
Received 22 May 2023, accepted 21 June 2023, date of publication 26 June 2023, date of current version 30 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3289719

Adapted D∗ Lite to Improve Guidance, Navigation
and Control of a Tail-Actuated Underwater
Vehicle in Unknown Environments
JUAN A. ALGARÍN-PINTO 1, LUIS E. GARZA-CASTAÑÓN 1, (Member, IEEE),
ADRIANA VARGAS-MARTÍNEZ 1, AND LUIS I. MINCHALA-ÁVILA 2, (Senior Member, IEEE)
1School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
2Department of Electrical Engineering, Electronics and Telecommunications, Universidad de Cuenca, Cuenca, Azuay 010101, Ecuador

Corresponding author: Luis E. Garza-Castañón (legarza@tec.mx)

This work was supported in part by Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT), Mexico; and in part by
Tecnologico de Monterrey.

ABSTRACT Biomimetic Autonomous Underwater Vehicles (BAUVs) navigate aquatic environments by
mimicking natural propellants from fish species. These vehicles move part(s) of their bodies using various
mechanisms to propel and swim forward or laterally. Their main goal is to follow and adjust defined
paths to reach a target autonomously. Local path planning is of paramount importance during navigation
tasks due to unexpected obstacles. Moreover, path planning strategies should consider the environment’s
information obtained by the vehicle during its mission, as well as its dynamics and mechanical limitations,
to define new routes properly. This article presents the development of a waypoint generator based on the
D∗ Lite algorithm. The proposed planner considers a frontal-short-sighted and tail-actuated BAUV with
motion constraints to adjust the vehicle’s path towards a target coordinate. By identifying obstacles, the
planner adjusts and defines inner waypoints inside the vehicle’s vision range by considering closeness to
obstacles found and BAUV’s current position. The developed strategy reduces collision risks due to the
discrimination of nodes near obstacles, prioritizing broad hallways and safer swimming distances between
the vehicle’s current position and inner waypoints. The effectiveness of the proposed algorithm is simulated
using the BAUV’s hydrodynamicsmodel and by adding awaypoint tracking controller to correct the vehicle’s
swimming performance inside three scenarios. The vehicle can reach the goal by properly defining inner
waypoints while safely avoiding collisions, narrow hallways, and sharp turns.

INDEX TERMS Biomimetic autonomous underwater vehicle (BAUV), D∗ Lite algorithm, path planning,
path tracking, waypoint guidance systems.

I. INTRODUCTION
Biomimetic autonomous underwater vehicles are a novel
alternative for developing missions inside aquatic environ-
ments. These vehicles are characterized for imitating fish’s
swimming locomotion; that is, by moving part(s) of the
vehicle’s structure, a BAUV can thrust itself as well as cor-
rect its position and orientation [1], [2], [3]. Furthermore,
by mimicking natural systems, BAUVs may outperform

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Huei Cheng .

classic underwater vehicles with turbine-based propellers.
This is possible due to biomimetic shapes that allow higher
levels of maneuverability and efficiency compared to the
energy-expensive turbines employed in classic systems [4].

BAUVs present different shapes according to different
swimming styles [5]. One of themost effective ways of swim-
ming is by moving only the body’s last section and a caudal
fin (BCF locomotion) [6]. By moving their bodies and tails
to generate a pressure difference in water, BCF swimmers
propel themselves and achieve momentum to spin. BAUVs
that follow BCF-thunniform locomotion only employ their

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 64629

https://orcid.org/0000-0003-1086-6863
https://orcid.org/0000-0001-9752-6022
https://orcid.org/0000-0001-6969-6294
https://orcid.org/0000-0003-0822-0705
https://orcid.org/0000-0002-1468-6686

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

flapping tail to thrust and spin, representing low energy-cost
alternatives for long navigation tasks.

A biomimetic vehicle should regulate its inner motion to
attain an adequate swimming speed and turning moment to
follow defined paths properly. Further, the swimming per-
formance of a BAUV will mainly depend on its biomimetic
features and hydrodynamics. Hence, turning moment and
cruising speeds will be limited to the control applied
to the vehicle’s propulsion system and its mechanical
design.

When path planning is applied, a collision-free path
between an initial position and a destination is generated
based on specific constraints and control conditions [7]. One
way to start planning optimal paths is by building grid mod-
els. The navigation space is divided into cells (grids) or
nodes with two possible states: free to visit or an obstacle.
If the whole environment is known and static, a global path
planner will find the optimal (shortest, safest, or low-cost)
node tree between starting and final coordinates. Inside these
scenarios, theA∗ algorithm is themost commonmethodology
implemented due to its high efficiency in finding the shortest
path inside the grid [8]. When navigating inside partially
or fully unknown environments, local path planning tech-
niques should be employed to adjust the vehicle’s path due to
unexpected obstacles [9]. For these cases, the D∗ (dynamic
A∗) search is commonly implemented [10]. This algorithm
combines the original planning information with the online
search to adjust paths in real-time once an obstacle has been
detected or has moved. While A∗ tends to be computationally
expensive with larger high-resolution grids [11], [12], D∗

tends to be memory expensive [8].
The D∗ Lite algorithm is an excellent alternative to the

problems found in the algorithms mentioned above [13].
It presents a new replanning strategy between the goal and
the vehicle’s current position, changing the search direction
compared to A∗ and D∗. By fixing the target coordinate
and by only considering a changing starting point through
time, D∗ Lite increases the search efficiency attaining a fast-
replanning task.

Local planners try to find the shortest and optimal path
inside unknown scenarios; however, such paths are not nec-
essarily the safest. Sometimes, following suggested paths
might not be achievable due to the vehicle’s non-holonomic
constraints, or it might be too risky due to their proximity
to obstacles. Furthermore, these algorithms consider that the
robot knows the complete information about its surroundings
and can reach either of its neighboring nodes. Inside aquatic
environments, local planners should consider the vehicle’s
features, such as a short-sighted vision range, hydrodynam-
ics, localization, orientation, closeness to obstacles, and other
circumstances to generate the best (or adjust) reachable paths
towards the goal [12], [14].

This article builds a waypoint path planner based on the
principles employed in the D∗ Lite algorithm. The planner is
responsible for selecting new nodes inside a grid based on the
information obtained from a short-sighted BAUV with BCF-

thunniform locomotion. By considering motion constraints,
the planner introduces waypoints as inner targets for the vehi-
cle to reach to achieve the final goal. For such purposes, the
algorithm defines costs to discriminate free nodes based on
their Euclidean distance to the vehicle, obstacles, and current
seen space. By locally planning inner targets, the vehicle is
driven using a waypoint path tracking controller to regulate
its motion and swimming performance.

The D∗ Lite replanning strategy is compared to the pro-
posed local path planner. Three simulated environments are
presented to test the effectiveness and feasibility of the pro-
posed algorithm. Such simulated experiments have proven
optimization over navigation time, traveled distance, and
expanded nodes and the generation of safer, collision-free
navigation paths.

This article is divided as follows: Section II details the
literature review for optimizing classic planners to attain safer
paths. Section III presents the mechanical design, kinematics,
and hydrodynamics of the tail-actuated BAUV. Section IV
details the path-tracking control strategy employed to reg-
ulate the swimming performance of the vehicle. Section V
develops the modified waypoint planner and details its
main differences from D∗ Lite. Section VI details all
attained results. Finally, all concluding remarks are stated in
Section VII.

II. RELATED WORK
Finding optimal paths does not guarantee collision-free mis-
sions, especially when vehicles present unstable transitional
phases between states. Hence, enhancing path-planning algo-
rithms has become an important field of research [15]. Some
studies have focused on smoothening the resulting path sug-
gested by global planners. In [16], Imran et al. incorporated a
probabilistic road map to iteratively produce achievable paths
for underwater vehicles after implementing an A∗ algorithm.
On [17], Ataei et al. employed a multi-objective GA to find
paths that satisfied four criteria: traveled distance, a margin of
safety, smoothness of the planar motion, and gradient of div-
ing. Likewise, Aghababa [18] developed a global path planner
that considered the underwater vehicle’s dynamics and a
nonlinear optimal control problem with time constraints to
plan achievable paths.While optimizing classic planners such
as A∗ or novel alternatives such as genetic and evolutionary
algorithms helps build safer paths, their computational cost
enlarges when employed for local planning inside unknown
environments.

Hybrid A∗ planners consider the vehicle’s kinematics and
non-holonomic constraints for dynamically planning con-
tinuous motion inside grids [19]. By defining the current
position and orientation, new paths are defined based on
curves toward a new node. In [20], Van Dang et al. optimized
a Hybrid A∗ local planner by implementing cost functions to
new routes’ curvatures to reduce collision risks and overcome
poor path tracking control problems. On [21], Wang et al.
developed an artificially guided Hybrid A∗ (AGHA∗) to

64630 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

define kinematically-feasible paths for unmanned surface
vehicles inside complex harbor environments. The algorithm
combines human experience and the vehicle’s full motion
constraints to improve searching efficiency to generate a
docking trajectory along with control variables for the task.
Further, Hybrid A∗ may be employed to generate coarse
paths by adapting conditions in the searching process. In [22],
a search resampling optimization framework was developed
to produce a series of safer corridors along coarse paths
produced from a Hybrid A∗ planner.
Intelligent algorithms may also be employed to search for

safer and achievable paths. In [23], authors developed an
improved artificial potential field planner capable of work-
ing simultaneously with a model predictive controller at
each decision step. By considering the vessel’s motion con-
straints, such as angular velocity and short-sight perception,
fast planning and path tracking was achieved for detour-
ing obstacles inside unknown environments. Praczyk [24]
developed a neural network that performs a dynamic selec-
tion of nodes based on object detection, current mapping,
and waypoint-based path planning. Although optimal paths
are not found, good approximations are attained to avoid
collisions. Deep learning is applied for vision-based obsta-
cle detection and avoidance in [25], where the safest spot
inside the vehicle’s local range is selected as the following
node. NN are robust to highly nonlinear or poorly mod-
eled systems; however, they tend to require large samples
and training [26]. Even when these algorithms present good
robustness when finding the safest path, they present a poor
generalization performance and may present slow processing
speed.

Finally, D∗ Lite algorithms have also been optimized for
replanning inside complex environments. Le et al. [27] pro-
posed the D∗ Lite with reset, where the algorithm discards
old data and starts a new search when specific criteria are
met, such as the ratio of traversed length and high complexity
of the remaining path. In [28], Peng et al. improved D∗ Lite
for replanning multi-robot paths. By setting safe distances
between robots, the movement costs of the grids around
each robot are computed to locally replan collision-free
paths between vehicles. Xie et al. [29] optimized local plan-
ning by selecting priority levels of child nodes. This way,
safer paths were obtained by discriminating nodes near
obstacles.

