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Abstract: The effect of stage–discharge (H-Q) data uncertainty on the predictions of a MIKE SHE-
based distributed model was assessed by conditioning the analysis of model predictions at the outlet
of a medium-size catchment and two internal gauging stations. The hydrological modelling was
carried out through a combined deterministic–stochastic protocol based on Monte Carlo simulations.
The approach considered to account for discharge uncertainty was statistically rather simple and
based on (i) estimating the H-Q data uncertainty using prediction bands associated with rating curves;
(ii) redening the traditional concept of residuals to characterise model performance under H-Q data
uncertainty conditions; and (iii) calculating a global model performance measure for all gauging
stations in the framework of a multi-site (MS) test. The study revealed signicant discharge data
uncertainties on the order of 3 m3 s−1 for the outlet station and 1.1 m3 s−1 for the internal stations. In
general, the consideration of the H-Q data uncertainty and the application of the MS-test resulted in
remarkably better parameterisations of the model capable of simulating a particular peak event that
otherwise was overestimated. The proposed model evaluation approach under discharge uncertainty
is applicable to modelling conditions differing from the ones used in this study, as long as data
uncertainty measures are available.

Keywords: catchment modelling; rating curve; GLUE; MIKE SHE

1. Introduction

River discharge measurements are rather important for water resources manage-
ment [1–6] and modelling [7–9]. Despite recent technical progress in direct discharge
measurement, both with regards to on-site [10,11] and remotely sensed [12,13] estimates,
the continuous collection of river discharge information still relies on deriving discharges
from records of water stages. Such approaches are easier and less expensive to acquire than
others and are based on establishing a stage–discharge (rating) curve in a given control
cross-section [3,6,14–17].

Practitioners (and even researchers) commonly rely on rating curves without, however,
considering that there might be considerable uncertainty in their development [12,18,19]
arising from errors incurred while interpolating or extrapolating the rating curve or errors
owing to seasonal (or even man-induced) changes in the control river section [6]. The latter
is particularly true for high ows because they are difcult to measure owing to practical
constraints [2,7], although low ows uncertainty may also be signicant [16]. Moreover,
under certain circumstances, the stage–discharge relationship might not be unique, which
is normally manifested through multiple hysteresis loops in the measures [6,8,15,18,20].

As such, data uncertainty identication [17,21–24] and the assessment of its effects
on hydrological–hydraulic modelling [25–28] is needed. Nevertheless, national and/or
regional meteorological services rarely report data on the rating curve being used or the
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stage being considered. Furthermore, these agencies typically do not assess the fundamental
reliability of such observed data and/or the resulting rating curve [29]. Although signicant
research has been carried out on statistically complex methods for quantifying uncertainty
in discharge data [2,16,17,20–22,24,26,29–34], there has not been abundant research on user
friendly (i.e., simpler) methods for the same purpose. Together, this means there are few
reported applications of the more complex methods in practice (i.e., applications made in
non-research modelling studies), despite the availability of especially dedicated software
(i.e., [26]).

Water resources modelling, whether using probabilistic models and/or machine
learning techniques that highly rely on perfectness of observed data, is of course be-
ing carried out in many practical settings without explicit consideration of discharge
data uncertainties (i.e., [35,36]). Still, signicant research on the implications of data
uncertainty, including stage–discharge uncertainty, on water resources modelling has
come forward more recently. For example, Aronica, et al. [37]; Pappenberger, et al. [38];
Huard and Mailhot [39]; Bales and Wagner [25]; Liu, et al. [40]; Krueger, et al. [41];
McMillan, et al. [42], Domeneghetti, et al. [43], Bermudez, et al. [44], Ocio, Le Vine, West-
erberg, Pappenberger, and Buytaert [2]; Westerberg, Sikorska-Senoner, Viviroli, Vis and
Seibert [33]; and Kastali, et al. [45] collectively constitute some of the recent studies dealing
with the effects of the stage–discharge uncertainty on water resources modelling. However,
nearly all these studies involve the use of complex statistical methods aiming at dening
explicit probability density functions (PDF) of true discharge, which makes difcult to use
them in practice. Furthermore, most of the aforementioned studies have focused on single-
site discharge modelling (except under well controlled experimental conditions [41]), which
is a limitation when evaluating distributed model predictions in real-world applications.

In this context, the research questions that motivated the current study are as fol-
lows. (i) Is there a simple yet accurate way for estimating the uncertainty associated
with the stage–discharge data under non-research conditions? (ii) Is it feasible to adapt
commonly used model evaluation approaches that explicitly consider stage–discharge
uncertainties without the use of a complex statistical framework? (iii) Is it possible to
expand such model evaluation approaches by considering the prediction of discharges
at different sites within the modelling domain (multi-site (MS) evaluation test)? (iv) Is it
feasible to improve model identication (or model rejection) with regards to the applica-
tion of conventional model evaluation approaches that do not take into account explicitly
stage–discharge uncertainties?

Correspondingly, the objectives of this study focused on: (i) adapting a conventional
model evaluation protocol by considering simple approaches to explicitly account for
stage–discharge uncertainties over multi-site discharge simulation; and (ii) applying the
suggested model evaluation approaches to a distributed modelling of the study catchment.
The methodological approach tested included (a) estimating stage–discharge (H-Q) data
uncertainty using prediction bands associated with the rating curves; (b) redening the
traditional concept of residuals to characterise model performance under H-Q data uncer-
tainty conditions using likelihood measures based on residuals; and (c) calculating a global
model performance measure for all the gauging stations in the framework of a MS test.

While the main aim of this paper was to work out a simple way of estimating stage–
discharge uncertainty and its implication in hydrological modelling, the intention of the
authors is far from suggesting to the reader that the use of more complex statistical ap-
proaches for the same purpose should not be considered. On the contrary, given their
elaborated statistical background, these more complex statistical approaches are likely to
be more accurate than the simpler approaches suggested in this paper. Nevertheless, facing
the possibility of not applying any stage–discharge uncertainty assessment in non-research
hydrological modelling, the approaches herein developed may be an acceptable alternative
for practitioners (and even researchers) depending on the modelling objectives at hand.
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2. Materials and Methods
2.1. The Study Site

The Gete catchment (Figure 1) has a surface area of about 586 km2. It is formed by the
Kleine Gete (260 km2) and the Grote Gete (326 km2) sub-catchments. Elevation of the study
area ranges from approximately 27 m in the north to 174 m in the south. Land use is mainly
agricultural, with a predominance of pasture and cultivated elds while some local forested
areas are also present. The catchment area is covered by nine soil units comprising loamy
(predominant), sand-loamy, and clay soils, as well as soils with stony mixtures. Moderate
humid conditions are observed in the catchment. The reader is referred for instance to [46]
for additional details about the characteristics of the study site.

