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Abstract: The consumption of batteries and cooking oil have been increasing. Most used batteries are
disposed of incorrectly, leading to health and environmental problems because of their composition.
In a similar form, cooking oil, once used, is often released by the discharge reaching the wastewater,
polluting soil, and water, which affects its treatment. In Ecuador, these environmental passives are
recollected and stored without further treatment, which is a temporary and unsustainable solution.
To address this issue, the circular economy concept has gained increasing attention. In this study,
zinc oxide was prepared from discarded batteries using the hydrometallurgical method to use as a
catalyst; it achieved 98.49% purity and 56.20% yield and 20.92% of particles presented a particle size
of 1–10 nm. Furthermore, the catalyst morphology was investigated in an SEM, which showed that
particle size ranged from 155.69 up to 490.15 nm and spherical shapes. Due to its characteristics, the
obtained catalyst can be used in the industry instead of the zinc oxide obtained by mining processes.
These processes are known to produce heavy contamination in the ecosystems and human health.
Additionally, a zinc oxide lifecycle in the environment was analyzed through a material flow analysis
(MFA), taking into consideration two paths, one assuming the disposal of used batteries and the other
assuming the recycling of zinc. Biodiesel was produced with a heterogeneous catalyst. This took place
with a transesterification reaction with used cooking oil, ethanol, and zinc oxide (ZnO) as catalysts.
The biodiesel obtained had the following characteristics: 37.55 kJg−1 of heating power, 0.892 gcm−3

of density, 4.189 mm2/s of viscosity, 0.001% of water content, and a 70.91% yield. Furthermore, the
energy consumption in biodiesel production was quantified, giving a total of 37.15 kWh. This kind of
initiative prevents that waste from becoming environmental pollutants and potential health risks by
giving them a second use as a resource. Moreover, turning waste into a valuable product makes the
processes self-sustaining and attractive to be implemented.

Keywords: biodiesel; circular economy; discarded zinc batteries; used cooking oil; zinc oxide

1. Introduction

Most batteries, alkaline and Zn-C, which are used as power sources of energy for
electronic devices, are not disposable. In recent years, in Ecuador, there has been an
increase in battery consumption. A study in Ecuador in 2020 found that the national
population of 16.8 million inhabitants consumes 17 million batteries, representing a per
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capita consumption of 1.06 kghab−1. Only 1.53 million of these batteries were rechargeable
(9.06%) [1]. It is estimated that 78.15% of the population dispose of batteries in common
garbage, 6.08% burn or bury them, 5.95% keep them in their house, and only 8.21% deposit
them in the proper collection center. This disposal practice leads to the accumulation of
batteries in city landfills and results in pollution problems, particularly in water sources
and soil, due to the leachates containing heavy metals [2–4].

The Ecuadorian Institute of Standardization (INEN) establishes that used batteries in
Ecuador must be handed over to professionals authorized by the Ministry of Environment
or AAAR (Responsible Environmental Enforcement Authority), according to the INEN
2534 standard. The process to be followed from collection to recycling is also outlined by
the INEN [5]. However, unlike in Europe, where directives prohibit the disposal of batteries
through incineration or dumping, there is no law in Ecuador prohibiting these methods [6].
In the city of Cuenca, although EMAC is the public company in charge of garbage collection,
it lacks the initiative to collect batteries separately from other types of waste. In this regard,
ETAPA EP (the public company responsible for water treatment and distribution) has
assumed the responsibility of preventing batteries from contaminating drinking water
sources and the wastewater treatment plant; however, its action is limited [7]. ETAPA EP
collection points gather approximately 35–40 kg of batteries each month. After conducting a
stabilization process, the batteries are confined [7]. This strategy entails logistical problems
such as a lack of space and potential hazards, including the possibility of metal leaching
due to flooding.

