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Abstract: State estimators based on load flows and applied in electrical power systems (EPS) are
a basic and crucial function in energy management systems (EMS), since they must guarantee the
quality of their results for decision-making. In this research, we propose a new method for partitioning
an electrical system within distributed estimation processes. This method is developed under the
concept of nodal redundancy and considers the number of measurements associated with each bus
of the electrical system. By distributing the measurements in subsystems, such that each redundancy
is evenly distributed, the proposed method aims to improve the performance of both centralized
and distributed estimation techniques developed in the literature. We evaluate the proposed method
by using the IEEE 14-bus and IEEE 118-bus systems, considering several operating cases and a
wide array of measurements of the electrical power system. Results demonstrate the quality of the
estimate and the processing time for both traditional and distributed estimates under the proposed
methodology.
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1. Introduction

The continuous interconnection of electrical power systems, the new generation tech-
nologies, the new FACTS technologies, the new developments in measurement systems
(PMU), and the need to satisfy a continuously growing demand has forced the evolution of
energy management systems (EMS), which must comply with safety and reliability indices
to guarantee the continuous operation of the system. The key role of energy management
systems (EMS) lies in their ability to provide real-time knowledge of the electrical system’s
situation, which enables the system operator (SO) to make decisions to prevent disruptions
in the operation and/or blackouts in the electrical network [1]. Based on the information
provided by an EMS, the main function of the SO is to maintain the system’s security,
ensuring that all demands are supplied with energy according to a generating park without
violating the operating limits such as the capacities of the transmission lines, voltage limits,
and generation limits [2,3]. For the system monitoring process, a state estimator (SE) is
one of the fundamental tools used to determine or approximate the optimal value of a
deterministic or random variable that, due to its nature, often cannot be captured using
a measurement system [4]. State estimators applied to electrical power systems play an
essential function in the energy industry, as the estimation is relevant for understanding the
state of the system [5]. The centralized approach called weighted least squares (WLS) has
been the technique most widely used and is based on a non-linear measurement model. In
recent years, phasor measurement units (PMU) have been introduced within the measure-
ment process to provide voltage and current phasors, where the linearized measurement
model reduces the complexity of the calculation [6,7].

In this context, a state estimation process is a tool that provides reliable information for
the operation of an electric power system (EPS), calculating in real time the best estimate of
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the current situation of a system. To carry out this task, it is necessary to acquire and process
large volumes of information in a control center, which increases the cost of the economic
and computational resources available [8]. A good estimation of the state improves the
supervision and control of an electrical power system, it being necessary to consider an
estimation criterion, redundancy of the measurements, and the probability distribution
of random errors. A state estimator is a basis within the operation and control of the
electrical system; it allows for performing tasks such as economic dispatch (ED), automatic
generation control (AGC), automatic voltage control (AVC), stability analysis of voltage,
security analysis (SA), and power transactions between remote locations separated by one
or more control areas [9–11].

The architecture of state estimators has evolved with the development of new algo-
rithms, which may be classified into centralized, hierarchical, and distributed models. In
the centralized estimation model, a single control center processes all the existing measure-
ments in an EPS, providing the estimation of the state variables of the entire network. In
the 1980s, the first hierarchical estimation techniques were formulated [12,13]. Cutsem and
Ribbens proposed a hierarchical estimation method for a multitasking electrical system,
which develops a local estimate (first level of hierarchy), and then coordinates at a higher
level [14]. However, to obtain a global estimate, this technique requires a centralized
coordinator [11].

Centralized and hierarchical approaches to condition estimation can suffer from
bottlenecks and reliability issues because the measurements are traditionally captured
by a supervisory and data acquisition (SCADA) system, presenting intrinsic limitations,
that is, low sampling rate and precision of the measurements that reduce the reliability of
the estimation process. In modern EPSs, the integration of fast processing devices is more
frequent, such as phasor measurement units (PMU), which makes possible a linear state
estimation [15–18]. However, high investment costs are a limitation of having a PMU in
each local area. Second, the politics and market price competition in certain systems require
utility companies to share more information and monitor the power grid in large-scale
areas [19].

