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A B S T R A C T

While the problem of random loads moving across a beam has been studied extensively, the existing methods
are limited in terms of their applicability. The most common approach uses modal superposition, which
requires that the load be represented in terms of the structure’s mode shapes, making the representation of
the load intrinsically a function of the structure to which it is applied. To address this problem, this paper
approximates the discrete stochastic moving load as a white noise passed through filters constructed with Padé
approximants. The resulting model of the load is independent of the structure and enables efficient random
vibration methods to be applied for solution of the problem. By representing the structure and the loading
together in an augmented state space system, the variance of responses can be found directly and accurately,
enabling the traffic-induced responses of a broader class of bridge structures to be analyzed. The effectiveness
and usefulness of the proposed approach is demonstrated through two examples of bridge structures.
. Introduction

Bridges are critical components of transportation networks and
nsuring their continued safe and reliable operation is imperative. An
mportant part of this process is understanding their response to traffic
oading. The AASHTO LRFD bridge design procedures use static analy-
is of heavy trucks, amplified by calibrated impact and loading factors,
ompared to a factored resistance to estimate a bridge’s structural relia-
ility [1]. Even when site-specific vehicle loading statistics acquired via
eigh-in-motion technology are available, the analysis procedures use
loading factor calibrated for the site-specific loading [2,3]. While the

alibrated load factor and static analysis approach is straightforward to
mplement, it obscures the dynamic nature of the bridge’s response to
raffic; moreover, the traffic loading is intrinsically random in nature,
aking the bridge response also random.

Initial efforts toward determining the random traffic-induced re-
ponse of bridges appeared in the 1960s [4,5] where the traffic was
dealized as moving point loads and the bridge as a simple beam.
ote that earlier work only considered deterministic moving point

oads, a summary of which is provided by Frýba [6]. Also included
n [6] is a discussion of other representations of the vehicle loading, a
oving mass and a moving oscillator. The assumption of moving force

s applicable when ratio of vehicle mass to structural mass is low, as
s the case for typical highway bridges. Development of the response
f bridges to stochastic moving loads was aided by research in other
ields, drawing on the parallels between random traffic loading and shot

∗ Corresponding author.
E-mail address: golecki2@illinois.edu (T. Golecki).

noise; a compound Poisson processes, comprised of randomly arriving
impulses of random magnitude, is applied to a system where the total
response is the superposition of responses to individual impulses. For
example, Roberts [7] and Lin [8] derived a generalized cumulative
response of a linear system to impulses with random magnitude and
independent random arrival times. Most of the existing work, follows a
similar approach of computing the statistics of the structural responses
due to moving loads using modal decomposition, where the loading
is represented as functions of the structure’s mode shapes [9–11].
The modal approach has been expanded to include different arrival
processes and loading pulses [12], as well as to the case of random
velocities [13,14] and random load durations using an Erlang renewal
process rather than Poisson process [15,16]. Others have also used
modal decomposition to compute the power spectral densities (PSD)
of the response [14,17]. Because these approaches couple the loading
representation to the structure’s mode shapes, focus has been lim-
ited primarily to idealized simple structures such as simply supported
beams; extension to more complex structures is not straightforward.

Alternatively, solutions of the moving load problem that do not cou-
ple the loading and the structure are mainly time-domain based, which
can be computationally demanding. For example, Mishra et al. [18]
used Monte Carlo simulation of stochastic traffic to estimate the PSD
of the loading. This approach however is presented only for a spe-
cific set of traffic loading parameters. Chen et al. [19] developed a
spatio-temporal power spectral density representation of the stochastic
ttps://doi.org/10.1016/j.probengmech.2022.103230
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moving load. In both approaches, the PSD of the load is multiplied
by the squared frequency response function to obtain the PSD of the
response and subsequently integrated numerically to obtain the covari-
ances of the structural response. However, these approaches become
intractable as the complexity of the structure increases.

Stochastic models of physical phenomena often take the form of a
filtered white noise, which for linear systems, allows for direct determi-
nation of the response covariances [20]. This approach has been used
for efficient optimization of linear structures [21–24] and nonlinear
structures [25,26] subjected to stochastic wind and earthquake loads.
As for relating the discrete traffic loading to a continuous process,
Roberts [7] has shown that in the limit, as the density of arriving
impulses increases, the moving load model for traffic loading ap-
proaches a white noise. Ditlevsen [27] and Ditlevsen and Madsen [28]
approximated the static effects of traffic loading as a translating white
noise random field loading; the individual response variance was then
computed by integrating the product of the random loading and the
spatial influence function over a spatial range. Their work developed
a white noise representation of stochastic traffic as a mixture of cars
and trucks in terms of various traffic parameters. Additionally, their
model is developed for spatial rather than temporal variance. However,
the intrinsic dynamic nature of the loading and the associated bridge
response was not considered.

This paper proposes a continuous representation of the discrete
loading process as the sum of a static mean load and a filtered white
noise stochastic load that is computationally efficient and is not de-
pendent of the structure to which it is applied. This continuous spatio-
temporal random field characterization of the stochastic moving loads
is discretized in space, yielding a filtered vector white noise process,
whose state space realization is obtained using Padé approximants.
Combining this model of the loading process with the state space
model of the structure yields an augmented representation of the
structure-loading system, for which the input is a stationary white
noise excitation. Subsequently, the response variances are computed
via solution of the Lyapunov equation [20]. Examples for two bridge
structures are provided and compared to traditional methods. The
results demonstrate the efficacy of the proposed approach to analyze
a broad class of bridge structures subjected to stochastic traffic loads.

2. Brief review of random vibration theory

This section presents a brief review of the method used to determine
the stochastic response of linear systems subjected to a filtered white
noise input. Motivation for representing the moving load as a filtered
white noise is also provided.

2.1. System representation

The equation of motion (EOM) of a bridge structure can be repre-
sented as

𝐌�̈� + 𝐂�̇� +𝐊𝐮 = 𝐆𝐟 (𝑡) (1)

where 𝐮 is the vector of structural displacements, 𝐌,𝐂, and 𝐊 are the
structure’s mass, damping and stiffness matrices, respectively, and 𝐆
is the load effects matrix, which maps the input vector 𝐟 (𝑡) to specific
degrees-of-freedom of the structural model. Here, 𝐟 (𝑡) represents the
stochastic moving load process, which has been spatially discretized.

This system can be represented in state space form as

�̇�s = 𝐀s𝐱s + 𝐁s𝐟 (𝑡)

𝐲 = 𝐂s𝐱s + 𝐃s𝐟 (𝑡)
(2)

where 𝐱s =
[

𝐮

�̇�

]

, and the system matrices 𝐀𝐬 and 𝐁𝐬 are defined as

𝐬 =

[

𝟎 𝐈
−1 −1

]

, 𝐁𝐬 =

[

𝟎
−1

]

(3)

−𝐌 𝐊 −𝐌 𝐂 𝐌 𝐆 m

2

he output matrices 𝐂𝐬 and 𝐃𝐬 are defined as needed for the output
esponses of interest. In 𝐀𝐬, 𝟎 is a square matrix of zeros and 𝐈 is identity
atrix with sizes corresponding to the number of degrees-of-freedom

dof) in the model. In 𝐁𝐬, 𝟎 is a matrix of zeros with a row for each
odel dof and a column for each input.

Many stochastic excitations can be represented as a linear system
hose input is a filtered white noise process [20] given by

̇ f = 𝐀f𝐱f + 𝐁f𝐰 (𝑡)

𝐟 = 𝐂f𝐱f
(4)

here 𝐰 (𝑡) is a vector white noise input process in which

E [𝐰 (𝑡)] = 0

[𝐰 (𝑡)𝐰 (𝑡 − 𝜏)] = 2𝜋𝐒0𝛿 (𝜏)
(5)

here E [⋅] is the expected value operator. The matrices 𝐀f , 𝐁f and 𝐂f
efine the loading filter system, 𝐱f represents the states of this system,
nd 𝐟 (𝑡) is the output vector function, and 𝐒0 is the constant two-sided
ower spectral density matrix for the vector white noise. The details
n how to obtain the excitation representation given in Eq. (4) for the
tochastic traffic loading are presented in Section 4.