2.2. Hydrometeorological Data

Different hydrometeorological records were available for the current modelling, in-
cluding discharge (Q) data derived from stage (H) observations on the basis of rating
curves [47] for the Gete and Kleine Gete stations, both located at Budingen, and for the
Grote Gete station, located at Hoegaarden (Figure 1). Furthermore, the set of original
measures that were used to dene the H-Q rating curves of the gauging stations Gete and
Kleine Gete were also available for this study. Observations were collected at the following
intervals: (24 January 1983–31 May 1995) for the Gete station and (4 June 1985–31 May
1995) for the Kleine Gete station. A total of 49 stage–discharge observations were available
for the Gete station and 38 observations for the Kleine Gete.

Figure 1. Spatial distribution in the study site of the stream gauging stations and wells used in model
calibration and evaluation (after [48]).

The Flemish Administration for Environment, Nature, Land, and Water (AMINAL),
Division WATER, was responsible for the collection of discharge related data at the Gete
and Kleine Gete gauging stations. The Grote Gete station, on the other hand, was managed
by a different water authority, namely the Service for Hydrological Research (DIHO) of the
Ministry of Public Works. Information on the discharge measures to dene the Grote Gete
rating curve was not available for this study.

In this context, Figure 2 shows the distribution of the sampled points for the Gete
and Kleine Gete gauging stations. Henceforth, for either station, although there is a higher
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concentration of low ow observations, there is also an acceptable number of mid-ow
and high ow observations, which is not typical. This rather uniform distribution of
sampled points (i.e., gaugings) throughout most of the range of discharges is likely to
produce uncertainty bounds that are also rather uniform without a signicant accentuation
for larger ows. Furthermore, no data loops or hysteresis were perceived for the set of
observations available, which supports the use of relatively simple expressions of the
relationship between H and Q at these gauging stations.

0.3

0.7

1.1

1.5

1.9

2.3

1 3 5 7 9 11 13 15 17 19

H
[m
]

Q [m3 s−1]

Gete: rating curve

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8

H
[m
]

Q [m3 s−1]

Kleine Gete: rating curve

Observations
90% data bound
H-Q rating curve

(a)

(b)

0

5

10

15

20
0

10

20

30

40

50

60

70

80
Mar-85 May-85 Jul-85 Sep-85 Nov-85 Jan-86 Mar-86

D
is
ch
a
rg
e
[m

3
s
-1
]

A
re
a
l
ra
in
fa
ll
[m
m
]

Date

Gete: H-Q uncertainty estimate

0

1

2

3

4

5

6

7

8 0

10

20

30

40

50

60

70

80
Mar-85 May-85 Jul-85 Sep-85 Nov-85 Jan-86 Mar-86

D
is
c
h
ar
g
e
[m

3
s-
1 ]

A
re
a
l
ra
in
fa
ll
[m
m
]

Date

Kleine Gete: H-Q uncertainty estimate

90% Data band
Background
Rainfall
H-Q rating curve

Figure 2. Rating curves and associated 90% prediction intervals and estimated hydrograph and
associated data uncertainty band for (a) the Gete station; and (b) the Kleine Gete station.

2.3. The Hydrologic Code

The MIKE SHE code [49] was used for the integral hydrological modelling of the
study site. It is a deterministic-distributed code that is used and described in a wide range
of applications [9,50–52]. It is capable of simulating interception (Rutter model), actual
evapotranspiration (ETact; Kristensen and Jensen model), overland ow (two-dimensional,
kinematic wave), channel ow (one dimensional, diffusive wave), ow in the unsaturated
zone (one dimensional, Richards’ equation), ow in the saturated zone (two- or three-
dimensional, Boussinesq equation), and exchange between aquifers and rivers. When
using MIKE SHE in a catchment-scale framework, it is implicitly assumed that smaller
scale equations (e.g., those that are embedded in the mathematical structure of MIKE SHE)
are also valid on a larger (catchment) scale through the use of effective model parameters
that implicitly perform an upscaling operation from eld conditions. The MIKE SHE
hydrological model uses a square-grid nite difference simulation scheme.

2.4. Estimating the Uncertainty Attached to Stage–Discharge Data

Here, we present a simple approach to estimate the uncertainty of discharge data
available for the hydrological modelling considered. Since the components of the general
modelling evaluation approach are independent of the uncertainty estimate approach, the
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reader is free to apply any other relevant procedure for deriving discharge uncertainty
estimates (i.e., [2,16,17,20–22,24,26,29–32,34]) or use already existing uncertainty estimates.
Nevertheless, owing to its simplicity compared to much more complex stochastic methods
reported in literature, the current uncertainty estimate approach is likely to be a suitable
approach for most practitioners and researchers.

Originally,Qwas derived fromH observations based on rating curves, whichwere obtained
through regression analysis [47] by considering the following general polynomial expression:

Q =
i=l

∑
i=0

ai(H − H0)
ei (1)

whereQ [L3 T−1] and (H −H0) [L] are regression variables, ai is the ith regression coefcient
[L3−ei T−1], ei is the ith regression exponent [––], i is an integer index [––], and l is an integer
value dening the polynomial order [––]. H0 is a lower stage benchmark [L], above which
the rating curve is acceptably described by Equation (1). Q, (H − H0), and ai are positive
real numbers. When ei is a positive integer number, then Equation (1) is the expression
for the polynomial regression of order l. When ei adopts any positive real value, a1 6= 0.0
and ai = 0.0 for i 6= 1, then Equation (1) is the expression for the power regression. Qwas
considered as the dependent variable, whilst (H − H0) was treated as the independent
variable. Equation (1) was used in the current study by considering observational data
originally utilised to derive the rating curve [47].

