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Extremeweather conditions, including intense heat stress due to higher temperatures, could
trigger an increase in mortality risk. One way to evaluate the increase in mortality risk due to
higher temperatures is the high risk warming (HRW) index, which evaluates the difference
between the future and base period of a given percentile of daily maximum temperature
(Tmax). Another is to calculate the future increase in the number of days over the temperature
of such percentile, named high risk days (HRD) index. Previous studies point to the 84th
percentile as the optimum temperature. Thus, this study aims to evaluate HRW and HRD
indexes in Ecuador from 2011 to 2070 over the three natural climate zones, e.g., Coast,
Andes, and Amazon. This climate analysis is based on historical data from meteorological
stations and projections from CSIRO-MK36, GISS-E2, and IPSL-CM5A-MR, CMIP5 global
climatemodels with dynamical scale reduction through weather research forecasting (WRF).
The representative concentration pathways (RCPs), 8.5, were considered, which are related
to the highest increases in future temperature. The results indicate that HRW and HRD will
experience a larger increase in the period 2041–2070 compared with the period
1980–2005; in particular, these two indices will have a progressively increasing trend
from 2011 onward. Specifically, the HRW calculated from the CMIP5 models for all
stations is expected to grow from 0.6°C to 1.4°C and 1.8°C to 4.6°C for 2010–2040
and 2041–2070, respectively. Also, it is expected that the HRD for all stations will increase
from 42 to 74 and 120 to 227 warming days for 2011–2040 and 2041–2070, respectively.
The trends derived using Sen’s slope test show an increase in the HRW between 0.5°C and
0.9°C/decade and of the HRD between 2.88 and 4.9 days/decade since 1985. These
results imply a high increase in heat-related mortality risks related to climate change in
Ecuador. In terms of spatial distribution, three Ecuadorian regions experienced more critical
temperature conditions with higher values of HRW and HRD for 2070. As a response to the
increased frequency trends of warming periods in tropical areas, urgent measures should be
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taken to review public policies and legislation to mitigate the impacts of heat as a risk for
human health in Ecuador.

Keywords: climate change, high risk warming, high risk days, climate extremes, increase of temperature

INTRODUCTION

Climate change (CC) is a fundamental issue for humanity,
representing a threat to the natural resources and systems
upon which we rely on. Changes in climate conditions are due
to natural factors, e.g., atmospherics and oceanic mechanisms,
and changes in natural cycles (IPCC. et al., 2014). However, the
high global mean temperature increases in the last century in
relation to preindustrial values are unprecedented and certainly
related to anthropogenic activities. The range in global surface
temperature has increased from 1850 to 1900 to 2010–2019 from
0.8°C to 1.3°C (IPCC, 2021), and the projected temperature shows
an increase between 1.8°C and 5.8°C by 2,100 (Haines & Patz,
(2004). In addition, sea levels are projected to rise between 9 and
88 cm during the next century, with accompanied changes in sea
salinity (Heuzé et al., 2013), and higher intensity and frequency of
occurrence of heat waves and tropical cyclones (Steffen et al.,
2014). Indeed, it is critical that we enhance our knowledge of the
local effects and impacts associated with climate change in order
to develop contextual and novel strategies to mitigate and adapt
to climate change in our region (Mach et al., 2016; Pasqui and Di
Giuseppe, 2019).

The surface temperature shows an increase worldwide (Mach
et al., 2016) in scenarios of CC; however, it is not homogenous
across the regions. For instance, Sa’adi et al. (2020) displays the
minimum temperature projected to increase more (3.3–4.7°C)
compared with maximum temperature (3.0–4.6°C) in Borneo
Island from CMIP5 models. Also, Zhou et al. (2018), found an
increased temperature pattern over Canadian Prairies derived
from CMIP5 models. Moreover, Ongoma et al. (2018) projected
East Africa to warm by 1.7°C–2.7°C and 2.2°C–5.4°C under RCP
4.5 and RCP 8.5 scenarios respectively in the last half of the 21
century. Wang et al. (2014), projected an increase of temperature
by 0.8–1.6°C (0.8–1.7°C), 1.5–2.7°C (2°C–3.7°C), and 1.9°C–3.3°C
(3.4°C–6°C) under RCP 4.5 (RCP 8.5) in three time slices
(2010–2039, 2040–2069, and 2070–2099), respectively, over
southwest China. Finally, Rusticucci and Zazulie (2021) show
an increase in several temperature indices from CMIP5 models
over South America. The projection of temperature will vary
according to the models and climate scenario chosen; thus, it is
important to evaluate the changes in regional temperature.

Worldwide, there is evidence of CC impacts on human health
with an increase in mortality risks (Limaye et al., 2018; Morefield
et al., 2018; Patz et al., 2005; Song et al., 2021). Changes in global
temperature result in an increase in heat extremes, such that more
stress episodes are expected at both global and regional scales
(Seneviratne et al., 2014; Stott et al., 2016). In fact, older people
have higher vulnerability when heat–cold waves are observed
(Worfolk, 2000; Kovats and Hajat, 2008). Although, the link
between extreme temperatures and indoor comfort has been
widely studied (Lozano and Siegel, 2018; Schweiker et al.,

2019), the understanding of the relationship between
heat–cold temperature waves and heat stress (HS) is complex
(Kyselý, 2004; Anderson and Bell, 2009; Montero et al., 2012). In
particular, this remains a challenge in developing countries
because data of HS and mortality rates are scarce.

