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Introduction: Emerging contaminants (ECs) are substances with widely diverse
chemical structures that may pose a risk to the environment and human beings.
The limited scope of water treatment facilities, particularly in low and middle-
income countries, allows ECs to be continuously introduced to the environment
and become part of the cycle again for potabilization. In this work, we study for the
first time the presence of these compounds in the drinking water of five
Ecuadorian cities.

Methods: The compounds of interest were mainly pharmaceutical substances
commonly present in prescription and over-the-counter medicines, along with
caffeine, a known coadjuvant in some of these preparations. Samples were
collected from Quito, Guayaquil, Cuenca, Ibarra, and Esmeraldas, considering
each city’s distribution systems, and, after solid-phase extraction, analyzed by LC-
MS/MS ESI+.

Results and discussion: Results showed a high occurrence of caffeine, the only
analyte present in all cities, with concentrations ranging from <6.35 to 201 ngL-1

and an occurrence from 11% in Quito to 77% in Cuenca. The highest median was
found in Cuenca, followed by Esmeraldas. Our observations regarding
concentrations are comparable to other studies around the globe. Although in
other cities, some pharmaceuticals appeared at levels below our detection limits.
These findings highlight the ubiquitous nature of emerging contaminants while
pointing out the need for regulatory frameworks that facilitate the implementation
of treatment technologies at the source and wastewater level. These actions will
safeguard public and environmental health in the long term.
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1 Introduction

Emerging contaminants (ECs) are naturally occurring or
synthetic compounds that are not commonly monitored in the
environment and pose potential risks to human and
environmental health (Naidu et al., 2016). There are several types
of ECs, including pharmaceutical products (e.g., antibiotics,
painkillers, anti-inflammatories) and associated substances.
Medicaments reach drinking water systems through the
introduction of wastewater effluents into rivers, which serve as
sources for water treatment facilities. Current technologies
employed in these plants are not effective in removing
pharmaceutical compounds before distribution (Furlong et al.,
2017).

Over the past 2 decades, emerging compounds have garnered
significant attention from the scientific community due to their
impact on human health and ecosystems (Ramírez-Malule et al.,
2020). While some compounds may undergo changes when exposed
to the environment, their continuous introduction offsets such
effects. Studies have also demonstrated the influence of
socioeconomic factors in the occurrence of ECs, such as their
higher concentrations in regions with higher values of gross
domestic product per capita and human development index
(Santos et al., 2020). Furthermore, the constant consumption of
pharmaceuticals can lead to bacterial resistance (Tell et al., 2019)
and their physicochemical properties, such as high water solubility
and low biodegradability (Gil, Soto, Usma and Gutiérrez, 2013), can
result in bioaccumulation increasing the risk associated with these
substances (Du et al., 2014; Muir et al., 2017). Additionally, there is
evidence of environmental risks, particularly to marine fauna. Li and
Lin (2015) found that a 2-h exposure to a mix of pharmaceutical
compounds including sulfamethoxazole, caffeine, diclofenac, and
acetaminophen, led to increased mortality and abnormal behaviors
in fish. The concentrations used in the study (3.9 mgL−1 each,
previously exposed to sunlight) were similar to those found in
local hospital raw wastewater.

Most of the investigations on ECs have been conducted in North
America and Europe, where monitoring of pharmaceuticals,
perfluorinated chemicals, estrogenic hormones, detergents,
microplastics, and inorganic elements in surface and drinking
waters has been carried out (Furlong et al., 2017; Sousa et al.,
2018). The United States, China, Spain, Italy, and Canada have
emerged as the top five nations with the most published works in
this field (Ramírez-Malule et al., 2020). However, limited research has
focused on the presence of ECs in drinking water in Latin America,
with findings reported only in Brazil, Colombia, Venezuela, and Chile,
representing less than one-third of the countries in the region (Peña-
Guzmán et al., 2019). Besides the limited information, the lack of
regulation and monitoring, along with the poor water treatment and
purification processes result in an increased presence of these
compounds in all bodies of water (Vargas-Berrones et al., 2020).
Pinos-Velez et al. (2019) made a comprehensive review of ECs
occurrence in Latin America and reported that caffeine was the
most prevalent and concentrated compound, although triclosan,
cocaine, non-ylphenol, bisphenol A, atrazine, ibuprofen, among
others, were also detected in estuaries and drinking water.