Since the aim of dening the rating curve is to use it for predicting Q for future H
values, its prediction interval for a 90% condence level was used herein as an estimate of
the data uncertainty attached to the H-Q relationship (Figure 2). The prediction interval
(always wider than the condence interval) represents the range within which the true
discharge value can reasonably be expected to be found for a particular future value of
H. The choice of the form of the regression method is ultimately the responsibility of the
modeller and depends on the problem being considered. However, the prediction interval
of the chose regression method could be used to estimate discharge data uncertainties as is
done in here.

The above approach was applied to the Gete and Kleine Gete stations where appro-
priate information was available. The approach was not applied in the case of the Grote
Gete station since adequate information on its rating curve denition was not available.
Consequently, prediction (i.e., uncertainty) bounds could not be estimated in a similar way
for this station. Instead, a constant data uncertainty interval was assumed using the average
prediction interval width obtained for the Kleine Gete station. This interval was slightly
increased (subjectively, by 10%) to reect broader uncertainty associated with this case.

Data regression and the estimation of the prediction intervals were carried out using
different software to cross check results and prepare gures. These included R®, Statistica®,
StatGraphics®, and MS-Excel®. Furthermore, Practical Extraction and Report Language
(PERL) subroutines were prepared for both processing information prior to the statistical
analysis as well as for processing the results of the regression analyses and dening the
time series of prediction bounds to be used in the hydrological modelling. Moreover,
GNUPLOT® [53] was used in conjunction with PERL for automatic plotting purposes to
display results.

2.5. Initial Parameterisation of the Hydrological Model

In the following, an overview of the study site model is presented. For additional de-
tails, the reader may consult Vázquez, Feyen, Feyen, and Refsgaard [46]; Vázquez et al. [54];
or Vázquez and Hampel [52].

Spatial variation of precipitation in the study site was captured using Thiessen poly-
gons dened for seven rainfall stations. Potential evapotranspiration (ETp) was estimated
by combining crop coefcients (Kc) and the crop reference (i.e., grass) potential evapotran-
spiration (ET0), which was in turn estimated by means of the modied Penman FAO-24
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method [48]. Literature [48,49] values were adopted and assumed being constant for the
parameters of the actual evapotranspiration (ETact) module of MIKE SHE [49].

A Bilinear interpolation method [49], available in the MIKE SHE interface, was used
to dene the digital elevation model (DEM) of the study catchment using available point
elevation data. The MIKE SHE river model was based on interpolation and extrapolation
of a few measured stream proles. River and overland ow roughness was represented
using Strickler coefcients adopted from literature [55]. Average values for river reaches
were in the order of 20 m1/3 s−1 (i.e., about Manning’s n = 0.05 s m−1/3), which is a typical
value for winding natural streams and channels with weeds and pools. For overland
ow, Strickler values were dened in correspondence with vegetation cover and land
use, ranging between 2 m1/3 s−1 (n = 0.5 s m−1/3, light underbrush) and 10 m1/3 s−1

(n = 0.1 s m−1/3, natural range) with most simulation cells having a value of 6 m1/3 s−1

(about n = 0.17 s m−1/3, dense grass/crops).
Land use spatial and temporal variation was explicitly considered in the model.

Literature-based values [48] were used for root depth and leaf area index. Accurate
information was available for delineating the spatial extent of the 9 soil units included in the
study catchment and for assessing the hydro-physical characteristics of each unit. Thus, soil
parameters were not included in the calibration analysis to avoid potential complications
due to over-parameterisation.

Nine geological units form the lithostratigraphy of the study catchment [46]. Only
two of them (Quaternarian, Kw, and Landeniaan, Ln) are in direct contact with most of
the river network. Aquifers were given no-ow boundary conditions coincident with
the topographical divide since no suitable measures were available to assess the real
groundwater divide.

The study site was subdivided in grids with a resolution of 600 × 600 m2 [46]. This
is a coarse discretisation for the purpose of describing accurately hillslope dynamics;
however, the number of grid elements used in this study (ngr = 1629) is larger than what
has been used in some previous similar applications of MIKE SHE (i.e., [50]), where the
number of modelled geological layers (6, after a simplication of the observed vertical
succession of units [46]) created a complex arrangement of calculation grids leading to a
large computational time for every model run. Consequently, a short six-month calibration
period (1 March 1985–31 August 1985) was chosen preceded by a six-month spin-up period
for attenuating the effects of the initial conditions. The evaluation period was xed as
(1 September 1985–1 March 1986). The simulations were made in a single run for every
considered parameter set to ensure continuity of uxes and internal state variables among
the three periods. Furthermore, the initial conditions were the same for all simulations.

Drains were specied in the model to account for small canals and ditches present on a
scale smaller than the modelling scale. Drainage is assumed proportional to the difference
in level between the water table and the drainage depth (zdr) and is routed to streams with
a velocity determined by the reciprocal time constant (Tdr). This routing and time constant
inuences the peak of the hydrograph [46], while the drainage depth has more inuence
on its recession. Both drainage parameters were considered in model calibration.

Additionally, the hydrogeological parameters (Kx and Kv, the horizontal and vertical
saturated hydraulic conductivities; and Sy, the specic yield) of the Kw and Ln layers were
also included in the calibration analysis since they likely inuence the simulated hydro-
graph owing to river–aquifer interaction. Although the calibration of the hydrogeological
parameters of all the geological units was considered through the piezometric information
at different locations within the study catchment (Figure 1), this aspect is not covered in the
current manuscript as we are exclusively focussing on river discharge simulation.

2.6. Model Calibration, Validation and Sensitivity Analysis

Model calibration, evaluation, and sensitivity analysis were implemented through the
combined deterministic–stochastic generalised likelihood uncertainty estimation (GLUE)
framework [56]. GLUE calculates prediction limits that produce a prediction band through
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Monte Carlo simulations for which multiple parameter sets are sampled out using prior
density distributions. Model predictions are then compared to observations for every
parameter set. Parameter sets that produce acceptable predictions (i.e., those that produce
model performance statistics exceeding a specied threshold) are retained in the analysis
since they are considered behavioural. Finally, for a given level of condence, the distribu-
tion functions of both the model parameters, as well as the predicted variables of interest,
can be calculated.