Based on current literature, this article’s main contribu-
tion describes the development of an enhanced guidance,
navigation, and path control framework for a tail-actuated
underwater vehicle. This is done by improving how the
BAUV defines routes inside unknown environments when
obstacles have been detected. To regulate its swimming per-
formance, a waypoint guidance system and path tracking
controllers are developed. Furthermore, the highly efficient
D∗ Lite algorithm is adapted for fast and safe replanning.
Then, by adapting the algorithm to the frontal short-sight
feature of the vehicle and by implementing strategies such
as discriminating nodes and planning longer inner paths,

FIGURE 1. BAUV designed for navigation tasks. Nose section houses a
camera for obstacle detecting purposes. At the midbody section, two rigid
pectoral fins are employed for stabilization. The main propeller is a
lunate-shaped caudal fin that is driven by a parallel mechanism.

the vehicle is capable of reaching target coordinates while
following collision-free, safer, and attainable paths.

III. BAUV MODELS AND PROPULSION SYSTEM DESIGN
Figure 1 shows the designed BAUV modeled for this study.
The vehicle thrusts itself by moving a lunate-shaped caudal
fin attached to its aft. Its hull presents three main sections.
At the bow (nose section), a Myring shape was designed to
reduce dragging [30]. The nose section houses a camera, the
only vision system inside the vehicle for obstacle identifica-
tion. A sensor case with rigid pectoral fins is implemented
at the midbody section. Pectoral fins are only employed for
stabilization purposes while swimming. The hull houses a
parallel robotic mechanism in its last section, forming the
BAUV’s primary propulsion system. The vehicle presents
sideways flapping, where the caudal fin is driven due to the
oscillatory effect produced by the parallel mechanism.

A. PROPELLER’S KINEMATICS
The parallel mechanism is three degrees of freedom
with three universal-cylindrical-universal and one spherical
joint configuration linking two platforms (3-DOF 3-UCU-
1S) [31]. The upper moving platform oscillates by regulating
the displacement of three linear actuators (limbs), causing
the flapping effect in BAUV’s caudal fin. Due to the struc-
tural stiffness, stability, and significant level of support that
the designed parallel system brings, the vehicle’s tail may
reach great position accuracy at high-frequency flapping.
Furthermore, the propulsion system can produce a vectored
thrust by biasing the upper platform’s oscillations. Hence,
by regulating the flapping performance of the vehicle’s caudal
fin, the BAUV can swim forward and turn towards specific
goals.

Figure 2a shows the design of the 3 UCU-1S parallel robot
incorporated inside the propulsion system. Three limbs are
responsible for moving linearly, causing the moving plat-
form to change its orientation. The motion from each limb
is described by linear displacement di for each of the ith
actuators. The two platforms are linked by their centers using
a fourth restrictive limb to avoid translational motion. Then,
the upper platform can only change its orientation once limbs

VOLUME 11, 2023 64631

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 2. On (a), the 3 UCU-1S parallel mechanism employed inside the
propulsion system is shown. By moving linear actuators, the upper
platform oscillates, producing a flapping angle β. Motion attained from
the lunate-shaped caudal fin due to motion of the moving platform is
shown on (b).

start moving. Transferred motion to the caudal fin and its
oscillatory effect is defined by β, representing the moving
platform’s final orientation.

The flapping effect on the caudal fin is induced by setting
a function to the pitch angle β. This is done by approx-
imating oscillations to a sine function. Hence, the caudal
fin starts flapping by oscillating the upper platform over
its yM axis. The fin’s oscillations will range by mechanical
design to a maximum/minimum point of β = ±30◦, as
shown in Figure 2b. Based on its mechanical constraint, the
caudal fin sideways motion presents a complete workspace of
60◦. Then, the vehicle’s tail presents an oscillatory flapping
motion approximated by:

β (t) = Asin (2π ft + ρ)+ b. (1)

Thrust andmoment are induced to BAUV according to how
fast and how biased is the flapping performance of the caudal
fin. The vehicle’s tail motion is regulated by adjusting flap-
ping parameters on (1). Furthermore, the rest of the BAUV’s
swimming motion is regulated by regulating the fin’s motion.

Four parameters should be controlled during navigation
tasks to correct the vehicle’s speed and turning moment.
On (1), A defines the flapping amplitude from the caudal
fin, and its value depends on whether biased flapping is
desired. Parameter b determines the level of bias induced
to flapping. When b is a nonzero value, the vehicle’s tail
starts biasing to either port or starboard, producing a turning
moment to the BAUV’s centroid. When b is regulated, a vec-
tored thrust is produced. Further, when combined adequately
with parameter A, the platform is set to reach its mechanical
maximum or minimum of ±30◦. After each control period,
the ρ shifting parameter is iteratively computed to set the
platform to always start at zero position (β = 0◦). Finally,
the flapping frequency parameter f determines how fast the
propeller oscillates. Thrust is expected to increase when the
flapping frequency f starts increasing.
Figure 3 illustrates how vectored thrust is attained when

bias is induced. The turning moment is expected to bias

FIGURE 3. By biasing vehicle’s caudal fin oscillatory motion, the BAUV
starts turning. Expected flapping range β, yawing moment and thrust
during full biased oscillations to (a) starboard and (b) port are shown.

FIGURE 4. Earth-fixed {OI } and body-fixed {0B} coordinate systems
employed to define vehicle’s motion in space.

to either starboard or port once the parameter b increases
or decreases (respectively). Since swimming performance
becomes unstable with fast cruising speeds, a proper
parameter-tuning regulator should be employed. By con-
trolling the propeller’s kinematics, an adequate navigation
performance is attained. Parameters (b, f) are regulated by
the designed path tracking controller, and their values range
from (−15, 15)◦ and (3, 5) Hz, respectively. The illustrated
scenario shows the expected flapping performance when b is
set to 15◦ and −15◦ (Fig. 3a, 3b, respectively).

B. BAUV’S KINEMATIC AND DYNAMIC MODELS
Two reference frames are employed to track the vehicle’s
position and orientation in space: an inertial Earth-fixed
frame (x, y, z) and a body-fixed frame (xb, yb, zb). Figure 4
displays the frames employed for the kinematics analysis.
The SNAME nomenclature employed for underwater motion
is also shown [32].

Body-fixed frame’s origin {OB} is fixed on BAUV’s cen-
ter of buoyancy. BAUV’s position (x, y, z) and orientation

64632 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

(φ, θ, ψ) are referenced to Earth-fixed frame {OI } by posi-
tion vector η. For BAUV’s six-degrees-of-freedom, (u, v,w)
represent translational velocities, and (p, q, r), represent
angular velocities measured along (xb, yb, zb). Forces and
moments exerted on the vehicle are defined by τ . Velocities υ

and forces τ are all referenced to {OB}. BAUV’s spatial posi-
tion, velocities, forces, and moments exerted by the propeller
are then defined by:

η = (x, y, z, φ, θ, ψ)T (2)

υ = (u, v,w, p, q, r)T (3)

τ = (X ,Y ,Z ,K ,M ,N)T . (4)

Linear and angular velocities are measured and referenced
to the BAUV’s own body, and a change of coordinates
should be computed. Transformation matrices are used to
convert velocities υ to velocities η̇ respect to the Earth-fixed
frame. By incorporating transformation matrices J1

(
η1

)
and

J2
(
η2

)
, change of coordinates is obtained:

η̇1 = (ẋ, ẏ, ż)T = J1
(
η1

)
[u, v,w]T (5)

η̇2 =
(
φ̇, θ̇ , ψ̇

)T
= J2

(
η2

)
[p, q, r]T (6)

where η̇ =
[
ṅ1, η̇2

]
. Transformation matrices are obtained

by implementing the Euler angles convention for roll, pitch,
and yaw and are defined as:

J1
(
η1

)
=

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

(7)

J2
(
η2

)
=

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 . (8)

Short notations c■, s■, and t■ inside transformation
matrices (7) and (8) stand for cosine, sine, and tangent of the
respective rotation angle.

The dynamic model of the vehicle was derived on [33],
where hydrodynamic coefficients such as added mass and
dragging terms were duly computed. To such analysis, the
vehicle was assumed to be a rigid body of constant mass
and buoyancy through all missions. Also, symmetry over
(x, y) and (x, z) planes were assumed for the study. Then, the
BAUV’s dynamic model is described by the Newton-Euler
equations of motion:

M υ̇ + C (υ)υ + D (υ)υ + g (η) = τ . (9)

From the left-hand side of (9),M ∈ R6×6 is the addedmass
matrix, C (υ) ∈ R6×6 is the added mass centripetal forces
and Coriolis matrix, D (υ) ∈ R6×6 is the hydrodynamic
damping matrix, and g (η) ∈ R6×1 is the restoring vector for
BAUV’s hydrostatic forces. From the right-hand side of (9),
τ ∈ R6×1 is the input vector of forces and moments produced
by the motion of the vehicle’s caudal fin and its orientation.
For brevity purposes, the full form of matrices can be found
on Appendix A. Table 1 shows physical and hydrodynamic

TABLE 1. BAUV physical and hydrodynamic parameters.

parameters used for swimming simulation of the designed
BAUV during navigation tasks.

IV. PATH TRACKING CONTROL STRATEGY
A. LINE OF SIGHT GUIDANCE SYSTEM
On our designed vehicle, thrust and moment are generated by
water displacement resulting from the motion of the vehicle’s
platform and caudal fin. The propulsion system applies forces
through each linking limb to make the propeller flap at a
certain amplitude, bias, and frequency [31]. This means that
the three linear actuators serve as a transmission system that
exerts forces through flapping, pushing the vehicle forward
and laterally [33].

BAUVs mainly depend on their propellers’ biomimetic
features to regulate swimming. Hence, these systems should
be smart enough to understand their mechanical limitations to
excel in their performance. By providing these vehicles with
guidance systems, it is possible to track information from the
cruising execution of the robotic fish.

Guidance systems are used to give the smart vehicle
information regarding its position and attitude in space
respecting to a final goal. A guidance system may compute
a path-tracking error by tracking an arriving coordinate and
the vehicle’s forward velocity and orientation. Based on the

VOLUME 11, 2023 64633

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 5. Line of sight strategy implemented for the BAUV’s guidance
system. Vehicle’s heading angle deviation (e) and Euclidean distance to
waypoint

(
Ed

)
are iteratively computed to track navigation performance.

error’s behavior, corrections could be induced in the swim-
ming performance of the vehicle in order to reduce it.