Then, the structural and loading systems can be combined into a
ingle augmented system as

̇ a = 𝐀a𝐱a + 𝐁a𝐰 (𝑡)

= 𝐂a𝐱a
(6)

here the augmented state vector is

a =

[

𝐱s

𝐱f

]

(7)

nd the augmented system matrices 𝐀a, 𝐁a and 𝐂a are defined as

a =

[

𝐀s 𝐁s𝐂f

𝟎 𝐀f

]

𝐁a =

[

𝐁s𝐃f

𝐁f

]

a =
[

𝐂s 𝐃s𝐂f
]

(8)

here 𝟎 is a matrix of zeros with a row for each state in the loading
ystem and a column for each state in the structural system.

.2. Stochastic structural response

The covariance matrix for the states of the augmented system is
overned by the Lyapunov differential equation [20].

̇ x = 𝐀aΓx + Γx𝐀
⊺
a + 2𝐁a𝐒0𝐁

⊺
a (9)

here covariance matrix is given by

x = E
[(

𝐱a − µxa
)(

𝐱a − µxa
)⊺]

(10)

here 𝐱a is the response of interest and µxa is the mean value of that
esponse. For a linear time invariant system, as time goes to infinity,
he system reaches stationarity, i.e., Γ̇x = 𝟎, allowing the response
ovariance matrix to be obtained by solving the Lyapunov equation

aΓx + Γx𝐀
⊺
a + 2𝐁a𝐒0𝐁

⊺
a = 𝟎 (11)

he covariance of the structural output 𝐲 can then be calculated via

y = E
(

𝐲𝐲T
)

= 𝐂aΓ𝐱𝐂T
a

(12)

herefore, if the moving load excitation can be represented as a filtered
hite noise, then the stochastic response of an arbitrary linear bridge

tructure can be determined directly. To this end, the next section pro-
oses a filtered white noise approximation to represent the stochastic

oving load.
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3. Stochastic moving load model

This section describes the procedure for computing the filtered
white noise representation of stochastic traffic loading. First, the load
model for a single stream of loads, akin to a single traffic lane, is
presented as a spatio-temporal random field of moving forces. Subse-
quently, the first and second order statistics, as well as the PSD, are
derived; these results are illustrated for a rectangular pulse loading
process. Finally, the load is discretized and converted to a vector
random field that can be expressed as filtered white noise.

3.1. Load model

The load, which is shown schematically in Fig. 1, is modeled as a
random field of spatial position x and time t, such that 0 ≤ 𝑥 ≤ 𝐿 and
𝑡 ≥ 0 and defined as the summation of 𝑁(𝑡) individual moving loads
𝑓𝑖 (𝑥, 𝑡), i.e.,

𝑓 (𝑥, 𝑡) =
𝑁(𝑡)
∑

𝑖=1
𝑓𝑖 (𝑥, 𝑡) (13)

𝑓𝑖 (𝑥, 𝑡) = 𝐴𝑖ℎ
(

𝑥 − 𝑣
(

𝑡 − 𝑡𝑖
)

+ 𝜖
)

(14)

where x is the location of the leading edge of the load function, ℎ (⋅),
which has a small constant width 2𝜖; 𝐿 is the span length of the
structure; 𝐴𝑖 represents the load amplitude, which are positive random
variables that are independent and identically distributed (i.i.d.) with
mean 𝜇𝐴 and variance 𝜎2𝐴; 𝑡𝑖 is the stochastic arrival time, which
s independent of the load magnitude; and 𝑣 is the velocity of the

moving load, which is considered constant. This assumption of constant
velocity is consistent with past approaches to this problem [4,9–12,15–
17,19,27]. The stream of moving loads can be thought of as a single
lane of traffic. It is assumed that the loading parameters are constant in
time. The load function ℎ (𝑧) is centered around 𝑧 = 0 and is normalized
such that

∫

𝜖

−𝜖
ℎ (𝑧) 𝑑𝑧 = 1 (15)

Assuming that the number of loads 𝑁 (𝑡) is a Poisson counting process
with constant arrival rate 𝜆, then the process defined in Eqs. (13)–
(14) is a compound Poisson process [29]. For a given number of loads
𝑁 (𝑡) = 𝑛, the compound Poisson process has the arrival times 𝑡1 <
𝑡2 < ⋯ < 𝑡𝑛 which are independent and uniformly distributed on the
interval [0, 𝑡], i.e., the probability distribution function (PDF) 𝑓𝑡𝑖 (𝜏) of
ach arrival time is

𝑡𝑖 (𝜏) =

⎧

⎪

⎨

⎪

⎩

1
𝑡
, if 0 ≤ 𝜏 ≤ 𝑡

0, otherwise
(16)

.2. Mean, auto-covariance, and PSD

The first and second moments, as well as the PSD, of the loading
rocess are computed next. The expected value of the loading process,
onditional on 𝑁 (𝑡) = 𝑛, is given by

[𝑓 (𝑥, 𝑡) |𝑁(𝑡) = 𝑛] =
𝑛
∑

𝑖=1
E
[

𝐴𝑖ℎ
(

𝑥 − 𝑣
(

𝑡 − 𝑡𝑖
)

+ 𝜖
)]

= 𝑛𝜇𝐴E
[

ℎ
(

𝑥 − 𝑣
(

𝑡 − 𝑡𝑖
)

+ 𝜖
)]

(17)

sing Eq. (16), the expected value of the distribution is computed using
he substitutions 𝑑 = 𝑥 − 𝑣𝑡 + 𝜖 and 𝑧 = 𝑑 + 𝑣𝑡𝑖 as follows
[

ℎ
(

𝑥 − 𝑣
(

𝑡 − 𝑡𝑖
)

+ 𝜖
)]

= ∫

𝑡

0
ℎ
(

𝑑 + 𝑣𝑡𝑖
)

𝑓𝑡𝑖
(

𝑡𝑖
)

𝑑𝑡𝑖

= 1 𝑥+𝜖
ℎ (𝑧) 𝑑𝑧

(18)

𝑡𝑣 ∫𝑥−𝑣𝑡+𝜖

3

or a sufficiently large value of t (in this case, 𝑡 > 𝐿+2𝜖
𝑣 ) and noting

hat E [𝑁(𝑡)] = 𝜆𝑡, the unconditional expected value of the loading is
iven by

[𝑓 (𝑥, 𝑡)] = E [E [𝑓 (𝑥, 𝑡) |𝑁(𝑡) = 𝑛]]

=
𝜆𝜇𝐴
𝑣

(19)

Because the stream of moving loads represents the physical vehicle
traffic on the bridge (i.e., all forces are positive), the loading process
has a nonzero positive mean, which is constant across the span of the
bridge. A higher arrival rate indicates that more vehicles are on the
span at any given time, resulting in a higher mean load. Conversely,
for higher velocities, each load takes less time to cross the span, so at
any given time the load is less likely to be on the span, resulting in a
lower mean load.

The conditional correlation function of the loading process is de-
fined for spatial and time coordinate pairs (𝑥, 𝑡) and (𝑦, 𝑠) where it is
ssumed that 𝑠 > 𝑡; the independent increments property of the Poisson
rocess is used.