A Bayesian-type approach can be used in GLUE to update the likelihood weights and
estimated prediction bands:

Lp(Ωi|O ) =
LO(Ωi)LO(Ωi|O )

CGL
(2)

where, for the ith parameter set, LO(Ωi) is the prior likelihood distribution; LO(Ωi|O) is
the likelihood measure, provided in the new observations (O) and computed in the newer
period of observations; and Lp(Ωi|O) is the posterior likelihood distribution. CGL is a
scaling constant that enables the summation of the posterior likelihood measure of the
behavioural simulations equal to one.

Independent uniform distributions were assumed for all parameters considered as a re-
sult of the lack of knowledge on the prior parameters distribution. In total, 15,000 parameter
sets were sampled. This can be considered as an acceptable number given the relatively
small number of model parameters included in the analysis and provided that the average
simulation time of a MIKE SHE model run was about 1.25 h (using a single model license
in a conventional PC) in light of the complexity of the model of the study site.

In this study, different likelihood measures were computed to characterise the model
performance to explore the exibility of the proposed approach. One of them is proportional
to the Nash and Sutcliffe efciency coefcient [57]. This coefcient was mainly used for
comparison purposes to similar research as it is commonly assumed to give an acceptable
measure of the combined systematic and random error [46]. The Nash and Sutcliffe
efciency coefcient is dened as:

LO(Ωi|O) 


1−

∑
i
(Pi −Oi)

2

∑
i

(
Oi −O

)2


 =

[
1− σ2i

σ2obs

]
= EF2 (3)

where Pi is the ith model prediction by the model; Oi is the ith observation of interest (in
the current study, derived from the rating curve); O is the mean value of the observations
in the period of simulation; σ2obs is the observed variance; and σ2i is the error variance for
the model. EF2 varies between − and 1.0; its optimal value is 1.0, whilst negative values
indicate that the model performs worse than the mean value of the observations.

Legates and McCabe [57] proposed E1 (the modied coefcient of efciency) as a
modication of the EF2 index to reduce oversensitivity to the simulation of peak events by
using the absolute value of the residual (i.e., resi = the distance between Pi and Oi), rather
than its square. This second likelihood measure was formulated as:

E1 = 1−
∑
i
|Pi −Oi|

∑
i

∣∣Oi −O
∣∣ (4)

A third likelihood measure that may be used as an alternative to the EF2 or E1 indexes
is considered proportional to the linear fuzzy measure (Figure 3) and does not depend
on residual values. For a given ith instantaneous Ti (Figure 3a), lOi (lower than Oi) and
uOi (greater than Oi) are the ith (data uncertainty) characteristic values associated with
Oi. Then, as shown in Figure 3b, any associated distribution density function may be
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“approximated” through a triangular “linear” fuzzy distribution (LFuzzy) on the basis of
the parameters afz and dfz, besides Oi, lOi, and uOi.

Figure 3. Schematic description of the linear approach that was used for dening (a,b) the linear
fuzzy (likelihood) measure (LFuzzy) and (c) the residual reduction fraction (wlk).

Thus, a simple linear equation may be used to assess the value of LFuzzy and, as such,
of model performance. It should be noted that, since |Oi − lOi| and |Oi − uOi| may be
different, LFuzzymay approximate any skewness present in the original probability density
function. Furthermore, since LFuzzy is used as an alternative likelihood measure, dfz adopts
the value of 1.0 (while 0 < afz < 1.0), which negates the concept of density function attached
to LFuzzy, as the area under the curve is not equal to unity anymore. An arbitrary value
of afz = 0.1 was used throughout the study, implying a low likelihood value (i.e., a severe
penalty) for Pi departing from Oi, even though not yet out of the data uncertainty band.

The likelihood measure associated with a particular simulation (i.e., to a particular
model parameter set) was then dened as the mean value of all of the (LFuzzy)i values
corresponding to the different ith instantaneous Ti values that are included in the simulation.
Nevertheless, it should be noted that any other type of fuzzy function besides triangular
may be used as an alternative likelihood measure. Pragmatically, the linear type is preferred
here because it is easier to program.

Thus, any of the above two likelihood measures (EF2 and E1), or any other index
that is based on the explicit consideration of residuals, can be used to evaluate model
performance, although with no explicit consideration of the discharge data uncertainty.
There is then the need of a (simple) procedure to include data uncertainty considerations
in the evaluation of model performance using residuals. This could be accomplished,
for instance, by using a residual reduction fraction (wlk) since, given the data uncertainty
associated with the “observations”, the residual should not be any longer entirely based on
the distance between an “observation” and the respective predicted value. Otherwise, we
might refuse combinations of model structures and parameters that should be retained and
accept others that perhaps are not superior. Ultimately, the aim of the modelling should
be to obtain predictions that are within the data uncertainty band rather than obtaining
predictions that “match” perfectly “observations” whose values are uncertain.

Hereafter, LFuzzy (Figure 3c) was not only used for calculating a third likelihood
measure, but also to dene wlk linearly varying within the data uncertainty band. Outside
this uncertainty band, however, the traditional denition of the residual was accepted. That
is, outside of the data uncertainty band, wlk = 1.0 (Figure 3c). In this context, the relaxed
version of the residual was dened as the product of (wlk)i and resi. Then, any model
quality index based on residuals, such as EF2 or E1, or any other index which the modeller
is familiar with, may be evaluated using this relaxed value of the residual to account for
data uncertainty.
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Behavioural sets were dened upon a likelihood threshold for the calibration period
that, independent of the likelihood measure, was taken equal to 0.5. Upon this prior
likelihood distributions, a rst prediction band was dened.

More in accordance with the distributed nature of the current hydrological model,
a multi-site (MS) validation test [46] was performed using in model validation observa-
tions from gauging stations distributed throughout the modelling domain that were not
considered during model calibration. This represents a more stringent evaluation of the
model as compared to an evaluation based solely on a traditional split-sample (SS) test. MS
validation testing has two main implications in the scope of the GLUE methodology. On
the one hand, a more relaxed likelihood threshold should be used as compared to the value
adopted in a simpler SS test. On the other hand, the likelihood measure that characterises
the quality of a particular simulation should be redened so that the assessment includes
predictions at multiple sites (and/or multiple simulated variables).

