresponding 
Kling-Gupta Efficiency coefficient (KGE) values. The box represents the median 
and interquartile range, the whiskers represent 1.5 times the interquartile 
range, and the black dots represent the outliers. The red crosses represent the 
average of the distributions of MTT and KGE values. The dashed red line in 
subplot (b) represents the KGE value of 0.45 considered in this study as a 
threshold between good (values above) and poor (values below) model pre-
dictions. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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3.3. Identification of factors controlling the temporal variability of MTTs 

Linear correlation results showed that several hydrometeorological 
variables were at least acceptably correlated (r > 0.5) with the yearly 
estimated MTTs for each of the analyzed catchments. The subsequent 
VIF multicollinearity analysis identified between 8 and 11 independent 
variables which could significantly explain the MTT temporal variability 
in each of the catchments. Those variables were used to identify the 
main hydrometeorological factors controlling the temporal variability of 
MTTs through MLR analysis. Since the presented analysis was carried 
out using monthly data, analysis for catchment M7 – which presented 
very short water MTTs (1–2 months) – could not be pursued as its MTT 
temporal variability likely depends on antecedent conditions in the 
order of days or weeks. For the rest of the catchments, the results of the 
MLR models fulfilling the conditions for best model selection are shown 
in Table 2. That is, the MLR model with the least number of predictive 
variables fulfilling both criteria for best model selection in terms of error 
reduction (RMSE < standard deviation of the estimated MTTs) and 
goodness of fit (R2

adj > 0.5). 
Results of the MLR analysis for catchment M6 are shown in Fig. 7. 

Eight hydrometeorological variables were considered in the MLR 
models of this catchment after performing the multicollinearity analysis: 
ETmin6, Qmax0, Pcum0, RC7, Qmin12, RC12, Pcum15, and RC18. These 
variables were used in the forward criterion MLR to develop and test 
MLR models with up to 5 variables (models A1 to A5). Results of the 5 
MLR models (A1 to A5) are described below and the models’ equations 
and coefficients of the predictor variables are shown in Fig. 7. Model A1 
included RC12 as the only predictive variable and explained 22 % of the 
dataset variance. Model A2 included two variables, namely RC7 and 
RC12, and explained 41 % of the dataset variability. Model A3 included 3 
variables, Qmin12, RC7, and RC12, explaining 51 % of the variance. 
Model A4 included all variables in model A3 and Qmax0, explaining 57 
% of the MTTs temporal variation. Model A5 included all variables in 
model A4 and Pcum0 (5 variables in total), accounting for 60 % of the 
dataset variability. The RMSE of the models decreased from 40.49 
(model A1) to 27.99 (model A5) and all predictor variables had a pos-
itive relation with the MTTs in the MLR models (Fig. 7). Model A3 was 
selected as the one best representing the temporal variability of MTTs for 
catchment M6, as it complied with the aforementioned conditions for 
model acceptance. 

The same analysis conducted for the remaining catchments indicated 
that the number of variables necessary to achieve model acceptance 
conditions for each of them varied between 2 and 5. The models’ 
equations and coefficients of the predictor variables are presented in 
Table 2. Similar to the results for catchment M6, all predictor variables 
presented a positive relation with MTTs on the MLRs of the rest of the 
catchments. Two predictive variables were found for catchments M1 
(Qmd8 and Qmin0+15), M2 (Qmin10 and Pcum0), and M3 (Q300+18 +

Qmd7). The MLR for catchment M4 required 3 predictive variables 

(Q300+18, RC9, and Qmx7). The models for catchments M5 and M8 
required the largest number of predictive variables, 4 for M5 (Qmd12, 
Qcum24, Pmx12, and Qcum9) and 5 for M8 (Qmin12, Pmd10, Pmx9, 
Qmx12, and Qcum0). All of these models presented relatively low RMSE 
(from 22.60 to 47.98). The models had R2

adj values ranging from 0.50 
and 0.58 (Table 2), indicating that all models explain at least 50 % of the 
MTT temporal variability for each catchment. The average AIC value 
among catchments was low suggesting that the selected models are 
parsimonious. Results from the F-tests show that all models are signifi-
cant at p < 10-9. 