In Ecuador, less than 25% of wastewater receives treatment before
being discharged into rivers and seas, leading cities like Guayaquil and

Esmeraldas to receive industrial and domestic residual effluents in
their drinking water sources (Pinos Velez et al., 2019). Studies have
found caffeine, sulfamethoxazole, venlafaxine,
o-desmethylvenlafaxine, and some steroidal estrogens throughout
the San Pedro, Guayllabamba, and Esmeraldas River basins
(Voloshenko-Rossin et al., 2015), as well as caffeine, paracetamol,
and trimethoprim in the north of the Ecuadorian Amazon (Capparelli
et al., 2021). Since ECs have already been detected in water bodies in
Ecuador, and considering that most municipalities directly discharge
wastewater into various river basins, it becomes imperative to
determine whether these compounds are reaching the drinking
water systems of urban areas. We hypothesize that they are and
that this information may shed light on the environmental impact of
ECs on the national ecosystem. Therefore, our research aims to
answer the following questions: Are there emerging compounds
present in the drinking water of five representative cities in
Ecuador, namely: Quito, Guayaquil, Cuenca, Esmeraldas, and
Ibarra? At what concentration are they found?

2 Materials and methods

2.1 Study area

As detailed in Table 1, the three most populated cities of Ecuador
were selected for this study, namely: Quito, Guayaquil, and Cuenca.
We also included two smaller cities that are within the top 10% in
terms of population. Esmeraldas, a small coastal city, has previous
reports of emerging contaminants in the namesake river
(Voloshenko-Rossin et al., 2015) which is also the source for
water potabilization and in other water bodies that surround the
city (Cipriani-Ávila et al., 2023). Besides, the province of
Esmeraldas, where the city is located, has low indexes of
potabilization and wastewater treatment. In contrast, Ibarra is the
capital city of Imbabura, one of the provinces with most
potabilization and wastewater treatment facilities, as well as one
with the highest compliance with the technical norm NTE 1 108:
2011, which establishes drinking water requirements (INEC, 2016).

The sampling points in each city, detailed in Figure 1, were chosen
based on their respective drinking water production systems, their
distribution networks and their main parishes. In Quito, for each of
the water distribution subsystems (Bellavista, Puengasí, El Troje,
Northwest Treatment Plant) three neighborhoods were randomly
selected, within each neighborhood three sampling points were picked
out. In the case of Guayaquil, the city was divided into northern,
central, and southern sectors. Samples were taken from five
neighborhoods in each sector; Alborada and Urdesa
neighborhoods were considered twice, as they cover two sectors of
the city, Cuenca’s drinking water system is divided into three main
subsystems named after the rivers from which the water is drawn:
Tomebamba,Machángara, andYanuncay. For each of these, sampling
points were selected in their distribution zones in Cuenca city.

In Esmeraldas 2-3 random sampling points were selected per area,
namely: south, center, high neighborhoods, low neighborhoods, Las
Piedras and Tachina; these areas were established according to the
water distribution system and the regularity of supply. In Ibarra, we
worked in the five urban parishes (El Sagrario, San Francisco,
Alpachaca, Priorato and Caranqui), where three sampling points
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were chosen. At each sampling point, one water sample was taken,
adding to a total of: 45 samples in Quito, 42 in Guayaquil, 15 in
Cuenca, 15 in Ibarra and 16 in Esmeraldas.

2.2 Sampling and sample preparation

Sampling was carried out with the methodology described by the
International Standardization Organization NTC-ISO 5667–1:2008.

Five hundred milliliters of each sample were placed in an amber
glass bottle with screw cap and subsequently stored at 4°C until
processed at the lab. The time between sampling and processing was
not longer than 24 h in all cases.