In the waypoint tracking strategy, the vehicle should reach
a preestablished set of coordinates in space (waypoints). The
vehicle should swim toward a waypoint by keeping a nonzero
forward velocity and regulate its heading direction by cor-
recting the turning moment on its body. Once the vehicle has
reached the preestablished coordinate, some others may be
introduced to form a desired path.

A Line of Sight (LOS) strategy is employed to measure the
path tracking error (vehicle’s heading deviation towards the
goal). In the LOS algorithm, coordinate transformations are
used where the desired and actual positions of the vehicle are
iteratively compared to reduce their distance and to compute
a desired orientation.

Figure 5 depicts the behavior of the implemented LOS
system. In this strategy, a waypoint is set as the primary goal.
The guidance system implements a LOS for the vehicle and
computes how deviated (e) it is from an ideal path and how
far the vehicle is from the goal (Ed). Each goal coordinate
(xd , yd) is commonly surrounded by a waypoint region. Once
the vehicle has reached such region (Ed ≤ r), it may try to
reach the following coordinate or finish the mission.

The main objective is always to keep the vehicle’s LOS
aligned while approaching the goal (by reducing both e and
Ed near zero). Euclidean distance (Ed) from the vehicle’s
position to the goal and the heading angle’s deviation (e) are
defined as:

Ed =

√
(xd − x)2 + (yd − y)2 (m) (10)

and,

e =

ψd − ψ, −π < ψd − ψ < π

ψd − ψ − 2π, ψd − ψ ≥ π

ψd − ψ + 2π, ψd − ψ ≤ −π

(rad) (11)

where:

ψd = atan2 ((yd − y) , (xd − x)) (rad) . (12)

From (12), atan2 (■Y ,■X) is the two-argument arctan-
gent and 2π variant of tan−1 (■X/■Y) . BAUV’s desired
heading direction then ranges between −π ≤ ψd ≤ π .
According to desired and actual orientation, bias flapping
should be induced for turning moment generation.

B. WAYPOINT TRACKING CONTROLLER
Two parameters are controlled throughout the navigation
task: fin’s flapping frequency f and bias b. Such parameters
are regulated according to information brought by the guid-
ance system. A path-tracking controller is implemented to
regulate the flapping parameters of BAUV’s caudal fin. Then,
two control phases are implemented, a speed regulator and an
attitude controller.

Figure 6 shows the closed-loop path tracking control
diagram employed inside simulations. A path planner is
responsible for generating waypoints in space. The waypoint
guidance system will compute error parameters while the
vehicle is swimming. Based on the Euclidean distance to an
inner waypoint Ed , a desired forward speed ẋd is defined
for the BAUV. Furthermore, based on the vehicle’s deviation
error (e) towards the inner waypoint, a bias is induced in the
fin’s flapping.

Figure 7a shows the P-PD controller implemented for
BAUV’s speed regulation. Each control step considers the
inner waypoint, not the vehicle’s final goal. In its first stage,
the desired forward velocity ẋd is defined proportionally to
the vehicle’s distance to the generated waypoint. This is done
strategically since the vehicle should reduce its velocity to
attain a more stable swimming performance while approach-
ing the waypoint. This helps to avoid missing the inner goal
due to high cruising speed. It also allows the vehicle to swim
faster once a new waypoint is induced to reduce navigation
time. In its second stage, ẋd is compared to the vehicle’s
actual speed ẋ, and speed error eẋ is computed. The PD is
responsible for computing an increment of frequency 1f
that is then added to the fin’s actual flapping frequency f .
Increments of frequency are saturated and may only range
between −2 ≤ 1f ≤ 2 Hz. Then, the speed control law to
define the tail’s flapping frequency is determined as follows:

f = f + KP,j · eẋ + KV ,j · ėẋ (13)

where:

eẋ = ẋd − ẋ (14)

ẋd = KP,i · Ed . (15)

Figure 7b shows the incorporation of the PD controller
for bias definition. For the attitude control stage, heading
deviation error e is tracked to compute b. The bias parameter
is then defined as:

b = KP,k · e+ KV ,k · ė. (16)

Flapping and bias regulation are introduced to the fin posi-
tion control stage after each control period of 1/f seconds.
Table 2 shows the proportional and derivative gains used for

64634 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 6. Waypoint tracking controller designed for the development of the parameter-tuning task. The controller defines BAUV’s fin flapping
frequency, bias, amplitude, and phase to correct its course towards inner waypoints. A P-PD speed and a PD attitude controllers are responsible for
the tuning task.

FIGURE 7. On (a), the P-PD control block diagram to define desired
forward speed and regulate flapping frequency is shown. On (b), the PD
control stage for attitude regulation based on BAUV’s heading error is
detailed.

TABLE 2. Control gains for speed and attitude regulation.

the speed and attitude control stages. Once the new values
for frequency and bias are defined, flapping amplitude and
phase-shifting parameters should also be adequately defined.
When the induced flapping bias is slight (−10◦

≤ b ≤ 10◦),
the propeller is set to flap at a full range of 40◦. When the
bias is significant, the mechanical constraints will reduce
such workspace until the fin only flaps at a complete range
of 30◦ (when b = −15◦ or b = 15◦). A defines the
flapping workspace. Finally, the phase-shifting parameter ρ
is strategically computed after each control period to start
flapping at zero position with β = 0. Then, amplitude and

shifting parameters (A, ρ) are defined as follows:

A =

{
20◦, −10◦

≤ b ≤ 10◦

20◦
−

∣∣|b| − 10◦
∣∣ , b > 10◦

; b < −10◦
(17)

ρ = sin−1
(

−b
A

)
− 2π ft. (18)

The vehicle is then set to reach inner waypoints toward a
final goal. To achieve them, the BAUV should swim using
its propulsion system. The waypoint tracking controller’s
primary goal is to combine flapping frequency and bias
on the caudal fin appropriately. By tracking information
from the proposed guidance system and applying regulation
stages for the flapping tail, the vehicle produces a vectored
thrust and turning moment to regulate its course. The correct
development of the parameter-tuning task then enhances the
BAUV’s swimming efficiency and overall performance while
navigating.

V. LOCAL PATH PLANNING DEVELOPMENT
To visualize the feasibility of both a D∗ Lite local planner and
the proposed modified version, three different environments
shown in Figure 8 are tested. Simulations are driven over a
rectangular swimming space of 12 by 19meters, ranging from
(−6, 6) width over the x-axis and (−1, 18) height over the y-
axis, respectively. Furthermore, the field is mapped into a grid
of nodes over the (x, y) plane with a resolution of 0.5 m. The
inertial Earth-fixed frame origin {OI } is positioned at (0, 0, 0)
coordinate. For all scenarios, the BAUV’s starting position
η was arbitrarily set to (1, 0, 0, 0, 0, 90◦), and the final goal
was set to (1, 15.5, 0) measured with respect to {OI }. Hence,
the vehicle is faced toward the goal at the beginning of each
simulation. The vehicle should swim inside the simulated free
space towards the goal and correct its course based on the
presence of obstacles.

From Figure 8, all nodes inside red areas are considered
obstacle-forbidden nodes that the BAUV should detect to cor-

VOLUME 11, 2023 64635

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 8. Three different scenarios are employed to compare the standard implementation of D∗ Lite and our adapted version when achieving a
safe navigation task. While on (a) the environment was designed to allow the vehicle swim in wider free spaces, (b) presents narrow halls where
planning correctly becomes of paramount relevance. Finally, (c) combines both broad spaces with narrow halls.

rect its course. Gray nodes inside the grid are free coordinates
that the local planner may select as inner waypoints. Further,
all obstacle areas are considered static and will not move
during simulated missions. Also, all simulations consider the
BAUV’s hydrodynamics and the waypoint tracking strategy
to tune flapping parameters in the vehicle. Hence, the local
planner and BAUV’s swimming performances are tested dur-
ing navigation to visualize the cruising efficiencywhile trying
to reach the final goal.

A. D∗ LITE ALGORITHM
D∗ Lite algorithm searches for an optimal path that connects
a final fixed goal node and the vehicle’s position as a starting
node. Once an obstacle inside the optimized path has been
detected, D∗ Lite reuses all previous information and updates
it to find a new path. To do so, the planner performs an incre-
mental search by considering all the unknown environment
as a free space to recalculate. Since the vehicle is moving
towards the goal, the algorithm also considers a moving
starting node.

When computing the shortest path, the algorithm computes
node-to-node edge costs just as an A∗ planner (but in the
opposite direction). Considering that each node s ∈ S is a
vertex inside the set of possible nodes in the grid map, the
g-value g (s) and the one-step lookahead rhs-value rhs (s)
are computed to define the optimal path between sstart and
sfinal . Both values are cost estimates of the distance between
a starting node to a vertex s. The rhs-value of a node rhs (s)
is computed based on the traversed cost function g

(
s′
)
values

of its successors in the graph s′ ∈ Succ(s), and the transition
costs to reach each successor 0 < c

(
s, s′

)
< ∞. Since the

search starts from sfinal , initial distance and cost are set to 0.
The computation of the rhs-value is of great importance

since the algorithm uses its minimum as the searching direc-
tion to build the path toward the goal. The rhs-value is
iteratively computed, and the search expands from node s to
all eight possible node’s successors s′ in the grid by finding
the minimum c

(
s, s′

)
+g(s′) until the goal sfinal is found [13].

rhs (s) is then computed as:

rhs (s) =

 0, s = sfinal
min

s′∈Succ(s)

(
c
(
s, s′

)
+ g

(
s′
))
, otherwise.

(19)

Furthermore, D∗ Lite uses a priority queue (open list)
for expanding nodes when searching for the shortest path.
When the g and rhs values of a node are the same, the node
is considered consistent. When a series of consistent nodes
between the start and goal is found, the shortest path may be
obtained. The rhs-value of a node may change once an obsta-
cle is detected, changing the node to an inconsistent state.
All inconsistent nodes enter the priority queue for further
processing. All nodes inside the open list are ranked based
on a key priority key (s) that dictates the expanding direction
the algorithm should take when finding the new path. Each
node’s key priority is computed by considering a heuristic
function h

(
s, s′

)
that measures the distance of the optimal

path between the current node and the starting point. The

64636 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

priority key of node s is a vector formed by the minimum
of its g and rhs value plus the focusing heuristic and a second
tie-breaking key. Then, key (s) is defined as:

key (s) = [min (g (s) , rhs (s))

+h (sstart , s) ;min (g (s) , rhs (s))] . (20)

For the current implementation, all edge costs and heuris-
tic functions for distances between vertices are computed
using the Euclidean distance. When finding the shortest path,
the algorithm expands the node with minimum cost inside
the open list and updates the g and rhs values of all its
surrounding vertices. Then, all nodes that became either
under-consistent or over-consistent are processed to update
their values and expand such changes to their successors until
local consistency is attained. After updating rhs values, the
algorithm removes all consistent nodes or adds new inconsis-
tent nodes to the open list. This procedure is iteratively done
to elements in the queue until the queue’s next top key to
expand is no less than the sstart key or until sstart is locally
consistent. Then, the new shortest path from the vehicle’s
current position and goal is obtained.