4. Discussion 

4.1. Mean transit time modelling 

Taking advantage of an 8-year data set from a nested system of 
tropical Andean catchments, this study addresses one of the 23 unsolved 
problems in hydrology (Blöschl et al., 2019): how old is stream water 
and how do water ages vary in time? To this end, it is necessary to 
evaluate the assumptions of the applied MTT modelling approach. One 
limitation of the LCA for estimating MTTs is the fulfillment of the as-
sumptions of hydrological stationarity (i.e., invariance in time) and 
homogeneity of the studied catchments (Kirchner, 2016a). Despite the 
ample temporal variability in hydrological and meteorological condi-
tions observed during the 8 years monitoring period at the ZEO (Fig. 2 
and S1), the temporal variability of MTTs across the catchments was 
small (191.30 ± 47.10 days). Contrary to evidence of non-stationary 
conditions in other tropical (Birkel et al., 2016) and non-tropical 
montane catchments (Peralta-Tapia et al., 2016), this observation sup-
ports the hypothesis that the ZEO catchments function close to station-
ary conditions. This results from relatively homogeneous landscape 
characteristics (i.e., vegetation distribution and soil properties, topog-
raphy, and geology) and low temporal variability of climate conditions 
(Correa et al., 2018; Lazo et al., 2019; Mosquera et al., 2016). This 
finding also suggests that the ZEO catchments meet the steady-state 
assumptions of the LCA applied to estimate the presented MTTs. In 
addition, the fact that the estimated MTTs were shorter than the yearly 
periods applied to investigate MTT temporal variability in this study 
indicates that our results can be considered reliable and robust as evi-
denced by the low uncertainty in the modelling results. 

To put our findings in context, Fig. 8 summarizes the temporal 
variability of MTTs and the factors influencing them of different 
catchments worldwide. The MTTs at the ZEO were shorter than 1-year 
when modelled using both the complete dataset and yearly periods 
using a monthly moving window (Figs. 4 and 6). These MTTs are 
consistent with typical values found in pristine catchments of<10 km2 in 
other regions (Fig. 8; Tetzlaff et al., 2011; Hrachowitz et al., 2010; 
Soulsby et al., 2006). These values are also similar to prior MTT esti-
mations in the same study area during the period 2011–2014 (up to 9 

Table 2 
Factors controlling the temporal variation of MTTs using multiple linear regression (MLR) with their respective statistical metrics for catchments M1-M8 during the 
period May 2011-December 2018.  

Catchments Variables used in the best MLR models selected n m RMSE MAE R2 R2
adj AIC p-value 

M1 Qmd8 + Qmin0+15  8  42.29  32.50  0.59  0.58  596.64  2.53*10-11 

M2 Qmin10 + Pcum0  10  22.60  17.00  0.52  0.50  525.21  2.74*10-09 

M3 Q300+18 + Qmd7  8  47.98  35.03  0.59  0.57  611.03  4.15*10-11 

M4 Q300+18 + RC9 + Qmx7 57 9  47.63  35.41  0.55  0.52  612.20  2.80*10-09 

M5 Qmd12 + Qcum0+24 + Pmx12 + Qcum9  9  41.03  32.87  0.56  0.53  597.19  7.97*10-09 

M6 RC12 + RC7 + Qmin12  8  31.58  22.97  0.53  0.51  565.34  7.72*10-09 

M8 Qmin12 + Pmd10 + Pmx9 + Qmx12 + Qcum0  11  28.46  22.41  0.54  0.50  557.47  9.01*10-08 