There are several methodologies to evaluate HS. Sherwood and
Huber (2010) combined daily temperatures and humidity into a
single metric to measure HS; thus, a wet bulb temperature above
35°C for long periods should have negative incidences on the
health of humans and mammals. Matzarakis et al. (1999)
proposed the physiological equivalent temperature index,
which derives from the human energy balance. On the other
hand, Shi et al. (2015) argued that increasing standard deviation
of daily temperatures during summer and winter is harmful,
leading to a rise in mortality in warmer summers.

Another open area of research is the assessment of the heat
index approach for associating HS and mortality rates using data
from weather stations in terrain. Christidis et al. (2019) proposed a
novel methodology, assuming the V-shaped model developed by
Honda et al. (2007) where the 84th percentile of the maximum
daily temperature (Tmax) is assumed as the optimum temperature
(OT) for some areas in Japan, related to the lowest mortality rates.
Thus, temperatures either above or below the OT show an increase
in mortality rates. Afterward, Honda et al. (2014) conveyed a
similar study to evaluate the V-shaped model worldwide. They
found that the 84th percentile of the Tmax is a good estimator of
OT not only in Japan but also in other cities with different climates
such as Seoul, Phoenix, Paris, and Barcelona.

Using the V-shaped model, Christidis et al. (2019) assume that
the 84th percentile of the daily Tmax is a good estimator of OT
globally, including South America, suggesting that the metabolism
of people needs some period to adapt to an increase in the number
of days above the OT observed in the natural period, i.e., the period
prior to industrialization. However, the increase in warming days
above the OT due to CC conditions could induce HS to people. In
order to determine the health impact of CC, Christidis et al. (2019)
introduced two indices, namely, 1) high risk warming (HRW) and
2) high risk days (HRD) that enable quantifying the effects of the
intensity and frequency of heat waves. During the last 6 decades,
the increase in temperature has been evident worldwide. For
instance, Ecuador showed an intense warming trend in the
1966–2011 period (Morán-Tejeda et al., 2016). Thus, the
projection of HS derived from IPCC CC scenarios may help to
evaluate the future trends of heat-related mortality risk.

The climate of Ecuador is zoned into three main climatic
regions (Ballari et al., 2018), which are influenced by the
intertropical convergence zone (ITCZ), the Amazon
perturbations, the Peruvian trough (Chimborazo and Vuille,
2021), the Southeastern Pacific Semipermanent High, and the
well-known Caribbean High (Lockwood, 2009). In addition, El
Niño Southern Oscillation (ENSO) is one of the predominant
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sources of interannual climate variability (Francou et al., 2004;
Vuille and Werner, 2005) and produces above/below normal
precipitation and temperature during El Niño/La Niña periods on
the coast, while generating opposite conditions in the Andes and
the Amazon. In Ecuador, the CMIP5 models project a decrease in
drought by 2070 (Campozano et al., 2020); however, the
temperature projections of these models have not yet been
analyzed. On the other hand, based on the CMIP3 models,
Buytaert et al. (2010) found that temperature projections
display an average increase of 3°C in Ecuador toward the end
of the century for the A1B emission scenario. However, the effects
of the incidence of extreme heating events due to CC conditions
upon health and mortality risk has not been assessed in Ecuador.
Despite its importance, research related to this urgent issue is
limited in the Latin American region (Ebi et al., 2020).

This study aims to evaluate the impact of the increase in
temperature due to CC on the mortality rate risk in Ecuador,
assuming that Honda’s “V-shaped”model is valid in this country
across its diverse climatic regions. Thus, the mortality risk is
assessed by evaluating the future HRW and HRD trends for the
period 2011–2070 in Ecuador in relation to the base period
1980–2005. Dynamical downscaled data to 10 km resolution,
from three CMIP5 models, e.g., CSIRO-MK36, GISS-E2, and
IPSL-CM5A-MR were used to improve the spatial representation
of daily maximum temperature. This study serves as a stepping
stone for adaptation strategies to reduce the temperature-related
mortality and morbidity risks.

MATERIALS AND METHODS

Study Area
The study area is continental Ecuador (area 256.370 km2), over
the equatorial line in South America, whose climate is mostly

defined by the Andean mountains acting as a weather divide
(Bendix and Lauer, 1992). There are three natural regions in
continental Ecuador, namely, the Coast region next to the Pacific
Ocean, the Andes over the Andean Mountain, and the east
Amazon region (Figure 1A). The wet season is related to the
intertropical convergence zone (ITCZ) wherein warm air masses
cover the Coastal region, characterized by rainfall and high
temperature rise. In the opposite, the ITCZ displacement and
the equatorial front result in the presence of cooler and drier air
masses covering the southwestern region, which contribute to the
dry season (Goldberg et al., 1987; Bendix and Lauer, 1992;
Campozano et al., 2016). The Andes shows a larger spatial
variability of the air temperatures, mainly associated to the
topography of this specific region (Navarro-Serrano et al.,
2020), and explained by sea surface temperature anomalies of
Regions 3.4 and 3 of the El Niño Southern Oscillation (ENSO)
(Vicente-Serrano et al., 2017). The temperature in the north of
the Andes is a response to the North Atlantic SSTA (Vuille et al.,
2000). The Amazon region has mean temperature values of
20.82°C with a standard deviation of 4.49°C (Moura et al., 2019).