Table 3 presents the pseudocode for the implementation of
D∗ Lite, as presented in [13]. In the initialization procedure{
02′

}
−

{
06′

}
, g and rhs values of all nodes in the grid are

set to infinite. The target node sfinalrhs-value is set to 0 and
changes its state to inconsistent, becoming the first entree of
the open list. The target node is permanently fixed throughout
the whole task. A first computation for the shortest path is
made based on the environment’s information, vehicle’s start-
ing position sstart , and sfinal

{
10′

}
−

{
20′

}
,
{
23′

}
. Typically,

the first path estimation does not consider any obstacle since
they are outside the vehicle’s vision range. Once the shortest
path is computed, the vehicle starts moving. The vehicle
moves from sstart to any of its 8-adjacent neighbor nodes with
the smallest estimated values, and its new position becomes
the new sstart

{
26′

}
−

{
27′

}
. After reaching a new position,

the vehicle should check for updates inside its environs. If an
obstacle inside the defined path is found, the cost of edges
between the current position and the observed node must be
updated accordingly

{
28′

}
−

{
33′

}
. Transition costs to obsta-

cles are generally set to infinity. Based on the cost change,
the rhs-value of the found obstacle must be updated, as well
as its key value

{
7′

}
−

{
9′

}
,
{
34′

}
. After the found node

and its surroundings have been updated, a new computation
of the shortest path between the target node and sstart must
be conducted considering the updated queue’s key priorities.
The vehicle can then follow the recommended path. This
procedure is followed until sstart becomes sfinal .
Figure 9 shows the BAUVperformance after implementing

a D∗ Lite path planner inside each simulated environment.
Each vertex defined by the planner was considered a way-
point and entered into the path-tracking control strategy
detailed in the previous section. For the obstacle detection
stage, a surrounding vision range of 1.5 meters from the

FIGURE 9. Standard D∗ Lite path planner implemented. On (a), the
planner does not consider broader free spaces for replanning. On (b) and
(c), the vehicle passes too close to obstacles inside hallways. For all
scenarios, the D∗ Lite planner sets the BAUV to follow risky routes. Some
expected collisions are shown inside each navigation task.

VOLUME 11, 2023 64637

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

vehicle’s center of buoyancy is considered. Hence, the vehicle
corrects its flapping performance to swim between its current
position and the inner waypoint regions (set to r = 0.20 m).
When the standard D∗ Lite planner is employed to define

the navigating path of the BAUV, adjacent waypoints are
introduced toward the goal. Then, the waypoint path tracker
focuses on reaching each waypoint region, causing the vehi-
cle to present sharp corrections while swimming. The vehicle
presents an undesirable swimming performance where even
when the path defined by the local planner is obstacles-free,
the BAUV collides. Furthermore, making (almost sequen-
tially) sharp turning corrections while swimming results in
larger traveled distances and larger inefficient missions in the
long run.

In the simulated environment from Figure 9a, broad spaces
are not fully considered to plan the route, yet the suggested
path passes near all obstacles. The waypoint-based path even
describes the shapes of the found obstacles. This phenomenon
is visualized in scenarios from Figure 9b and 9c, where
the vehicle swims near obstacles due to the defined routes.
Furthermore, the standard path planner projects waypoints
inside narrow halls since the shortest path is assumed to pass
through them (as shown on 9c).

Although the BAUV can swim forward and describe
straight paths when oriented toward a waypoint (as seen
at the beginning of each simulation), changing its direction
requires a transitional swimming stage. In other words, if a
new waypoint requires the vehicle to change its heading
direction, the BAUVwill take some time to reach the required
turning moment to achieve such orientation. Because of its
hydrodynamics and swimming behavior, if the vehicle is
near an obstacle while changing its orientation, it will be
expected for the BAUV to collide (as shown in several stages
in Figure 9).

B. PROPOSED ADAPTATIONS OVER D∗ LITE
Although the D∗ Lite algorithm finds the shortest
obstacle-free path toward the goal, the BAUV cannot follow
all waypoints smoothly. Then, some adaptations should be
introduced to attain the safe navigation required for the
BAUV. Some considerations based on the swimming perfor-
mance of our BAUV should be stated to find such adaptations:

• The BAUV cannot immediately change its orientation.
Because of its hydrodynamics and its main propeller’s
kinematics, the BAUV presents a transitional stage to
reach a new heading direction. Then, when a new way-
point is generated, and the vehicle must correct its
cruising orientation, a curved path towards such an inner
goal is expected. Rough changes on BAUV’s ψd inside
short spaces will result in aggressive described paths.
Hence, planning over short distances is not helpful for
efficient swimming performances.

• The BAUV only attains a forward thrust. In other words,
when the vehicle’s propeller starts flapping, the vehicle
moves forward. Based on the propeller’s flapping bias,

a turning moment is generated. Then the planner should
prioritize forward paths towards the goal even when the
path tracker adjusts BAUV’s flapping to make it spin,
keep the same orientation, accelerate, or deaccelerate.

• The BAUV presents a limited vision range. The vehicle
presents a camera in its bow section with a defined
vision range. Since D∗ Lite uses all the free space to
plan, any of BAUV’s eight adjacent coordinates may be
selected as the best candidate to visit next. However,
prior information about the presence of obstacles in the
vehicle’s surroundings should be attained to select any of
such nodes. Hence, detecting all surrounding obstacles
is not guaranteed unless the vehicle has previously seen
them while swimming. Nodes inside BAUV’s visibility
should be prioritized over any unseen nodewhen picking
the new sstart . Then, what the vehicle visualizes when
choosing a new node should be considered the safest and
most conservative option to avoid collisions.

Based on these constraints, it is desired to adapt a planner
that suggests a more robust path so that the vehicle can
travel smoothly. The advantages of the fast-planning D∗ Lite
algorithm should be adjusted for such purposes. The main
incorporations focus on how the path could be safer once
an obstacle has been found. By implementing a strategy
for discriminating near-to-obstacles vertices, a conservative
selection of waypoints may be attained to avoid collisions.

Moreover, considering all the observed information when
picking a new vertex allows planning further than consider-
ing only eight adjacent vertices. Then, safer paths may be
obtained by adding a conservative node selector to the fast-
replanning D∗ Lite algorithm.

1) DEFINITION OF WARNING NODES
Once the vehicle has reached a vertex, an inspection task is
performed to update information from the grid map. If the
vehicle has found that the next expected node is an obstacle,
a cost correction towards such node should be updated. D∗

Lite then expands that information to the successive nodes
until a local consistency is found. Then, the algorithm sug-
gests a new shortest path based on the computation of the g
and rhs values. If the vehicle can visualize further than just
the next node and finds an obstacle on its way, replanning is
computed as well.

The shortest path generally avoids obstacles by selecting
nodes that pass near the found obstacles. After finding a
forbidden vertex, the cost update task is modified to avoid
planning new routes near obstacles. The definition of warning
nodes to those vertices near the obstacle is then employed to
find safer paths.

Figure 10 shows a grid diagram where node O is a found
obstacle during navigation. As specified in the standard
development of D∗ Lite, all directed edge costs from vertices
to the observed obstacle will be set to c (O, v) = ∞. How-
ever, all surrounding nodes that are not considered obstacles
are free options for replanning. In most cases, the planner will

64638 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 10. Definition of warning nodes after obstacle O is found.
A weighted discrimination over adjacent nodes ni is done based on their
closeness to the forbidden vertex. Then, vertices that are far from O are
priority for replanning. Nonetheless, warning nodes may be selected in
the absence of broader free spaces.

employ such neighboring nodes to avoid passing through the
obstacle and head back toward the goal. Nonetheless, all the
adjacent vertices’ costs should also be modified to avoid a
new path passing near O. A free vertex may be classified
as a warning node according to its Euclidean distance from
the detected obstacle. Based on arbitrary thresholds and the
heuristics employed to define distances to the obstacle, ver-
tices are considered free or warning nodes while replanning.
When a vertex is classified as a warning node, some weights
may be added to the traveling costs to such nodes, and
their information may be expanded to their local successors.
Figure 10 illustrates how warning nodes may be classified
based on their closeness to O.
By defining a threshold value thr for the distance of each

adjacent node ni to O, a weight w is added to the already
expected edge cost c(s, ni) as:

c (s, ni) =

{
w+ h (s, ni) , h(ni,O) ≤ thr
h (s, ni) , otherwise.

(21)

In (21), s represents the vertex of the vehicle’s current posi-
tion (x, y), ni represents the ith vertex from all adjacent nodes
to obstacle O with coordinates (xni, yni), (xO, yO) respec-
tively, h (s, ni) is the distance between vehicle’s position and
the ith adjacent node, and h(ni,O) is the distance between
adjacent nodes to the detected obstacle. All computed dis-
tances are Euclidean.

Adding weights to traveling costs toward warning nodes
helps prioritize the selection of vertices far from the detected
obstacle. Then, the searching directionwould emphasize such
further nodes because of their lower costs when finding a
new path. However, if there are no better options, the planner
would select the best between all weighted warning vertices.
Then, even when the algorithm tries to find the new shortest
path to the goal, it would prioritize nodes far from obstacles
until the projected path reaches the goal. By adapting the
algorithm from Table 3, warning nodes’ costs are updated
after an obstacle has been found. Table 4 shows this modi-
fication inside procedure Main() from D∗ Lite.
Figures 11, 12, and 13 compare the adaptedD∗ Lite planner

that considers warning nodes to the standard version when

TABLE 3. Standard D∗ lite algorithm.

implemented in each environment. For these cases, only local
path planning stages are shown. All previous characteris-
tics were kept to visualize the performance of the modified
algorithm, and the vehicle was assumed to have a surround
vision range of 1.5 m.

The adapted algorithm replans routes after an obstacle is
found but follows the warning node discrimination when
possible. The discriminating threshold value was set to thr =
√
0.5, and the added weight for nodes was set to w = 10.

This algorithm suggests new paths that do not pass near
obstacles but prioritize broad free spaces. The final paths are
not necessarily the shortest but are safer than those attained
from the standard planner.

