Logo Repositorio Institucional

Please use this identifier to cite or link to this item: http://dspace.ucuenca.edu.ec/handle/123456789/34242
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVazquez Patiño, Angel Oswaldo-
dc.contributor.authorCampozano Parra, Lenin Vladimir-
dc.contributor.authorMendoza Siguenza, Daniel Emilio-
dc.contributor.authorSamaniego Alvarado, Esteban Patricio-
dc.date.accessioned2020-05-07T23:18:15Z-
dc.date.available2020-05-07T23:18:15Z-
dc.date.issued2020-
dc.identifier.issn0899-8418-
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85078012173&origin=inward&txGid=f17d83cf22c069844d707a66adbd992d-
dc.description© 2020 Royal Meteorological Society Global climate models (GCMs) are generally used to forecast weather, understand the present climate, and project climate change. Their reliability usually rests on their capability to represent climatic processes, and most evaluations directly measure the spatiotemporal agreement of scalar climate variables. However, climate naturally involves complex interactions that are hard to infer and, therefore, difficult to evaluate. Climate networks (CNs) have been used to infer flows of mass and energy in the complex climate system. Here, an Evaluation of Models by Causal Flows (EMCaF) is proposed. EMCaF focuses on the assessment of properties about mass and energy flows in the CNs derived from GCMs. First, causal CNs are inferred from GCMs, and then the capabilities to reproduce characteristic transfer flows are assessed with reference models. A more in-depth feature is the possibility to assess how climate change disturbs CNs properties. In addition to the quantitative difference between modelled and observed values taken into account in standard evaluations, the EMCaF approach aims to assess the weaknesses and strengths of GCMs to represent climate mechanisms and processes that couple different components of the climate system. The comparison of models through this approach allows having complimentary feedback on model evaluations to understand possible causes of errors and enable a judgement based on processes. The approach is illustrated by evaluating one GCM and subsequently assessing changes of its CNs under future climate projections. Results show that known climatic patterns are assimilated and that causal strength patterns are likely to agree with the wind magnitude as a transfer factor. Significative issues are then explored, showing the capabilities of the approach and allowing understand fundamental structures in transport flows, compare their properties, and assess changes in the future. Different alternatives and considerations in each step of the approach are discussed to expand its applicability.-
dc.description.abstract© 2020 Royal Meteorological Society Global climate models (GCMs) are generally used to forecast weather, understand the present climate, and project climate change. Their reliability usually rests on their capability to represent climatic processes, and most evaluations directly measure the spatiotemporal agreement of scalar climate variables. However, climate naturally involves complex interactions that are hard to infer and, therefore, difficult to evaluate. Climate networks (CNs) have been used to infer flows of mass and energy in the complex climate system. Here, an Evaluation of Models by Causal Flows (EMCaF) is proposed. EMCaF focuses on the assessment of properties about mass and energy flows in the CNs derived from GCMs. First, causal CNs are inferred from GCMs, and then the capabilities to reproduce characteristic transfer flows are assessed with reference models. A more in-depth feature is the possibility to assess how climate change disturbs CNs properties. In addition to the quantitative difference between modelled and observed values taken into account in standard evaluations, the EMCaF approach aims to assess the weaknesses and strengths of GCMs to represent climate mechanisms and processes that couple different components of the climate system. The comparison of models through this approach allows having complimentary feedback on model evaluations to understand possible causes of errors and enable a judgement based on processes. The approach is illustrated by evaluating one GCM and subsequently assessing changes of its CNs under future climate projections. Results show that known climatic patterns are assimilated and that causal strength patterns are likely to agree with the wind magnitude as a transfer factor. Significative issues are then explored, showing the capabilities of the approach and allowing understand fundamental structures in transport flows, compare their properties, and assess changes in the future. Different alternatives and considerations in each step of the approach are discussed to expand its applicability.-
dc.language.isoes_ES-
dc.sourceInternational Journal of Climatology-
dc.subjectGranger causality-
dc.subjectCausal comparison-
dc.subjectCausal links-
dc.subjectCausal strength-
dc.subjectClimate model evaluation-
dc.subjectClimate networks-
dc.subjectDirected networks-
dc.subjectTransfer flows-
dc.titleA causal flow approach for the evaluation of global climate models-
dc.typeARTÍCULO-
dc.ucuenca.idautor0105725634-
dc.ucuenca.idautor0102677200-
dc.ucuenca.idautor0103901070-
dc.ucuenca.idautor0102052594-
dc.identifier.doi10.1002/joc.6470-
dc.ucuenca.embargoend2050-05-07-
dc.ucuenca.versionVersión publicada-
dc.ucuenca.embargointerno2050-05-07-
dc.ucuenca.areaconocimientounescoamplio05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas-
dc.ucuenca.afiliacionVazquez, A., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador; Vazquez, A., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador; Vazquez, A., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador-
dc.ucuenca.afiliacionCampozano, L., Escuela Politécnica Nacional (EPN), Quito, Ecuador-
dc.ucuenca.afiliacionMendoza, D., Universidad de Cuenca, Departamento de Ingeniería Civil, Cuenca, Ecuador; Mendoza, D., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador-
dc.ucuenca.afiliacionSamaniego, E., Universidad de Cuenca, Facultad de Ingeniería, Cuenca, Ecuador; Samaniego, E., Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales, Cuenca, Ecuador-
dc.ucuenca.correspondenciaVazquez Patiño, Angel Oswaldo, angel.vazquezp@ucuenca.edu.ec-
dc.ucuenca.volumenVolumen 40, número 10-
dc.ucuenca.indicebibliograficoSCOPUS-
dc.ucuenca.factorimpacto3.601-
dc.ucuenca.cuartilQ1-
dc.ucuenca.numerocitaciones4497-
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología-
dc.ucuenca.areaconocimientofrascatiespecifico2.7 Ingeniería del Medio Ambiente-
dc.ucuenca.areaconocimientofrascatidetallado2.7.1 Ingeniería Ambiental y Geológica-
dc.ucuenca.areaconocimientounescoespecifico052 - Medio Ambiente-
dc.ucuenca.areaconocimientounescodetallado0521 - Ciencias Ambientales-
dc.ucuenca.urifuentehttps://rmets.onlinelibrary.wiley.com/-
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat 
documento.pdf
  Until 2050-05-07
document64.39 kBAdobe PDFView/Open Request a copy


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00