During the historical period (NAT) between 1981 and 2005 in
Ecuador, models show a high, the 84th percentile of the maximum
temperature (P84Tmax) between 27°C and 33°C in the Coast, a
variability of the P84Tmax between 16°C and 27°C in the Andes,
and between 27°C and 33°C in the Amazon region (Figure 1B). In
the Andes, the temperature variability is high between gauges,
which could be associated to altitude. The inverse
altitude–temperature is observed. In the Coast and Amazon,
the temperature is in the range from 27°C to 33°C, evidencing
their lower elevation.

Temperature In situ Observation
Daily observations of maximum temperature of 23 stations were
provided by the Instituto Nacional de Meteorología e Hidrología

FIGURE 1 | (A) Location of Ecuador in South America and (B) location of temperature gauges; shape of labels denotes different climate zones (square, Coast;
circle, Andes; triangle, Amazon), and it shows the 84th percentile of daily maximum temperature (P84Tmax) in Ecuador from the historical period (1981–2005);
temperature is expressed in degrees Celsius.
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de Ecuador (INAMHI). The location of the gauges is shown in
Figure 1B. Due to limited data availability, the time period
between January 1981 and December 2005 was considered as
the base period, called natural period by Christidis et al. (2019).
The stations with more than 10% of missing data were discarded;
also, the homogeneity of the data was checked. The missing data
were filled using random forest methods developed by Stekhoven
and Bühlman (2012).

Global Climate Models
The CSIRO-MK36, GISS-E2, and IPSL-CM5A-MR global climate
models (GCM) from the CMIP5 World Research Programme,
dynamical downscaled to 10 km × 10 km, using the Weather
Research and Forecasting model, WRF version 3.6.1, published
in the Third National Communication of Ecuador (Table 1), were
used for present and future maximum temperatures. These
models were selected among 42 available models realized by
Armenta et al. (2016), based on statistical metrics from several
stations in the whole country. The models have different original
resolution (see Table 1), and after a sensibility study, the
following parametrizations were applied: Microphysics WSM
3-class simple ice; short-wave radiation, rapid radiation
transfer model (rrtm); long-wave radiation, Dudhia; surface
layer, Monin–Obukhov; land surface model, unified Noah
land-surface model; boundary layer, YSU (Yonsei University)
and Kain–Fritsh (new Eta) for cumulus parameterization
(Armenta et al., 2016). After the downscaling process was
conveyed, the maximum daily temperature was extracted from
NetCDF files. The data were taken from the pixel closer to each
ground station. From now on, the WRF downscaled GCM data
will be named WGCM.

To contribute with a more informed based decision making,
the projections for the periods 2011–2040 and 2041–2070 were
considered. Looking at mid-century and sooner, RCP 8.5 is
clearly the most useful choice (Chaturvedi et al., 2012), which
is a high-emission scenario with a prescribed 8.5-Wm-2

radiative forcing, showing a high increase in greenhouse gas
emission rate (Hibbard et al., 2011). RCP 8.5 describes a worst-
case and plausible future scenario attributed to high
population grown and minimal efforts to control energy
demand ((Riahi et al., 2007); (Riahi et al., 2011)). Also, the
RCP 8.5 is considered as highly relevant within in a short time
horizon for decision making (2050) because it is in close
agreement with historical total cumulative CO2 emissions
(Schwalm et al., 2020); thus, it is identified as business as
usual scenario. Complementarily, RCP 8.5 projections show
the highest increase in future temperature, which may imply
higher temperature-related mortality risks.

Correction of Downscaled Temperature
Projections
The analysis of historical temperature in Ecuador was conducted
in the NAT, and the comparison between in situ observations and
10-km resolution WGCM data was carried out through the mean
absolute error (MAE) and root mean square error (RMSE).
Afterward, the simulations by WGCM data were corrected
using empirical adjustment of variables by quantiles, using the
library QMAP (Gudmundsson et al., 2012). Once the WGCM
data are corrected in the present using an optimal bias correction
function, such correction is applied to the WGCM in the future.

QMAP uses the distribution-derived transfer function to
adjust the distribution of a modeled variable (Pm) so that it
matches the distribution of an observed variable (Po). The
distribution-derived transfer function is defined by Piani et al.
(2010).

Po � h(Pm) (1)

Statistical transformations are an application of the probability
integral transform (Angus, 1994) to the known distribution of the
variable of interest. The transformation is defined as:

Po � Fo−1(Fm(Pm)) (2)

where Fm is a CDF, and Fo−1 is the corresponding quantile
function (inverse CDF). The subscripts o and m indicate
distribution parameters that correspond to observed and
modeled data, respectively. For more details, we refer the
reader to Gudmundsson (2016).

The quantile–quantile transformation using QMAP
(Gudmundsson, 2012) has several options. In this study, the
following were applied and its performance evaluated using the
mean absolute error. Thus, the following transformation was
analyzed:

The power transformation function
The relation quantile–quantile can be modeled using power
transformation with the following equation:

P̂o � bPm (3)

where P̂o indicates the best estimate of Po. The simple scaling
(Eq. 3) is regularly used to adjust data from the regional climate
model (see (Maraun et al., 2010)).

Empirical Quantiles (QUANT and RQUANT)
In order to solve Eq. 2 following the procedure by Boé et al.
(2007), the empirical CDFs are approximated using tables of the
empirical percentiles for QUANT. Values in between the

TABLE 1 | Models used in this study.