[𝑓 (𝑥, 𝑡) 𝑓 (𝑦, 𝑠) |𝑁(𝑡) = 𝑛,𝑁 (𝑠) −𝑁(𝑡) = 𝑚]
𝑛
∑

𝑖=1

𝑛+𝑚
∑

𝑗=1
E
[

𝑓𝑖 (𝑥, 𝑡) 𝑓𝑗 (𝑦, 𝑠)
] (20)

ere, index 𝑖 is associated with (𝑥, 𝑡) and 𝑗 with (𝑦, 𝑠) where 1 ≤ 𝑖 ≤ 𝑛
nd 1 ≤ 𝑗 ≤ 𝑛 + 𝑚. For the case where 𝑖 = 𝑗
[

𝑓𝑖 (𝑥, 𝑡) 𝑓𝑖 (𝑦, s)
]

= E
[

𝐴2
𝑖
]

E
[

ℎ
(

𝑥 − 𝑣
(

𝑡 − 𝑡𝑖
)

+ 𝜖
)

ℎ
(

𝑦 − 𝑣
(

𝑠 − 𝑡𝑖
)

+ 𝜖
)]

=

(

𝜇2𝐴 + 𝜎2𝐴
)

𝑣𝑡
𝐽 (𝑣𝑡 + 𝑑, 𝑒 − 𝑑)

(21)

here 𝑒 = 𝑦−𝑣𝑠+ 𝜖, and 𝑒−𝑑 = (𝑦 − 𝑣𝑠 + 𝜖)− (𝑥 − 𝑣𝑡 + 𝜖) = 𝛥𝑥−𝑣𝜏, and
the function 𝐽 (𝛾, 𝛼) is defined as

(𝛾, 𝛼) = ∫

𝛾

−𝜖
ℎ (𝑧)ℎ (𝑧 + 𝛼) 𝑑𝑧 (22)

ote that for sufficiently large value of 𝑡, in this case 𝑡 > 𝐿+2𝜖
𝑣 , when

a load could have completely crossed the span and the random input
process has reached stationarity, 𝑑 < −𝜖, and therefore 𝐽 (𝑑, 𝑒 − 𝑑) = 0.
For the case where 𝑖 ≠ 𝑗, these two forces are independent. Here it is
assumed that 𝑠 > 𝑡, where 𝑖 is the index of loads 0 < 𝑖 < 𝑛 and 𝑗 is the
index of loads 0 < 𝑗 < 𝑚 + 𝑛. The terms in Eq. (20) become

E
[

𝑓𝑖 (𝑥, 𝑡) 𝑓𝑗 (𝑦, s) |𝑁 (𝑡) = 𝑛,𝑁 (𝑠) −𝑁 (𝑡) = 𝑚
]

= E
[

𝑓𝑖 (𝑥, 𝑡) |𝑛, 𝑚
]

E
[

𝑓𝑖 (𝑦, s) |𝑛, 𝑚
]

=

⎧

⎪

⎨

⎪

⎩

0 if 𝑗 ≤ 𝑛

1
𝑡(𝑡 − 𝑠)

(𝜇𝐴
𝑣

)2
if 𝑗 > 𝑛

(23)

The double summation in Eq. (20) then needs to combine the 𝑛 in-
stances of 𝑖 = 𝑗 plus the nm instances of 𝑖 ≠ 𝑗 where 𝑗 > 𝑛 plus the
𝑛2 − 𝑛 instances of 𝑖 ≠ 𝑗 where 𝑗 ≤ 𝑛, yielding

E [𝑓 (𝑥, 𝑡) 𝑓 (𝑦, 𝑠) |𝑁(𝑡) = 𝑛,𝑁 (𝑠) − N(t) = 𝑚] =

(𝑛)

(
(

𝜇2
𝐴 + 𝜎2𝐴

)

𝑣𝑡
𝐽 (𝑣𝑡 + 𝑑, 𝑒 − 𝑑)

)

+
(

𝑛2 − 𝑛
)

(0) + (𝑛𝑚)
(

1
𝑡(𝑡 − 𝑠)

(𝜇𝐴
𝑣

)2
)

(24)

ext the expected value is evaluated for the number of loads for the
oisson random variable 𝑁 (𝑡) and 𝑁 (𝑠), which recalling that 𝑠 > 𝑡,
ecomes

E [N (t)] = 𝜆𝑡

E
[

𝑁 (𝑡)2
]

= (𝜆𝑡)2 + 𝜆𝑡

E
[

𝑁 (𝑡)2 −𝑁 (𝑡)
]

= (𝜆𝑡)2

[𝑁 (𝑡) (𝑁 (𝑠) −𝑁(𝑡))] = 𝜆2(𝑠𝑡 − 𝑡2)

(25)
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Fig. 1. Schematic of the moving load model. (a) at the initial time, no loads are present, (b) first load arrives at time 𝑡 = 𝑡𝑖, (c) second load arrives at time 𝑡 = 𝑡𝑖+1, and (d) loads
moving along 𝑥 as time increases.
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These expectations are then used to compute the auto-correlation per
the double summation of Eq. (20) as

𝑅 (𝛥𝑥, 𝜏) = E [𝑓 (𝑥, 𝑡) 𝑓 (𝑦, 𝑠)]

=
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

𝑣
𝐽 (𝑥 + 𝜖, 𝛥𝑥 − 𝑣𝜏) +

(

𝜆𝜇𝐴
𝑣

)2 (26)

here 𝛥𝑥 = 𝑥 − 𝑦, and 𝜏 = 𝑡 − 𝑠. The auto-covariance function is then
omputed as

(𝛥𝑥, 𝜏) = E [𝑓 (𝑥, 𝑡) 𝑓 (𝑦, 𝑠)] − E [𝑓 (𝑥, 𝑡)]E [𝑓 (𝑦, 𝑠)]

=
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

𝑣
𝐽 (𝑥 + 𝜖, 𝛥𝑥 − 𝑣𝜏)

(27)

Note that the auto-covariance function is a function of 𝛥𝑥 and 𝜏, which
ogether with the fact that mean is constant, indicates that the random
ield is weakly homogeneous. The PSD of the loading is computed as
he Fourier transform of the auto-covariance function in the variable 𝜏

𝑆 (𝛥𝑥, 𝜔) =  (𝐾 (𝛥𝑥, 𝜏)) (28)

.3. Rectangular pulse example

To illustrate the proposed approach, consider the case when the load
s a rectangular pulse, i.e., constant over the region 𝑧 ∈ [−𝜖, 𝜖], which
esults in

(𝑧) =

⎧

⎪

⎨

⎪

⎩

1
2𝜖

if 𝑧 ∈ [−𝜖, 𝜖]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(29)

he expected value computed using Eq. (19) is independent of the
oading distribution, E [𝑓 (𝑥, 𝑡)] = 𝜆𝜇𝐴

𝑣 . The function 𝐽 (𝛾, 𝛼) in Eq. (22)
then becomes

𝐽 (𝛾, 𝛼) =

⎧

⎪

⎪

⎨

⎪

⎪

0 if |𝛼| > 2𝜖
[

2𝜖 + 𝛼
4𝜖2

𝜖 ≤ 𝛾
]

if − 2𝜖 < 𝛼 ≤ 0
[

2𝜖 − 𝛼 𝜖 − 𝛼 ≤ 𝛾
]

if 0 < 𝛼 ≤ 2𝜖

(30)
⎩ 4𝜖2

4

which, when evaluated at 𝛾 = 𝑥 + 𝜖, and 𝛼 = 𝛥𝑥 − 𝑣𝜏, the result is:

𝐽 (𝑥 + 𝜖, 𝛥𝑥 − 𝑣𝜏) =
2𝜖 − |𝛥𝑥 − 𝑣𝜏|

4𝜖2
if − 2𝜖 < 𝛥𝑥 − 𝑣𝜏 < 2𝜖 (31)

his result is a shifted triangular pulse, which is nonzero only for values
f −2𝜖

𝑣 ≤ 𝜏 − 𝛥𝑥
𝑣 ≤ 2𝜖

𝑣 . The resulting auto-correlation where 𝑖 = 𝑗 is
omputed from Eq. (21) as
[

𝑓𝑖 (𝑥, 𝑡) 𝑓𝑖 (𝑦, s)
]

=

(

𝜇2
𝐴 + 𝜎2𝐴

)

𝑣𝑇
𝐽 (𝑥 + 𝜖, 𝛥𝑥 − 𝑣𝜏)

=

⎧

⎪

⎨

⎪

⎩

(

𝜇2
𝐴 + 𝜎2𝐴

)