Hereafter, the likelihood threshold was set as 0.5 for the calibration period. However,
if LO(Ωi) = 0.5 (i.e., characterising a behavioural simulation in the calibration period) for
a given ith model run and the prediction ability of the model is also the same for the
validation period (i.e., LO(Ωi|O) = 0.5), then the numerator of Equation (2) would equal
to 0.5 × 0.5 = 0.25, implying a drastic reduction in the resulting likelihood distribution
(Lp(Ωi|O)). For this condition, the respective parameter set would not be retained in the
analysis (notwithstanding the model has the same predictive ability in the evaluation
period as compared to the calibration period). This, therefore, encouraged adopting a
likelihood threshold equal to 0.25 for the evaluation period.

Furthermore, a global likelihood measure (GL) was estimated encompassing the
predictions for every one of the three gauging (discharge) stations:

GLj =

k=m
∑
k=1

wstk.(LLk)

k=m
∑
k=1

wstk

(5)

In Equation (5), j is a particular parameter set (with j = 1, 2, 3, . . . , N), m is the total
number of (discharge) data stations considered in the analysis, LLk is the local likelihood
measure for the kth data station, andwstk is a weighting factor that explains the contribution
of LLk to estimate GLj. The term wstk, dened subjectively so that the denominator of
Equation (5) equals unity, accounts for data accuracy (uncertainty) and importance of the
discharge station in the context of the modelling objectives. Combining these aspects, wstk
for m = 3 was (subjectively) given the values 0.15 (Grote Gete), 0.25 (Kleine Gete), and
0.60 (Gete).

3. Results
3.1. Uncertainty Attached to the Stage–Discharge Data

Figure 2 shows the distribution of the sampled points, upon which the rating curves
and their associated prediction intervals were derived for both the Gete station (Figure 2a)
and the Kleine Gete station (Figure 2b). The gure includes the respective rating curve
as well as the prediction interval associated with the curve. The rating curve of the Gete
station is Q = −0.0394 + 6.0670(H − 0.10) + 1.1948(H − 0.10)2 with r2 = 0.97; for the Kleine
Gete station, the respective regression curve is Q = 3.1873(H − 0.18)1.11208 with r2 = 0.97.

As expected from the total amount of observations and the fact that a relatively good
set of peak observations were available to derive the rating curves (Figure 2), the width
of the prediction bands is rather uniform along the range of variation of the observed
discharge, which is not the common case [6,7,43]. However, this has also been observed in
some of the results of Kiang, Gazoorian, McMillan, Coxon, Le Coz, Westerberg, Belleville,
Sevrez, Sikorska, Petersen-Øverleir, Reitan, Freer, Renard, Mansanarez, and Mason [34].
The average width of the prediction interval for the Gete station is about 3 m3 s−1. For the
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Kleine Gete station, this width is approximately 1 m3 s−1. As already stated, a similar and
constant discharge uncertainty interval width (i.e., 1.1 m3 s−1) was assumed for the Grote
Gete station. The use of the discharge data derived from rating curves for assessing the
model performance implies a signicant modelling uncertainty that must be addressed
at the moment of evaluating model predictions. Figure 2 shows the time evolution of the
discharge prediction band throughout the modelling period for these two gauging stations.
These hydrographs are plotted along with the areal hyetograph for a visual comparison of
the time evolutions of the “observed” discharge and the catchment-areal rainfall.

3.2. Model Calibration, Validation and Sensitivity Analysis

The scatter plots of behavioural parameter sets (target: EF2 = 0.5) are shown in Figure 4
for the calibration period [1 March 1985–31 August 1985]. These were developed after
conditioning analysis only on the stream discharges observed at the outlet of the study
catchment, without including the analysis of the H-Q data uncertainty. In total, 4234 sets
were considered behavioural upon the use of the EF2 index. Out of the 15,000 parameter
sets considered, only 47 produced models whose simulations failed due to instabilities.

Figure 4. Scatter plots of behavioural parameter sets (EF2 target was 0.50) for the calibration period,
after conditioning based on the observed streamow at the outlet of the catchment. H-Q data
uncertainty was not included in the analysis. After [52,54].

Figure 5 illustrates the scatter plots of behavioural parameter sets for three out of the
eight inspected parameters for the validation period (1 September 1985–1 March 1986)
(likelihood target of 0.25, although the plots start at the value of 0.30) and after conditioning
the analysis on discharges observed at the outlet of the study catchment. These plots were
obtained: using the EF2 index and without considering H-Q data uncertainty in the analysis
(Figure 5a); using the EF2 index and considering H-Q data uncertainty (Figure 5b); using
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the E1 index and considering H-Q data uncertainty (Figure 5c); and using LFuzzy and
considering H-Q data uncertainty (Figure 5d).

Figure 5. Scatter plots of behavioural parameter sets (likelihood target was 0.25), for three of the
inspected parameters, in the validation period (after the Bayesian-type update of likelihood measures)
and after conditioning based on observed streamow at the outlet of the catchment: (a) using the
EF2 index and without considering H-Q data uncertainty in the analysis; (b) using the EF2 index
and considering H-Q data uncertainty in the analysis; (c) using the E1 index and considering H-Q
data uncertainty in the analysis; and (d) using the linear fuzzy likelihood measure (LFuzzy) and
considering H-Q data uncertainty in the analysis.

Figure 5 compares the effects of the H-Q data uncertainty on the outcomes of the
modelling (i.e., Figure 5a,b), as well as the shape of the parameter distributions as a
function of the considered likelihood measure (i.e., Figure 5b–d). The results presented
in Figure 5b,c point to the relaxation of the simulation residuals, owing to the H-Q data
uncertainty, as explained in the methods section.

Figure 5 shows that, in general, for a given model structure, a consideration of the H-Q
data uncertainty in the analysis leads to higher values of the likelihood measures owing to
the relaxation of the modelling residual as a function of the H-Q data uncertainty. This, in
turn, then leads to a higher number of behavioural simulations (i.e., parameter sets). On the
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other hand, Figure 5 illustrates that, in general, (i) the trends of the parameter distributions
are similar for all of the likelihood measures tested; (ii) there is a signicant difference
between the magnitudes of the values of the EF2 and E1 model performance coefcients,
suggesting that the E1 coefcient is indeed less affected by the correct simulation of some
peak ows; and (iii) the magnitudes of the values of the LFuzzy measure are similar to the
ones obtained with the E1 index (and the modied concept of modelling residual).