Model Institute Resolution WRF resolution (Km)

CSIRO-MK36 Commonwealth Scientific and Industrial Research Organization (Australia) 1.87° × 1.87° 10 × 10
GISS-E2 Goddard Institute for Space Studies 2° × 2.5° 10 × 10
IPSL-CM5A-MR Institute Pierre-Simon Laplace (France) 1.87° × 3.75° 10 × 10
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percentiles are approximated using linear interpolation
(Gudmundsson et al., 2012). Furthermore, RQUANT estimates
the values of the quantile–quantile relation of the observed and
modeled data for regularly spaced quantiles using local linear
least square regression.

Smoothing Splines (SSPLIN)
The transformation of Eq. 1 can be solved using nonparametric
regression (Gudmundsson et al., 2012). Thus, for the parametric
transformation, the smoothing spline is only fitted to the fraction
of the CDF corresponding to observed days. The smoothing
parameter of the spline is identified by means of generalized
cross-validation.

High-Temperature Mortality-Related
Indices
High Risk Warming
In this study, the main assumption is that the optimum
temperature (OT) with respect to the minimum mortality can
be well represented by the 84th percentile of the Tmax for a given
year (P84Tmax). This hypothesis was proposed by Honda et al.
(2007, 2014) and supported by Zeng et al. (2016). Thus, based on
this assumption, the high risk warming (HRW) index was
developed by Christidis et al. (2019). This index measures the
excess of P84Tmax for a given year i, with respect to P84Tmax of
the natural period. In this study, the natural period is considered
from 01–1981 to 12–2005. The HRW is expressed by Eq. 3
(Christidis et al., 2019).

HRWyri � Tmax84(yri) − Tmax84NAT (4)

where HRWyri is the HRW for the year i, Tmax84(yri) is the
84th percentile of year i, and Tmax84NAT is the maximum
temperature 84th percentile natural period. The evaluation of
the future HRWyri was conducted for two futures periods,
2011–2040 and 2031–2070 for a better interpretation.

High Risk Days
The high risk day (HRD) index relates the number of days for a
given year in the future over the PTmax84NAT. This index
quantify the increase in the risk of mortality related to the
increase in the number of days where humans were adapted
((Christidis et al., 2019). The HRD is calculated using Eq. 4.

HRDyri � Nf(yri) −NDNAT (5)

where HRDyri is the HRD for a yri in the future, NDNAT is the
mean number of days above P84Tmax in the natural period, and
Nf(yri) is the number of days for a given year in the future
above of Tmax84NAT.

Analysis of the Trends of Heat-Related
Indices
Projections have to be interpreted as the stochastic occurrence of
a variable for a given period. It means that a specific value for a
given year cannot be considered as forecasting data for this year.

Thus, to have a better interpretation, for instance, the mean value,
the variance, or the trend may be useful to evaluate such
projections. In this study, two models were used for analyzing
the trends of HRW and HRD. First, the Mann–Kendall trend
model (MKTM) enables to determine the trend and its
significance. Second, the Sen’s slope test (SST) was used to
determine the magnitude of the variation in each region,
namely, Coast, Andes, and Amazon.

Mann–Kendall Trend Model
In the MKTM, the S is calculated using the formula that follows:

S � ∑n−1
i�1

∑n
j�i+1

Sign(Tj − Ti) (6)

where Tj and Ti are the annual values in years j and i, and n is the
number of data points. The value of Sign(Tj − Ti) is calculated as
follows:

Sign(Tj − Ti) �
⎧⎪⎨⎪⎩

1 if Tj − Ti > 0
0 if Tj − Ti � 0
−1 if Tj − Ti < 0

⎫⎪⎬⎪⎭ (7)

This statistic presents the number of positive differences
minus the number of negatives differences for all differences
considered.

Thus, the variance Var(S) is calculated as:

Var(S) � n(n − 1)(2n + 5) −∑m
i�1Ti(Ti − 1)(2Ti + 5)
18

(8)

where n is the number of data points, m is the number of tied
groups, and Ti is the number of ties extent i. Also, where the
sample size is n> 10, the standard test statistic Zs is computed as
follows in Eq. 9:

Zs �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S − 1������
Var(S)√ , if S> 0

0, if S � 0

S + 1������
Var(S)√ , if S< 0

(9)

Positives values of Zs represents an increase tendency, while
negative Zs values show a decreasing trend. Thus, the MKTM is a
nonparametric model widely used to find the trend in
hydrometeorological time series (e.g., Vogel and Kroll, 2000;
Modarres et al., 2007).

TABLE 2 |Mean of mean absolute error (MAE) and root mean square error (RMSE)
without correction and with correction through four different methods.

Models CSIRO GISS IPSL

Metrics MAE RMSE MAE RMSE MAE RMSE
Without correction 2.99 3.6 3.04 3.63 3.07 3.64
PTF 2.16 2.74 2.21 2.78 2.16 2.73
RQUANT 2.20 2.78 2.24 2.83 2.18 2.76
QUANT 2.20 2.80 2.25 2.85 2.18 2.79
SSPLIN 2.20 2.78 2.24 2.83 2.18 2.77
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Sen’s Slope Estimator Test
Sen’s slope estimator test (SST) has been extensively used to
determine the magnitude of the trend of the time series (Yue

and Hashino, 2003; Yunling and Yiping, 2005; Tabari et al.,
2011). The slope for all data pairs is calculated as (Sen,
1968):

FIGURE 2 | Differences between simulated and observed P84Tmax values. In columns are the models CSIRO, GISS, and IPSL. In the rows; without correction
models (A–C) and corrected models through PTF method (D–F).