(2𝜖)2 𝑡

(

2𝜖
𝑣

−
|

|

|

|

𝛥𝑥
𝑣

− 𝜏
|

|

|

|

)

if −2𝜖
𝑣

≤ 𝜏 − 𝛥𝑥
𝑣

≤ 2𝜖
𝑣

0 otherwise

(32)

and where 𝑖 ≠ 𝑗 from Eq. (23) E
[

𝑓𝑖 (𝑥, 𝑡) 𝑓𝑗 (𝑦, s)
]

= 1
𝑡(𝑠−𝑡)

(

𝜇𝐴
𝑣

)2
which

is independent of the pulse shape. Combining these terms per Eq. (26)
results in the auto-correlation

𝑅 (𝛥𝑥, 𝜏) = E [𝑓 (𝑥, 𝑡) 𝑓 (𝑦, 𝑠)]

=
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

(2𝜖)2

(

2𝜖
𝑣

−
|

|

|

|

𝛥𝑥
𝑣

− 𝜏
|

|

|

|

)

+
(

𝜆𝜇𝐴
𝑣

)2 (33)

ubtracting the product of expected values results in the
uto-covariance:

(𝛥𝑥, 𝜏) = E [𝑓 (𝑥, 𝑡) 𝑓 (𝑦, 𝑠)] − E [𝑓 (𝑥, 𝑡)]E [𝑓 (𝑦, 𝑠)]

=

⎧

⎪

⎨

⎪

⎩

𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

(2𝜖)2

(

2𝜖
𝑣

−
|

|

|

|

𝛥𝑥
𝑣

− 𝜏
|

|

|

|

)

if −2𝜖
𝑣

≤ 𝜏 − 𝛥𝑥
𝑣

≤ 2𝜖
𝑣

0 otherwise

(34)

hen the power spectral density is

(𝛥𝑥, 𝜔) =  (𝐾 (𝛥𝑥, 𝜏))

=
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

𝑒−𝑖𝜔
𝛥𝑥
𝑣 sinc2

( 𝜖𝜔) (35)

2𝜋𝑣2 𝑣
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Fig. 2. Schematic of spatial discretization of stochastic moving loads with linear interpolation.
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In terms of dimensions, this PSD evaluates to
(

𝑓𝑜𝑟𝑐𝑒
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

)2 1
Hz as expected

or a distributed loading process. In the limit as 𝜖 approaches zero,
.e., the loading width is negligible compared to the length of the
ridge, then

(𝛥𝑥, 𝜔) =
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
𝑒−𝑖𝜔

𝛥𝑥
𝑣 (36)

For this case, note that the magnitude of the PSD is constant for all
frequencies

𝑆 (0, 𝜔) =
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
,

|𝑆 (𝛥𝑥, 𝜔)| =
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2

(37)

Whether the width of uniformly distributed moving loads could be
considered to be negligible can be determined by examining the mag-
nitude of sinc2

(

𝜖𝜔
𝑣

)

in Eq. (35); if sinc2
(

𝜖𝜔
𝑣

)

is sufficiently close to
.0 over the frequency range of interest, then the loading width can be
onsidered negligible, i.e., the loads can be considered as point loads
nd Eqs. (36)–(37) hold. If the loading were initially considered as point
oads rather than as distributed loads, a derivation of the loading PSD,
s shown in Appendix A, produces the same result obtained here as 𝜖
oes to zero.

. State space representation for the stochastic moving load model

This section shows how the loading derived in Section 3 can be
epresented in state space form given in Eq. (4). First, the spatially
ontinuous stochastic random field 𝑓 (𝑥, 𝑡) is discretized in space. Then,

a rational approximation of the complex exponential term of the PSD
is developed. Subsequently, a single state space system with a white
noise input is obtained, whose output corresponds to the discretized
random field. This system is then reduced via balanced reduction to
enable a more efficient solution of the Lyapunov equation. It is worth
noting that other white noise representations of stochastic traffic can
also be considered here, such as those presented by Ditlevsen and
Madsen [27,28] after a modification to account for constant traffic
velocity.

4.1. Discretization of the continuous random field

First, the random field 𝑓 (𝑥, 𝑡) is discretized in space assuming a
piecewise linear spatial variation [30], as shown in Fig. 2, where the
vector random process 𝐟 (𝑡) defined as

𝐟 (𝑡) =
[

𝑓𝑥1 (𝑡) , 𝑓𝑥2 (𝑡) ,… , 𝑓𝑥𝑁d
(𝑡)
]T

(38)

where 𝑥𝑗 corresponds to the loading discretization points, and 𝑁d is the
number of input points. This discretization represents the continuous
loading as

𝑓 (𝑥, 𝑡) =
𝑁𝑑
∑

𝑘=1
𝑓𝑥𝑘 (𝑡)𝜙𝑘(𝑥) (39)
5

where 𝑓𝑥𝑘 (𝑡) is the point load temporal process at location 𝑥𝑘, and 𝜙𝑘(𝑥)
is the spatial contribution from location 𝑥𝑘. Using a linear interpolation
between loaded points results in

𝜙𝑘 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1 −
|

|

|

|

𝑥𝑘 − 𝑥
𝛥𝑥

|

|

|

|

if 𝑥𝑘 − 𝛥𝑥 ≤ 𝑥 ≤ 𝑥𝑘 + 𝛥𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(40)

where 𝛥𝑥 is the spacing between adjacent discretization points.
Then, the mean of the vector random process is given by

E [𝐟 (𝑡)] = E [f (𝑥, 𝑡)]𝛥x =
𝜇𝐴𝜆
𝑣
𝛥x (41)

where 𝛥x is the spacing between the discretized load points. The
discretized mean load can be interpreted as a load distributed uniformly
across the span, so the equivalent discretized loads are this distributed
load collected over each tributary width. This discretized mean load
can be computed from Eq. (39) with a constant for the force 𝑓 (𝑥, 𝑡).
The auto-covariance matrix function of the vector random process is
then given by

𝐾𝑗,𝑗+𝑛 (𝜏) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆
𝑣2
𝛿
(

𝑛𝛥𝑥
𝑣

− 𝜏
)

(

𝜇2𝐴 + 𝜎2𝐴
)

if 𝜖 = 0

𝜆
(2𝜖)2

(

𝜇2𝐴 + 𝜎2𝐴
)

(

2𝜖
𝑣

−
|

|

|

|

𝑛𝛥𝑥
𝑣

− 𝜏
|

|

|

|

)

if 𝜖 > 0
(42)

or point loads or distributed loads respectively. Here the matrix indices
re given in relative terms (𝑗, 𝑗+𝑛) since the values depend only on the
ifference between indices, 𝑛. The same is true for the PSD matrix of
he vector random process is given by

𝑗,𝑗+𝑛 (𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
𝑒−𝑖𝜔

𝑛𝛥𝑥
𝑣 if 𝜖 = 0

𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
𝑒−𝑖𝜔

𝑛𝛥𝑥
𝑣 sinc2

( 𝜖𝜔
𝑣

)

if 𝜖 > 0

(43)

for point loads or distributed loads respectively. Note that for all
frequencies, the diagonal entries (i.e., terms with 𝑛 = 0) of the point

loading PSD are constant and equal to
𝜆
(

𝜇2𝐴+𝜎
2
𝐴

)

2𝜋𝑣2 and all entries have

constant magnitude and equal to
𝜆
(

𝜇2𝐴+𝜎
2
𝐴

)

2𝜋𝑣2 . Also, 𝑛𝛥𝑥
𝑣 corresponds to

the positive time delay for the load to move from point 𝑥𝑗 to point
𝑥𝑗+𝑛. The PSD matrix in Eq. (43) can be factored as follows

𝑗𝑘 (𝜔) = 𝑆0𝐻𝑗 (𝜔)𝐻∗
𝑘 (𝜔) (44)

here ∗ is the complex conjugate, and 𝐻𝑗 (𝜔) is given by

𝐻𝑗 (𝜔) =

⎧

⎪

⎨

⎪

⎩

𝑒−𝑖𝜔
𝑥𝑗
𝑣 if 𝜖 = 0

𝑒−𝑖𝜔
𝑥𝑗
𝑣 sinc

( 𝜖𝜔
𝑣

)

if 𝜖 > 0
(45)

and

𝑆0 =
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
(46)
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Then, the PSD matrix can be written in matrix form as

𝐒 (𝜔) = 𝑆0𝐇 (𝜔)𝐇H (𝜔) (47)

where H is the Hermitian or complex conjugate transpose.
The exponential terms in the expression for 𝐇 (𝜔) in Eq. (45) re-

quires an infinite-dimensional filter, which is not physically realiz-
able [31,32]. The next section presents an approach using the Padé
approximation to obtain a finite dimensional filter for 𝐇 (𝜔).