The distributed state estimation model considers a system partition, without losing the
physical link through its transmission system and continuous information communication
from neighboring measurements [4,10]. Under stationary operating conditions, the power
system is treated as a quasi-static system whose operating condition is fully characterized
by variables, such as bus loads, line fluxes, generation, and bus voltages at the same instant
of time. Among these interdependent variables, the bus phasor voltages [V,θ0] can be
chosen as the system’s state vector [20]. Many studies have addressed distributed static
estimation problems; in [21], a weighted least squares (WLS) estimation method is proposed
for the estimation of the static state with the property that the local estimates converge to
the same estimates obtained through a centralized estimator. In this scheme, each local
estimator needs to know its local measurements and border information from neighboring
nodes, which implies a higher communication load.

The partition of networks and data packets is not new in the scientific literature; Kron
and Happ were pioneers in the study of diakoptica under the premise of resolving large
systems into small systems, which emphasizes the importance of reducing the associated
computational processes, with large-scale systems analysis [22].

There are several approaches to divide an electrical system into subsystems or areas of
operation, allowing operator to determine control areas for reactive energy markets and
areas or zones for evaluating voltage safety [5,12,17,23]. Within the partition of a large-scale
electrical system, the location of the PMU determines the reference bars. This allows a
parallel process of the areas; however, it is important to guarantee the precision of the
results [9]. Li et al. [24] proposed a hierarchical clustering method that characterizes the
active and reactive power mismatch between zones. Recent studies have shown that the
partitioning of an EPS facilitates the integration of renewable sources [25].
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In this article, a new partition scheme for the distributed state estimation process is
proposed. The proposed partitioning method is based on the concept of nodal grouping,
where the number of measurements associated with a node determines the areas or subsys-
tems, regardless of the number of physical elements that constitute it, such as bus, lines,
generators, and loads. As a metric, the redundancy of the area or subsystem is calculated
in the partition process; the proposed approach guarantees that the systems comply with
the principle of observability, a necessary condition in the estimation. From the results, it is
expected to improve the processing time of a distributed state estimate as compared to a
centralized estimate and to reduce the mean square error of the state variables.

In the MATLAB (Mathworks, Inc., Natick, MA, USA) environment, a code was devel-
oped for the process of partitioning an electrical power system, which allows determination
of the number of state variables, measurements, and elements per subsystem, as well as the
redundancy of each one of them.

The article is organized in the following fashion. Firstly, Section 2 describes the
proposal for partitioning an electrical power system by means of nodal grouping. Secondly,
Section 3 develops the model in the distributed state estimation process for a large-scale
system. Then, the simulation results for different proposed scenarios are presented in
Section 4, and the discussion and conclusions are summarized in Section 5.

2. Nodal Grouping

Clustering is a technique that associates items that generally have similar characteris-
tics. Among the clustering techniques developed, we have the K-mean, electrical distance,
spectral clustering, or hierarchical clustering algorithms [9,23,26–28]. The proposed nodal
grouping method is based on the set of measurements associated with the bus of an electri-
cal system. What is sought with this estimation model is to build areas or regions of the
system where there is a distribution of the measurements so that the redundancy of its
regions is as homogeneous as possible.

The principle of nodal grouping consists of determining the belonging of the mea-
surements to a specific bus; under this consideration, we must establish two types of
measurements, bus measurements (MB) and line measurements (Ml). Figure 1 presents the
physical arrangement of measurements in an electrical system.
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Figure 1. Electrical layout of the set of measurements associated with a bus.