An effective waste management program should aim to provide batteries with a final
treatment that needs to be environmentally sustainable and cost-effective. A typical alkaline
battery comprises a zinc anode and a high-density manganese oxide cathode (MnO2). In
contrast, Zn-C batteries are predominantly made of zinc, followed by MnO2. Then, from
this composition, around 33% of zinc and 29% of manganese oxide can be recovered and
used as raw material for industry [8]. Some authors have even succeeded in obtaining zinc
oxide from Zn-C batteries. For instance, one study used sulfuric acid (H2SO4) for reductive
leaching and selective precipitation with NaOH at pH 10 [9]. In contrast, another used an
ionic liquid for battery leachate treatment [4]. Additionally, a third study employed solvent
extraction, electrodeposition, and precipitation methods [10].

Currently, zinc oxide production mainly relies on chemical processes that utilize zinc
as the raw material. Unfortunately, zinc is often mined alongside other metals, particularly
lead, resulting in significant pollution with toxic metals in soil, water, and sediments from
Pb-Zn mines [11]. Mining activities also lead to a substantial release of heavy metals into
the environment, with zinc alone contributing up to 1.38× 106 kgyear−1 in close mining
regions [12]. Such releases have been shown to cause freshwater and marine human toxicity,
ecotoxicity, metal depletion, eutrophication, and soil damages [13]. Zinc is an essential
element in the human body. Nevertheless, its excessive intake causes stomach cramps,
nausea, and vomiting, and long-term exposure can affect cholesterol balance, immune
system function, and fertility [12]. Additionally, heavy metals that incorporate into the
soil can decrease pH, nutrients, and microbial diversity, rendering them unsuitable for
agriculture since they leach into water bodies [12,14]. China, the biggest supplier of zinc
in the world, has several regions next to mines with contaminated soil and water, leading
to health issues for residents [12]. Poland has also contaminated allotment gardens in
closed Zn and Pb mines, with the concentration of metals in soil and crops exceeding
European Quality Standards, resulting in the integration of these contaminants into the
food chain [14]. In Ecuador, mining areas have high concentrations of Zn in nearby rivers,
with levels ranging from 513–2670 mgkg−1. This is due to the discharge of waste generated
during gold and silver extraction processes into the rivers, which carry heavy metals
such as zinc [15]. Furthermore, ecosystem remediation from Zn-Pb mines can cost up to
$ 3.04× 1010 [16].

Another common waste product is cooking oil. It is often taken to be inoffensive; nev-
ertheless, its inadequate disposal can cause significant environmental harm. Typically, it is
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poured down the drain, leading to contamination of water bodies and wastewater treatment
plants, negatively affecting the ecosystem and water treatment efficiency, respectively [17].
The oil forms a layer on the water that obstructs sunlight and limits oxygen absorption,
leading to additional ecosystem damage. Additionally, removing oil from wastewater
can be expensive [18]. In Ecuador, ~54 million liters of discarded oil are generated, and
~70% of this waste comprises vegetable oil [1]. ETAPA EP is responsible for collecting and
managing this waste to avoid water contamination. Still, this action is limited to collecting
and storing the oil and, in some cases, transferring it if an individual or institution requires
it. Storing the oil is not a definitive solution because, in addition to the space problem, there
is, as in the case of batteries, the danger of infiltration where the oil can leak [19]. However,
there are ways to revalue this waste, such as producing biodiesel [20]. This is produced by
transesterification, where used cooking oil triglycerides chemically react with alcohol to
form fatty acid methyl esters [21], see Figure 1.
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Figure 1. Transesterification reaction.