4.2. Padé approximation

To represent the loading in state space form, the term 𝑒−𝑠𝜏 needs
to be expressed as a rational polynomial function, where 𝜏 is the
delay time and s is the Laplace variable. Note that the magnitude
of the complex exponential 𝑒−𝑠𝜏 is constant and equal to 1 for all
frequencies, while the phase varies linearly, with a slope of 𝜏. The
Padé approximation is often used to represent 𝑒−𝑠𝜏 , as it also has a
unit magnitude and linear phase over a bandwidth that depends on the
number of terms taken in the approximation.

For a unit delay, 𝜏 = 1, the Padé approximation is given by

𝑒−𝑠 =
𝑁𝑝,𝑞 (𝑠)
𝐷𝑝,𝑞 (𝑠)

(48)

here 𝑁𝑝,𝑞 and 𝐷𝑝,𝑞 are polynomials of degree 𝑝 and 𝑞, respectively.
ypically, 𝑝 = 𝑞, which ensures the magnitude is unity for all frequen-
ies and the polynomials are given by

𝑞,𝑞 (𝑠) =
𝑞
∑

𝑗=0

(2𝑞 − 𝑗)!𝑞!
(2𝑞)!𝑗! (𝑞 − 𝑗)!

(−𝑠)𝑗

𝐷𝑞,𝑞 (𝑠) =
𝑞
∑

𝑗=0

(2𝑞 − 𝑗)!𝑞!
(2𝑞)!𝑗! (𝑞 − 𝑗)!

𝑠𝑗
(49)

For an arbitrary delay 𝜏, i.e., 𝑒−𝜏𝑠, the numerator and denominator are
given by 𝑁𝑝,𝑞 (𝜏𝑠) and 𝐷𝑝,𝑞 (𝜏𝑠), respectively. As shown in Fig. 4 for the
simply supported beam example, the approximation order determines
the bandwidth over which the phase is linear for a specific time delay.

4.3. Computing Padé approximants

Computing high order Padé approximants can be numerically chal-
lenging. To avoid numerical issues, the poles and zeros of the approxi-
mants can be computed directly, resulting in an accurate representation
of high order systems [33]. For a unit delay, the poles 𝑝1, 𝑝2,… , 𝑝𝑞 are
obtained by solving the following system of nonlinear equations

𝑓 p
𝑘 = −1

2
−
𝑝 + 𝑞
2𝑝𝑘

+
∑

𝑗≠𝑘

1
𝑝𝑘 − 𝑝𝑗

= 0 (50)

where 𝑘 = 1, 2,… , 𝑞. Likewise, the zeros 𝑧1, 𝑧2,… , 𝑧𝑝 are obtained by
solving the following system of nonlinear equations

𝑓 z
𝑘 = 1

2
−
𝑝 + 𝑞
2𝑧𝑘

+
∑

𝑗≠𝑘

1
𝑧𝑘 − 𝑧𝑗

= 0 (51)

where 𝑘 = 1, 2,… , 𝑝. The previous expressions are satisfied by the
umerator and denominator polynomials, because of known properties
or the roots of hypergeometric functions [33–35]. Each system of non-
inear equations is solved using Newton’s method, where the gradients
re computed in closed-form. An initial guess for the iterative method
onsists of points arranged in a left half ellipse for the poles and right
alf ellipse for the zeros [33]. Because the complex roots appear in
onjugate pairs, this constraint is directly enforced in the solution to
uarantee a real system. The phase angles used for determining Padé
ccuracy shown in Fig. 4 are also computed using this approach.

The poles 𝑝1, 𝑝2,… , 𝑝𝑞 and zeros 𝑧1, 𝑧2,… , 𝑧𝑝 are computed for a unit
delay. Then for a delay 𝑑, the poles are equal to 𝑝1∕𝑑, 𝑝2∕𝑑,… , 𝑝𝑞∕𝑑
and the zeros are equal to 𝑧1∕𝑑, 𝑧2∕𝑑,… , 𝑧𝑝∕𝑑. The gain of the system
is given as

𝑔 =
𝑞! (−1)𝑝 (52)

𝑝!𝑑𝑞−𝑝

6

he system is constructed from the poles, zeros and gains, for example
sing the Matlab function zpk, and then converted directly to state
pace format. Using the transfer function should be avoided to reduce
umerical errors.

.4. State space representation of loading filter

To employ this filtered white noise loading system on a structural
odel, m separate subsystems must be created corresponding to the
iscretization of the random field. Then, the assembled loading system
as one input and m outputs. The loading system assembly is

𝐀F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐀f1

𝐀f2

⋱

𝐀f𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐁f1

𝐁f2

⋮

𝐁f𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐂𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐂f1

𝐂f2

⋱

𝐂f𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐃F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐃f1

𝐃f2

⋮

𝐃f𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(53)

here each subsystem 𝐀f 𝑖, 𝐁f 𝑖, 𝐂f 𝑖, 𝐃f 𝑖 corresponds to the Padé delay
or the 𝑖th discretized force in the random field, i.e., each subsystem
s the state space realization of the Padé delay for the load to reach a
pecific input location. The fully assembled system is the white noise
ilter shown in Eq. (4).

The resulting assembled system, with matrices 𝐀F, 𝐁F, 𝐂F, 𝐃F, can
e quite large, depending on the discretization of the random field and
he order of the Padé approximations required. Balanced reduction is
pplied [36] prior to assembly of the augmented system, making the
tate space representation of the loading model more tractable.

.5. Extension to multiple loading processes (Multiple traffic lanes)

This procedure can be expanded to consider multiple lanes of traffic,
ncluding vehicles moving in the opposite direction or with different
elocities. In this case the sign of the time delay is reversed, and the
SD matrix is given by

′
𝑗,𝑗+𝑛 (𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
𝑒𝑖𝜔

𝑛𝛥𝑥
𝑣 if 𝜖 = 0

𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
𝑒𝑖𝜔

𝑛𝛥𝑥
𝑣 sinc2

( 𝜖𝜔
𝑣

)

if 𝜖 > 0

(54)

Instead of realizing positive delays using the Padé approximation, the
coordinates can be redefined as 𝑥′𝑖 = 𝐿 − 𝑥𝑖, then

𝑛𝛥𝑥 = 𝑥𝑗 − 𝑥𝑗+𝑛 = 𝑥𝑗 − 𝐿 + 𝐿 − 𝑥𝑗+𝑛 = 𝑥′𝑗+𝑛 − 𝑥
′
𝑗 = 𝑛𝛥′𝑥 (55)

Then, the PSD matrix is rewritten as

𝑆𝑗,𝑗+𝑛 (𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
𝑒−𝑖𝜔

𝑛𝛥′𝑥
𝑣 if 𝜖 = 0

𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
𝑒−𝑖𝜔

𝑛𝛥′𝑥
𝑣 sinc2

( 𝜖𝜔
𝑣

)

if 𝜖 > 0

(56)

and

𝐇′ (𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝑒−𝑖𝜔
𝐿−𝑥1
𝑣 ,… , 𝑒−𝑖𝜔

𝐿−𝑥𝑁d
𝑣

]T

if 𝜖 = 0
[

𝑒−𝑖𝜔
𝐿−𝑥1
𝑣 sinc

( 𝜖𝜔
𝑣

)