In MB measurements, those that are connected directly to the system bus are subdi-
vided into two types, corresponding to voltage measurements (MV), and active power P
(MP) and reactive power Q (MQ) injection measurements, which are connected between a
generator and bus or a load and a bus. So, for the i-th bus, we have:

MBi =


MVi
MPi
MQi

(1)
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The measurement data defined as Ml are the active y reactive power flow measure-
ments between node i and node j, and the membership of the measurement will be estab-
lished with the closest bus under the following consideration:

Ml =

{
MPij ∈ Bi
MQij ∈ Bi

(2)

Therefore, the set of total measurements associated with bus i is as follows:

Mi = MBi + MLi (3)

Based on the above categorization, the concept of nodal grouping determines re-
dundancy (R) as a control metric, which is calculated as the relationship between the
measurements (Mi) and the number of state variables of the electrical system (N). In each
iteration of the partitioning process, redundancy must be computed and compared between
the subsystems by using the following formula.

RK =
M

N− 1
(4)

3. Nodal Partition Method

In applying a distributed estimate DSE, the initial system is partitioned into several
groups (subsystems); at this level, a local estimate is calculated by using measurements of
each cluster. Then, the global estimate of the electrical system is evaluated by integrating
the information of neighboring measurements between the subsystems.

3.1. Preliminary Concept

1. State estimation: The state estimation process for an AC system is based on a mathe-
matical model composed of non-linear functions, which allow the set of measurements
to be related to the state variables of the system:

z = h(x) + e (5)

where:

x is the state vector to be estimated of size 2N;
z is the set of measurements of the system of size M (M > 2N concept of observability);
h is the set non-linear functions, relationship between measurements and state variables
(power equations and power flows);
e is the error present in the measurements.

In conventional state estimation models, the state vector is defined by the voltage
phasor [V, θ0], and the set of measurements is determined by voltage levels Vi

h, active
and reactive power injections, and active and reactive power flows [17]. The non-linear
equations that relate the state variables in the model of an electric power system are:

Pi
m =

N

∑
j=1

ViVj
(
Gij cosθij + Bijsin θij

)
(6)

Qi
m =

N

∑
j=1

ViVj
(
Gij sinθij − Bijcosθij) (7)

Pij
n = ViVj

(
Gijcosθij + Bijsin θij

)
−GijV2

i (8)

Qij
n = ViVj

(
Gijsinθij − cos θij

)
− V2

i
(
Bij − bij

)
(9)
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where h, m, and n are the number of measurements of voltage, power injection, and power
flow, respectively.

The Jacobian matrix [H] of the measures of the system will be the following:

H =



∂Vi
∂Vi

∂Vi
∂θi

∂Pi
∂Vi

∂Pi
∂θi

∂Pij
∂Vi

∂Pij
∂θi

∂Qi
∂Vi

∂Qi
∂θi

∂Qij
∂Vi

∂Qij
∂θi


(10)

In the estimator model, the weighted least squares (WLS) minimizes the objective
function that evaluates the related error between the estimated values of the measurements
and the actual measured values, [7].

minJ =
M

∑
1

(z i − hi(x̂))
2

σ2
i

= [z−Hx]
TW[z−Hx] (11)

Being:
zi − hi(x̂) is residual of the measure;
x̂ is estimated state vector;
σ2

i is variance of measurement i.
Within the development of the model, an iterative process is established, which

estimates the values of the state variables in the k iterations:

xk+1 = xk + G−1
k HT

kW[z− h(xk)] k = 1, . . . , m (12)

where:
Hk is Jacobian matrix evaluated at xk;
Gk =

(
HT)

kWHk is gain matrix;
W is weight matrix measurement error;
xk+1 is estimated state vector at kt + 1 iteration.
The algorithm’s convergence is reached when the value of the residual error of the

objective function is less than a tolerance threshold, which is a control metric that must be
established.

2. Concept of grouping: In the process of partitioning the system, the interconnected
areas can present different physical configurations:

(a) Non-overlapping areas, those whose bus belong to one of the areas, the link of
the areas is given through their transmission system (Figure 2).