Samples underwent the methodology by Glassmeyer et al.
(2017). Analytes were separated from the water matrix by solid-
phase extraction (SPE) using a vacuum pump (Millipore,
WP6111560), a manifold (27 × 17 × 9.5 cm), and OASIS HLB
cartridges (Waters, 200 mg, 6 ml). To condition the cartridges, they

TABLE 1 Main characteristics of the Ecuadorian cities that were part of this study.

Quito Guayaquil Cuenca Esmeraldas Ibarra

Population 2.239.191a 2.350.915a 505.585a 189.504a 181.175a

Elevation (m) 3058b 21b 2525b 115b 3140b

Average annual
temperature (°C)

12.2b 16.2b 12.4c 25.7b 10.7b

Average annual
precipitation
(mm)

125.0b 84.9b 126.5c 206.3b 109.5b

Water production
company

Empresa Pública
Metropolitana de Agua
Potable y Saneamiento

Quito (2023)

Interagua
(2023)

Empresa de Telecomunicaciones, Agua
Potable, Alcantarillado y Saneamiento

de Cuenca [ETAPA EP] (2023)

Empresa Pública
Mancomunada de Agua
Potable y Saneamiento de

Esmeraldas (2021)

EMAPA-I

Main water
sources

Antisana volcano zone;
Atacazo and Lloa water
subsystems; Pita Riverd

Daule Riverd Tomebamba, Machángara Yanuncay,
Culebrillas, Irquis Riversd

Esmeraldas Riverd Yuyucocha, Guaraczapas,
Palestina natural springs.
Yuyucocha underground

wellse

Information retrieved from.
aINEC (National Institute of Statistics and Census).
bInstituto Nacional de Meteorología e Hidrología (2023).
cClimate-Data.org (2023)
dOfficial websites of water production companies.
eJapanese International Cooperation Agency (2005).

FIGURE 1
Geographical distribution of sampling points in the five studied cities.
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were treated with 6 ml of reagent water after 4 ml of methanol at a
flow rate of 10 ml/min. After eluting 500 ml of sample, the cartridges
were dried under vacuum for 10 min before analytes were eluted
into glass tubes using 6 ml of methanol. Using nitrogen, extracts
were concentrated to dryness and reconstituted to 0.5 ml with
methanol, filtered through a 0.22 μm filter, and then placed into
vials for chromatographic analysis. As part of measures to assure the
quality of the results, a field blank was collected and analyzed to
assess that sampling and extraction procedures were performed
correctly. In addition, a spiked sample of the mean concentration
level was used to gauge the recovery rates of each component
(Table 2). All analytical standards had a purity >96.8% and were
obtained from Supelco or Sigma-Aldrich.

2.3 Instrumental analysis

Five of the most consumed pharmaceutical compounds in
Ecuador were selected for this study, namely: caffeine (stimulant),
acetaminophen (analgesic), sodium diclofenac (anti-inflammatory),
sulfamethoxazole (antibiotic), and trimethoprim (antibiotic). The
information was obtained by request of the authors in May
2019 from the National Undersecretariat of Public Health
Governance (Subsecretaría Nacional de Gobernanza de la Salud
Pública del Ecuador, 2019).

These compounds were analyzed by UPLC-Qtof (Waters Model
I-class liquid chromatograph coupled to a Waters Xevo G2 QTOF)
under the conditions described in Cipriani Avila et al. (2023). Briefly,
acetonitrile/formic acid in a 99.9%/0.1% ratio (solvent B) and 0.1%
formic acid in water (solvent A) were the solvents utilized as the
mobile phase; the elution gradient was: 5% B over 1 min, 5%–100% B
over 9 min, 100%–5% B over 2 min, and then a column re-
equilibration at 5% B during 3 min. A C18 column (Waters
Acquity BEH 1.7 μm, 100 mm 2.1 mm i. d.) operating at 25°C was
used with a flow rate of 0.3 ml min−1. For the electrospray ionization
(ESI-MS), a positive mode with a capillary voltage of 0.5 kV, 30 L h−1

cone gas flow, 900 L h−1 desolvation gas flow, 120°C source
temperature, 450°C desolvation temperature with sampling cone
and source compensation at 40 and 80 V, were employed. Further
fractionation (MS/MS) was conducted with ramp collision energy
20–30 eV. The range of m/z was 50–1,000 Da. Because the acquisition
method provides complete information, the analytes were quantified
using the precursor or product ion with the highest intensity. The
method’s performance was determined according to Eurolab España
and Morillas (2016).

