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Abstract. The Historic Center of Cuenca (HCC) is located in the southern region of Ecuador. It 
is well known that our country is located on the so-called belt of fire of the Pacific Ocean, this 
area is characterized by having generated the most important seismic events in the history of 
mankind. More specifically, there are records that show that in the last 200 years the city of 
Cuenca has been exposed to earthquakes that have produced moderate to severe damage. These 
reasons make it possible to establish that the city of Cuenca and specifically its historic center 
could present important problems in the face of significant seismic events. Most of the buildings 
in the HCC date back to the middle of the 20th century and have used unreinforced brick masonry 
(brick-URM) to build their walls. This work is part of the Seismic Vulnerability Project: Seismic 
Damage Scenarios of the Built Heritage of the Historic Center of Cuenca. In the context of this 
vulnerability project, the objective of this work was to establish a family of pushover curves for 
three unreinforced brick masonry buildings typical of the HCC, based on a parametric pushover 
analysis. The definition of the typical buildings was based on an extensive work of architectural 
and geometric characterization of the traditional built heritage of HCC. On the basis of focusing 
the study on two-story buildings (the most common), the size of the floor area of the buildings 
(small, medium and large area) was assumed as a base parameter. Based on an analysis of the 
variability of different geometric and mechanical characteristics, and in order to study their 
influence on the pushover curves of the three typical brick URM buildings, the following study 
parameters were defined: 1) compressive strength of brick masonry, 2) lateral displacement 
capacity of brick-URM elements, 3) wall thickness. The pushover analysis was carried out with 
the Ruaumoko program. The model of the buildings responds to an equivalent portal frame 
macro-model scheme that has been formulated and validated by the authors of this paper. In 
order to consider the effects of the flexible floor on the dynamic response of this type of 
structures, a lateral load pattern that takes into account the contribution of higher order modes of 
vibration will be used in pushover analysis. The results will be discussed in terms of the incidence 
of the variability of the study parameters on the basic characteristics of the pushover curves. 
These results will be an essential input for the next stage of the project consisting of damage 
estimation for different levels of seismic action expected in the city. 
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1. Introduction 
The city of Cuenca (located in southern Ecuador) has a high level of seismic hazard. Between 1999 and 
2002, the Red Sísmica del Austro (the seismic monitoring and research center of the University of 
Cuenca, RSA) carried out the P-BID 400 project: Seismic Hazard in the South and seismic vulnerability 
in the city of Cuenca ([1], [2]), which evidenced that its historic center is the area most vulnerable to 
earthquakes. Almost twenty years after this project, the RSA has begun to work on a new study of 
seismic vulnerability study in the Historic Center of Cuenca (HCC), in order to obtain more reliable 
damage scenarios for its built heritage. This study, based on modeling and nonlinear seismic analysis, 
considers the Confidence Factor Method ([3], [4]) as a simplified alternative to account for the 
uncertainty. 

 
Figure 1. Location of Cuenca city, Azuay province, Ecuador. 

Four typologies of URM buildings coexist in the HCC, two traditional and two moderns: adobe-
URM, brick-URM, brick-URM with tie beams and brick confined masonry (figure 2). These typologies 
make up a panorama of low-rise buildings (from one to three stories). The present work dealt with brick 
masonry buildings (BM-buildings), addressing the first two stages foreseen for the study of their seismic 
vulnerability: 1) geometric and mechanical characterization and 2) parametric study of seismic capacity, 
and limiting itself to the most typical case of two-story buildings. 

a) 

 

b) 

 

c)

 

d) 

 

Figure 2. The four typologies of masonry buildings in the Historic Centre of Cuenca: a) unconfined 
adobe masonry; b) unconfined brick masonry; c) brick masonry with tie beams; d) confined brick 

masonry [5]. 

In the framework of seismic vulnerability studies at a territorial scale, characterizing a certain 
typology of a built heritage based on the definition of typical buildings is a very widespread strategy 
([6–12]). Thus, adopting this strategy, the first objective we set ourselves was to establish a catalog of 
typical BM-buildings. To reach it, the floor area was assumed as the main variable, and three categories 
(by size) were established: small, medium and large. Based on this initial classification, the variability 
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of different geometric parameters (e.g., floor shape, aspect ratio, interstory height, wall thickness, layout 
of interior walls) was studied in different ways (e.g., review of different documentary sources, 
consultation of databases, field work). A catalog of typical buildings was the result of the effort to 
capture the typicality (e.g., most frequent cases, mean values) of the geometric parameters considered. 
This whole process is briefly described in the section 3, and more in detail, in [5] and [13]. 