,… , 𝑒−𝑖𝜔
𝐿−𝑥𝑁d

𝑣 sinc
( 𝜖𝜔
𝑣

)

]T

if 𝜖 > 0

(57)
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to obtain

𝐒′(𝜔) = 𝑆0𝐇
′(𝜔)𝐇′H (𝜔)

𝑆0 =
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
(58)

here 𝑆0 is the intensity of the white noise process for this lane.
s indicated here, the proposed method can be applied for reversed
irection traffic but using spatial coordinates 𝐿− 𝑥1, 𝐿− 𝑥2,… , 𝐿− 𝑥𝑛.
irst, assuming two independent streams of moving loads, one in each
irection, the random field loading is given by

(𝑥, 𝑡) = 𝑓+ (𝑥, 𝑡) + 𝑓− (𝑥, 𝑡) (59)

here superscripts imply the moving direction, 𝑓+ are the loads mov-
ng in the positive direction and 𝑓− are the loads moving in the reverse
irection. If these two processes have the same parameters (arrival rate
, loading 𝜇𝐴, 𝜎𝐴 and velocity 𝑣) then, 𝑆+

0 = 𝑆−
0 and the mean of the

ombined process discretized in space is given by

[𝐟 (𝑡)] =
2𝜇𝐴𝜆
𝑣

𝛥𝑥 (60)

ssuming the processes are independent, the auto-covariance function
s the sum of the auto-covariance function of each process. Because
f the linear property of the Fourier transform, then, the PSD of the
ombined process is the sum of the PSD for each traffic lane, i.e.,

(𝛥𝑥, 𝜔) = 𝑆+ (𝛥𝑥, 𝜔) + 𝑆− (𝛥𝑥, 𝜔) (61)

here 𝑆, 𝑆+, and 𝑆− represent the PSD for the combined loads, loads
oving in positive direction, and loads moving in reverse direction,

espectively. Similarly, after the discretization,

(𝜔) = 𝐒+ (𝜔) + 𝐒− (𝜔)

= 𝑆+
0 𝐇

+ (𝜔)
(

𝐇+ (𝜔)
)H + 𝑆−

0 𝐇
− (𝜔) (𝐇− (𝜔))H

(62)

hen, the following expression is obtained

(𝜔) =
[

𝐇+ (𝜔) 𝐇− (𝜔)
]

𝐒𝟎
[

𝐇+ (𝜔) 𝐇− (𝜔)
]H (63)

he previous expression implies that the excitation system has now two
nputs and the same number of outputs. Here, 𝐒𝟎 is the PSD matrix
f the two input processes. Assuming they are uncorrelated, this is a
iagonal matrix with entries of 𝑆+

0 and 𝑆−
0 . Furthermore, if a uniform

patial discretization is used, then, 𝐻−
𝑖 = 𝐻+

𝑁d+1−𝑖
, i.e., 𝐇− is equal to

+ but reversing the order of the entries.
The traffic model can be extended readily to any number of lanes

n both directions. Note however that when assembling the state space
epresentation, the time delay, 𝑛𝛥𝑥

𝑣 , for a load moving from left to
ight is based on the distance from the left end of the span to a given
nput point, and the time delay for a load moving from right to left,
𝑛𝛥′𝑥
𝑣 , is based on the distance from the right end to that same input
oint, these will be different delays, therefore requiring different Padé
pproximations.

. Numerical examples

This section presents two numerical examples to demonstrate the
fficacy of the proposed loading model. For comparison with previously
roposed loading models, a simply supported beam is examined for
arious loading speeds. The results at midspan are used here to compare
he temporal response magnitudes. The second example considers a
ore complex three-span truss with flexible interior supports. In this

ase, multiple modes are necessary to sufficiently characterize the
tructure’s response. This example demonstrates the accuracy of the
patial response covariance, as well as member force results, and the
pplication of the same loading system to multiple structural config-
rations. For comparison purposes, response variances are compared
ith numerical simulation, modal superposition (discussed further in
ppendix B), and the frequency domain approach [20].
7

Table 1
Structure and loading parameters used in the simply supported beam example.

Description Parameter Value Units

Structural
parameters

Span length 𝐿 20 m
Flexural stiffness 𝐸𝐼 200e3 kN m2

Mass density 𝜌 2500 kg∕m3

Damping 𝜁 0.02 –

Loading
parameters
(Uniform
distribution)

Poisson arrival rate 𝜆 10 1/s
Mean load magnitude 𝜇𝐴 44.5 kN
Variance of load magnitude 𝜎2𝐴 26.38 kN2

Load range 𝐴𝑚𝑎𝑥 − A𝑚𝑖𝑛 17.8 kN
Load velocity 𝑣 varies m/s

Mean load E [𝑓 (𝑥, 𝑡)] =
𝜇𝐴𝜆
𝑣

varies kN/m

5.1. Simply supported beam example

The first example consists of a simply supported beam which is
representative of simply supported bridge structures. Fig. 3 shows a
schematic of the example, and Table 1 lists the parameters considered.
The dynamic displacement response of a simply supported beam is
largely governed by a single mode, i.e., a single degree-of-freedom
assumed modes model, Eq. (72) with 𝑛 = 1. However, to achieve
better results for midspan velocity and acceleration, a model including
the first five modes is used. For this structural model, the load effects
matrix, 𝐆 from Eq. (1) is defined as

𝐺𝑖𝑗 = ∫

𝑥𝑗+𝛥𝑥

𝑥𝑗−𝛥𝑥
𝜓𝑖 (𝑧)𝜙𝑗 (𝑧)𝑑𝑧 (64)

or structural dof 𝑖 and loading discretization 𝑗. In a finite element
ormulation, 𝜓𝑖 (𝑥) is the element shape functions corresponding to dof
. In an assumed modes formulation 𝜓𝑖 (𝑧) is the 𝑖th assumed mode
hape which does not necessarily need to be the same as a natural mode
f the structure. The loading discretization is considered in 𝜙𝑗 (𝑧) as a
inear interpolation between discrete load points as shown in Eq. (40).
fter computing the state space representation of the structure, its
odal frequencies are used to determine an upper frequency target for

omputing the Padé approximation of the loading systems.
The span length of 20 m and load velocity of 25 m/s result in a

ime of 0.8 s for the load to cross the span. In computing the Padé
pproximates for this example, a 0.8 s delay is required for the longest
elay system. A comparison of polynomial order and Padé accuracy
or a 0.8 s delay is shown in Fig. 4. If only the first mode behavior
s needed to represent the entire response, then an order smaller than
0 is adequate for the longest delay Padé approximation. However,
hen the response of the first five modes is required, an 80th order
olynomial is required.

The response variance computed using the proposed approach is
ependent on the number of input locations. This convergence behavior
s somewhat dependent on the structure and loading parameters and
hould be investigated for a given set of parameters to determine an
cceptable number of loading points, similar to a mesh sensitivity study
or determining the appropriate mesh discretization used when building
FE model. Results shown here use 48 equal sized regions, 𝛥x = 0.417m

or applying the loading to the model as further refinement results in
ess than 1% change in results.

Results of the proposed approach are compared with traditional
ethods in Figs. 5 through 7. Fig. 5 compares the temporal average

f 1000 simulations with the proposed method’s mean response. In
his example, the excitation is stationary, but the response requires
ome time from initiation of the loading until stationarity due to the
nitial conditions. Fig. 6 shows the ensemble variance for the midspan
isplacement, velocity and acceleration, across 1000 simulations com-
aring to modal superposition, the frequency domain method and the
roposed approach. Note that this figure presents the solution of the
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Fig. 3. Schematic of simply supported beam example.
Fig. 4. Padé approximant accuracy for a 0.8 s delay using different polynomial orders.
ifferential Lyapunov equation [20] which converges to the stationary
esponse in time. Nearly all of the displacement and velocity response,
nd 90% of the acceleration response, is from the first mode.