In addition, a comparison of the three lower scatter plots of Figure 4 (for the calibration
period) and Figure 5a (for the validation period) reveals the effect of the Bayesian-type
update of the parameter distributions. Specically, there was a signicant reduction in
the number of behavioural simulations, despite similar shapes of the respective parameter
distributions in either simulation period. It should be noted that, for a given model, this
reduction takes place in the validation period (i.e., when new observations are available)
and does not necessarily represent a reduction in the ability of the model to predict the
hydrology of the modelled catchment in the validation period. It is particularly relevant
given the implications of the multiplicative form of the numerator of the Bayesian-type
update of the parameter distributions (Equation (2)).

Figure 6 shows the scatter plots of behavioural parameter sets for three of the parame-
ters considered in the validation period with a likelihood target of 0.25, after conditioning
the analysis on stream discharges observed at the outlet of the study catchment and at
two internal locations (i.e., a multi-site (MS) validation test). These consider the H-Q data
uncertainty using the EF2 index (Figure 6a), using the E1 index (Figure 6b), and using
LFuzzy (Figure 6c).

Figure 6. Scatter plots of behavioural parameter sets (likelihood target was 0.25), for three of the
inspected parameters, in the validation period [1 September 1985–1 March 1986], after conditioning
based on observed streamow at the outlet of the catchment and at two internal locations (i.e., a
multi-site (MS) validation test) and considering the H-Q data uncertainty: (a) using the EF2 index;
(b) using the E1 index; and (c) using the linear fuzzy likelihood measure (LFuzzy). “G” denotes that
the likelihood measure is “global” (MS test).
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Figure 6 illustrates the effect of the distributed evaluation of model performance as a
function of likelihoodmeasure used in the current study. Thus, a comparison of Figure 5b–d
with Figure 6a–c, respectively, illustrates a marked reduction in the number of behavioural
simulations (i.e., of parameter sets) when carrying out the MS validation test relative to
traditional validation taking place only at the outlet of the simulated catchment. This is
the case when using both the EF2 and E1 indices. Therefore, Figure 6 emphasises that the
MS test is normally a more critical evaluation for distributed models. In addition, despite
the signicant low number of behavioural simulations, the parameter distributions after
the MS validation (Figure 6) are practically the same as the ones obtained after traditional
validation (Figure 5).

Figure 7 depicts the 90% streamow prediction limits for the Gete station in the
validation period using both prior (likelihood target: 0.50) and posterior (likelihood target:
0.25) likelihood distributions. These are after conditioning based on observed streamow
at the three study gauging stations and considering the H-Q data uncertainty using the
LFuzzy likelihood measure (Figure 7a,b) and the EF2 index (Figure 7c,d).

Figure 7. Ninety percent streamow prediction limits (the Gete station) in the validation period
[1 September 1985–1 March 1986], using both prior (likelihood target was 0.50) and posterior (likeli-
hood target was 0.25) likelihood distributions, after conditioning based on observed streamow at
the three study gauging stations (i.e., the multi-site test) and considering the H-Q data uncertainty:
(a,b) using the LFuzzy likelihood measure and (c,d) using the EF2 index.

In general, Figure 7 shows the effect of the Bayesian-type update of the prediction
band (Equation (2)) on the availability of newer observations for the validation period.
Nevertheless, the effect is different as a function of the likelihood measure considered and
the approach followed to account for the H-Q data uncertainty. In this context, Figure 7a,b,
based on the LFuzzy likelihood measure, depicts only a minimum effect on the width of
the prediction band after the application of Equation (2), whilst Figure 7c,d, based on the
EF2 likelihood measure and the relaxation of the modelling residuals, shows a signicant
reduction in the width of the prediction band, after the application of Equation (2).

Furthermore, either prediction band obtained before the application of the Bayesian-
type approach (Equation (2)) illustrates that the parameterised MIKE SHE structure had
certain problems to simulate the peak event occurring at about the end of January of 1986.
This is seen since both the “observed” peak, as well as the respective H-Q uncertainty
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band, were overestimated by the behavioural simulations. However, once the posterior
distribution was dened through the application of Equation (2), Figure 7d based on EF2
and the relaxation of the concept of modelling residuals illustrates that the few remaining
behavioural parameterisations of the MIKE SHE structure (i.e., Figure 6a) simulated this
peak event without losing that much simulation precision for the rest of events. This is true
even though these remaining model parameterisations (26 when EF2 was used or 14 when
E1 was used) have a tendency to over-predict low ows.

Collectively, these results imply that (i) expanding the common split-sample single-
site evaluation test to a more distributed split-sample multi-site (MS) test, (ii) relaxing the
traditional concept of modelling residuals, and (iii) applying the Bayesian-type update of
the likelihood distribution, contributed to a better identication of the MIKE SHE parame-
terisations. Furthermore, these parameterisations were able to simulate the hydrological
dynamics of the study catchment within the limits of data uncertainty. This is seen as the
prediction band is bracketed in turn by the H-Q data uncertainty band throughout the
whole extent of the validation period (even for low ows).

Furthermore, Figure 8 shows the 90% streamow prediction limits for the Gete gauging
station (posterior likelihood distribution) in the validation period after conditioning based
on observed streamow at the three study gauging stations (i.e., the multi-site test) in light
of H-Q data uncertainty. Figure 8 also had the respective likelihood cumulative prior and
posterior distributions on 25 January 1986 (Figure 8a,b) using the EF2 likelihood measure
and (Figure 8c,d) using the E1 likelihood measure.

Figure 8. Ninety percent streamow prediction limits for the Gete gauging station (posterior like-
lihood distribution), in the validation period [1 September 1985–1 March 1986], after conditioning
based on observed stream ow at the three study gauging stations (i.e., the multi-site test) and the
H-Q data uncertainty; and respective likelihood cumulative prior and posterior distributions on
25 January 1986, (a,b) using the EF2 likelihood measure and (c,d) the E1 likelihood measure.