To capture the real seismic performance of a traditional building, it is necessary to examine the 
influence of certain variables (e.g. geometric, mechanical) on their seismic capacity [14]. In this regard, 
the second and main objective of this work is the parametric study of the seismic capacity of three typical 
BM-buildings of the HCC. Taking as main parameter the size of the floor area (basis for the definition 
of the three buildings), the effect of the variability of the parameters wall thickness and compressive 
strength of masonry on the lateral capacity of the established three typical BM-buildings is evaluated. 

2. Description of Equivalent Frame Model used 
The model for nonlinear static analysis pushover used in this work constitutes an implementation in 
Ruaumoko-3D ([15]), which develops the strategy of an assembly of spring-based macroelements 
([16]). In [12] the kinematic and mechanical models of both the wall macroelement and the floor 
diaphragm macroelement are described. In addition, the assembly process is explained with two cases: 
first, a simple building (two stories-one span), and then a complex one; the latter was a typical building 
of the Eixample-Barcelona. Regarding the validation of the proposed macroelements, four walls tested 
under lateral load, selected from the literature, constituted the framework for the validation of the wall 
macroelement (in Ruaumoko-2D).The performance of the floor diaphragm macroelement was examined 
by comparing the results of modal analysis and pushover analysis of the two buildings modeled with 
Ruaumoko against the corresponding results obtained on the buildings modeled with Tremuri ([17]).  

In figures 3 and 4 the basic schematics of both the wall macroelement and the floor diaphragm 
macroelement are shown. Figure 5 shows the model of the simple building studied and the assembly of 
the macroelements. The equivalent frame model of the wall macroelement was based on that proposed 
by [18]. The strength capacity formulas proposed in [19] were adopted for piers. As for the spandrels, 
the formula proposed by FEMA 306 [20] for strength capacity against bending failure and those 
proposed by [21] and [22] for strength capacities against shear failure modes were adopted. The floor 
diaphragm macroelement, inspired by the one implemented in Tremuri ([17]), does not consider the 
flexural component in the deformed shape of the flexible diaphragm. Based on this simplification, its 
behavior was conceived as that of a thin plate with simple shear in the two orthogonal directions, with 
different shear stiffnesses in both directions (depending on the type of the floor system). 

 
Figure 3. Proposed model for non-linear static pushover analysis of URM walls: a) identification 
of piers and spandrels; b) assembly of pier and spandrel macro-elements; c) conformation of the 

generic macro-element [12]. 
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Figure 4. a) Ideal plate under simple shear; b) basic macro-element floor diaphragm to simulate the 

behavior of the ideal plate (for lateral load in the indicated direction) [16]. 

 
Figure 5. a) Assembly of the macro-element floor diaphragm on the system of equivalent frames, 

b) 3D-model implemented on Pavia prototype building [12]. 

It is pertinent to point out that although the equivalent portal frame model was validated in [11] and 
[17], the behaviour of the numerical models proposed in this work was analyzed by comparing results 
obtained in Ruaumoko and Tremuri (section 4.4).  

3. Geometric properties of typical brick masonry buildings of the Historic Center of Cuenca 
The primary sources of information for the global geometric characterization were the Cadastral 
Database of the City of Cuenca (CDCC), and the works of [2] and [23]. Regarding the distribution of 
interior walls, the work of [24] was an important contribution. However, given the great difficulty of 
carrying out inspections inside the buildings, a major effort of archival review was required.  

On the basis of consultations in the CDCC on the territorial area of study, once the typological 
recognition of the buildings (from the wall material) has been carried out, a range of variation of their 
floor areas and three sub-ranges based on their size were established: Small-Area, Medium-Area and 
Large-Area. In addition, typical aspect ratios in the buildings were determined for each of these area 
sub-ranges. The global geometric characteristics (e.g., interstory heights, wall thicknesses) were 
established, in terms of variation ranges, from the review of the works  [2] and [23] and several theses 
of Architecture (University of Cuenca). The establishment of typical distributions of interior walls and 



WMCAUS 2021
IOP Conf. Series: Materials Science and Engineering 1203  (2021) 032123

IOP Publishing
doi:10.1088/1757-899X/1203/3/032123

5

 
 
 
 
 
 

patterns of openings in façade walls were among the objectives of the characterization. The patterns of 
openings in the façade walls were studied from 75 photographic records made in several tours through 
typical streets of the HCC. 

The study of the distribution consisted of a review of part of the physical and digital archive of 
intervention proposals in the buildings of the HCC. A survey formulary was implemented in a database 
and included four information blocks: 1) identification and general information, 2) typological 
characteristics, 3) architectural characteristics, 4) floors and roof. Although the focus was on the 
architectural characteristics block. Finally, in the case of traditional brick buildings, the synthesis of 
these results with those of an architectural nature made it possible to obtain a catalogue of typical 
buildings (figure 6). 

Description Floors Facades 

Small-Area (40 m2 to 120 m2) 
First floor area= 120 m2 
Front to back ratio = 0.50 
Front façade: two vertical 
alignments with door-window 
type openings. 
Ground floor use: commercial 
and residential. 
First floor: housing. 