VOLUME 11, 2023 64639

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 11. Comparison between (a) standard D∗ Lite and (b) D∗ Lite
considering warning nodes. Because of the presence of wider spaces, the
final path from (b) suggests a waypoint-based path that is at least one
vertex away from obstacles.

FIGURE 12. Comparison between (a) standard D∗ Lite and (b) D∗ Lite
considering warning nodes. The adapted algorithm (b) allows planning by
keeping safe distances to obstacles and by taking conservative decisions.

Figure 11a shows the path suggested by a standard D∗

Lite. On 11b, the adapted algorithm shows how near-to-
obstacles nodes were discriminated when replanning. It is
observed how free spaces were better employed to project
a waypoint-based path. Even when the planner adjusted a
path with sudden turns, all computed waypoints were at least
one vertex away from a detected forbidden node. That was
possible because of the environment’s vast space.

Figure 12 shows the comparison between algorithms inside
the second environment. Unlike the first scenario, the second
environment presents halls that the vehicle must traverse to
get to the goal. While on 12a, the planner projected a path
traversing two hallways, on 12b, the adapted planner only
passed through one. In this example, the adapted planner
projected a path that passed through the middle of the first

FIGURE 13. On (a), the path is near to obstacles even when wider spaces
may have been employed. On (b), the whole path kept a safe distance
from obstacles and even surrounded the last object to avoid passing
through narrow halls.

hallway. When no wider spaces were able for replanning,
the adapted D∗ Lite picked the less costly warning nodes.
Furthermore, a conservative decision was taken in the last
section of the navigation task. Since the adapted algorithm
prioritizes open spaces over narrow hallways, the planner
suggested that going around obstacles would have been better
than traversing them.

Figure 13 shows the advantages of planning paths away
from obstacles and avoiding traversing narrow hallways.
Figure 13a shows the projected path that D∗ Lite computed
during navigation. The suggested path made corrections near
obstacles, and the shortest path to the goal was found by
traversing halls between obstacles. On 13b, the waypoints
projected a line right through themiddle of the first two obsta-
cles. In the last section, the conservative decision of avoiding
narrow halls set the path around the obstacles, keeping a safe
distance between the suggested path and obstacles. Then, the
definition of warning nodes as an addition to the standard
algorithm will allow finding safer paths than the near-to-
obstacles shortest paths suggested by the standard D∗ Lite.

2) PLANNING LONGER INNER PATHS
Even when adding warning nodes may allow replanning safer
paths, defining waypoints too close to each other represents a
problem for the BAUV while swimming. The waypoint path
tracker iteratively computes corrections over the vehicle’s
flapping tail to drive the BAUV toward each waypoint. Then,
the vehicle’s swimming effort to reach each inner waypoint
ends up in larger traveled distances. The local planner could
project waypoints inside the vehicle’s vision range to avoid
this. That means that the planner could consider the vehicle’s
adjacent coordinates and all nodes that the BAUV is visual-
izing to define a new inner waypoint. Then, by combining
the selection of warning nodes with a strategy of picking
waypoints away from BAUV’s current position, safer paths

64640 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 14. Representation of BAUV’s perception. The vehicle’s vision
range is tested for different radii, and its peripheral vision is assumed to
be of 120◦ at most.

may be planned, and a smoother swimming performance
from the vehicle may be attained.

The BAUV’s vision range plays a considerable role when
replanning. According to obstacles found, warning nodes
are defined, and a safe path is computed with the proper
discrimination over vertices. When implementing a standard
D∗ Lite, the vehicle’s next position could be any of its eight
neighboring coordinates. It is then assumed that the vehicle
could reach any such nodes and update information from its
surroundings. These assumptions were made when imple-
menting the algorithms inside Figures 9, 11, 12, and 13.

Compared to surround sensor systems, the BAUV counts
with a camera incorporated inside its nose section. The cam-
era is considered the only sensor that visualizes the vehicle’s
environment. That means our BAUV’s perception is limited
to a frontal vision range, as shown in Figure 14.Moreover, the
vehicle’s vision range is assumed to be mid-peripheral up to
120◦ in diameter. These aspects directly affect how the vehi-
cle detects obstacles and should be considered when planning
the vehicle’s next position. Hence, the vehicle should prior-
itize swimming forward and toward known and seen areas
to attain safe navigation. Based on the information attained
from the vision system, a path planner should properly define
which nodes are safer to visit. It should be done considering
the swimming performance of the vehicle and its safety when
passing near detected obstacles.

Based on the limited perception of the environment, the
planner should prioritize safer and more conservative paths
rather than the shortest. Furthermore, planning over seen and
known areas becomes the safe choice based on the assump-
tion that the BAUV is swimming in a static environment
(where detected objects will not move). Then, by prioritiz-
ing forward planning inside the BAUV’s vision range, the
path tracker control system will mainly focus on thrusting
the vehicle toward the inner waypoint. Moreover, if such
a waypoint is far from the vehicle’s position, the control
stage eases off efforts since corrections may be gradually
induced while the vehicle moves. This strategy then focuses
on reducing abrupt motions during navigation tasks. Then,
more efficient swimming may be attained to follow more
conservative, smoother, and safer paths.

On the standard implementation of D∗ Lite (as established
in Table 3), sstart is chosen among the vehicle’s eight adjacent
vertices (line {26′}). Based on the sum of the travel cost that
takes getting to such nodes and their heuristic distances to the
goal, the neighboring coordinate with the minimum cost is
selected as the new sstart . That ends up producing a sequential
waypoint-based path formed by adjacent vertices.

The strategy then consists of taking the node information
computed by the D∗ Lite algorithm and defining which of the
seen vertices is the best option to visit next. The algorithm
is then adapted right at the moment of selecting the new
waypoint. The selection priority is set to all nodes that are
visualized from the BAUV; that is, all vertices that fall inside
the defined vision range (illustrated as a yellow area in
Figure 14) must be considered first when choosing the new
sstart . The next waypoint will be selected by considering the
following aspects:

• The planner should always try to pick a waypoint in front
of the BAUV and inside its vision range. This will allow
keeping the forward thrust and direction of the vehicle
while avoiding abrupt changes in its orientation. Then,
at first, only those nodes inside the assumed range will
be considered candidates. If and only if all seen nodes
are obstacles or inaccessible, then the planner should
retrieve.

• When retrieving, only the vehicle’s adjacent nodes
should be considered to avoid significant regression.
Then, the best new waypoint selection will be followed
as done on the standard D∗ Lite algorithm. Once the
vehicle reaches such retrieving waypoint, the new search
will prioritize seen vertices again.

• If there are seen reachable nodes, warning nodes must
be identified first. All seen nodes should have a travel
cost that measures the vehicle’s distance to each possible
vertex. All detected warning nodes’ travel costs should
be updated according to (21).

• Once all costs from seen nodes have been locally
updated, three tie-breaking criteria for selecting the next
waypoint are considered. First, each seen node’s g-value
g

(
s′
)
is considered the primary tiebreaker. Second, the

Euclidean distance between each candidate and the final
goal h

(
s′, sfinal

)
is employed. These two criteria force

the planner to pick a new waypoint far from the BAUV’s
position and closer to the final goal. Then all nodes that
are near the BAUV are locally discriminated. Finally,
the third tiebreaker is the computed change of direc-
tion 1ψs′i required to reach each seen node considering
BAUV’s current orientation ψ , where:

1ψs′i
=

∣∣∣ψs′i − ψ

∣∣∣ (22)

and,

ψs′i
= atan2

((
ysi − y

)
,
(
xsi − x

))
. (23)

Figure 15 illustrates how the prioritization of picking a
new waypoint is done. Based on the previously stated con-

VOLUME 11, 2023 64641

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 15. Flowchart of the main algorithm from adapted D∗ Lite
implemented for local planning during simulations.

siderations, the planner will try to pick further nodes rather
than those near the BAUV. Since all vertices are considered
as known, the weight assignation may also be computed to
help select the safest choice. Based on the proposed criteria,
the new coordinate will be inside the vehicle’s current vision
range. The tracker should focus only on keeping a forward
swimming direction andmakeminor heading corrections. For
the selection of the next waypoint when not all seen nodes are
obstacles or inaccessible, traveling costs, distance to the goal
and change of orientation are all considered, and the new sstart
will then be defined as:

sstart = argmin
s′∈seen(sstart)

[(
c
(
sstart , s′

)
+g

(
s′
))

; g
(
s′
)
; h

(
s′, sfinal

)
;1ψs′

]
. (24)

A small retrieving is induced when the vehicle cannot
achieve any of the seen nodes. Any adjacent nodes surround-
ing the vehicle may be selected based on their heuristic
values. Then, inside the retrieving stage, the new waypoint
will be defined as:

sstart = argmin
s′∈Succ(sstart)

(
c
(
sstart , s′

)
+ g

(
s′
))
. (25)

Figure 16 shows the flowchart diagram for selecting a
new waypoint based on the proposed strategy. The incorpo-
ration of such an algorithm replaces the standard selection
of sstart as developed on

{
26′

}
in Tables 3 and 4. This new

waypoint-selection strategy will allow planning longer inner
paths when possible.

VI. RESULTS
The adapted D∗ Lite was tested inside the three environ-
ments shown in Figure 8. The vehicle’s vision range was
set to different radii to show how limited vision ranges
affect navigation performance and planning. Furthermore, the
peripheral vision range was constant for all cases and set to

FIGURE 16. Strategy for selecting new sstart . All nodes that fall inside a
preestablished range are considered as candidates. Based on the
information provided by the vehicle’s perception, discrimination over
such nodes is done. If seen (priority) nodes are inaccessible, the vehicle
retrieves by picking one of its surrounding vertices.

120◦. The experiments consisted of positioning the vehicle
at starting point η facing toward the final goal. To regulate
swimming, the waypoint path tracker controlled the flapping
performance of the BAUV’s caudal fin for thrust and moment
generation. Then, based on the definition of waypoints by the
D∗ Lite local planner, the vehicle was set to reach all of them
until the final coordinate was attained.

Figure 17 shows the results of four missions inside the first
environment. The standard D∗ Lite algorithm was employed
to plan paths for missions inside Figure 17a,b, and our
adapted algorithm was implemented inside missions from
Figure 17c,d. The BAUV’s vision radius was set to either
1.5 m (Figure 17a,c) or 2.5 m (Figure 17b,d). For all missions,
the limited vision range was set to 120◦.