FIGURE 3 | High risk warming (HRW) mean value for the period 2011–2040 from CSIRO (A), GISS (B), and IPSL (C). Figure 3D is the ensemble that explains the
median from three WGCMs.
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ft � Qt + B (10)

Thus, in Eq. 10,Qt is the slope, B is a constant, and t is time. In
order to determine Qt, the follows equation is used:

Qt � Xi −Xj

j − k
(11)

In Eq. 11, i � 1, 2, 3, . . . N, whereas at time j and k (j> k), xj
and xk are the values of the data pairs. Therefore, the median
(Qmed) of N values of Ti has been expressed as the SST, given as:

Qmed �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q[N + 1
2

], if N is odd

Q[N
2
] + Q[(N + 2)/2]

2
, if N is even

(12)

In addition, Qmed is calculated to obtain the trend and slope
magnitude by means of the nonparametric model. Thus, an
upward trend is assumed when Qi is positive, whereas a
downward trend is assumed when Qi is negative; finally,
values closer to zero indicate no trend in the time. The units
of SST would be slope magnitude in original units per year or
percent per year (Salmi, 2002). Consequently, the HRW and
HRD series were examined through MKTM and SST, to
determine the trends and their magnitude, respectively.

RESULTS

Correction of Present and Future Daily
Maximum Temperature
In order to reduce the bias, four quantile-based correction
methods, e.g., PTF, RQUANT, QUANT, and SSPLIN, were
tested (see Gudmundsson et al., 2012). For evaluation
purposes, the MAE was calculated for WGCM, with and
without correction. Thus, CSIRO, GISS, and IPSL without
corrections achieved MAE means of 2.99, 3.04, and 3.07,
respectively (Table 2). After of the corrections, the models
show a decrease in the MAE, and the temperature is closer to
the observations; these values of MAE are very similar to each
other, specifically RQUANT, QUANT, and SSPLIN achieved a
MAE of 2.20 for CSIRO, 2.24 for GISS, and 2.28 for IPSL. On the
other hand, PTF shows the lowest MAE values, which are 2.16,
2.21, and 2.16 for the CSIRO, GISS, and IPSL models.

Thus, the models without bias correction exhibit a large
difference between simulated and observed data (Figures
2A–C). However, CSIRO, GISS, and IPSL show a similar
overestimation between 0°C and 4°C in the Coast. Over the
Andes, the three models show the largest overestimation and
underestimation between 0°C and 8 °C and between 0°C and −4°C,
respectively. These facts highlight the complexities related to
temperature variability for strong orographic gradients in

FIGURE 4 | HRW mean value for the period 2041–2070 from CSIRO (A), GISS (B), and IPSL (C). Figure 4D is the ensemble that explains the median from three
WGCMs.
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mountain regions. Finally, in the Amazon, the overestimation is
between 0°C and 2°C for CSIRO and IPSL, and for GISS, the
difference is between 0°C and 4°C, which is the largest bias in the
Amazon. After the corrections, the differences between observed
and simulated temperatures are small, and the models show very
similar spatial differences from −2°C to 2°C, achieving a greater
bias reduction with respect to the models without correction
(Figures 2D–F). To improve the forecasts, the same correction
used in NAT was applied for the future. Thus, given the best
performance of PTF quantile correction in the NAT period,
station-wise parameters of PTF were applied for the future in
all WGCMs.

Spatial and Temporal Analysis of High Risk
Warming and High Risk Day in
Representative Concentration Pathway 8.5
High Risk Warming
Figure 3 displays plots of the mean of HRW for the 2011–2040
period. This period shows an increase in HRW between 0.6°C and
1.4°C. The CSIRO model exhibits the larger changes in the Coast,
Amazon, and south of the Andes. The lowest change occurs over

the central and northern Andes (Figure 3A). The GISS model
displays an HRW increase in the 2011–2040 period; this change is
heterogeneous over the three climate zones (Figure 3B), namely,
an increase from 0.6°C to 1.2°C in the Coast, the higher rise from
0.6°C to 1.4°C in the Andes, and from 0.9°C to 1.2°C in the
Amazon. The HRW derived from the IPSL model exhibits the
lowest rises, which are between 0.6°C and 0.9°C in the Coast,
between 0.9°C and 1.2°C in the Andes, and the forecast highest
rise between 1.2°C and 1.4°C in the Amazon (Figure 3C). Finally,
the ensemble shows, in all temperature gauges, an increase in
HRW between 0.6°C and 1.2°C (Figure 3D).

Figure 4 shows the mean of HRW for the period 2041–2070,
in which the effects of the CC show a high increase. Specifically,
the CSIRO model shows an HRW between 2.7°C and 3.6°C over
the Coast region (Figure 4A), an increase between 1.8°C and
2.7°C in the north of the Andes, and from 2.7°C to 3.6°C in the
south. In the Amazon, the expected rise is between 3.4°C and
4.6°C. The GISSmodel displays an increase in HRW in all regions,
with rises between 1.6°C and 3.6°C; the highest increases are
reported in some station in the Andes (Figure 4B). The IPSL
model shows the highest values, which are heterogenous in all
regions: the rise in HRW is between 1.8°C and 2.6°C in the Coast,

FIGURE 5 | HRW of temperature gauges in Ecuador from CSIRO (A), GISS (B), and IPSL (C). Figure 5D is the ensemble that explains the median from three
WGCMs. Values of the HRW axis are between −2°C and 6°C.
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Andes, and the Amazon; the boost is between 2.7°C and 3.6°C.
Finally, the ensemble shows, in all temperature gauges, an
increase in HRW between 1.8°C and 4.6°C (Figure 4D).