 
 

Area-Average 
(120 m2 to 200 m2) 
First floor area = 175 m2 
Front-to-back ratio = 0.48 
Front façade: four vertical 
alignments with door-window 
type openings. 
Ground floor use: commercial 
and residential. 
First floor: housing. 

 

Area-Large 
(200 m2 to 300 m2) 
First floor area = 230 m2 
Front-to-back ratio = 0.41 
Narrow front. 
Front façade: three vertical 
alignments with door-window 
type openings. 
Ground floor use: commercial 
and residential. 
First floor: housing. 

 

Figure 6. Typical BM-buildings in the Historic Center of Cuenca [13]. 
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4.  The Analysis 
The capacities of a building in the non-linear range can be studied by means of its capacity curve. This 
representation correlates the displacement of the upper level of the building against its base shear, 
product of the action of lateral forces increasing. In many cases, the use of nonlinear static pushover 
analysis has been preferred over other methods because of its relative ease of application [21]. The 
pushover analysis ends when a target displacement or failure condition is reached. 

4.1. Mechanical characterization of walls and floor system 
Currently, the seismic vulnerability project: Seismic damage scenarios of the built heritage of the 
Historic Center of Cuenca, which is being developed by the RSA, shows results regarding the 
mechanical characterization of the masonry used in the construction of walls of the URM-buildings of 
HCC. The values shown in figure 7(c) correspond to values proposed in the aforementioned project and 
have been used in the present study. 

Floor systems have an important role in the transmission of seismic actions to the different elements 
of a structure. Rigid diaphragms transfer the lateral load to the walls of the structure in proportion to 
their stiffness, on the other hand, flexible floor diaphragms cause the walls to act independently 
depending on their degree of flexibility [25]. The floors and roofs used in the HCC buildings in the late 
19th century and during the 20th century were built with wood as the main material [26]. One-way wood 
floor systems, such as those in HCC, constitute flexible floor systems. The flexible diaphragm model 
used in this work consists of the macroelement outlined in the figure 4. According to [27,28], the value 
of shear stiffness (G) for timber floors in HCC varies between 5 and 20 MPa. In this study, a value of G 
equal to 10 MPa has been established, corresponding to the average of limit values. 

4.2. Considerations about study parameters 
Due to the existence of different types of brick units at the time, a variation in wall thickness ranging 
from 15cm to 30cm can be found [13] to brick-URM in HCC. The brick wall thickness (t) is an important 
parameter in the analysis of the structural capacity of brick-URM buildings, the shear and bending 
resistance of columns and beams is closely related to cross section of walls, therefore, to verify the 
influence of this parameter three values of wall thickness were established: 15, 20 and 30 cm. 

In addition to wall thickness, the compressive strength (f'm) of the masonry has a significant 
contribution to the lateral force capacity of brick-URM buildings. This parameter is directly related to 
the mechanical characteristics of components constituting masonry (brick units, mortar joint). There are 
several empirical expressions ([29–31]) that allow defining f'm as a function of the properties of brick 
units and mortar joint. The f'm values used in the development of this research have been obtained 
employing formulations and following bibliographic research on the characterization of masonry 
developed in the city of Cuenca ([32–37]). An average value of f'm equal to 3.00 MPa was established. 
To determine how much the variability of f'm affects the structural capacity of the brick-URM buildings, 
three values for f'm were specified: 1.50, 3.00, and 6.00 MPa. 

Regarding the lateral displacement capacity of columns and beams, it was considered relevant to take 
into account the multi-linear models proposed in [16], to represent the force-displacement curves of 
springs used in the equivalent portal frame configuration. To establish the F-D curves of elements 
subjected to shear and bending, maximum drift values equal to 0.4 and 0.6, respectively, were used. The 
proposed multi-linear models are capable of describing the response of URM members (columns and 
lintel beams) up to very severe levels of damage [38]. They would give result, therefore, in pushover 
curves on which they could more reliably establish the correlation between damage and performance 
levels. 
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4.3. Validation of the proposed model 
The purpose of this task was, as an additional validation of the proposed model (section 2), to compare 
the results obtained by analyzing the Medium-Area model, with a wall thickness equal to 20 cm, using 
the Tremuri and Ruaumoko programs. The results can be seen in figure 7d, it can be verified that the 
capacity curves show a good correlation using the two programs. 

 
Figure 7. Results comparison: a) Tremuri model; b) Ruaumoko model; c) Mechanical properties of 

masonry; d) Pushover curves. 