Fig. 7 shows the nondimensional stationary displacement vari-
nce, 𝜍2, vs. the nondimensional moving load velocity, 𝛼, which are
iven by

2 = 𝜎2
(

𝜌𝐿𝜔2
1
)2

E[𝐴2]
(65)

= 𝑣
𝑣𝑐𝑟

= 𝑣
2𝑓1𝐿

(66)

where 𝑣𝑐𝑟 is the velocity which equates the time required to cross the
span, 𝐿

𝑣 , with half of the first fundamental period of the structure,
𝑇1
2 = 1

2𝑓1
[10,37].

As it can be observed, the mean and variance of the responses
alculated with the proposed method compares well with those from
umerical simulations and alternative methods.
8

5.2. Three-span truss example

The second example is a three-span truss bridge. The intent of this
example is to demonstrate the proposed method’s stationary spatial
output, as well as the ability to use the same loading system on
varying structural configurations. A schematic of the truss considered
is shown in Fig. 8. The bridge has a total length of 300 m, with three
equal spans of 100 m each. This planar truss consists of 117 pin-
connected members, all with equal area. The material density has been
artificially increased to account for components not included in the
model, such as floor system, decking, barriers etc. A full list of model
parameters is shown in Table 2. The interior supports are modeled with
springs to enable studying the effects of varying support stiffness on the
stochastic responses. In this example, both displacement and truss axial
force results are compared. The discretization of the loading required
for accurate results varies depending on the output quantity being
considered. Figs. 9 and 10 present the convergence of displacement
variance and member axial force standard deviation, respectively, for
varying number of input discretizations. Each line in Fig. 9 corresponds
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Fig. 5. Midspan displacement mean responses. Simulation ensemble mean and theoretical mean = 5𝑤𝜇𝐿4

384𝐸𝐼
where 𝑤 = 𝜇𝐴𝜆

𝑣
.

Table 2
Structure and loading parameters used in the three-span truss example.

Description Parameter Value Units

Structural
parameters

Span length L 100 m
Truss height H 10 m
Member axial stiffness EA 6.3e6 kN
Mass density 𝜌 10 × 7850 kg∕m3

Support spring stiffness 𝑘𝑠1 , 𝑘𝑠2 1e12 N/m
Damping 𝜁 0.04 –

Loading
parameters
(Uniform
Distribution)

Poisson arrival rate 𝜆 10 1/s
Mean load magnitude 𝜇𝐴 44.5 kN
Variance of load magnitude 𝜎2𝐴 26.38 kN2

Load range 𝐴𝑚𝑎𝑥 − A𝑚𝑖𝑛 17.8 kN
Load velocity 𝑣 25 m/s

Mean load E [𝑓 (𝑥, 𝑡)] =
𝜇𝐴𝜆
𝑣

17.8 kN/m

to a node on the bottom chord, and each line in Fig. 10 corresponds to
a truss member, excluding the zero force members. In these figures,
the response variance is normalized by the result from the smallest
discretization to allow all outputs to be interpreted simultaneously. A
flat line at 1.0 as the discretizations get smaller indicates results have
converged.

From these figures, it is clear that the axial force results require
a finer loading discretization than the displacements. For all results
presented in this section, the smaller loading increment of 1.5 m (200
points in 300 m) is used.

The nodal displacement variances of bottom chord nodes are com-
pared to simulation in Fig. 11 and the full covariance matrices are
compared in Fig. 12. These results show a good agreement between
methods. The proposed method is within 4% of the simulation results
with the best match being along the diagonal, i.e., the auto-covariance
terms.
9

The member axial force results are presented in terms of standard
deviation in Fig. 13. Most truss members show a very good agreement
between methods, within 5% of simulation results. Note that the zero
force members are excluded from Fig. 13 as they have very low
magnitude responses, which makes quantifying error problematic.

Next, one of the main advantages of the proposed method, efficient
computing of the responses for multiple structural configurations, is
compared to other approaches. In the proposed approach, the same
loading system is considered for each configuration, where alterna-
tive approaches would require re-computing the coupled loading and
structural terms, i.e., the mode shape dependent loading in the modal
superposition approach. Fig. 14 presents the displacement variance
of bottom chord nodes for three variations of the truss geometry, in
each case the proposed method compares well with the simulation
results. Finally, in Fig. 15, multiple values of the support stiffness 𝑘𝑠1
(shown in Fig. 8) are evaluated while 𝑘𝑠2 remains unchanged. Again,
each evaluation uses the same loading system, so solving for response
variance requires only solving the Lyapunov equation for the new
augmented system as shown in Eq. (11).

As can be observed, the responses calculated using the proposed
method are in good agreement with the responses from conventional
approaches. Furthermore, this example highlights the advantages of the
method for efficiently computing the response under varying structural
configurations.

6. Conclusions

Modeling the dynamic process of random vehicles moving across a
bridge is complex, and solving for the associated stochastic responses
is challenging. Often, the vehicle loading is idealized as a compound
Poisson process, that is, as a stream of randomly occurring loads of
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Fig. 6. Midspan displacement, velocity and acceleration variance from initiation until stationarity, computed with different methods. (𝜆 = 10, Frequency domain method provides
stationary response variance.)
random magnitude and constant velocity. Traditional approaches to
solve for the corresponding structural responses represent the loading
process in terms of the modes of the structure, and thus couple the
10
loading with the structure to which it is applied. To address this issue,
this paper presents an approach in which the discrete stochastic moving
load is approximated as a filtered white noise.
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Fig. 7. Nondimensional midspan stationary displacement variance as a function of nondimensional velocity. (Matches results shown in Fig. 9 of Zibdeh and Rackwitz [37]).
Fig. 8. Three-span truss schematic.
First, the loading process was separated into a nonzero static mean
oad and a stochastic dynamic component. The PSD of the stochastic
omponent was derived as a function of the stochastic load parameters
nd the distance between discretized points in the form of a complex
xponential. To represent this load process as a filtered white noise,
he complex exponential was approximated as a ratio of polynomials
sing Padé approximants. These polynomials were realized in a state
pace system for each point along the bridge and assembled into a
ingle-input multiple-output loading system. The result was a state
pace filter that converts the continuous white noise input to a spatially
iscretized approximation of the stochastic moving load process. To
ncrease computational efficiency, balanced reduction was applied,
rior to combining with the state space model of the structure to
reate an augmented system. Then, the response variances of the bridge
ere computed via the Lyapunov equation. The approach was shown

o closely approximate the discrete Poisson process loading through
omparison of responses for two example structures.

The first example was a simply supported beam that showed the
elationship between the Padé approximation order and the target
requency of the loading system. Additionally, this benchmark example
11
demonstrated that the temporal behavior of the response variances us-
ing this approach match those of existing solutions in the literature. The
second example considered a more complex three-span truss bridge to
demonstrate the spatial displacement covariance results, as well as truss
member force results, both of which compare well with simulation.
This example was also used to demonstrate the flexibility of the pro-
posed approach by analyzing variations of the structure using the same
loading system. These examples confirmed that the solution computed
with the proposed method is in excellent agreement with other solution
methods, including modal superposition, Monte Carlo simulation, and
the frequency domain method. The second example also demonstrated
the convergence of the proposed method as a function of the loading
discretization. Note that when considering longer delay times between
locations or higher target frequencies, higher-order Padé approxima-
tions are required. This can lead to very large loading systems and more
computational time. However, this system only needs to be computed
once and can be applied to different structural configurations, so long
as the same traffic parameters and loading discretization are employed
and the frequency target is still applicable. In the three-span truss
example, the proposed method for computing response variances took
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Fig. 9. Convergence of displacement variance at bottom chord nodes with increasing number of load discretization points. The low magnitude responses at interior support
locations are highlighted as dashed lines.

Fig. 10. Convergence of axial force standard deviation with increasing number of load discretization points (excluding zero force members).