As shown in Table 1 (Inputs 1 to 4), biodiesel production has been extensively studied
using homogeneous catalysts. This type of reaction is characterized by being fast, with
a yield of over 90%. Nevertheless, it has disadvantages such as loss of catalyst and the
need for neutralization. Table 1 also displays several investigations on biodiesel production
utilizing different heterogeneous catalysts, along with 1% or less of the catalyst. The results
indicate that the reaction is highly efficient, with the advantage of recovering the catalyst.
Nevertheless, the reaction is a little slower in some cases due to diffusional mass problems.
One of the catalysts used for the transesterification reaction is zinc oxide, indicated in
Table 1 (Inputs 6 and 7). The use of discarded batteries’ zinc oxide and used cooking
oil for producing biodiesel can effectively reduce the amount of hazardous waste and its
management costs [22]. Biodiesel is a great candidate to replace fossil fuels as a clean energy
source due to its advantages. The main one is that the emission of CO2, CO, unburned
hydrocarbons, and particles is lower compared to fossil fuels. Likewise, the emission of SO2
during the biodiesel combustion process is lower, due to low sulfur content in the biodiesel
raw materials. These emission gases are the main cause of atmospheric pollution. Some
other advantages include the fact that biodiesel can be produced from recycled oils and fats,
can be used directly in diesel engines, and reduce the dependence on fossil fuels [23,24].

This research explores alternative processes that can properly revalorize waste mu-
nicipal organic oil and batteries, which currently need to be managed appropriately. The
proposed approach involves preparing the zinc oxide from discharged Zn-C batteries by a
novel hydrometallurgical method and preparing biodiesel from cooking oil by catalyzed
transesterification. Moreover, a material flow analysis (MFA) is developed to analyze the
inputs, outputs, and storage of materials during 2022. This work evaluates a real sample of
batteries and discarded oil deposited in municipal warehouses contributing to a circular
economy, considering the real conditions in which these are delivered. For instance, dis-
carded oil used in this study is a mixture of various sources from the entire city, such as
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fast-food stalls, local houses, restaurants, etc. In fast food stalls, a highly saturated oil, due
to its reuse, is handed over for recycling.

Table 1. Transesterification condition’s reaction to produce biodiesel with waste oil.

Input Type of Oil
Catalyst

Oil/Alcohol Reaction Time,
min

Yield, % Ref.
Type %

1 Used Frying Oil from Sunflower KOH 1 1:6 60 99.3 [25]
2 Waste Cooking Oil KOH 0.5 1:6 60 93.13 [26]
3 Waste Municipal Organic Oil KOH 1 1:6 90 93.31 [27]
4 Waste Municipal Organic Oil NaOH 0.5 1:6 90 85.96 [27]
5 Waste Cooking Oil CaO 1 1:8 90 96 [28]
6 Refined Palm oil CaO-ZnO 7.5 1:30 120 86.99 [26]
7 Waste Cooking Oil CFA/ZnO 0.5 1:12 180 98.14 [29]
8 Waste Cooking Oil S–TiO2/SBA-15 1 1:15 30 94.96 [30]

Ethanol was employed as the alcohol in all experiments.

2. Materials and Methods
2.1. Characterization and Pretreatment of Discarded Vegetable Oil

The discarded vegetable oil used in this study was sourced from a public company
ETAPA EP in Cuenca, Ecuador. ETAP EP collects discarded oil from restaurants and
households to store oil in an open pool. Before analysis, the sample of discarded vegetable
oil was filtered through Whatman paper No. 40 using a glass funnel to remove residues.
Next, filtered oil was washed with water at 80 ◦C, then left in a decanter. After removing
the water from the decanter, the discarded vegetable oil was heated at 115 ◦C for 4 h to
remove water. A pycnometer determined the density and Equation (1) was applied, where:
ρm: sample density; m0: empty pycnometer weight; m1: weight of the pycnometer with
water; m2: weight of the pycnometer with sample; ρa: water density.

ρ = (m2 − m0)/(m1 − m0)ρa (1)

The Ostwald procedure was used to measure the kinematic viscosity at 40 ◦C, with
water as the reference liquid. The process involved placing 10 mL of distilled water in the
Ostwald viscometer and immersing it in a container alongside a thermometer. The mixture
was then heated until the liquid reached the upper limit A before being allowed to fall to
the lower limit B, and the time taken was recorded alongside the temperature. The process
was repeated with water at room temperature and the treated oil sample. The viscosity
was calculated using the following Equation (2), where: µ: kinematic viscosity; ρ: density;
n: dynamic viscosity.