As seen on 17a, the vehicle did not end the mission due to a
straight collision in the first obstacle. That occurred because
the vehicle did not visualize the obstacle when planning one
waypoint before. The D∗ Lite planner considered such an
unseen node a free space for replanning, leading the BAUV to
a collision. The main disadvantage of not having a surround
vision system is that the standard algorithm expands its search
toward all unseen nodes, and misinformed decisions could
be made. The algorithm stopped once the BAUV reached the
final node since it discovered that the defined vertex was an
obstacle.

The BAUV could reach the goal coordinate once its vision
range was enlarged to 2.5 m and the standard D∗ Lite planner

64642 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 17. Results of missions inside first simulated environment. On (a) and (b), the standard D∗ Lite path planner was employed for the BAUV with a
vision range of 1.5 m and 2.5 m, respectively. On (c) and (d), our adapted D∗ Lite algorithm was implemented for the BAUV with a vision range of 1.5 m
and 2.5 m, respectively. For the first two cases, the vehicle did not finish the mission or presented long traveled distances. For the last two scenarios,
the BAUV reached the goal and followed attainable paths.

FIGURE 18. Guidance and control stages for simulated missions inside the first environment when the standard (a through h) and adapted (i through p)
path planners were incorporated. BAUV’s Euclidean distance to goal Ed and heading error deviation e were iteratively tracked to generate control
regulations over tail flapping frequency f and bias b.

was still employed. In this case, the vehicle’s perception of
its environment was enhanced, and more forbidden vertices
could be found. Then, the planner was allowed to find a
route toward the goal without misclassifying an obstacle node
as a free vertex. However, having a non-surround, enlarged,
limited vision system does not guarantee that the vehicle will
finish its mission.

Furthermore, although the navigation task was drastically
enhanced once the vision range was enlarged, the stan-
dard D∗ Lite planner did not help to improve the vehicle’s
swimming performance. For both cases, in Figure 17a,b, the
waypoints induced were sequentially placed, and that caused
the BAUV to describe an erratic swimming performance.
The implemented control strategy sets the vehicle to reach

VOLUME 11, 2023 64643

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 19. Results of missions inside the second simulated environment. On (a), the standard planner misclassified a forbidden vertex due to the
short-sight vision range, and the mission could not be finished. On (b), the vision range was enlarged to 2.5 m and the BAUV reached the goal.
However, the standard planner suggested a path that produced a poor swimming performance. On (c) and (d), the adapted D∗ Lite planner was
employed, and the vehicle followed smoother routes by keeping a safe distance from obstacles. Conservative paths were attained with a larger
vision range of 2.5 m.

FIGURE 20. Guidance and control stages for missions inside the second environment with: (a through h) the standard and (i through p) our
adapted path planners. The adapted D∗ Lite allowed to reduce distance to goal faster than the standard algorithm, as well as it allowed a better
regulation over the vehicle’s heading deviation. Control stages were enhanced by allowing the gradual correction over the flapping performance of
the BAUV’s tail.

all waypoints, inducing abrupt corrections while swimming.
Because of such performance, collisions and larger traveled
distances are expected. When implementing a standard D∗

Lite path planner, countingwith a surround perception system
enlarges the possibility of finishing the mission and reaching
the goal. Nonetheless, the standard algorithm ended up sug-
gesting unhelpful paths.

On the other hand, Figure 17c,d shows the naviga-
tion results after implementing the proposed adapted D∗

Lite for path planning. For both cases, the algorithm
followed the warning node identification strategy and
planned longer inner paths. Then, the waypoint-based
computed path presented larger spaces between nodes.
While swimming, each waypoint was selected based on

64644 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 21. Results of missions inside the third simulated environment. On (a) and (b), the standard planner suggested a difficult path for the BAUV
conditions. Even when the vehicle was able to reach the goal, collisions are expected due to the poor swimming performance attained. On (c) and
(d), our adapted planner suggested a more achievable and safer path. For both cases, the vehicle was capable of reaching the goal by following
conservative paths and by keeping a safe distance from obstacles.

FIGURE 22. Guidance and control stages for missions inside the third environment with: (a through h) the standard and (i through p) our adapted
path planners. Even when the adapted algorithm caused longer mission periods due to conservative paths, the vehicle’s heading deviation error
was largely reduced and handled. This allowed the reduction of the erratic swimming behavior due to gradual control over the tail’s flapping
performance.

the vehicle’s current perception, finishing on a smoother,
simpler-to-follow, and safer path. The vehicle reduced its
erratic behavior because of larger planning spaces between
nodes.

Compared to 17c, results were even enhanced inside the
mission in Figure 17d, when the BAUV’s vision range was
enlarged to 2.5 m, and our adapted planner was employed.
The final waypoint-based planned path allowed the vehicle

to follow almost straight paths toward the goal. Also, the safe
distance between the vehicle’s swimming path and obstacles
was kept throughout the mission. For the last two cases, the
BAUV described a smooth path toward the goal without any
risk of collision. All induced waypoints were attainable and
properly planned based on the vehicle’s current position and
heading direction, which allowed performing better-informed
decision-making tasks.

VOLUME 11, 2023 64645

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

FIGURE 23. Mission times taken by the BAUV when the standard and our
adapted D∗ Lite algorithms were implemented. Surround and
camera-based vision ranges were set to 1.5, 2, and 2.5 m for (a)
environment 1, (b) environment 2, and (c) environment 3.

FIGURE 24. BAUV’s final traveled distance from each mission after
implementing standard and adapted versions of D∗ Lite on: (a) first
scenario, (b) second scenario, and (c) third scenario.

Figure 18 shows the guidance and control stages for each
mission developed inside Figure 17. For the guidance stage,
the Euclidean distance to the goal Ed and the heading devi-
ation e were iteratively computed to assess the BAUV’s
swimming performance. For the control stage, the tail flap-
ping frequency and bias were regulated to correct moments

TABLE 4. Warning nodes cost update added to D∗ lite main procedure.

and speed produced on the vehicle. Figure 18a through 18d
shows the regulation stages when the standard D∗ Lite plan-
ner was implemented for the BAUVwith a vision range set to
1.5 m. Figure 18e through 18h shows the same stages but with
a vision range enlarged to 2.5m.On the other hand, Figure 18i
through 18l and 18m through 18p detail both stages once our
adapted algorithm was incorporated into missions with the
BAUV’s vision range set to 1.5 and 2.5 m, respectively.

Besides from the first case where the BAUV could not fin-
ish its mission, the vehicle traveled larger distances when the
standard D∗ Lite path planner was employed. This resulted
in longer mission times as well. This behavior can be shown
in the reduction of Ed throughout both missions inside
Figure 18a,e. Moreover, erratic behavior was produced when
the standard D∗ Lite path planner was employed. After a new
waypoint was introduced, the vehicle’s heading direction pre-
sented abrupt changes causing large heading deviations. This
is visualized on Figure 18b,f, where sudden and large changes
during computation of heading deviation e are shown. During
the control stage in Figure 18c,g, the propeller was practically
set to flap from one side to the other since the vehicle was
trying to reach all the sequence of waypoints, producing sharp
turns. Frequency regulation throughout the missions is shown
in Figure 18d,h.
In contrast, guidance and control stages were enhanced

once the adapted local path planner was employed. First,
mission times were reduced, and the vehicle could gradually
reduce its distance to the goal faster than in the first two
cases. This is visualized in Figure 18i,m. Second, few abrupt
deviation errors were attained and even reduced (as seen
in Figure 18j,n). By planning longer inner paths, the devi-
ation error from the guidance system was better regulated,

64646 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

TABLE 5. Comparison between D∗ Lite strategies for planning routes inside missions.

decreasing the chances of causing the vehicle to describe
abrupt turns. Then, the proper regulation of BAUV’s heading
direction enhanced the vehicle’s overall swimming perfor-
mance. In the control stage, abrupt changes in the propeller’s
performance and corrections over its flapping bias and fre-
quency were reduced. A better regulation was achieved since
gradual changes could be induced during missions (as seen
on bias and frequency control in Figure 18k,l and 18o,p).

The experiment was simulated for the second environ-
ment. Figure 19 shows the results after implementing the
standard and adapted versions of the D∗ Lite path planner
during the navigation task. While 19a,b shows the navigation
task after employing the standard algorithm, 19c,d shows
the vehicle’s performance when planning with our adapted
algorithm.

Once more, the BAUV did not finish its mission when
it presented a short vision range of 1.5 m, and the stan-
dard planner was implemented. The planner did not see and
misclassified an obstacle vertex as the next best candidate.
The BAUV collided, and the planner ended its tasks, as seen
in Figure 19a. Once the vision range was enlarged inside
Figure 19b, the vehicle could finish the mission and reach the
final goal. However, the final paths described by the vehicle

were not smooth and presented sharp turns. For both paths,
collisions with obstacles are expected.

When the adapted D∗ Lite was implemented for the sec-
ond scenario, the BAUV finished the mission and described
smoother and safer paths. Figure 19c shows the results
attained with BAUV’s vision range set to 1.5 m. In this case,
the BAUV swam right through the middle of all hallways
avoiding collisions with obstacles. The distribution of way-
points allowed the vehicle to gradually regulate its orientation
and position towards inner nodes and the final goal. Fur-
ther, the vehicle finished the mission without collisions and
described a safe path even inside halls.

Contrasting to results in Figure 19c, Figure 19d shows how
the algorithm became a conservative planner when the vision
range was enlarged from 1.5 to 2.5 m. The vehicle visualized
larger regions than before, and more considerable environ-
mental information was attained. Then, the prior definition
of warning nodes provoked the final decision of surround-
ing the final obstacles. With these results, it can be shown
how the adapted D∗ Lite algorithm will help in planning
more achievable paths.Moreover, the decision of surrounding
obstacles rather than passing through narrow hallways will
be determined by the current information attained from the

VOLUME 11, 2023 64647

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

BAUV, where conservative decisions are prioritized over the
shortest path.

Figure 20 shows each mission’s guidance and control
stages simulated inside the second environment. When the
standard D∗ Lite path planner was implemented, the BAUV
was set to followwaypoints close to each other. This produced
a poor swimming performance, presenting a slower reduction
of the Euclidean distance to goal and increasing the mission
time (Figure 20a,e). Also, the vehicle’s heading direction
presented large changes while swimming, making the regu-
lation of BAUV’s deviation e hard to handle (Figure 20b,f).
The detected sudden changes in the BAUV’s direction made
the control stage induce abrupt corrections over flapping
(Figure 20c,d and 20g,h).