Abbreviations: Qmd median streamflow; Qmin minimum streamflow; Qcum accumulated streamflow; RC runoff coefficient; Pcum accumulated precipitation; Pmd 
median precipitation; n number of MTT estimations used for the multiple linear regressions; m number of variables used for the multiple linear regressions after 
selection based on multicollinearity analysis; RMSE root mean square error; MAE mean absolute error; AIC Akaike information criterion (Akaike, 1974). The number 
next to the hydrological variable indicates the corresponding moving window. Catchment M7 is not included in the table because its MTTs are lower than the monthly 
time scale used for the analysis. 
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months; Mosquera et al., 2016). These findings support the concept of 
rapid rainfall-runoff dynamics and a minimum contribution of deep 
groundwater given the compacted underlying geology (Mosquera et al., 
2015). A rapid hydrologic response could also be explained by the 
limited soil depth (up to 1 m), presenting a porous and open soil 
structure with a high water storage capacity, particularly in the riparian 
wetlands (Lazo et al., 2019). Wetlands are hydrologically connected to 
slopes, especially during wet periods, and surface water does not 
evaporate strongly as humidity remains high throughout the year (>90 
%; Córdova et al., 2015). The short MTTs are likely influenced by high 
soil wetness and increased connectivity of shallow subsurface flow paths 
(Birkel et al., 2012; Rinaldo et al., 2011; Segura et al., 2012). As a 
consequence, the soils remain wet most of the time, and their high 
porosity results in a fast mobilization of water throughout the entire soil 
profile (Mosquera et al., 2020), allowing for a continuous recharge of 
riparian wetlands which sustain flow production year-round (Mosquera 
et al., 2015). 

In another study conducted in the Scottish Highlands, MTT temporal 
variability was assessed in two small catchments with different features 
(Hrachowitz et al., 2009). One of the catchments was characterized by 
low permeable gleyed soils overlying compacted geology. The second 
catchment was dominated by free-draining podzolic soils situated on 
deep extensively fractured bedrock. The former presented MTTs shorter 
than 1-year (Fig. 8; 135–202 days), agreeing well with our results as it 
presented similar conditions to the ZEO, and thus a comparable hy-
drological behavior in which soils that remain close to saturation favor a 
rapid response of streamflow via the shallow subsurface with minimal 
contributions of groundwater. The latter catchment had much longer 
MTTs (1,830–1,970 days) as a result of the dominance of a well-mixed 
groundwater reservoir in the system of bedrock fractures, which dif-
fers from the situation at the ZEO. 

In other environments (i.e., temperate or boreal) MTTs show a large 
variability due to groundwater influences, in contrast to the ZEO where 
MTTs vary little. In a study conducted in a temperate zone, MTTs were 
estimated using a 1-month moving window with a 10-year data set in 
five Japanese meso-catchments (Ma & Yamanaka, 2013, 2016). The 
average MTT across the catchments was 23.7 years, and the temporal 
variation was similar in the five sub-catchments ranging from 1.2 to 37 
years. Contrary to the ZEO hydrological system, MTTs up to few decades 
reflect a delayed groundwater response and high water storage in the 
large groundwater reservoir of the Japanese catchments. In another 
study in a boreal catchment in Sweden, MTTs ranged from 300 to 1,400 
days using a 10-year data set and a monthly moving window (Peralta- 
Tapia et al., 2016). These results differed from our study area because of 
the older groundwater contributions to streamflow and the large tem-
poral changes in stored water due to strong climate seasonality across 
the year, unlike in our study area, where the water storage is continu-
ously high due to sustained rainfall inputs throughout the year. 

4.2. Identification of factors controlling temporal variability of MTTs 

The main factors controlling the temporal variability of MTTs at the 
ZEO are precipitation, streamflow, and runoff coefficient (Table 2 and 
Fig. 7). It is reasonable that precipitation is a driver of MTTs as it acts as 
a “force” that pushes water out of the soil matrix, whereas streamflow 
reflects the system’s response to water mobilization (i.e., mixture of 
precipitation and soil water). At the ZEO, the rapid filling of the soil 
water reservoir during rainfall events (Correa et al., 2018) and the soil’s 
high-water storage capacity (Lazo et al., 2019) result in a year-round 
moist soil system. This hydrological status favors the supply of base-
flow to streams and supports the shallow water table in Páramo areas 
around the south Ecuadorian highlands. Therefore, the occurrence of 