µ =
ρ

n
(2)

The Karl Fischer titration method was employed to determine the water percentage
in the sample. The sample was first weighed and then added to the equipment, where
an iodine indicator was automatically added while stirring continuously. The platinum
electrode determined the endpoint of the titration, and the percentage of water in the
sample was displayed once all the water in the sample had been consumed.

2.2. Preparation of Zinc Oxide and Characterization

ETAPA EP provided Zn-C batteries, which were used in this study, see Table 2.

Table 2. Battery components.

Component Percentage, %

Zinc (anode) 16.86
Manganese dioxide (cathode) 29.00
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Table 2. Cont.

Component Percentage, %

Carbon 5.71
Mercury 0.01

Cadmium 0.08
Ammonium chloride (electrolyte) 25.76

Plastic and others 22.76

Initially, only batteries in good condition, without rust or spills, were chosen. Subse-
quently, the batteries were disassembled. The zinc case and carbon rods were extracted
by dismantling used batteries. The rods of carbon were immersed in nitric acid of 30%
of concentration for 24 h, followed by washing until achieving a pH~7. Subsequently,
the rods were dried at 110 ◦C for 12 h in an oven to eliminate any remaining water. A
pyrometallurgical method was used to obtain zinc oxide [31] and to lixiviate the zinc case.
To obtain 195.66 g of zinc chloride, 115.6 g of the zinc case was lixiviated at 100 ◦C for
60 min with 300 mL of hydrochloric acid of 37% concentration. Subsequently, 250 mL of
sulfuric acid at 50% concentration was added. The solution was heated at 100 ◦C for an
hour. In order to eliminate the impurities of the zinc sulfate, 500 mL of distilled water was
added. The solution was boiled and filtered through Whatman No. 40 paper. The filtered
solution was allowed to cool and stand at room temperature. Finally, crystals of sulfate
of zinc (231.53 g) were obtained. To obtain zinc hydroxide (231.53 g) from the sulfate of
zinc crystals, sodium hydroxide (Fisher Scientific, USA, assay ≥98.9%) solution of 30% of
concentration was added until a pH of 6.5 was reached; as a by-product, sodium sulfate
(341.46 g) was obtained. The subproduct, sodium sulfate, produced during the process is
of a low concentration and not harmful to health, according to references [32,33]. The zinc
hydroxide was recovered by filtration with Whatman paper No. 40, then dried at 100 ◦C
for 1 h. Finally, zinc hydroxide was calcinated in a muffle at 900 ◦C for 6 h to obtain zinc
oxide. The reactions that occurred are presented as follows.

ZnO + 2HCl 
 ZnCl2 + H20

ZnCl2 + H2SO4 
 ZnSO4 + 2HCl

ZnSO4 + 2NaOH 
 2NaSO4 + Zn(OH)2 ↓

Zn(OH)2 
 ZnO + H2O

In order to prepare the supported catalyst, zinc oxide (0.96 mg) was dispersed in water
at 300 rpm. Then, a dry carbon rod (4.8 g) also recovered from the discarded batteries was
impregnated with the oxide at 230 ◦C to evaporate all the solvent.

Scanning electron microscopy (SEM JEOL IT300) characterized the supported and un-
supported zinc oxide characteristics to determine their superficial morphological and struc-
tural features. The zinc content was determined using atomic absorption with a graphite
furnace (A. Perkin Elmer (Waltham, MA, USA) 3300 spectrometer AA with graphite furnace
HGA 600). A structural characterization was held in an X-ray diffractor Bruker, Billerica,
MA, USA, D2 Phaser, second generation.