 

 

 

 

 

 

 

A RE A   1   AR EA   2  

A RE A   1   AR EA   2  

AREA   1 AREA   2 

Figure 2. Physical layout of areas connected by their transmission system that do not overlap.

(b) In overlapping buses, the bus are contained in various areas of the partition
(Figure 3).
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Figure 3. Physical arrangement of overlapping areas in a bus of the electrical power system.

(c) In overlapping links, the configuration considers that the link between two
buses belongs to several overlapping areas (Figure 4).
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3.2. Problem Formulation

The problem formulation considers an electrical power system that needs to be divided
into non-overlapping areas while ensuring the physical connection of the subsystems
through the transmission system. The proposal does not consider isolated systems. The
observability criterion must be satisfied for the entire system and for each area into which it
is divided. If an area is not observable, the proposal uses pseudo-measurements to restore
observability.

(Ωm ∩ Ωn) = ∅ (13)

Applying the concept of nodal grouping, the number of measurements associated
with each bus is determined, which starts the system partition (Figure 5).
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1. Nodal bus: those buses that concentrate the largest number of measurements; under
this concept, the following scenarios are considered:

(a) Having several BN nodal bus with the same number of measurements, in this
scenario, the number of BN establishes the number of areas into which the
system will be divided.

BNk = max(#M) (14)

(b) Having a single nodal bus implies that the estimation process corresponds
to a centralized estimate; for this case, the following bus containing smaller
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measurements should be considered, and the same criteria of the previous
literal are applied. This nesting identifies nodal buses with the same number
of measurements; unique nodal buses are included in the partition by nodal
redundancy (Figure 6).
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(c) Another criterion that can be applied as a strategy is to establish a minimum
number of measurements per bus; the division of subsystems will depend on
the number of buses that are within this threshold; in this case, measurements
of the number for each nodal bus is not necessary: they are equal.

BNk ≥ #M (15)

2. Link of nodes: Once the BNs are determined, the areas are built for which the adjacent
bus connected through the transmission system must be linked, and the subsystems
in each iteration grow radially (Figure 7). The system will extend through the lines
between the nodes, and the number of buses is increased in each iteration.
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3. Overlapping criteria: In the proposed methodology, the expansion of the areas can
produce overlapping, which means that a bus can be in more than two areas due
to the physical connection between the elements through the system. To determine
which area an overlapping bus corresponds to, the redundancy error minimization
criterion is applied, which positions the overlapping bus in one of the areas (Figure 8).
It is necessary to calculate the redundancies of the overlapping areas and verify which
case minimizes the redundancy error. This process allows the overlapping bus to be
placed in one of the areas and determines that the redundancy values between areas
are as homogeneous as possible.
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mineR = RAi −RAj
s.t. ek

R ≤ eK∗1
R

(16)

The electrical system partitioning algorithm ends when no more buses are found to
assign to the areas into which the system was divided (Figure 9).
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After the partitioning stage, the conditions that must be satisfied for the distributed
estimation process are:

BNi ∈ Ai (17)

Bi ∈ Ai (18)

ni = ∑
Ai

nk (19)

Figure 10 depicts the distributed estimation process in which each subsystem applies
a local estimate. The construction of the global estimate involves a correction based on the
information of its borders, which allows for the estimation of the state variables [V, θ0] for
the entire system.
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In the reconstruction of the system, a global estimate is calculated and the MSE is
evaluated, which is compared with a control tolerance. If the error is within this threshold,
the process is truncated and terminated.

4. Simulation and Results of Application of Power System State Estimation Method

The centralized and distributed state estimation algorithm was implemented on a
conventional uniprocessor computer (intel i7 PC clock at 3.40 GHz, with 4 GB of RAM).
The proposed partition method by nodal grouping was tested by using the IEEE 14 system
and the IEEE 118 bus system. In the simulations, the DSE algorithm used was the one
proposed in [29]. The test cases were prepared with an observable heuristic approach. The
MATPOWER package was implemented to perform state estimation using the MATLAB
platform. The processing time and the mean square error of the estimated MSE states were
used to evaluate the efficiency of the partition method applied to a distributed estimation.