When the adapted local planner was employed, the guid-
ance and control stages developed a smoother regulation
task. Since corrections were gradually induced, the vehicle
enhanced its swimming performance. Moreover, even when
the proposed algorithm preferred planning over open spaces
rather than traversing narrow halls, the mission times did not
increase. This is visualized in the adequate reduction of the
Euclidean distance to the goal in Figure 20i,m. Also, a better
regulation over heading deviation e could be achieved (as
seen in Figure 20j,n). During this set of missions, the control
stage (Figure 20k,l and 20o,p) gradually induced corrections
over the flapping performance of the vehicle’s tail to reduce
path tracking errors.

The results for navigation tasks inside the third environ-
ment are shown in Figure 21. While Figure 21a,b shows the
results after implementing the standard D∗ Lite, Figure 21c,d
shows the results after incorporating our adapted algorithm.
The standard planner suggested the shortest path through
hallways, causing the vehicle to swim through unsafe nar-
row spaces, presenting collisions. On the other hand, the
adapted algorithm allowed the vehicle to swim over safer
paths toward the goal, surrounding narrow hallways and
keeping a safe distance between obstacles. The control stage
was largely enhanced, and, as in all previous experiments
using our adapted algorithm, the swimming performance
was also enhanced. The guidance and control stages for
all missions inside the third environment are shown in
Figure 22.
Figure 23 compares mission times taken by the vehicle

when the standard and adapted planners were implemented.
These results show that mission times were not enlarged even
when our adapted algorithm suggested conservative paths.
Surrounding obstacles may initially represent a costly strat-
egy when considering mission times. However, this strategy
reduced collision risks and allowed the BAUV to follow
smoother paths with a smoother swimming performance,
reducing navigation periods.

Further, Figure 24 shows the total traveled distance that
the vehicle followed during each mission. The shortest path
computed by the standard D∗ Lite often resulted in a hard-
to-follow and inefficient trajectory because of the vehicle’s
hydrodynamics. The vehicle then tended to travel longer dis-

tances than expected, trying to reach all suggested waypoints.
On the other hand, the developed, adapted D∗ Lite algorithm
suggested conservative paths that, even when compared to
the shortest path were longer, the vehicle would easily and
safely follow, resulting in less expensive and efficient trav-
eled distances. Finally, a comparison that summarizes results
from simulated experiments between algorithms is shown
in Table 5. The final comparison considers all scenarios,
vision range radii, mission times, traveled distances, way-
points computed, and expected collisions obtained after each
simulated experiment.

VII. CONCLUSION
In this article, the development of a local planner to enhance
guidance, navigation, and control of a BAUV was presented.
The vehicle swims by flapping a caudal fin, which pro-
duces a vectored thrust and turning moments. Based on
a waypoint guidance system, the BAUV’s heading devia-
tion and distance toward a goal were tracked to regulate
the propeller’s flapping performance. Moreover, the vehi-
cle’s perception of its unknown environs was limited. Unlike
surround vision systems, the BAUV could only see what
was in front of it. The fast-planning D∗ Lite algorithm
was adapted to the vehicle’s conditions to help it reach
its goals.

Conservative strategies such as prioritizing open spaces
over free vertices near obstacles and planning inside BAUV’s
limited vision range helped attain achievable paths toward the
final target. Furthermore, the adapted algorithm prioritized
safer trails over the shortest path frequently computed by
the standard algorithm. Then, even when the vehicle had to
follow larger distances or swim inside open spaces rather
than small shortcuts between obstacles (compared to the
shortest paths advised by standard D∗ Lite), the collision
risks were drastically reduced. Furthermore, the BAUV’s
swimming performance was enhanced since planning longer
inner paths helped with the gradual regulation of flapping
parameters inside the control stage. Finally, the character-
istics of the proposed local planner may be expanded to
other types of systems where a surrounding perception of the
environment cannot be attained or where more conservative
and safer paths are required due to the vehicle’s motion
constraints.

In future work, the enhancement of the planning stage
may consider the vehicle’s kinematics and hydrodynamics
for the nodes-discrimination task. Further, smart planning
techniques may be developed for the definition of paths to
excel navigation performance. Also, complementary con-
trollers may be added to enhance the process of tuning
swimming parameters inside the BAUV. Then, adaptive and
smart path tracking controllers may also be designed to
regulate the swimming performance of this type of vehi-
cles. Finally, intelligent algorithms such as deep learning
could be incorporated in the control stage to improve travel
efficiency.

64648 VOLUME 11, 2023

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

M =

m− Xu̇ 0 0 0 zgm − ygm

0 m− Yv̇ 0 − zgm 0 xgm− Yṙ
0 0 m− Zẇ ygm − xgm− Zq̇ 0
0 − zgm ygm Ixx − Kṗ 0 0
zgm 0 − xgm−Mẇ 0 Iyy −Mq̇ 0

−ygm xgm− Nv̇ 0 0 0 Izz − Nṙ

 . (A1)

C (υ) =

0 − mr mq (ygq+ zgr)m − xgmq − xgmr
mr 0 − mp xgmq zgmr 0

−mq mp 0 − zgmp − zgmq xgmp
−(zgr + ygq)m ygmp zgmp 0 0

(
Izz − Iyy

)
q

xgmq − xgmp zgmq (Ixx − Izz) r 0 − zgmv
−xgmr ygmr xgmp 0

(
Iyy − Ixx

)
p 0

 . (A2)

D (υ) =

Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 0
0 0 Zw|w||w| 0 0 0
0 0 0 Kp|p||p| 0 0
0 0 0 0 Mq|q||q| 0
0 0 0 0 0 Nr|r||r|

 . (A3)

g (η) =

(W − B) sin(θ)
− (W − B) cos(θ)sin(φ)
− (W − B) cos(θ)cos(φ)(
zgW − zbB

)
cos (θ) sin (φ)+

(
ygW − ybB

)
cos(θ)cos(φ)(

zgW − zbB
)
sin (θ)+

(
xgW − xbB

)
cos (θ) cos(φ)(

xgW − xbB
)
cos (θ) sin (φ)+

(
ygW − ybB

)
sin(θ)

 . (A4)

APPENDIX A
BAUV’S HYDRODYNAMICS MODEL MATRICES
Added mass M , Coriolis C (υ), damping D (υ),and hydro-
static forces g (η)matrices from the BAUV’s hydrodynamics
model are defined by (A1), (A2), (A3), and (A4), as shown at
the top of the page, respectively.

REFERENCES
[1] A. Sahoo, S. K. Dwivedy, and P. S. Robi, ‘‘Advancements in the field

of autonomous underwater vehicle,’’ Ocean Eng., vol. 181, pp. 145–160,
Jun. 2019, doi: 10.1016/j.oceaneng.2019.04.011.

[2] R. Wang, S. Wang, Y. Wang, L. Cheng, and M. Tan, ‘‘Development and
motion control of biomimetic underwater robots: A survey,’’ IEEE Trans.
Syst. Man, Cybern. Syst., vol. 52, no. 2, pp. 833–844, Feb. 2022, doi:
10.1109/TSMC.2020.3004862.

[3] D. T. Roper, S. Sharma, R. Sutton, and P. Culverhouse, ‘‘A review of devel-
opments towards biologically inspired propulsion systems for autonomous
underwater vehicles,’’Proc. Inst. Mech. Eng,M, J. Eng. Maritime Environ.,
vol. 225, no. 2, pp. 77–96, May 2011, doi: 10.1177/1475090210397438.

[4] A. Raj and A. Thakur, ‘‘Fish-inspired robots: Design, sensing, actua-
tion, and autonomy—A review of research,’’ Bioinspiration Biomimetics,
vol. 11, no. 3, pp. 1–23, 2016, doi: 10.1088/1748-3190/11/3/031001.

[5] M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, ‘‘Review of fish swim-
ming modes for aquatic locomotion,’’ IEEE J. Ocean. Eng., vol. 24, no. 2,
pp. 237–252, Apr. 1999, doi: 10.1109/48.757275.

[6] D. Scaradozzi, G. Palmieri, D. Costa, and A. Pinelli, ‘‘BCF swimming
locomotion for autonomous underwater robots: A review and a novel solu-
tion to improve control and efficiency,’’Ocean Eng., vol. 130, pp. 437–453,
Jan. 2017, doi: 10.1016/j.oceaneng.2016.11.055.

[7] X. Wang, J. Liu, X. Su, H. Peng, X. Zhao, and C. Lu, ‘‘A review on
carrier aircraft dispatch path planning and control on deck,’’ Chin. J.
Aeronaut., vol. 33, no. 12, pp. 3039–3057, Dec. 2020, doi: 10.1016/j.cja.
2020.06.020.

[8] K. Karur, N. Sharma, C. Dharmatti, and J. E. Siegel, ‘‘A survey of
path planning algorithms for mobile robots,’’ Vehicles, vol. 3, no. 3,
pp. 448–468, Aug. 2021, doi: 10.3390/vehicles3030027.

[9] N. Sariff and N. Buniyamin, ‘‘An overview of autonomous mobile robot
path planning algorithms,’’ in Proc. 4th Student Conf. Res. Develop.,
Jun. 2006, pp. 183–188.

[10] A. Stentz, ‘‘The focussed D* algorithm for real-time replanning,’’ in Proc.
Int. Joint Conf. Artif. Intell., 1995, pp. 1652–1659.

[11] R. Kot, ‘‘Review of collision avoidance and path planning algorithms used
in autonomous underwater vehicles,’’ Electronics, vol. 11, no. 15, p. 2301,
Jul. 2022, doi: 10.3390/electronics11152301.

[12] T. Yao, T. He, W. Zhao, and A. Y. M. Sani, ‘‘Review of path planning for
autonomous underwater vehicles,’’ in Proc. Int. Conf. Robot., Intell. Con-
trol Artif. Intell., Sep. 2019, pp. 482–487, doi: 10.1145/3366194.3366280.

[13] S. Koenig andM. Likhachev, ‘‘D* lite,’’ in Proc. AAAI, 2002, pp. 476–483.
[Online]. Available: www.aaai.org

[14] T. T. Mac, C. Copot, D. T. Tran, and R. D. Keyser, ‘‘Heuristic approaches
in robot path planning: A survey,’’ Robot. Auto. Syst., vol. 86, pp. 13–28,
Dec. 2016, doi: 10.1016/j.robot.2016.08.001.

[15] D. Li, P. Wang, and L. Du, ‘‘Path planning technologies for autonomous
underwater vehicles—A review,’’ IEEE Access, vol. 7, pp. 9745–9768,
2019, doi: 10.1109/ACCESS.2018.2888617.

[16] M. I. Chowdhury and D. G. Schwartz, ‘‘The PRM—A* path planning
algorithm for UUVs: An application to navy mission planning,’’ in Proc.
Global Oceans, Singapore U.S. Gulf Coast, Oct. 2020, pp. 1–9, doi:
10.1109/IEEECONF38699.2020.9388987.