2.3. Biodiesel Preparation and Characterization

The ethanol/oil ratio 6:1 was used for transesterification using both supported (ZnO-C)
and unsupported catalysts (ZnO). The catalyst used were 5% WZnOW−1

solution
or 1% WZnO−CW−1

solution. The ratio of ethanol/oil and the amount of catalyst were es-
tablished based on the studies shown in Table 1. To prepare the biodiesel, first ethanol
(98%) and the catalyst (supported or unsupported) were mixed at 300 rpm, 60 ◦C for 20 min.
Then, cleaned used oil was added and stirred for one hours. The resulting mixture was
separated by decantation. After 3 h, the biodiesel was separated from the glycerin. The
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diesel was filtered by Whatman paper No. 42 and washed to recover the remaining catalyst.
Finally, biodiesel was dried at 80 ◦C for 15 min. The process was repeated in triplicate for
each catalyst type.

The entire process, from the disassembly of the batteries to the preparation of the zinc
oxide and the cleaning of the used oil, through the transesterification reaction to obtain
biodiesel, is shown in Figure 2.
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Biodiesel characterization involves the evaluation of five parameters: water content,
specific heat capacity, density, viscosity, and reaction yield. The water content was obtained
by injecting the sample into a Karl Fischer titrator. The specific heat capacity was achieved
through a calorimetric pump. Density was measured by employing the pycnometer method.
Viscosity was determined using the Ostwald method with an Ubbelohde viscometer, as
described in Section 2.1. The reaction yield was calculated by analyzing the fatty acid
methyl esters (FAMEs) for used oil and biodiesel samples. Derivatized samples were
analyzed using gas chromatography to determine the concentration of the FAMEs of
interest. All parameters were compared to three biodiesel standards: ASTM B 100, EN 590,
and INEN 2489 [34–36].

2.4. Material Flow Analysis (MFA)

This analysis focuses on the study of a chemical element, compound, or material based
on the law of conservation of mass. It aims to identify key aspects such as origin, volumes,
generated waste, and emissions produced. Based on this, decisions can be made regard to
resource, waste, and environmental management. In this case, the material to be analyzed is
Zn-C batteries. For this purpose, an exhaustive search was conducted to gather information
on the quantity of batteries from their commercialization up to their final disposal in the
city of Cuenca in the year 2022. The choice of this particular year for analysis is due to the
lack of available data on battery consumption between 2020 and 2021, which is attributable
to the pandemic. Therefore, data on battery consumption were not collected until the
year 2022, as provided by INEN. This information was used to identify flows, stocks, and
processes. Once identified, the transfer coefficient was determined, which indicates the
fraction of substance or material that enters and leaves a process. Equation (3) was used:

CT =
Y1

∑ X1
(3)

where CT: transfer coefficient; Y1: process output mass; X1: process input mass.
This collected information was used to calculate the mass balance using STAN software.

Mass flow data and transfer coefficients were entered into a flow diagram created in
the software.
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3. Results and Discussion
3.1. Zinc Oxide Characterization
3.1.1. Zinc Oxide Color, Purity, and Yield

A white powder of zinc oxide was obtained after applying the procedure mentioned
in Section 2.2. Table 3 displays the results of the catalyst characterization. The purity of the
zinc oxide was 98.49%, which is higher than the purity obtained in other studies that used
the same hydrometallurgical method [31]. The color of the zinc oxide was white, and the
yield obtained was 56.20% [31], which is similar to the yield obtained in this study (54.7%).
However, when alkaline batteries were used, the yield was higher (66.42%) according
to another study [37]. Finally, the nanometric scale fraction of the sample was 20.92%,
indicating no uniform size.

Table 3. Zinc Oxide Characterization.