MSE =
n

∑
1

(xi − x̂i)
2

n
(20)
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Measurement errors are generated by adding a random component to the load flow. In
all simulations, the assumed error is independent and identically distributed (iid) Gaussian.
Table 1 shows the variance values of the simulations.

Table 1. Variance of the measurement systems.

Type of Measure Variable Values

Voltage σ2
V 0.01

Power Injection Pi + jQi σ2
I 0.15

Power Injection Pij + jQij σ2
F 0.2

4.1. Tests in the IEEE 14 Bus System

In the IEEE 14-bus system four scenarios were evaluated, which were selected accord-
ing to the number of available measurements. For the distribution of measurements in each
case, a random process was considered, guaranteeing the system’s observability. Figure 11
shows the system IEEE14 bus.
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Figure 11. Case study electrical power system IEEE 14 bus.

Tables 2–5 present the results of the system partition process for each case. The physical
configuration was not the same as the BNs do not turn out to be the same, even though the
number of subsystems into which a system is divided is the same. As in the case of the 82
and 60 measurements system, the number of areas is the same, but there is a variation in
the BN.

Table 2. Results of the IEEE 14 bus electrical system partition process with 82 measurements.

Area Bn Bus Redundacy Measure/Area

1 2 1–2–3 4.2 21
2 4 4–5–7–8–9–10–14 3 39
3 6 6–11–12–13 3.14 22
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Table 3. Results of the IEEE 14 bus electrical system partition process with 60 measurements.

Area Bn Bus Redundacy Measure/Area

1 2 1–2–3 2.6 13
2 4 4–5–7–8–9–10 2.36 26
3 6 6–11–12–13–14 2.33 21

Table 4. Results of the IEEE 14 bus electrical system partition process with 55 measurements.

Area Bn Bus Redundacy Measure/Area

1 1 1–2–3–4–5–7–8–9 2.13 32
2 6 6–10–11–12–13–14 2.09 23

Table 5. Results of the IEEE 14 bus electrical system partition process with 49 measurements.

Area Bn Bus Redundacy Measure/Area

1 1 1–2–3–4–5–7–8–9–10 1.8824 32
2 6 6–11–12–13–14 1.8889 17

Figure 12 show the partition of the IEEE14 bus system for the cases developed applying
the nodal method.
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Figure 12. IEEE 14 bus partition: (a) 82 measurements, (b) 60 measurements, (c) 55 measurements,
and (d) 49 measurements.

Table 6 presents the mean squared error (MSE) and processing time results for the
simulations. The results demonstrate that increasing the number of measurements improves
the MSE of the estimated values in the distributed estimation process.
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Table 6. Comparison of the processing time between the case studies of a distributed estimation and
centralized estimation.

Measure Area MSE
Time [s]

Distributed Centralized

82 3 0.0087% 1.16 5.54
60 3 0.0367% 0.78 3.44
55 2 0.0734% 1.03 3.17
49 2 0.0923% 0.77 2.78

However, the processing time for each case analyzed is not significantly different
compared to that obtained in the centralized estimate. Figure 13 shows the partition graph
of the IEEE 14 bus system for a system of 82 measurements, distributed in 14 voltage
measurements, 14 injection measurements Pi + jQi, and 20 power flow measurements
Pij + jQij; the BN is located in bus 2, 4, and 6.
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4.2. Tests in the IEEE 118 System

For the analysis of the method in large electrical systems, the electrical network
of the IEEE 118 bus was taken as a model. To have a frame of reference as the base
case, the method applied in [29–32] was considered, in which a partition of three areas
is developed, with bus 25, 66, and 69 being reference buses for local estimates. For the
distribution of measurements, the data of the case developed in [16] was taken as a reference,
where a measurement system of 441 measurements is applied, which are broken down
into 134 measurements of flows Pij + jQij, 56 measurements of injections Pi + jQi, and
61 voltage measurements. Figure 14 shows the diagram of the electrical power system of
the IEEE 118 bus used for the simulations.