2.4 Statistical analyses

For the statistical analysis, the software R version 4.2.1 (RRID:
SCR_001905) was used with the R-Studio interface. Non-parametric
Kruskal–Wallis statistics were performed to determine significant
differences in caffeine content in water by city at a significance level
of 0.05. Once statistically significant differences were found, the
pairwise Wilcox test was applied.

3 Results

Table 2 indicates the main figures of merit of the analytical
method employed for the emerging contaminants in this study.
The highest sensitivity was obtained for sulfamethoxazole,
although the recovery was lower compared to the other CEs.
Trimethoprim showed the highest recovery among the five tested
compounds but also the highest limits of detection and
quantitation.

Figure 2 shows the results of the five studied compounds in each
city. Caffeine was found in all cities with an overall concentration range
of 1.4–201 ngL−1. It is also observed that acetaminophenwas only found
in site 20 (Bellavista) of Quito with 13.2 ngL−1 (occurrence 2.2%).

In Table 3 it is observed that the occurrence of caffeine varies
from 11% in Guayaquil to 100% in Cuenca. The highest and lowest
concentrations were found in Quito with 201 and 1.4 ngL−1,
respectively. In the cities with higher occurrence, Cuenca and
Esmeraldas, where more than half of the samples contained
caffeine, the variation in concentration ranged from 11.6 to
148 ngL−1. Sodium diclofenac, sulfamethoxazole, and
trimethoprim were not found in any sample.

In Figure 3 the notch boxplot of caffeine per city is presented.
The highest median was found in Cuenca, approximately 36 ngL−1

with 95% of confidence. Esmeraldas, Guayaquil, Ibarra, and Quito
show outliers. Kruskal–Wallis found statistically significant
differences between medians (chi-squared = 62.3, p < 0.001).
Through the pairwise Wilcox test for comparison of median,
differences were found between Cuenca and all the other cities
with Cuenca with the highest median. Also, differences were found
between Esmeraldas with Guayaquil and Quito where Esmeraldas
presented the highest median. Moreover, differences were found
between Ibarra with Guayaquil and Quito where Ibarra has the
highest median.

To contextualize the results of our research, in Table 4 we
provide data from similar studies conducted in drinking water

TABLE 2 Analytical method performance and relevant parameters for each analyzed compound.

Caffeine Sodium diclofenac Acetaminophen Sulfame- thoxazole Trimethoprim

Retention time (min) 3.23 7.47 2.64 4.59 3.43

Precursor ion (m/z) 195 295.8 152 253.9 291.2

Product ions (m/z) 138, 110 214.7, 249.9, 277.6 109.9, 65.1, 93 92, 155.8 230

Limit of detection (ngL−1) 6.35 12.5 6.25 3.13 12.5

Limit of quantitation (ngL−1) 12.5 18.8 12.5 6.25 18.8

Recovery (%) 83 85 80 77 90
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(after potabilization process) around the globe. In all of these
cases, the methodology was similar to ours, although some minor
differences in certain references are noted later in the discussion.
The number of analyzed samples has a wide range, from 8 to 179;
this study is the one that presents the higher value albeit
comprising a broader geographical distribution. Regarding the
analytes, it can be seen that caffeine and sulfamethoxazole are
reported more frequently, followed by diclofenac and
acetaminophen; except for one, the concentrations are in the
same order of magnitude as ours but in some cases, the values are
below the detection limits of our study.

4 Discussion

This is the first study to show the concentration ranges of high-
occurrence contaminants in the drinking water supplies of
Ecuadorian cities: Quito, Guayaquil, Cuenca, Esmeraldas, and
Ibarra. These compounds were determined using SPE followed
by UPLC/ESI-MS; the method provided satisfactory analytical
performance for the study of all five substances. The findings
revealed the presence of two of the five compounds investigated,
with caffeine having the highest occurrence, ranging from 11% of
samples in Quito to 77% in Cuenca. Concentrations were

FIGURE 2
Concentration of acetaminophen, caffeine, sodium diclofenac, sulfamethoxazole, and trimethoprim by sampling site in Quito, Esmeraldas, Ibarra,
Guayaquil and Cuenca.