Characteristic

Color White
Purity, % 98.49

Particle size (1–10 nm), % 20.92
Yield, % 56.20

3.1.2. Zinc Oxide Particle Size

The catalyst morphology was investigated using scanning electron microscopy (SEM).
Figure 3a displays the morphology of pure zinc oxide particles, while Figure 3b shows the
supported zinc oxide. The size of pure ZnO particles ranged from 155.69 nm to 490.15 nm.
The zinc oxide particles in Figure 3b exhibited spherical shapes with slight agglomeration
deposited over the carbon support.
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3.1.3. XRD Analysis

An structural characterization was held in a BRUKER D2 Phaser second generation
X-ray diffractor. Figures 4 and 5 show the diffraction patterns obtained from both the
carbon rod-impregnated ZnO and the ZnO−only sample. The presence of zinc oxide is
verified in these two figures.
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The XRD pattern of the impregnated ZnO sample (Figure 4) revealed 5.68% ZnO.
While the diffraction pattern of the sample of ZnO (Figure 5) presented a composition of
100% ZnO.

3.1.4. Pore Size and Surface Area

The values of pore volume and surface area are shown in Table 4.
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Table 4. Results of coal analysis by BET method.

Description Value

Surface area, m2g−1 1.93
Pore volume, cm3g−1 0.79

According to IUPAC, the pore distribution ranges from macro pores larger than 50 nm,
mesopores between 2 to 50 nm, and micropores smaller than 2 nm. In this case, the coal
falls under the category of mesopores; see Figure 6.
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3.2. Material Flow Analysis (MFA)

A material flow analysis was conducted to analyze the zinc oxide movement in the
environment. Two diagrams are presented, one assuming the disposal of used batter-
ies (refer to Figure 7), and the other assuming zinc recovery from used batteries (refer
to Figure 8).

To conduct the MFA analysis, it was necessary to gather information on the inputs
and outputs throughout the importation and commercialization to the final disposal of the
batteries. The starting point was the quantity of batteries imported into Ecuador in 2022,
which was 2170 tons, according to ITC [38]. According to INEC [39], 79.8% of discarded
batteries was disposed of in the trash, 8.2% was burned, 5.6% was stored at home, 4.4%
was left at collection centers, and 2% was given away or sold. It is worth noting that these
data were collected at the national level, as no specific data were available for the city of
Cuenca. Thus, this information was utilized under the assumption that the population of
Cuenca exhibits the same consumption and disposal behavior as the national average.

According to Figure 7, after consumption, most of the batteries end up in landfill with
1731.66 t/y, and the rest of the batteries are incinerated or stored at home. EMAC EP is
the company in charge of constantly monitoring the physical and chemical properties of
the leachate produced at the Pichacay landfill in Cuenca, especially pH and heavy metals
such as Zn. The pH can indicate the mobilization of dissolved inorganic species or ion
concentrations. The landfill has two leachate zones: North 1 (LN1) and North 2 (LN2).
According to the data provided by EMAC EP, the pH taken during 2022 in the LN1 zone
ranges from 7.8 to 8.8. This is because the leachates in that zone run off from old and
disused cells at the end of the methanogenic or maturation stage. Therefore, they usually
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have a pH higher than 7.5, as in LN1 [40]. On the contrary, the pH value is usually less than
6.5 when the leachate is young. In the case of the LN2 zone, the pH range is between 6.5
and 8.3. Therefore, an increase in pH may be because it has reached a state where there is a
stabilization of the acid production processes [37].
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The Zn concentrations measured in the LN1 and LN2 do not exceed 10,000 ug/L as
seen in Table 5, thus remaining within the ranges regulated by the enforcement environmen-
tal entity. However, it is known that Zn accumulation can become toxic. Some symptoms of
zinc poisoning include fever, breathing difficulty, nausea, chest pain, cough, gastric distress,
dizziness, headaches, and loss of appetite. Furthermore, severe toxicity may cause copper
deficiency anemia and hematological and neurological abnormalities [41,42].
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Table 5. Zn concentration in leachates.

Metal LN1, µgL−1 LN2, µgL−1 Standard, µgL−1

Zn 500.89 1229 100.00

Zinc accumulation can be transferred by various means, such as water, soil, and plants.
In turn, they can enter human bodies by food chains or by direct ingestion. This would
pose a threat to human health [43]. The ingestion of very high doses of zinc can cause
pulmonary lesions, necrosis in the bone marrow, liver, kidneys, and ocular lesions [37].