Fig. 7. Observed versus predicted mean transit time (MTT) using multiple linear regression models for catchment M6 for the period May 2011 – December 2018 
using hydrological and meteorological variables as predictors. A1 to A5 represents different models after incorporation of the explanatory variables. The number next 
to the hydrological variable indicates the corresponding moving window. Abbreviations: RC runoff coefficient; Qmin minimum streamflow; Qmx maximum 
streamflow; Pcum cumulative precipitation. The dashed line shows the 1:1 ratio relation. 
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rapid subsurface flow in the shallow soil layers, which remain near 
saturation, explains why the runoff coefficient is a key variable influ-
encing baseflow MTTs. For these reasons, it is not surprising that ante-
cedent conditions of these hydrological variables up to 1-year influence 
the temporal variability of MTTs, with the longest antecedent conditions 
being most important in spring-dominated catchments because of their 
higher water storage capacity (Lazo et al., 2019). 

Similar results to our research were obtained in a boreal catchment 
in northern Sweden (Fig. 8). In that catchment a strong correlation be-
tween annually estimated MTTs and yearly precipitation was found 
(Peralta-Tapia et al., 2016), suggesting that antecedent soil moisture 
conditions influence MTT estimates. In our study area, the longest MTTs 
occurred during the least wet periods (e.g., late-2014 to mid- 
2015characterised by lower than average precipitation) and the short-
est ones during the wettest periods in which rapid runoff was facilitated 
by the high saturated hydraulic conductivity of the organic-rich soil and 
the compacted underlying geologic layers. MTT variability was also 
found to be controlled by the amount of precipitation in two Zero-Order 
catchments in the USA (Heidbüchel et al., 2013). Similar to our findings, 
these authors reported that precipitation events during the wettest pe-
riods caused the water storage capacity of soils to reach saturation, 
resulting in fast runoff composed of young water. 

In contrast to our findings, the amount of stored groundwater was 
found as a primary control on MTTs temporal variation in a temperate 
meso-catchment in Japan (Fig. 8; Ma & Yamanaka, 2016). These results 
differ from ours because deep groundwater contributions at the ZEO are 
almost negligible. Similar to our findings, MTTs were also found to be 
correlated with runoff coefficient in a semi-arid catchment in south-
eastern Australia (Cartwright et al., 2020; Cartwright & Morgenstern, 
2015). Notwithstanding, different processes explain the identified 

relations in the Australian study site and the ZEO. High evaporation and 
transpiration rates, low precipitation inputs, and hence a reduced 
groundwater recharge rate explain the temporal variability of MTTs in 
the semi-arid Australian environment. Differently, fairly sustained pre-
cipitation inputs (Padrón et al., 2015) and low transpiration rates 
(Ochoa-Sánchez et al., 2020) in combination with almost negligible 
contributions of deep groundwater (Mosquera et al., 2020; Mosquera 
et al., 2016) likely explain the relation between MTTs and runoff coef-
ficient at the ZEO catchments. 

The fact that evapotranspiration was not identified as a driver of the 
temporal variability of MTTs suggests that beyond precipitation, local 
climate has little influence on how water mixes in the subsurface. The 
latter is most likely because of the high air humidity and limited avail-
able energy at ZEO year-round (Córdova et al., 2016; Ochoa-Sánchez 
et al., 2020). This finding is in line with a previous investigation in 20 
Scottish highland catchments with similar landscape and climate con-
ditions as in our study site (Hrachowitz et al., 2009). However, a pre-
vious investigation in a tropical catchment in Costa Rica revealed that 
wind speed strongly correlates with MTTs (Fig. 8; Birkel et al., 2016). 
The authors attributed this finding to the fact that local climate is 
strongly affected by the air masses arriving from different directions 
(Pacific coast versus the Caribbean Sea), which in turn influences the 
temporal variability of subsurface water recharge and storage. In 
contrast, our analysis indicates that climate variables did not influence 
catchment storage and mixing processes, most likely because of the year- 
round uniform distribution of precipitation originating preferentially 
from the east side of the Andean mountain range (Esquivel-Hernández 
et al., 2019; Zhiña et al., 2022). The discrepancy might also be due to the 
difference in the time periods and moving-window spans used in both 
studies. While our analysis was conducted using yearly moving window 