HRW was calculated in every station for a year, and averages
of all stations were plotted for every year (Figure 5). The CSIRO
model shows a growing trend, namely, for 2040, the HRW is
between 1.5°C and 2°C, and for 2070, it shows a strong increase
around 3° (Figure 5A). The HRW peaks are persistent in time,
varying between −1.5°C and 4.5°C. In Ecuador, the HRW
obtained from the GISS model shows increases and decreases
in the period 2011–2040. The variation is high every year, with
peaks of +4 and −1°C; however, from 2045, the peaks are less
frequent, and a steady increase is observed in HRW (Figure 5B).
For 2070, an increase of 3°C is observed in all Ecuador. Figure 5C
describes a growing trend for the HRW obtained from the IPSL
model. The peaks are from −1°C to +2.5°C for 2011–2040, and for
2041–2070, the trend continues growing with peaks between
+1°C and +4.5°C; these peaks are small relative to the other
model. The growing trend is steeper, and the estimated HRW
increase for 2070 is above 4°C. The ensemble shows, in all
temperature gauges, an increase in HRW between 1°C and 2°C
for 2011–2040 and for 2041–2070 peaks between 2°C and 4°C
(Figure 5D).

High Risk Days
Figure 6 displays plots of the mean of HRD for the 2011–2040
period. The HRD presents an increase from 52 to 74 days in the
Coast, while in the Andes, the spatial pattern is heterogeneous
with an increase from 42 to 62 days with CSIRO, and in the
Amazon, the trend grows from 52 to 62 days (Figure 6A). The
HRD from GISS shows lower changes, specifically between 42
and 52 days in the Coast and south of the Andes, and between
52 and 62 days in the north of the Andes and Amazon
(Figure 6B). The HRD from IPSL exhibits a higher increase
in all regions, mainly in the north of Andes where the rise is
from 62 to 74 days, whereas in the Coast, the increase is
between 42 and 74 days and in the Amazon, it is between
52 and 62 days (Figure 6C). The ensemble shows, in all
temperature gauges, an increase in HRD between 42 and
62 days (Figure 6D).

Figure 7 shows the mean of HRD and ensemble, which
explains the median from three WGCMs for the period
2041–2070. The HRD from the CSIRO model shows an
extreme increase between 191 and 227 days in the Coast,
Amazon, and in the south of the Andes, whereas in the
middle and north of Andes, the increase is from 156 to
191 days (Figure 7A). The GISS model shows a small rise

FIGURE 6 |High risk day (HRD) mean value for the period 2011–2040 fromCSIRO (A), GISS (B), and IPSL (C). Figure 6D is the ensemble that explains the median
from three WGCMs.
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from 120 to 156 days over all Ecuador regions (Figure 7B). The
IPSL model shows the largest increases over Ecuador, namely,
from 191 to 227 days in the Andes and Amazon, and between 156
and 227 days in the Coast (Figure 7C). Finally, the ensemble
shows, in all temperature gauges, an increase in HRD between
157 and 227 days (Figure 4D).

HRD was calculated in every station for a year, and averages of
all stations were plotted for every year (Figure 8). In Ecuador, the
HRD index shows the number of days above P84Tmax from the
base period. The CSIRO model displays a hard increase with
peaks from −50 to +270 days (Figure 8A). The estimated number
of days above P84Tmax for 2070 is approximately 250 days. In the
period from 2011 to 2040 obtained from GISS, a high yearly
variation of the HRD is observed, with peaks between −1 and
150 days. In addition, the trend displays a steep increase in the
RCP 8.5 scenario, and for the period 2011–2040, a slight
stabilization of the HRD is observed. Consequently, HRD
exhibits growing increase, and for 2070, the HRD is between
150 and 170 days (Figure 8B). The HRD shows from IPSL model
a high increase, specifically almost 150 warm days for 2011–2040,
whereas a dramatic increase of 280 warm days is observed for
2070 (Figure 8C). The ensemble shows, in all temperature
gauges, an increase in HRD between 20 and 100 days for

2011–2040 and in the period 2041–2070 peaks between 148
and 251 days (Figure 8D).

Analysis of High Risk Warming and High
Risk Day Future Trends Under
Representative Concentration Pathway 8.5
MKTM and SST were applied to all stations to analyze the trends
of HRW and HRD for WGCM projections. Across the three
regions of Ecuador, the probability of significance (p-value) was
less than 0.05, and hence, the null hypothesis (Ho) was rejected
(Tables 3, 4, and 5), thus, both indices showing a positive trend
for future projections (Table 3).

Table 6 shows a small variation between the trends of the
regions. Specifically, the HRW from the CSIRO model exhibits a
decadal increase of 0.69° in the Coast, whereas in the Andes, SST
is around 0.54°, and for the Amazon, the annual increase is 0.7°.
The HRD shows an SST of 45.2, 40.0, and 45.9 days for the Coast,
Andes, and Amazon, respectively. The SST from the CSIRO
model displays the highest increase in the Amazon. The GISS
model shows HRW values of 0.54°C, 0.52°C, and 0.57°C in the
Coast, Andes, and Amazon, respectively; HRD values of 28.8 days
in the Coast, 31.9 days in the Andes, and 30.4 days in the Amazon

FIGURE 7 | HRD mean value for the period 2041–2070 from CSIRO (A), GISS (B), and IPSL (C). Figure 7D is the ensemble that explains the median from three
WGCMs.
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are also observed. The GISS model displays the highest values of
warming indices in the Amazon. The IPSL model displays HRW
values of 0.73°C in the Coast, 0.72°C in the Andes, and 0.91°C in

the Amazon. The HRD index shows similar values in all regions,
specifically SST values of 46 days in the Coast, 48 days in the
Andes, and for 49 days in the Amazon.