Figure 15 shows the distribution of the measurements in each bar of the system and
that will be used both in the base case and in the proposed scenarios according to the nodal
bar hierarchy.
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Figure 14. Case studies in IEEE 118 bus system.

Energies 2023, 16, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 14. Case studies in IEEE 118 bus system. 

Figure 15 shows the distribution of the measurements in each bar of the system and 
that will be used both in the base case and in the proposed scenarios according to the 
nodal bar hierarchy. 

 
Figure 15. Distribution of number of measurements per bar in IEEE 118 bus. 

The first hierarchy is given for the nodal bar made up of a total of nine measurements, 
which in the simulations correspond to bars 80 and 100. As the ranking process begins 
with the bus with the largest number of measurements, in our analysis case, a second 
ranking was considered with nodal buses of up to eight measurements per bus, which are 
located in bus 8, 49, and 70. A third hierarchy is given for nodal buses of seven measure-
ments per bus, located in bus 40, 69, and 92. Minor hierarchies are not considered in our 
simulations, since the distribution of measurements means that there are more than two 
continuous BN, which does not allow the system to be partitioned. 

Table 7 presents the results of the partitioning process of the IEEE 118 bus system 
applying the proposed methodology, in which the number of areas, number of buses, and 

1 2

123

45

8

9

10

6 7

117

13

1514

16

113

32

114
27

28

29

115

30

17 18

33 34

19 36

11

31 20

21

22

25
26

2423

35

38

39

37

40 41 42 53 54 55 56

48 46 47

43 44 45
49

50 51
52

72 70 75

73 71
69 68

74

77

118

78 79

76
80

62

65

66

57

64

58

63
60

59

61

116
81

84 83

87 86
88 89 90 91 92

85
82

IEEE 118 BUS SYSTEM 97

96

95

94

93

102

100

98 99

101 103

104 105 107
106

110
111

108

112 109

67

Figure 15. Distribution of number of measurements per bar in IEEE 118 bus.

The first hierarchy is given for the nodal bar made up of a total of nine measurements,
which in the simulations correspond to bars 80 and 100. As the ranking process begins with
the bus with the largest number of measurements, in our analysis case, a second ranking
was considered with nodal buses of up to eight measurements per bus, which are located
in bus 8, 49, and 70. A third hierarchy is given for nodal buses of seven measurements per
bus, located in bus 40, 69, and 92. Minor hierarchies are not considered in our simulations,
since the distribution of measurements means that there are more than two continuous BN,
which does not allow the system to be partitioned.

Table 7 presents the results of the partitioning process of the IEEE 118 bus system
applying the proposed methodology, in which the number of areas, number of buses,
and measurements in each system are detailed. Figure 16 shows the partitions that are
considered in the IEEE118 base case system and that have been developed in the literature.
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Table 7. Nodal partitioning method applied to large electrical power systems IEEE 118-bus,
case study.

Simulated Cases Area BN # Bus
Measurement

for Bn for Area

CB-3_AREAS
1 25 36 3 134
2 66 34 3 126
3 69 48 7 181

BN9-2_AREAS
1 80 92 9 355
2 100 26 9 86

BN8-3_AREAS
1 8 30 8 114
2 49 71 8 263
3 70 17 8 64

BN7-3_AREAS
1 40 38 7 142
2 69 51 7 200
3 92 29 7 89

CENTRA 1 69 118 7 441
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Figure 16. IEEE118 power system partition: base case developed in [30–32].

Meanwhile, Figure 17 shows the configuration resulting from the simulations based
on the proposal presented in this investigation.