[17] M. Ataei and A. Yousefi-Koma, ‘‘Three-dimensional optimal path
planning for waypoint guidance of an autonomous underwater vehi-
cle,’’ Robot. Auto. Syst., vol. 67, pp. 23–32, May 2015, doi: 10.1016/
j.robot.2014.10.007.

[18] M. P. Aghababa, ‘‘3D path planning for underwater vehicles using
five evolutionary optimization algorithms avoiding static and energetic
obstacles,’’ Appl. Ocean Res., vol. 38, pp. 48–62, Oct. 2012, doi:
10.1016/j.apor.2012.06.002.

[19] S. Sedighi, D. Nguyen, and K. Kuhnert, ‘‘Guided hybrid A-star path
planning algorithm for valet parking applications,’’ in Proc. 5th Int. Conf.
Control, Autom. Robot. (ICCAR), Apr. 2019, pp. 570–575.

VOLUME 11, 2023 64649

http://dx.doi.org/10.1016/j.oceaneng.2019.04.011
http://dx.doi.org/10.1109/TSMC.2020.3004862
http://dx.doi.org/10.1177/1475090210397438
http://dx.doi.org/10.1088/1748-3190/11/3/031001
http://dx.doi.org/10.1109/48.757275
http://dx.doi.org/10.1016/j.oceaneng.2016.11.055
http://dx.doi.org/10.1016/j.cja.2020.06.020
http://dx.doi.org/10.1016/j.cja.2020.06.020
http://dx.doi.org/10.3390/vehicles3030027
http://dx.doi.org/10.3390/electronics11152301
http://dx.doi.org/10.1145/3366194.3366280
http://dx.doi.org/10.1016/j.robot.2016.08.001
http://dx.doi.org/10.1109/ACCESS.2018.2888617
http://dx.doi.org/10.1109/IEEECONF38699.2020.9388987
http://dx.doi.org/10.1016/j.robot.2014.10.007
http://dx.doi.org/10.1016/j.robot.2014.10.007
http://dx.doi.org/10.1016/j.apor.2012.06.002

J. A. Algarín-Pinto et al.: Adapted D∗ Lite to Improve Guidance, Navigation and Control

[20] C. V. Dang, H. Ahn, D. S. Lee, and S. C. Lee, ‘‘Improved analytic
expansions in hybrid A-star path planning for non-holonomic robots,’’
Appl. Sci., vol. 12, no. 12, p. 5999, Jun. 2022, doi: 10.3390/app12125999.

[21] X. Wang, Z. Deng, H. Peng, L. Wang, Y. Wang, L. Tao, C. Lu, and
Z. Peng, ‘‘Autonomous docking trajectory optimization for unmanned
surface vehicle: A hierarchical method,’’ Ocean Eng., vol. 279, Jul. 2023,
Art. no. 114156, doi: 10.1016/j.oceaneng.2023.114156.

[22] X. Wang, B. Li, X. Su, H. Peng, L. Wang, C. Lu, and C. Wang,
‘‘Autonomous dispatch trajectory planning on flight deck: A search-
resampling-optimization framework,’’ Eng. Appl. Artif. Intell., vol. 119,
Mar. 2023, Art. no. 105792, doi: 10.1016/j.engappai.2022.105792.

[23] X. Wang, J. Liu, H. Peng, X. Qie, X. Zhao, and C. Lu, ‘‘A simulta-
neous planning and control method integrating APF and MPC to solve
autonomous navigation for USVs in unknown environments,’’ J. Intell.
Robotic Syst., vol. 105, no. 2, p. 36, Jun. 2022, doi: 10.1007/s10846-022-
01663-8.

[24] T. Praczyk, ‘‘Neural collision avoidance system for biomimetic
autonomous underwater vehicle,’’ Soft Comput., vol. 24, no. 2,
pp. 1315–1333, Jan. 2020, doi: 10.1007/s00500-019-03969-6.

[25] J. O. Gaya, L. T. Gonçalves, A. C. Duarte, B. Zanchetta, P. Drews, and
S. S. C. Botelho, ‘‘Vision-based obstacle avoidance using deep learn-
ing,’’ in Proc. 13th Latin Amer. Robot. Symp. IV Brazilian Robot. Symp.
(LARS/SBR), Oct. 2016, pp. 7–12, doi: 10.1109/LARS-SBR.2016.9.

[26] S. Zhao, T.-F. Lu, and A. Anvar, ‘‘Multiple obstacles detection using fuzzy
interface system for AUV navigation in natural water,’’ in Proc. 5th IEEE
Conf. Ind. Electron. Appl., Jun. 2010, pp. 50–55.

[27] A. T. Le, M. Q. Bui, T. D. Le, and N. Peter, ‘‘D* lite with reset:
Improved version of D* lite for complex environment,’’ in Proc. 1st
IEEE Int. Conf. Robotic Comput. (IRC), Apr. 2017, pp. 160–163, doi:
10.1109/IRC.2017.52.

[28] J. Peng, I. Li, Y. Chien, C. Hsu, and W. Wang, ‘‘Multi-robot path planning
based on improved D* lite algorithm,’’ in Proc. IEEE 12th Int. Conf. Netw.,
Sens. Control, Apr. 2015, pp. 350–353.

[29] K. Xie, J. Qiang, and H. Yang, ‘‘Research and optimization of D-start lite
algorithm in track planning,’’ IEEE Access, vol. 8, pp. 161920–161928,
2020, doi: 10.1109/ACCESS.2020.3021073.

[30] D. F.Myring, ‘‘A theoretical study of body drag in subcritical axisymmetric
flow,’’ Aeronaut. Quart., vol. 27, no. 3, pp. 186–194, Aug. 1976, doi:
10.1017/S000192590000768X.

[31] J. A. Algarín-Pinto, L. E. Garza-Castañón, A. Vargas-Martínez, and
L. I. Minchala-Ávila, ‘‘Dynamic modeling and control of a parallel mech-
anism used in the propulsion system of a biomimetic underwater vehicle,’’
Appl. Sci., vol. 11, no. 11, p. 4909, May 2021, doi: 10.3390/app11114909.

[32] G. Antonelli, ‘‘Modelling of underwater robots,’’ in Underwater Robots,
3rd ed., B. Siciliano O. Khatib, Eds. Cham, Switzerland: Springer, 2014,
pp. 23–31. [Online]. Available: http://www.springer.com/series/5208

[33] J. A. Algarín-Pinto, L. E. Garza-Castañón, A. Vargas-Martínez,
and L. I. Minchala-Ávila, ‘‘Modeling, trajectory analysis and waypoint
guidance system of a biomimetic underwater vehicle based on the flapping
performance of its propulsion system,’’ Electronics, vol. 11, no. 4, p. 544,
Feb. 2022, doi: 10.3390/electronics11040544.

JUAN A. ALGARÍN-PINTO was born in Nuevo
Laredo, Mexico, in 1995. He received the engi-
neering degree in mechatronics from Tecnologico
Nacional de Mexico, Campus Nuevo Laredo,
Mexico, in 2018, and the M.Sc. degree in engi-
neering science from Tecnologico de Monterrey,
Monterrey, Mexico, in 2020, where he is cur-
rently pursuing the Ph.D. degree in engineering
science.

From 2018 to 2020, he was a Research Assis-
tant with the Renewable Energies Laboratory, Tecnologico de Monterrey,
working on the assessment and maintenance of transmission line systems,
where he is currently a Research Assistant with the Robotics Laboratory.
His research interests include mobile robots, image processing, artificial
intelligence, and mechatronics.

LUIS E. GARZA-CASTAÑÓN (Member, IEEE)
was born inMonclova, Coahuila, Mexico, in 1963.
He received the engineering degree in electronic
systems, the M.Sc. degree in control engineering,
and the Ph.D. degree in artificial intelligence from
Tecnologico de Monterrey, Monterrey, Mexico,
in 1986, 1988, and 2001, respectively.

From 1999 to 2003, he was a Lecturer with the
Physics Department, Tecnologico de Monterrey,
where he has been an Associate Professor with the

Mechatronics Department, since 2004. He is the author of more than 100 arti-
cles, chapter books, and books. His research interests include autonomous
vehicles, machine learning, fault detection, diagnosis and control, image
processing, and advanced control applications.

ADRIANA VARGAS-MARTÍNEZ received the
bachelor’s degree in chemical engineering,
the M.Sc. degree in environmental systems, and
the Ph.D. degree in engineering science with
specialty in automation fromTecnologico deMon-
terrey, Monterrey, Mexico, in 2005, 2007, and
2011, respectively, and the master’s degree from
Concordia University, Montreal, Canada, in 2013.
In 2010, she was a Visiting Researcher with the
Polytechnic University of Catalonia. She is cur-

rently the Associate Dean of the Digital School and Graduated Studies,
Tecnologico de Monterrey. Her research interests include educational inno-
vation, automatic control, intelligent control systems, and fault-tolerant
control.

LUIS I. MINCHALA-ÁVILA (Senior Member,
IEEE) received the B.S.E.E. degree from Sale-
sian Polytechnic University, Cuenca, Ecuador,
in 2006, and the M.Sc. and Ph.D. degrees from
Tecnologico de Monterrey, Monterrey, Mexico,
in 2011 and 2014, respectively. From Summer
2012 to Summer 2013, he was a Visiting Scholar
with Concordia University,Montreal, QC, Canada.
From 2017 to 2018, he was a Postdoctoral Fellow
with the Climate Change Research Group, Tecno-

logico de Monterrey. From 2022 to 2023, he was a full-time Researcher
with the Department of Mechatronics, Tecnologico de Monterrey, Campus
Guadalajara. He has authored or coauthored over 60 indexed publications,
including journal articles, conference proceedings, book chapters, and a
book. His research interests include fault-tolerant control applied to energy
systems, robotics, automation, and process control.

64650 VOLUME 11, 2023

http://dx.doi.org/10.3390/app12125999
http://dx.doi.org/10.1016/j.oceaneng.2023.114156
http://dx.doi.org/10.1016/j.engappai.2022.105792
http://dx.doi.org/10.1007/s10846-022-01663-8
http://dx.doi.org/10.1007/s10846-022-01663-8
http://dx.doi.org/10.1007/s00500-019-03969-6
http://dx.doi.org/10.1109/LARS-SBR.2016.9
http://dx.doi.org/10.1109/IRC.2017.52
http://dx.doi.org/10.1109/ACCESS.2020.3021073
http://dx.doi.org/10.1017/S000192590000768X
http://dx.doi.org/10.3390/app11114909
http://dx.doi.org/10.3390/electronics11040544