TABLE 3 Occurrence (%) and concentrations (ngL−1) of the caffeine in urban drinking water in Ecuador. Min: minimal quantifiable value, Max: maximal value.

Caffeine

Occ., % Median*, (ngL−1) Min-Max, (ngL−1) Mean, (ngL−1) STD, (ngL−1)

Quito 11.1 27.5 1.4-201 87.05 100.9

Guayaquil 19.04 12.35 6.1-17 11.98 4.09

Cuenca 100 35.75 15.5–71.5 39.75 17.15

Esmeraldas 56.3 20.9 11.6–147.9 36.88 48.88

Ibarra 13.33 19.5 15-24 19.5 6.36

BLD: below the limit of detection.

*Calculated using concentrations greater than the LOD, of the compound.
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comparable to those reported in other cities worldwide, hence
adding to the evidence that there is an increasing need for
regulation and management of these compounds in bodies of
water.

According to Figure 2 and Table 3, caffeine was the emerging
contaminant with the highest occurrence in drinking water samples,
being found in 11% of the Quito samples, 19% in those of Guayaquil,
13% of Ibarra’s, 56% of Esmeraldas’, and 100% of Cuenca’s.
However, as shown in Figure 3, despite the low occurrence,
Quito had one of the highest variations in concentrations, as
caffeine ranged from 1.4 ngL−1 to 201 ngL−1. When comparing
with other countries of the continent, these values are
intermediate between those reported for Canada and Brazil; in
them, maximum values of 120 ngL−1 and 2769 ngL−1 were found
(Machado et al., 2016; Pulicharla et al., 2021). Given the high
frequency of caffeine-containing samples, there were significant

differences between the results for Cuenca and the other four
cities. It is not possible to pinpoint the causes for the increased
caffeine concentration observed in Cuenca; however, we think that
the tourism and cattle-raising activities near the catchment waters at
the Cajas National Park might be a key influence. Lodging and
restaurants in the Cajas National Park do not have a wastewater
treatment plant or garbage disposal systems, which is why
wastewater infiltrations and a clandestine garbage dump have
been detected (Beltran, 2023). The drinking water in Esmeraldas
showed a narrower distribution compared to Cuenca while
presenting a higher overall concentration than Quito, Guayaquil,
and Ibarra. This may be explained by the quality of the source water.
Esmeraldas River receives the wastewater, treated and not, from the
cities in the mountain region, being Quito the biggest one. As
previously reported in the study by Voloshenko-Rossin et al.
(2015), caffeine was among the emerging contaminants detected
in this river, whose waters are the intake for the potabilization
process in the city.

Caffeine is a commonly used psychoactive ingredient in free
trade medicine and daily beverages, and although a large part of the
intake is metabolized, it is accepted as an indicator of anthropogenic
contributions to water bodies (Daneshvar et al., 2012; Li et al., 2020).
The presence of this compound in wastewater in Ecuador has been
reported by Capparelli et al. (2021) and Arcentales-Ríos et al. (2022);
the latter group of researchers also demonstrate that only 50% of
caffeine concentration is decreased with traditional technologies
employed in Ecuador. In the best-case scenario, this treated water is
released into the environment and eventually is used as a source for
drinking water treatment. In other cases, untreated wastewater, rich
in emerging contaminants, is directly discharged into these sources.
Indeed, treated and untreated wastewater are the largest source of
emerging pollutants in the environment since these are discharged
to surface waters, distributing them in natural environments where
they endanger flora and fauna (Pinos-Vélez et al., 2019). Currently,
conventional primary and secondary treatments such as activated
sludge, up-flow anaerobic sludge blanket reactor, stabilization
ponds, wetlands, and trickling filters only contribute to a small
portion of caffeine removal (Zhou et al., 2010; Martín et al., 2012).
Organic matter removal mechanisms are unsuitable for compounds
with more stable chemical structures like caffeine and other

FIGURE 3
Notch boxplot of caffeine (ngL−1) for Quito, Esmeraldas, Ibarra,
Guayaquil, and Cuenca.