FIGURE 8 | HRD of temperature gauges in Ecuador from CSIRO (A), GISS (B), and IPSL (C). (D) is the ensemble that explains the median from three WGCMs.
Values of the HRD axis are between −100 and 300 days.

TABLE 3 | Results of the Mann–Kendall model for the mean of the indices derived from the CSIRO model for all stations.

Index Region Mann–Kendall
statistics

p-Value Variance
(S)

Kendall’s
tau

HRW Coast 5.90 5.41E−09 926.00 0.52
Andes 6.28 4.18E−10 985.60 0.56
Amazon 6.56 7.72E−11 1,030.00 0.58

HRD Coast 6.50 9.96E−11 1,020.67 0.58
Andes 7.20 2.07E−12 1,129.80 0.64
Amazon 7.80 1.57E−14 1,223.50 0.69
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DISCUSSION

The rise in global temperature has been accepted with high
confidence (IPCC. et al., 2014, IPCC, 2021) as well as its impact
on human health linked to excess morbidity and mortality
mostly related to heat stroke (Ebi et al., 2020). The
application of HRW and HRD indexes presented in this
study provide direct and useful information for decision
makers, public health professionals, and CC adaptation
planners to assess the impact of CC on human health and to
subsequently develop strategies to reduce such impacts
(Christidis et al., 2019). Climate projections show a
persistent increase in temperature under different scenarios
of CC at global, regional, and local scales. For instance, the
projections over China by 2050 displays an increase in the

maximum temperature by 3.0°C–4.7°C under RCP 8.5 scenario
(Wang et al., 2014). However, an increase of between 4.5°C and
5°C is expected over South America by the end of the century
under RCP 8.5 (Riahi et al., 2011), similar incrasase is projected
by Armenta et al. (2016) in RCP 8.5 by the end of the century
over Ecuador.

The use of Qmap through PTF temperature correction
exhibits good results over Ecuador showing a reduction in
systematic bias, and the MAE and RMSE show good result
correction as well. Also, Panjwani et al. (2021) found that in
the case of India, the QUANR correction with trilinear
transformation displays the best performance for temperature
correction. Thus, Enayati et al. (2020) in Iran found that
performance of the Qmap varied, depending on the
transformation functions, parameters, and topographic
conditions; also, PTF does not necessarily improve
temperature projections. However, in Ecuador, Qmap methods
do not show a relationship between topography and accuracy
(Figure 3), while similar accuracy is observed applying the
different Qmap methods in all regions (Table 2). Also, other
more complex methods (e.g., Zhou et al. (2018); Crimp et al.
(2019); Araya-Osses et al. (2020); Zhou et al. (2021)) could be
analyzed in future studies in order to find a statistical downscaling
method for each region (Coast, Andes, and Amazon) in Ecuador,
which, because of its complex topography, may need a different
correction method for each region. In addition, the extreme
temperature values could be analyzed and how that influence
in the bias correction in the future period.

The tendencies of HRW and HRD found by Christidis et al.
(2019) for six continental regions of the world using the RCP
4.5 scenario project ranges between 0.237 and 0.209 for HRW
and 2.787 to 6.518 for HRD. However, South America shows

TABLE 4 | Mann–Kendall model result of the mean of the all-station index in each region derived from the GISS model.

Index Region Mann–Kendall
statistics

p-Value Variance
(S)

Kendall’s
tau

HRW Coast 5.90 5.41E−09 926.00 0.52
Highlands 6.28 4.18E−10 985.60 0.56
Amazon 6.56 7.72E−11 1,030.00 0.58

HRD Coast 6.50 9.96E−11 1,020.67 0.58
Highlands 7.20 2.07E−12 1,129.80 0.64
Amazon 7.80 1.57E−14 1,223.50 0.69

TABLE 5 | Mann–Kendall model results of the mean of the all-station index in each region derived from the IPSL model.

Index Region Mann–Kendall
statistics

p-Value Variance (S) Kendall’s
tau

HRW Coast 8.48 4.419E−17 1,330.00 0.751
Highlands 8.48 1.144E−15 1,330.40 0.752
Amazon 8.20 9.244E−16 1,286.00 0.727

HRD
Coast 8.57 1.284E−17 1,344.67 0.76
Highlands 8.77 1.218E−17 1,376.00 0.78
Amazon 8.57 3.148E−17 1,344.00 0.76

TABLE 6 |Mean of Sen’s estimated slope magnitude in each region for HRW and
HRD, with a 95% confidence interval.