Fig. 8. Overview of studies investigating the temporal variability of streamflow mean transit times (MTTs) and the factors controlling it. The length of the horizontal 
bars indicates the variability of MTTs found in each study (i.e., maximum and minimum). The red vertical line refers to the change of time scale from months (rigth) 
to years (left). Abbreviations: DR data record length; TU tracer used, i.e., stable isotopes (2H or 18O) or chloride (Cl). Countries: ECU Ecuador; CRI Costa Rica; JPN 
Japan; GBR United Kingdom (Scotland); SWE Sweden, AUS Australia. Controlling variables: P precipitation; Q streamflow; RC runoff coefficient; WS wind speed; GW 
groundwater. The reference sources for each study are: aThis study; bBirkel et al. (2016), cMa and Yamanaka, 2016, dHrachowitz et al. (2009), ePeralta-Tapia et al. 
(2016), fCartwright et al. (2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

K. Larco et al.                                                                                                                                                                                                                                   



Journal of Hydrology 617 (2023) 128990

12

spans (i.e., a complete hydrological cycle) over an 8-year period, the 
analysis for the catchment in Costa Rica was carried out during a short 
time period (2-years) using a 4-months moving window. Given this, it is 
likely that the variable controlling the MTT variability in Costa Rica (i. 
e., wind speed) accounts for short-term (seasonal) changes in catchment 
hydrology, differing from the medium/long-term controls on catchment 
storage identified in our study. These contrasting results highlight the 
importance of acquiring datasets covering several hydrometeorological 
cycles for the better understanding of the rainfall-runoff processes in 
tropical regions. 

Although there are similarities and differences between the findings 
of previous studies and ours, the combination of streamflow, precipi-
tation, and runoff coefficient as driving factors of the temporal vari-
ability of MTTs has not been reported before in the tropics or elsewhere 
(Fig. 8). This may be due to the strong interplay between precipitation 
and streamflow, which controls subsurface water transport and mixing 
processes in our study area under the presence of riparian wetlands 
connected to the stream network and the virtually absent contribution of 
deep groundwater storage (Mosquera et al., 2015). 

5. Conclusions 

This study contributes to an improved understanding of the under-
lying causes of the temporal variability of MTTs in remote montane 
catchments. Based on this study it can be concluded that:  

• MTTs in tropical alpine catchments in Southern Ecuador are shorter 
than 1-year and demonstrate little temporal variation, indicating the 
prevalence of “quasi” steady-state conditions. As a result, lumped 
models represent a useful tool to investigate hydrological dynamics 
in the region.  

• The factors controlling the temporal variability of MTTs across the 
studied catchments are precipitation, streamflow, and runoff coef-
ficient under different antecedent conditions up to 1-year, indicating 
that runoff generation is dominated by the connectivity of subsurface 
flow paths through shallow organic soil layers, in line with previous 
conceptualziation of catchment hydrological behavior. 

These results highlight the importance of investigating what drives 
the temporal variation of MTTs, as this helps to better understand water 
flow paths and catchment behavior, which is essential to develop 
appropriate water management and climate adaptation strategies. If 
moisture conditions change, shorter MTTs can impact nutrient removal 
and pollutant export. Changes in water flow paths and catchment 
behavior caused by changes in climate or land use could also result in 
variations in the ages of stream water. As this study looked at catch-
ments characterised by a natural páramo ecosystem and similar climate 
conditions, future investigations could focus on assessing the temporal 
variability of MTTs and the factors influencing it in catchments with 
different land use types and constrasting climate. Further research 
involving the factors controlling MTTs at a larger spatial scale for 
tropical alpine catchments is also recommended. 
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Knoben, W., Kochanek, K., Kohnová, S., Kolechkina, A., Krause, S., Kreamer, D., 
Kreibich, H., Kunstmann, H., Lange, H., Liberato, M.L.R., Lindquist, E., Link, T., 
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