TABLE 4 Comparison of pharmaceutical compounds concentrations (ngL−1) in drinking waters around the world. Only the highest reported value is shown.

Caffeine Sodium diclofenac Acetaminophen Sulfame- thoxazole Trimethoprim

Ecuador n = 179 (this study) 201 <12.5 13.2 <13.3 <12.5

Brazil n = 14 Sodré and Sampaio, (2020) 7.8 6.03 5.0

Brazil n= 12 de Oliveira et al., (2019) 1.6

Brazil n = 100 Machado et al., (2016) 2769

Canada n = 25 Pulicharla et al., (2021) 120 210 6.4

China n = 36 Ben et al., (2020) 0.98 5.2

Malaysia n = 155 Wee et al., (2020) 5.33 21.39 0.90

Taiwan n = 18 Pai et al., (2020) 263.2

Hungary n = 108 Kondor et al., (2021) 38.41 4.2
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emerging pollutants (Arcentales-Ríos et al., 2022). For this reason,
the incorporation of provisional or definitive ternary processes (like
adsorption or advanced oxidation processes) into wastewater
treatment plants is crucial to eliminate emerging contaminants
(Morin-Crini et al., 2022).

Studies show that pharmaceuticals are also inefficiently removed
in conventional potabilization treatments (Padhye et al., 2014;
McKie et al., 2016), This is evidenced in the results of various
studies, such as those presented in Table 4. Our results back up these
findings, as caffeine was found in the drinking water of all the
studied cities. Although the caffeine concentrations we found in
drinking waters do not represent a risk to human health, they put in
evidence the ineffectiveness of water treatment plants to eliminate
emerging contaminants, both in wastewater and drinking water
processing. Considering that with the current lifestyle, introduction
rates, as well as EC diversity, tend to increase, it is important to take
action to stop the introduction of these compounds into our water
sources. For instance, alternative procedures have been proposed
that allow the complete elimination of emerging compounds in
drinking water, such as activated carbon processes, advanced
oxidation processes, ozonation, among others (Kim et al., 2007;
Yang et al., 2017; OECD, 2019).

The occurrence of acetaminophen was very low in Ecuadorian
cities. Only one sample in Quito showed a quantifiable value for this
compound with a concentration of 13.20 ngL−1. As detailed in
Table 4, higher values have been reported by Pulicharla et al.
(2021). The results found in our study may be due to the
transformation of paracetamol during the chlorination of water
in the treatment processes, where the main reaction products are
hydroquinone and two types of chlorinated compounds:
monochlorinated acetaminophen and dichlorinated
acetaminophen (Cao et al., 2016). It is also possible that the
concentrations in the analyzed samples were similar to those
reported by De Oliveira et al. (2019), thus below the detection
limit of our analytical method. As for the health impact of
acetaminophen, the Minnesota Department of Health
recommends a maximum value in drinking water of 200 ppb,
equivalent to 200 µgL−1, pointing out that the liver might be the
organ most prone to damage by chronic exposure (Minnesota
Health Department, 2014). Our results are more than an order of
magnitude below this threshold.

Although sodium diclofenac, sulfamethoxazole, and
trimethoprim were not determined in the drinking water
samples from the Ecuadorian cities, some previous studies
show their presence in this matrix in other territories. Kondor
et al. (2021) indicated a maximum concentration of 4.2 ng
sodium diclofenac per liter of drinking water in Hungary.
Sulfamethoxazole was frequently found in the samples of a
study carried out in the United States where 51 emerging
compounds were analyzed (Benotti et al., 2009), as well as in
the drinking water of cities in Brazil and Spain with values less
than 10 ngL−1 (Gros et al., 2012; Monteiro et al., 2017). As with
acetaminophen, this compound may have been chemically
transformed during potabilization, due to the high reactivity
of sulfonamides with chlorine or chlorine dioxide (Huber
et al., 2005; Gaffney et al., 2016). The absence of trimethoprim
in the samples can be explained by a lack of sensitivity of the
selected analytical methodology, as detailed below.