The data from the second MFA analysis are presented in Figure 8. The input data used
were the same as in the first MFA. However, instead of the used batteries being discarded,
incinerated, or stored at home after consumption, a process of recovery of zinc from the
batteries was performed to obtain zinc oxide. In addition, we took advantage of the other
components of the batteries to give them other uses. For this purpose, information was
collected from each of the components of the battery, as shown in Table 2.

In this case, as shown in Figure 8, after storage, each component of the battery is
separated. The different parts can be reused; for example, Mn can be used as an additive in
ceramics. The amount of Zn was 369.9 t/y and the amount of carbon rod was 130.2 t/y.
From this, the amount of ZnO that could be obtained was 424.37 t/y, thus enabling the
recovery of a large part of the zinc compared to the number of batteries that ended up in
the landfill. In addition to obtaining ZnO, NaSO4 could also be obtained with 49.93 t/y
and HNO3 with 24.96 t/y. Therefore, these substances can be put to other uses instead of
being disposed of. This whole process seeks to reuse all the components and substances
produced both in the dismantling process and for obtaining ZnO.

This process aims to achieve the environmentally friendly recovery of metals, particu-
larly zinc (Zn). This approach aims to minimize environmental and human health impacts,
as evidenced by the reduced levels observed. Generally, the extraction of zinc is usually
performed together with other metals, such as lead, which is known as one of the most
toxic elements. Its extraction process is usually performed in an open pit. Therefore, there
is a greater impact on the environment, especially due to the destruction of native flora and
fauna. In addition, zinc must be separated from other materials, thus energy consumption
is higher. Furthermore, smelting processes are carried out, in which harmful gases are
produced, destroying the ecosystem through atmospheric pollution, and the solid waste
generated ends up in the soil and in water sources [44,45].

3.3. Cooking Oil Processing and Characterization

The process for obtaining recycled cooking oil is provided by ETAPA EP, in which
it is subjected to filtering, washing, and drying, as described in Section 2.1. The treated
cooking oil was characterized to determine its density, viscosity, and water content. The
results of the analysis are presented in Table 6. The density of the oil was found to be
0.9646 gcm−3, which is consistent with the values reported in previous studies such as [46]
(0.921 gcm−3) and [47] (0.9119 gcm−3). Furthermore, the density value is close to the ASTM
D 1298 normative value of 0.96 gcm−3. The viscosity of the oil was determined to be
50.9117 mm2s−1, which agrees with the viscosity values reported in similar studies, that is,
(42.2 mm2s−1) [47] and (50 mm2s−1) [48]. The amount of water present in the sample was
found to be 0.15%.

Table 6. Characteristics of recycled cooking oil.

Oil Characterization

Density, gcm−3 0.965
Viscosity, mm2s−1 50.912
Water amount, % 0.15
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Figure 9 presents the results of fatty acids methyl esters (FAME) determined using GC-
FID. The dominant fatty acid is C18:3 (α-linoleic acid), accounting for 30.54%. Therefore,
all stoichiometric calculations were based on this fatty acid.
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3.4. Biodiesel

In Figure 9 FAME composition is shown in percentage and g/mol. We can observe
that the fatty acid in greater percentage is C18:2 (linoleic acid) accounting for 29.86%.

The results of the prepared biodiesel are shown in Table 7. The heating power for the
prepared biodiesel is a little higher than values in other research, that is, between 35.9 kJg−1

to 37.26 kJg−1 [48,49]. This fact can be attributed to the catalyst, because zinc oxide boosts
heating power in car engines [49]. The density obtained is within the range of 0.89 gcm−3

to 0.9 gcm−3, as established by the INEN 148. The blank density was 0.93 gcm−3 in value,
which is closer to the density of cooking oil. Therefore, without the use of the catalyst,
the conversion was low. The viscosity obtained aligns with the ranges established by the
INEN 2482, ASTM B 100, and EN 590 standards. The blank achieved higher viscosity than
the norm, indicating that the transesterification was incomplete [50]. The water content is
within the range of the INEN 2482, ASTM B 100, and EN 59 standards, demonstrating the
effectiveness of the cooking oil drying process. The yield was 70.91%, surpassing the value
of 49.78% registered in research that used the same catalyst [51]. However, compared to
homogeneous catalysis that employed potassium hydroxide and calcium hydroxide, the
achieved yield was lower, with yields ranging between 92% and 98% [28,52,53].