Figure 8 emphasises that the use of either EF2 or E1 indices by relaxing the traditional
concept of modelling residuals to account for H-Q data uncertainty contributed to a better
identication of the MIKE SHE parameterisations that can simulate the peak discharge
in January 1986 (Figure 8a,c). Namely, once Equation (2) was applied, the likelihood
distributions (Figure 8b,d) were signicantly modied on 25 January 1986, such that the
range of the respective (discharge) prediction band was markedly reduced. For instance,
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Figure 8b, based on EF2, depicts that the prediction range for the prior likelihood distri-
bution, i.e., [~7.0, ~21.0] m3 s−1, was drastically reduced to [~7.0, ~12.2] m3 s−1 for the
posterior distribution.

With respect to the MS validation test and the individual contribution of the two
internal stations to the overall simulation at the outlet of the catchment, Figure 9 illustrates
the 90% streamow prediction limits in the validation period using the E1 measure and
the posterior likelihood distribution after conditioning based on observed streamow at
the three gauging stations and considering the H-Q data uncertainty for the Gete station
(Figure 9a); the Grote Gete station (Figure 9b); and the Kleine Gete station (Figure 9c). The
results depicted in Figure 9 are similar to those obtained on the basis of the EF2 index.
Figure 9b illustrates that the parameterised MIKE SHE structure had higher difculties
to model the discharge at the Grote Gete station, which is located in the mid-part of the
study catchment (Figure 1). This difculty was seen particularly for the peak recorded on
25 January 1986, but also the antecedent base ows. The peak ow was simulated much
better for the Kleine Gete station and (as already discussed) for the Gete station. Since both
stations are near to each other (Figure 1), the better simulation recorded for the Kleine Gete
station compensated the overestimations recorded for the upper Grote Gete station.

Figure 9. Ninety percent streamow prediction limits in the validation period [1 September 1985–
1 March 1986] using the E1 likelihood measure and the posterior likelihood distribution, after
conditioning based on observed streamow at the three study gauging stations (i.e., the multi-
site test) and the H-Q data uncertainty for: (a) the Gete station; (b) G the rote Gete station; and (c) the
Kleine Gete station.

Nevertheless, despite the stricter MS validation test and narrow calibration and vali-
dation periods used in this study, Figure 9 emphasises that, globally, the few remaining
behavioural parameterisations of MIKE SHE are able to simulate the hydrological dynamics
of the study catchment within the data uncertainty constraints.

4. Discussion

The purpose of this research was not to explicitly or formally compare the current
suggested approach to others proposed in the literature. Rather, our aim was to propose a
simpler method (in terms of stochastic complexity) than the ones reported in the literature.
The goal was to develop a method so that both practitioners and non-expert researchers
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could explicitly assess the effects of discharge uncertainties upon hydrological predictions
without the need of complicated calculations. It is believed that the approach developed
uses a stochastic framework that is rather simpler than the ones reported in the literature.

It is worth noting that the parametric approach followed in this study to dene the
H-Q data uncertainty bands is simple relative to other methods reported in the literature,
which is in line with the aim of the current research. Other simple approaches could be used
with the same purpose in mind. Of course, different approaches would produce different
H-Q data uncertainty magnitudes. For instance, the non-parametric LOESS regression [18]
could be applied. Although the respective results are not shown herein, the prediction
bands associated with LOESS analysis carried out on the data of the Gete and Kleine
Gete stations suggested slightly wider uncertainty bands than the ones nally adopted in
this study.

In this context, the congruency of the H-Q uncertainty estimates should be contin-
uously monitored to provide constant feedback that incorporates newly available eld
H-Q measures. Such monitoring will conrm (or not) the appropriateness of the approach
initially used to derive uncertainty estimates. In addition, more complex statistical frame-
works (i.e., [2,15–17,20–22,24,26,29–34]), some of which take explicitly into account the
rating curve shape uncertainty but are not free of subjective assumptions such as normality
of errors or permanent/uniform river ow, could be incorporated at this initial stage of
the proposed approach for deriving H-Q data uncertainty estimates. This would not in-
terfere with the current approach for model evaluation explicitly incorporating H-Q data
uncertainty estimates and conditioning the analysis on distributed model predictions.

Furthermore, the reformulation of the concept of modelling residual provides a sta-
tistical measure that the modeller is familiar with rather than adopting or programming
a newer, unfamiliar, and too-specic metric. The latter approach has been adopted in
previous work [33,58] that suggested using statistically complex novel metrics that are,
however, not suitable [33] for assessing other types of modelling than in the exclusive
context of assessing the effects of discharge uncertainty. Our approach does not have this
pitfall since the adopted metrics can be used in the scope of any modelling assessment.

Although the overall approach presented in this study is similar to the overall ap-
proaches of previously published works, such as [2,33,45,58,59], there are signicant dif-
ferences. For instance, (i) the continuous hydrograph simulation rather than only peak
simulation was considered; (ii) a multi-site rather than a single-site validation scheme was
applied; (iii) the approach was not bound to the use of a given rainfall-runoff code; and
(iv) a far much simpler stochastic framework was implemented. The latter is denitively
a differentiating feature that would not only enable using simple rainfall-runoff models
(i.e., [2,33,58]), but also complex ones (as done in this study). In this regard, even [2]
concludes that, contrary to their initial premise, a complex stochastic assessment may not
be really justied for operational purposes, which is in line with the original purpose of the
present research.

Furthermore, it must be emphasised that although GLUE has been used in this study
to outline the model prediction bands, the reader is free to use different and perhaps
statistically more rigorous approaches (e.g., [2,27,28,59]). The suggested model evaluation
approach is not bound to GLUE. Nevertheless, GLUE was preferred in this study, not only
because it is easier to implement than more statistically formal Bayesian approaches or
complex optimisation processes, but also because, contrarily to what is sometimes stated in
related research (i.e., [58]), any model performance measure could (subjectively) be used
(i.e., which the modeller is familiar with), as long as appropriate re-scaling takes place to
treat those measures as likelihoods (as done in this study). GLUE is not bound to the EF2
index (sometimes termed as NSE in related research). In addition, GLUE does not need to
be strictly Bayesian-type in nature [54].