12
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Fig. 11. Comparison of displacement variance between methods at truss bottom chord panel points.
Fig. 12. Comparison of displacement covariance matrix between methods.
approximately 35 min when the loading system had not undergone
balanced reduction, and only a few seconds using the reduced loading
system. As a comparison, computing 1000 Monte Carlo time domain
simulations took approximately 5 min on the same computer, with an
Intel Xeon E3- 1285 v6 @4.10 GHz processor and 32 Gb of RAM.

The approach derived here for computing a state space filtered
white noise representation of the discrete stochastic moving load pro-
cess has distinct advantages over the existing methods. Primarily, that
it is independent of the structure and enables solving for the response
variances quickly using the Lyapunov equation. As a result, this ap-
proach lends itself to easily evaluating design alternatives, parametric
studies or even structural optimization procedures, where the structural
system varies but the loading system remains constant.
13
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Fig. 13. Comparison of axial force standard deviation between methods.
Fig. 14. Displacement variance of bottom chord nodes for alternate truss configurations; top: constant depth truss; middle: baseline truss shown in Fig. 8; bottom: increased depth
over interior supports.
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Appendix A. Stochastic moving load model with discrete loads

If the moving loads in Eq. (2) were considered as impulse loads
rather than distributed, then a similar derivation could be performed.
In this case the loads are defined as

𝑓𝑖 (𝑥, 𝑡) = 𝐴𝑖𝛿
(

𝑥 − 𝑣
(

𝑡 − 𝑡𝑖
))

(67)

where 𝛿 is the Dirac delta.
A function of a random variable, 𝑦 = 𝑔(𝑥) is itself a random

variable as long as 𝑔∶R → R. [38,39]. Therefore Eq. (67) does not
meet this requirement, because in some sense, the Dirac delta has an
infinite value at 𝛿(0). Nonetheless, the expectation given by E [𝑋] =
∫ ∞
−∞ 𝑥𝑓 (𝑥) 𝑑𝑥 is well defined. Proceeding with the derivation in light

this ill-defined random variable, the expected value terms of the Dirac
14
delta expressions are

E
[

𝛿
(

𝑥 − 𝑣
(

𝑡 − 𝑡𝑖
))]

= 1
𝑣𝑇 (68)

and

E
[

𝛿
(

𝑥 − 𝑣
(

𝑡 − 𝑡𝑖
))

𝛿
(

𝑦 − 𝑣
(

𝑠 − 𝑡𝑖
))]

= 1
𝑣2𝑇

𝛿
(𝛥𝑥
𝑣

− 𝜏
)

(69)

here 𝛥𝑥 = 𝑦 − 𝑥 and 𝜏 = 𝑠 − 𝑡. The resulting auto-covariance function
s
(𝛥𝑥, 𝜏) = 𝜆

𝑣2
𝛿
(𝛥𝑥
𝑣

− 𝜏
)

(

𝜇2𝐴 + 𝜎2𝐴
)

(70)

The Fourier transform of a Dirac delta is an exponential, i.e., the delay
in the time domain is an exponential in the frequency domain

𝑆 (𝛥𝑥, 𝜔) =
𝜆
(

𝜇2𝐴 + 𝜎2𝐴
)

2𝜋𝑣2
𝑒−𝑖𝜔

𝛥𝑥
𝑣 (71)

This result agrees with Eq. (36) in the paper.
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Fig. 15. Displacement variance as a function of support spring stiffness (𝑘𝑠1 in Fig. 8).
l
A

𝜎

w
𝑞
t
f

d
i
l
a

𝜂

a

𝜇

𝜇

𝜇

𝜇

𝜇

W
t

v
m

ppendix B. Modal superposition approach

The classical modal solution of for the moving loads problem typi-
ally only employs one mode, resulting in a single-degree-of-freedom
roblem. This appendix presents the extended classical approach to
ccommodate structures for which a single mode approximation cannot
dequately describe the response.

Assuming proportional damping, the response can be represented as
he sum of the modal responses [40] given by

(𝑥, 𝑡) =
∑

𝑛
𝑞𝑛 (𝑡)𝜙𝑛 (𝑥) (72)

here 𝜙𝑛 (𝑥) is the nth mode shape, and 𝑞𝑛 (𝑡) is the nth modal response.
he moving load is a finite duration pulse in time with a shape
etermined by the mode shape.

𝑛 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝜙𝑛 (𝑣𝑡) if 0 ≤ 𝑡 ≤ 𝐿
𝑣

0 if 𝐿
𝑣

≤ 𝑡
(73)

he time domain response of the system to this impulse can be solved
sing Duhamel’s integral.

𝑛 (𝑡) =

⎧

⎪

⎨

⎪

⎩

∫

𝑡

0
𝛾𝑛 (𝑡)ℎ𝑛 (𝑡 − 𝜏) 𝑑𝜏 if 0 ≤ 𝑡 ≤ 𝐿

𝑣

∫

𝐿∕𝑣

0
𝛾𝑛 (𝑡)ℎ𝑛 (𝑡 − 𝜏) 𝑑𝜏 if 𝐿

𝑣
≤ 𝑡

(74)

his response is referred to here as the moving load response func-
ion. If the moving load impulses can be considered zero mean (via
eparation of static mean load from the stochastic component), the
rocess is similar to a shot noise process and the response variance
an be computed via Campbell’s Theorem [41]. Note that the moving
oad response function needs to consider the period of time while the
 c

15
oad is on the span in addition to the free vibration period afterwards.
pplying Campbell’s Theorem to Eq. (74) yields

2
𝑞𝑛
(𝑡) = E

[

𝑞2𝑛
]

− E
[

𝑞𝑛
]2 = E

[

𝐴2] 𝜆∫

𝑡

0
𝑞𝑛 (𝜏)2 𝑑𝜏 (75)

here 𝐴 is the magnitude of the random loads, 𝜆 is the arrival rate and
𝑛 (𝑡) represents the moving load response function for that mode and
he subscript 𝑞𝑛 indicates this covariance is of the modal coordinate, 𝑞
or mode 𝑛.

In early work regarding the response of linear single degree of free-
om systems to shot noise, Roberts [42] showed that as the arrival rate
ncreases, the response approaches a normal distribution per the central
imit theorem, even for non-normally distributed load magnitudes. For
ny value of 𝜆, the 𝑘th semi-invariant is computed as

𝑘 = E
[

𝐴𝑘
]

𝜆∫

∞

0
𝑞𝑘𝑛 (𝜏) 𝑑𝜏 (76)

nd the first 5 centered moments 𝜇𝑘 are

1 = 𝜂1

2 = 𝜂2

3 = 𝜂3

4 = 𝜂4 + 3𝜇22
5 = 𝜂5 + 10𝜇2𝜇3

(77)

ith these equations, the deviation of responses from normally dis-
ributed can be assessed.

If the modal frequencies are well separated, the total response
ariance can then be computed as the sum of modal variances. If the
odal frequencies are close to one another, the cross terms in the

ovariance matrix cannot be neglected. In this case, the full covariance
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matrix is computed using an expanded Campbell’s Theorem [43–45],
as

Γ𝐪 (𝑡) = E
[(

𝑞𝑛 − 𝜇𝑞𝑛
)(

𝑞𝑚 − 𝜇𝑞𝑚
)]

= E
[

𝐴2] 𝜆∫

𝑡

0
𝑞𝑛 (𝜏) 𝑞𝑚 (𝜏) 𝑑𝜏 (78)

This approach was used by Chen et al. [19] on a stochastic moving
load to compute covariance of loading functions. The covariance Γ𝐪 in
terms of the generalized coordinate 𝑞 can then be transformed back to
the cartesian domain by

Γ𝐲𝐂 = (Φ𝐓)Γ𝐪 (Φ𝐓)⊺ (79)

Where the matrix of mode shapes Φ transforms from the generalized
oordinates 𝑞 to the modal coordinate system and the transformation
atrix 𝑇 consists of a column vector for each mode shapes evaluated at

elected spatial coordinates. The first numerical examples in Section 4
how that the covariance computed using the expanded Campbell’s
heorem, 𝛤𝑦𝐶 is equivalent to that computed using the frequency
omain method, as well as the proposed filtered white noise approach.
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