Table 7. Characteristics of biodiesel.

Biodiesel Characterization

Heating power, kJg−1 37.553
Density, gcm−3 0.892

Viscosity, mm2s−1 4.189
Water amount, % 0.001

Yield, % 70.91

Despite obtaining better yields with other catalysts, zinc oxide is considered the
most suitable catalyst for producing biodiesel due to its ability to reduce the time and
temperature required for the synthesis [54]. Additionally, zinc oxide is a heterogeneous
catalyst that can be easily recovered and does not require additional processes to neutralize
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the final product. Moreover, the performance can be improved by adding other catalytic
phases [55].

Figure 10 presents the process of obtaining biodiesel from used oil using a recycled
catalyst. In Cuenca, it is possible to collect ~38 kg of batteries and ~40 gallons of used
vegetal cooking oil per month, from which 0.984 kg of zinc oxide and 886 L of biodiesel
could be obtained. The process begins by disassembling the collected batteries, and the zinc
plate is then leached with a mixture of acids. The resulting mixture is filtered, neutralized,
and precipitated to recover the oxide. The recycled oil is then washed and filtered to
remove impurities. The biodiesel is produced from the mixture of the resulting oxide, the
prepared oil, and ethanol by transesterification. The final product is decanted to separate
the biodiesel and glycerin.
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4. Conclusions

Obtaining biodiesel from recycled materials is a crucial step towards efficiently man-
aging urban waste produced in Cuenca. If successful, this process could bring mone-
tary benefits to ETAPA EP and promote the concept of a circular economy. This study
transformed two wastes which are considered environmental liabilities into value-added
products. Zinc oxide was obtained from zinc–carbon batteries, yielding 56% and a purity
of 98%. A 5% zinc oxide catalyst was supported on a carbon rod, also recycled from the
stack. The recycled oil was conditioned and characterized; it was determined that the
fatty acid in major percentage was linoleic acid (18:2), 11.29%. The water amount was
0.15%, showing that the drying of the sample was effective. The density was 0.965 gcm−3

and the viscosity was determined to be 50.912 mm2s−1. Both parameters were within
ASTM standards for recycled oils used to produce biodiesel. Better results for obtaining
biodiesel with the pretreated vegetable oil and ethanol in a 6:1 ratio were obtained using
the supported catalyst. The determination of the amount of water, viscosity, and density
was the same as in the case of oil, obtaining the following values 0.005%, 0.892 gcm−3,
and 4.1887 mm2s−1, respectively. These parameters are within the ranges determined by
biodiesel standards INEN 2482, ASTM B 100, and EN 590. The catalyst obtained favored
the generation of biodiesel from recycled vegetable oil and ethanol. This was evidenced in
the reaction yield since when using it, since a yield of 70.91% was obtained compared to
the non-catalyzed blank where the yield was 0.5%. When comparing the yields between
the catalyzed reactions, the yield and viscosity were not significantly different; the differ-
ences were found in terms of density. The supported catalyst allowed easier recovery of
the catalyst.
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The production of biodiesel involves several processes such as the production of
zinc oxide, carbon treatment, and oil treatment. The energy consumption of each of the
involved processes has been evaluated and quantified, resulting in an energy consumption
of 32.9 kWh for obtaining the catalyst and 4.25 kWh for the oil treatment, thus obtaining
the biodiesel sample through the reaction, which gives a total of 37.15 kWh.
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