The different scatter plots (dotty plots) demonstrated that most of the studied pa-
rameters, except the hydraulic conductivity of the Ln layer, were insensitive to the model
predictions (at-topped scatter plots). This agrees with previous studies on the modelling
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of the study catchment [52,54]. In principle, these results conrm the presence of equi-
nality as it was not feasible to identify a single optimal parameter set for the model of the
study site (see, for instance, Figure 6), which is also in line with results of past studies.
However, a remarkable aspect in this study is that only a few parameter sets, 26 when EF2
was used or 14 when E1 was used, were left after the Bayesian-type update of the prior
likelihood distribution.

Despite GLUE receiving considerable criticism that has focussed on the subjective
assumptions required, particularly in choosing a likelihood measure, avoiding the adoption
of a formal error model, and ending up with model prediction bands that are conditional on
those subjective assumptions [27,28,56,60,61], the method was implemented in this current
study precisely because of this feasibility of incorporating subjective assumptions into the
process for estimating model prediction bands. Within this framework, likelihood measures
were easily (i.e., subjectively) adapted to account for multi-site evaluation of predictions,
as well as for discharge uncertainty. In this regard, adopting an error model might be
hard to achieve for real hydrological modelling applications without adopting statistical
assumptions that are difcult to reach under real conditions [60]. Clearly, we would
(i.e., subjectively) choose a model performance measure that reects the real information
content in some way. After all, this choice would be transparent and, consequently, open to
discussion. However, formal statistical likelihood measures require assumptions about the
distribution of errors, which are rarely matched in hydrological modelling. Nevertheless,
GLUE could use such approaches as special cases if justiable [56].

Furthermore, owing to some constrains, including model license and practical issues,
the current study has focused only on the uncertainty associated with one of the several
data types used in hydrological modelling without considering explicitly the uncertainties
from other sources, including other modelling data and model structure. These uncer-
tainties are globally taken into consideration when applying the GLUE methodology for
dening prediction bands by mapping them onto parameter uncertainty, which might lead
to some bias when estimating the prediction bands. This incomplete (i.e., non-explicit) un-
derstanding of the different uncertainties accentuates the imperfection of our hydrological
models. Nevertheless, for diagnostic or operational purposes, this paper takes one step
towards highlighting data uncertainties in a simple manner so that decision making, carried
out by practitioners far from rigorous scientic studies, may benet from predictions from
these models.

Finally, it is likely that the short duration of the warming-up, calibration, and evalua-
tion periods played a signicant role in the overall quality of the current model predictions.
Denitively, much longer calibration periods encompassing several four-season events
are advisable. This was not feasible in this study owing to computing and model license
constraints. Nevertheless, it is believed that the main conclusions of this study are indepen-
dent of the general quality of the model predictions and are applicable when using other
models than MIKE SHE and/or under other modelling conditions, especially if discharge
(and/or other output variable) data uncertainty observations or estimates are available for
the modelling.

It is believed that further research should focus on improving and standardising
similar approaches for evaluating data uncertainty and their effects on model predictions.
This would allow adapting model evaluation strategies, allowing for more suitable model
parameterisations and/or structures to be identied for the study catchment/conditions.
Research should also focus on not only reducing the data uncertainty effects on the selection
of the most suitable model parameterisations/structures, but also the data uncertainty
itself by modifying or adapting both monitoring and modelling protocols. In this context,
besides improving accuracy of eld data collection campaigns, modelling protocols should
expand already ongoing practices, such as basing model prediction and evaluation, on the
use of stages rather than on discharges [1,62,63]. For that, simulation codes should enable
the modeller to choose this option for rainfall-stage modelling, and meteorological services
in general should review their procedures to report the rating curve data, the original stage
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data, and the respective estimated discharges. Unfortunately, such reporting is not usually
the case, particularly in developing countries.

Future research should also focus on analysing the potential effects that other variables,
such as topography/slope and discharge estimation/surveying approaches, might have
on discharge data and, ultimately, on hydrological modelling. This would be of interest
for modelling applications in mountainous regions, particularly in developing countries
where there is a scarcity of hydro-meteorological data and/or where a lack of free access to
appropriate information may constrain the development of operative models that respond
acceptably to data uncertainties.

5. Conclusions

The effect of the uncertainty associated with stage-derived discharge on the prediction
bands of a distributed hydrological modelling for an agricultural, medium-sized catch-
ment was assessed. The analysis of the observations used to derive the rating curves for
the gauging stations depicted signicant uncertainty in the resulting rating curves and
associated discharge “observations”. The estimated uncertainty levels, however, were
remarkably regular throughout the rating curves, showing no signicant accentuation for
higher discharges.

Explicitly considering this data uncertainty during model evaluation resulted in more
parameterisations of the MIKE SHE-based model being acceptable for simulating the
study catchment—of course, within the limitations of the observations. This was seen
independent of the likelihood measure considered. Furthermore, our study revealed that
the shapes of the distributions of the eight model parameters inspected are consistent
despite the likelihood measure being considered.

The distributed multi-site (MS) evaluation of the discharge predictions drastically
reduced the number of parameterisations of the MIKE SHE-based model that were consid-
ered as acceptable for simulating the study catchment. This was particularly evident for the
gauging station, for which no original stage–discharge data was available. Results showed
that the remaining MIKE SHE parameterisations were capable of modelling a particular
peak event (at the outlet of the catchment) that was otherwise overestimated by the rest of
the model parameterisations.

The latter analysis did not only depict the importance and effect of the MS test in
distributed catchment modelling evaluation, but also emphasised that, within the scope
of the traditional GLUE approach, the resulting model performance band depends on the
likelihood measure and approach to consider the discharge data uncertainty in model
evaluation. In the current study, a redenition of the concept of modelling residual in
the context of commonly used model performance indices, such as [57], the Nash and
Sutcliffe EF2, and its alternative E1, proved to be more effective than the use of a linear
fuzzy measure of likelihood. Of course, this has signicance specic to coping with data
uncertainties when selecting the most appropriate model parameterisations under the
current discharge data uncertainty constraints.

Finally, themainmessage of this paper is that practitioners (and non-expert researchers,
too) should be aware of the importance of carrying out uncertainty analyses of streamow
data—even when carried out in a very simple way. Such simple approaches, rather than
those complex approaches often presented in research (i.e., as depicted in this study), could
help in making appropriate (i.e., more robust) decisions based on more realistic modelling
predictions and, as such, improve the effectiveness of water management applications.
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