Model Region HRW HRD

Mean Min Max Mean Min Max

Coast 0.69 0.54 0.84 45.29 36.54 54.06
CSIRO Andes 0.54 0.41 0.67 40.08 32.74 48.24

Amazon 0.70 0.54 0.87 45.94 37.59 54.54

Coast 0.54 0.40 0.66 28.86 22.28 34.91
GISS Andes 0.52 0.39 0.64 31.98 25.88 37.43

Amazon 0.57 0.44 0.70 30.48 25.49 35.14

IPSL Coast 0.73 0.64 0.82 46.64 41.81 51.05
Andes 0.72 0.63 0.81 49.47 44.55 53.91
Amazon 0.91 0.79 1.06 48.23 43.14 53.74
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the highest values for HRD in the projections for 2,100,
estimating a tendency of 6.518 days/decade, while the HRW
shows an increase of 0.209 (K/decade) under the RCP 4.5
scenario. In our study of Ecuador, trends for both HRW and
HRD using the RCP 8.5 scenario project higher values than for
the RCP 4.5 scenario. The primary reasons for these higher
values may be that 1) Christidis et al. (2019) used pre-industrial
simulation data for the estimation of the 84th percentile of
Tmax, while our baseline period was 1980–2005, and 2) the
RCP 8.5 scenario projects a higher increase in temperature than
RCP 4.5. The models have shown a consistent and strong
increase in HRW and HRD over all Ecuador, although the
models show some differences between the indexes. These
results suggest that the population of Ecuador would face an
increase in high mortality risk on the Coastal, Andes, and
Amazonian regions in the following decades from 2040 to
2070. The deviation from the OT, increasing up to 5°C, and
the increase in frequency of unsafe days, ranging from 100 to
250 days, would increase the number of deaths by heat stroke
and mortal exacerbations of chronic diseases in people with
preexisting conditions in Ecuador.

The World Health Organization (WHO) applied a similar
approach to this study (Honda et al., 2014) to estimate the climate
change-attributable heat-related excess number of deaths in
different regions of the world, without adaptation actions to
reduce the vulnerability of the population or mitigate the heat
stress. It was estimated that tropical Latin America would have
1,808 excess number of deaths annually by 2030 and 5,912 by
2050 (WHO, 2014); however, these numbers only considered
mortality, the impacts for morbidity, productivity loss, public
health expenses, and indirect health care expenses, which can be
very large (Silveira et al., 2019; Burkart et al., 2021). Thus, the
results of the Ecuador HRW and HRD have several important
applications, including to estimate mortality risk assessment to
enhance health system emergency preparedness and response,
and to develop public awareness and communication to
individuals, authorities, and decision makers. As Ebi et al.
(2020) states: “Limited understanding of the present impacts
of climate change on public health restricts investment in
building climate-resilient health systems.” Thus, the results of
this study, provide a useful climate product that can be integrated
into interdisciplinary studies for heat-health early warning
systems and adaptation to climate change.

The need for an integrated and transformative approach
embedded into climate change adaptation plans, knowledge of
vulnerability, and risks of cities, mitigation measures, monitoring
of extreme events, and public health awareness could help to
prevent increase in mortality associated with heat warming (Ebi
et al., 2020; Leal et al., 2018, 2019). The most impacted population
would be the poorest, the vulnerable people, sensitive and with
least adaptive capacity to respond and recover to the increased
risk of heat on cities and peri urban areas (Leal et al., 2018; Litardo
et al., 2021). Furthermore, analysis of duration and recurrence of
warming events are important to reduce the mortality risk of
Ecuadorian population.

Some limitations of this study are the length of the time series
used in this analysis and the limited number of stations across the
Ecuador territory, particularly in the Amazonian region. Finally,
there is a need to validate those indices with mortality data for
extreme events in the historical time series. Further research
should explore modifications of the mortality risk indices
presented in this study.

CONCLUSION

All the models project higher temperatures in the coastal and
Amazon regions than in the Andes. The results of the WRF
downscaling models show a positive bias; however, statistical
downscaling reduces the bias and provides closer values to the
temperature observed. The best correction method for
Ecuador temperature is the quantile–quantile (PTF);
however, other statistical downscaling methods could be
applied to improve the temperature accuracy of the
subregions, and its influence in extreme values could be
analyzed.

The MKTM shows a positive tendency in all Ecuador, and the
SST exhibits a steep increase trend of HRW and HRD. In
addition, the Amazon region is projected to experience the
highest increase in the HRW, while the HRD shows a similar
increase in all the regions. Thus, the IPSL model shows higher
spatiotemporal changes. An increase in warming events is
projected for Ecuador by all models; the increase is consistent,
and the temperature trends between models are similar for the
regions. The rate of temperature increase is steep; by 2070, an
increase of 3°C and 250 days above the 84th percentile of Tmax is
projected.

The stronger increase in HRW and HRD in the medium
term would be a climate change concern in Ecuador; human
health impacts would be associated with excess deaths, and
losses and damages caused by the heat stress and exacerbation
of chronic diseases (Arjona et al., 2016). Although the increase
in the near future may not be so great, in the long term (2070),
the projections are very dramatic, showing a high slope of
temperature in relation to historical conditions. Considering
spatial-temporality of the HRW and HRD over all of Ecuador,
climate conditions could come to play a crucial role in the
habitability and sustainability of cities (Leal et al., 2019). The
trend of indices in this study suggests a high risk of mortality
that would affect the most vulnerable population in Ecuador.
The primary limitations of this study are related to the need to
evaluate the V-shape model for the climatic regions of
Ecuador, and in addition, the mortality and health data
would need to be included for an integrated climate–health
assessment.

This study provides important climate service information for
understanding the potential impact of CC in human health.
Furthermore, temperature risk indices together with
vulnerability analysis can be used to develop adaptation plan
and strategies for human health in Ecuador.
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