4.4. Pushover parametric analysis 
To demonstrate the effect of the variability of t and f’m, on the seismic performance of typical brick-
URM buildings of HCC, the evaluation of 27 structural models that correspond to the variation, as a 
function of the plan area of the prototype buildings, of t and f’m was developed (Figure 9). Each model 
was subjected to a lateral load pattern, proportional to the first vibration mode of the structure, to obtain 
the corresponding capacity curve. 

 
Figure 8. BM-buildings base models implemented in Ruaumoko-3D: a) Small-Area, b) Medium-Area 

and c) Large-Area. 

The pushover analysis of the numerical models was performed in the X direction (figure 8), this 
direction corresponds to the orientation of walls that show lower lateral load capacity compared to walls 
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oriented in the Z direction. Figures 10, 11 and 12 present the pushover curves in the considered direction 
for the small, medium and large area models respectively. 

 
Figure 9. Proposed scheme for parametric analysis of BM-buildings 

 
Figure 10. Pushover curves: Small-Area. 

 
Figure 11. Pushover curves: Medium-Area. 

 
Figure 12. Pushover curves: Large-Area. 
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5.  Results and discussions 
A detailed numericals models were prepared in accordance with the experimental setup, using a macro-
modelling technique for the masonry wall. The models were calibrated and validated in accordance to 
the available experimental results. The influence of the parameters wall thickness and compressive 
strength of masonry on the lateral capacity of typical HCC buildings are summarized in table 1. 

Table 1. Maximum base shear values and variation percentage respect thickness (t). 

t 
[cm] 

f'm 
[MPa] 

Max. Base shear 
Small-Area [kN] 

Max. Base shear 
Medium-Area [kN] 

Variation  Max. Base shear 
Large-Area [kN] 

Variation  
% % 

15.0 1.5 231.5 666.2* - 578.2 - 
20.0 1.5 263.6 798.4 19.85 666.9 15.35 
30.0 1.5 322.2 1066.9 60.15 912.1 57.76 
15.0 3.0 248.8 711.6* - 618.2 - 
20.0 3.0 264.4 854.6 20.09 694.5 12.35 
30.0 3.0 358.9 1133.8 59.32 915.6 48.11 
15.0 6.0 243.9 734.3* - 618.5 - 
20.0 6.0 275.1 887.9 20.93 710.6 14.89 
30.0 6.0 370.9 1172.1 59.64 1007.5 62.90 

* Reference values 

Table 2. Maximum base shear values and variation percentage respect compressive strength (f’m). 

f’m 
[MPa] t [cm] Max. Base shear 

Small-Area [kN] 
Max. Base shear 

Medium-Area [kN] 
Variation  Max. Base shear 

Large-Area [kN] 
Variation  

% % 
1.5* 15.0 231.5 666.2 - 578.2 - 
3.0 15.0 248.8 711.6 6.82 618.2 6.92 
6.0 15.0 243.9 734.3 10.21 618.5 6.96 
1.5* 20.0 263.6 798.4 - 666.9 - 
3.0 20.0 264.4 854.6 7.03 694.5 4.14 
6.0 20.0 275.1 887.9 11.20 710.6 6.54 
1.5* 30.0 322.2 1066.9 - 912.1 - 
3.0 30.0 358.9 1133.8 6.27 915.6 0.38 
6.0 30.0 370.9 1172.1 9.86 1007.5 10.45 

* Reference values         

Taking as reference the maximum base shear with f'm= 1.5MPa, obtained for t= 15cm and comparing 
it with the results for t= 20cm and t= 30cm, we can evidence an increase in the maximum base shear of 
19.85% and 60.15% when t varies from 15cm to 20cm and from 15cm to 30cm respectively.  Similar 
behavior occurs for f'm= 3.0Mpa and f'm= 6.0MPa (table 1). In contrast, variations of f'm (1.5MPa to 
3.0MPa and 1.50MPa to 6.0MPa) for t= 15cm, produce increases in the maximum shear strength in 
percentages equal to 6.92% and 6.96% respectively. The same occurs for values of t= 20cm and t= 30cm 
(table 2). 

6.  Conclusions 
The input parameters for generating models of BM-buildings have been determined from experimental 
test and guidelines available in the literature. Three typical buildings representative of the HCC have 
been modeled and parametrically analyzed. The outputs are pushover curves showing the base shear 
capacity of 27 models. After reviewing the results, we can establish that the most influential parameter 
on the base shear capacity of HCC buildings is the wall thickness. Additionally, it was found that the 
Medium Area model presents the best seismic behaviour. Analyzing the pushover curves of Medium-
Area model, we verified the highest values of base shear and displacement for variations in wall 
thickness - masonry compression strength. This tendency would imply that the architectural distribution 
of walls and floors defined for the Medium-Area model is better and both the base shear and the ductility 
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of the buildings are not a function of floor area. Future work will analyze this aspect in more details, 
and it is proposed to define the influence of wall density on the seismic capacity of the UM-buildings. 
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