Table 8 shows the values of the mean square error (MSE) in the simulated cases, BN9,
BN8, BN7, and the base case; a reduction in the MSE value is observed. However, the
processing times in the BN9 and BN8 scenarios are longer than in the base case. This is
because the proposed partition process considers a homogeneous redundancy between
areas, while the distribution of the measurements in the subsystems does not necessarily
turn out to be homogeneous (Table 5). Therefore, the numerical process requires more
convergence time in the estimation for larger subsystems.
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Figure 17. IEEE118 electrical system partition: (a) BN9 nodal bar case, (b) BN8 nodal bar case, and
(c) BN7 nodal bar case.
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Table 8. MSE value and processing time in the evaluated case studies.

CASE CB-3 BN9-2 BN8-3 BN7-3

MSE 0.6149 × 10−4 0.28 × 10−5 0.3603 × 10−4 0.3447 × 10−4

TIME (min) 3.667 18.937 10.674 4.645

Figure 18 shows a comparative graph of the results, where it is evident that the
numerical process of the algorithm requires more time for the convergence in the local
estimation of the largest subsystems; however, the resulting MSE values are lower than
those obtained in the base case due to the distribution of the measurements. In CB and
BN7, the system is divided into three areas and the distribution of measurements turns
out to be more homogeneous, while in BN8 and BN9, the partition is three and two areas,
respectively. However, the results show that the distribution is not so homogeneous.
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Comparing the processing times, in the CB, the processing time is much lower than
that used for BN8 and BN9; however, if we compare with BN7, the times are considerably
reduced; this is due to the distribution of the measurements in the subsystems. Com-
plementing the analysis of the results in Figure 18, the distribution of measurements is
presented for different simulated cases according to the partition of the system under the
hierarchy criterion. In CB and BN7, the partition is three clusters, resulting in a more ho-
mogeneous distribution of the measurements, while in BN8 and BN9 the partition is three
and two clusters, respectively, and the distribution is less homogeneous. It is important
to consider that, within the estimation process, the numerical calculations solve matrix
operations. Thus, by increasing the size of the system, there will be an increase in the
processing time.

In the simulation processes considering the centralized model, the base case considered
for a distributed estimator, and the proposal under the concept of nodal redundancy in
Figure 19, the voltage profile can be observed in each bar of the system once the estimation
process is finished.

It can be considered that, in a DSE, the numerical processes are reduced due to the
data set (cluster); in a centralized process, information management is for the entire system,
which is evidenced in an effort of resources in numerical calculation. In the simulation
processes considering the centralized model, the base case considered for a distributed
estimator, Figure 20 shows the physical distribution of the system and the number of
partitions in each case.
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5. Conclusions

In this paper a method of partitioning an electrical system based on the concept of
nodal grouping is proposed. The method, in its construction, considers redundancy as a
control metric for the expansion process of the subsystems, which are then applied in the
estimation process.

From the results, it can be concluded that the proposed methodology of partitioning in
a DSE allows for the improvement of the results of the mean square error MSE of the state
variables of the system. However, it is necessary to keep in mind the processing time of the
local estimate due to the partitioning of the system; although there is an improvement in
the MSE, the time can be very long for decision-making in the operation of the system.

A hierarchy of the nodal bus in the system partition process based on the MSE and
processing time allows a SEP to be divided into a greater number of areas, which implies a
reduction in processing time because there is a better distribution of the measures of the
system between the areas of the partition, without producing an increase of the MSE.

From the simulations, it can be additionally concluded that the type of measurement
selected in the method turns out to be relevant in the estimation process; the consideration
of measurements between nodes (power flows) is more relevant in the results than the
measurements at the node (power injection, voltage). The proposed partition and hierarchy
method can be applied as a strategy within the estimation process, since the quality of the
results must be guaranteed, by minimizing the processing time. This, in turn, will account
for a reading of the electrical system within a window of time, thus allowing the OS to
make timely decisions in the operation of the electrical system.
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