The publications by Machado et al. (2016) and Gros et al. (2012)
show results of LC-MS/MS methods for several emerging
compounds, obtaining method LODs of 1, 0.3, 0.8, 0.1, and
0.1 ngL−1 for caffeine, sodium diclofenac, acetaminophen,
sulfamethoxazole, and trimethoprim, respectively. Wee et al.
(2020) also report lower method detection limits. In contrast, as
detailed in Table 2, the LOD values obtained for this research were
higher for all analytes. These differences can be attributed to method
development. For instance, we focused on sensitivity rather than
resolution for spectral scanning optimization. On the other hand,
our analyses were conducted in positive ionization mode, whereas,
Wee et al. (2020) and Gros et al. (2012) use ionization in both
positive and negative modes, probably because certain compounds
exhibit higher ionization in the latter, thereby yielding greater
analysis sensitivity and, consequently, lower detection limits.
Furthermore, Gros et al. (2012) applied ESI- along with
acetonitrile/ammonium acetate buffer as mobile phase for
trimethoprim analysis. Considering that in a study carried out in
China a maximum concentration of 5.2 ngL−1 of trimethoprim was
found in drinking water (Ben et al., 2020), it could be inferred that
our method did not present adequate sensitivity for the
determination of this compound.

Internationally, European countries are leading legislative
actions concerning emerging contaminants. The European
Commission has established a watch list of substances that may
pose a risk to the aquatic environment but whose current
information is limited to conclude its significance. Among the
chemical compounds listed are two of those included in this
study: sulfamethoxazole and trimethoprim (Implementing
Decision (EU), 2022/1,307). Diclofenac was previously listed, in
2015 (OECD, 2019), and is currently regulated in Switzerland, with a
maximum concentration of 50 ngL−1 in surface waters (Swiss
Federal Law, 2023).

In Ecuador, our results point towards several steps that must be
taken to ensure water quality. One of the most important is the
increase of wastewater treatment plants and the provision of various
technologies to effectively remove or reduce polluting substances,
including emerging contaminants. Wingfield et al. (2021) point out
the importance of sewage treatment in ensuring water access in
Ecuador, while also advocating for increased legislative support for
ecosystem preservation. Along the same lines, Martínez-Moscoso
et al. (2018) provide an overview of the current water laws landscape
in Ecuador, emphasizing that water provision, particularly drinking
water, shall be a public service. However, their study demonstrates
that in practice, to comply with this precept, local governments pass
on operating costs to final users, resulting in an increased cost to the
population in rural areas. If wastewater treatment plants are
installed in these municipalities, the cost of water services will
rise, and if more advanced treatments are installed, the cost will
rise even further. Hence, financial support from other sources is an
important aspect to consider along with the cost of advanced
treatment technologies. The Organization for Economic Co-
operation and Development (2019) reports that from the
currently available methods for pharmaceuticals removal from
water, reverse osmosis and ozone have similar efficiency, but the
latter has half of the cost per cubic meter.

The results from 179 samples collected in five Ecuadorian cities
indicate that caffeine is one of the most prevalent emerging
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compounds in drinking water. We have pointed out the growing
need to monitor ECs in various bodies of water to anticipate and
effectively mitigate the environmental risks that derive from them.
Protection measures for drinking water sources should include strict
regulations for houses, hotels, restaurants, and entertainment venues
nearby. Of paramount importance are the implementation of
adequate garbage disposal and wastewater treatment plants to
avoid infiltration of liquids that endanger the quality of the
source water. An update of the water treatment systems is also
necessary, especially in the coastal cities that take river water as a
source of water to be made drinkable. Future research should also
consider extended monitoring campaigns and including drug
metabolites in the analysis, which may appear due to reactivity in
treatment plants, metabolism in the human body, or environmental
degradation. These details will be critical for taking informed
legislative action at the national level.
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