FUNDADA EN 1867

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

SIMULACIÓN NUMÉRICA DEL FLUJO DE SEDIMENTOS EN EL DESARENADOR DEL PROYECTO HIDROELÉCTRICO COCA CODO SINCLAIR

TESIS PREVIA A LA OBTENCIÓN DEL TÍTULO DE INGENIERO CIVIL

DIRECTOR:

Ing. M.Sc. Esteban Alonso Pacheco Tobar

TUTOR:

Ing. Gustavo Adolfo Luzuriaga Hermida

AUTORES:

María Bernarda Luzuriaga Hermida Diana Alexandra Amaya Zhingre

> Cuenca – Ecuador 2014

RESUMEN

El presente trabajo se ha realizado con el objetivo de establecer el patrón de flujo de agua y sedimentos en el desarenador del Proyecto Hidroeléctrico Coca Codo Sinclair (CCS), mediante el uso del software de modelización numérica tridimensional SSIIM (Simulación de movimiento de sedimentos para flujo de agua con opción de blogues múltiples), que está basado en la aproximación de un volumen de control mediante una malla tridimensional para cálculo del flujo de agua resolviendo las ecuaciones de Navier-Stokes con el modelo de turbulencia K-épsilon, mientras que para el transporte de sedimentos se resuelve la ecuación de Convección-Difusión. Para llevar a cabo el estudio del patrón de flujo de agua y sedimentos, se ha implementado el modelo numérico al prototipo del desarenador del proyecto, obteniéndose así, datos de distribución de velocidades, líneas de corriente, concentración de sedimentos y zonas de depósito a lo largo de la cámara del sedimentador. Los resultados conseguidos de la simulación numérica ejecutada en SSIIM, fueron contrastados y analizados con los resultados obtenidos en los estudios del modelo físico y del sistema de lavado de sedimentos SEDICON Sluicer implementado para el proyecto y que fueran ejecutados por el laboratorio de Yellow River en Zhengzhou-China, y por Comisión Federal de Electricidad (CFE) de Cuernavaca-México, encontrándose compatibilidad entre los resultados de simulación numérica y los resultados obtenidos en modelo físico. De los resultados y el análisis realizado se concluye que: i) El diseño concebido para el desarenador del proyecto presentaría altas eficiencias de retención (97%) para partículas menores al diámetro de diseño (0.25mm), y ii) La modelización numérica mediante SSIIM presenta un buen desempeño para la simulación tridimensional del movimiento del agua y de los procesos de movimiento de sedimentos en las cámaras del desarenador, siendo recomendable su utilización para el estudio y evaluación de obras hidráulicas en general.

Palabras Clave: Desarenador, Sedimentos, Simulación Numérica, SSIIM.

ABSTRACT

This work was carried out in order to establish the pattern of water flow and sediment in the sedimentation tank of the Hydroelectric Project "Coca Codo Sinclair" (CCS), using the three-dimensional numerical modeling software SSIIM (Simulation of sediment movement in Water Intakes with Multi block options), which is based on the approximation of a control volume using a three-dimensional mesh for the water flow calculation through the Navier-Stokes equations with the K-epsilon turbulence model, while for the sediment transport the Convection-Diffusion equation is solved. To carry out the study of the flow pattern of water and sediment, was implemented the numerical model to the prototype of the project, obtaining the velocity distribution, streamlines, sediment concentration and storage areas to along the sedimentation tank. The results obtained from the numerical simulation performed in SSIIM, were compared and analyzed with the results obtained in studies of the physical model and system flushing sediment SEDICON Sluicer implemented for the project and which were executed by the laboratory of Yellow River in Zhengzhou -China, and the Federal Electricity Commission (CFE) of Mexico, finding compatibility between the results of numerical simulation and the results of physical model. From the results and the analysis has been concluded that: i) The design conceived for the sedimentation tank has high retention efficiency (97%) for the design particles (0.25mm), and ii) Numerical modeling by SSIIM presents a good performance for the three-dimensional simulation of the movement of water and sediment movement processes in the sedimentation tank, being recommended for use for the study and evaluation of hydraulic structures in general.

Keywords: Sedimentation tank, Sediments, Numerical Simulation, SSIIM

CONTENIDO

RESUMEN.		2
ABSTRACT		3
1 INTRO	DUCCIÓN	16
1.1 Jus	stificación	16
1.2 Ob	jetivo general	16
1.2.1	Objetivos específicos	16
1.3 Alc	ance	17
2 DESAR	ENADOR DEL PROYECTO COCA CODO SINCLAIR	17
2.1 De	scripción general del proyecto	17
2.1.1	Esquema de las obras de Captación	
2.2 Pri	ncipales aspectos relacionados a operación	21
2.3 Co	ndiciones hidráulicas proyectadas	21
2.4 Hid	Irología de sedimentos	21
3 ANÁLIS DESARENA	SIS DE LOS INFORMES DE LOS MODELOS realizados DOR DEL PROYECTO HIDROELÉCTRICO COCA CODO SINCLAIR	PARA EL 23
3.1 Mo	delo físico de Yellow River - China	23
3.1.1	Resultados de los ensayos del Modelo de Yellow River	26
3.2 Mo	delo Físico de la CFE de México	29
3.2.1	Resultados de los ensayos del modelo de la CFE México	31
3.3 Sis	tema de lavado del prototipo - SEDICON Sluicer	
3.3.1	Criterios de Diseño	
3.3.2	Patrón de Depósito de Sedimentos en el Desarenador	
4 MÉTOD	0OS	
4.1 Din	ámica de Fluidos Computacional	
4.2 Mo	delo numérico SSIIM	
4.2.1	Generalidades	
4.2.2	Fundamentos Hidráulicos del Modelo	
4.2.3	Modelo del Transporte de Sedimentos	41
4.2.4	Capacidades y Limitaciones del modelo SSIIM	42
4.2.5	Funcionamiento	42
4.2.6	Ejecución de SSIIM y Procedimientos	43
4.2.7	Simulación numérica e implementación de SSIIM	46
4.3 Sin	nulación del Flujo de Agua	
4.3.1	SEDICON (Sin velocidades iniciales)	48
4.3.2	SEDICON (Con velocidades iniciales)	
4.3.3	BIERI (Sin velocidades iniciales)	53
4.3.4	BIERI (Con velocidades iniciales)	54
Autoría: Ber	narda Luzuriaga H.	

	4.	3.5	BIERI para caudal de 30 m ³ /s (con velocidades iniciales)	55
	4.4	Sim	ulación del Transporte de Sedimentos	56
	4.	4.1	SEDICON - Granulometría del Cauce Natural (Río Coca)	56
	4.	4.2	SEDICON (Granulometría SEDICON)	60
5	R	ESULT	ADOS Y DISCUSIÓN	61
	5.1	Pati	ón de flujo de agua Prototipo (SEDICON 30m ³ /s sin velocidades inicial	es)61
	5.2 inici	Patı ales)	rón de flujo de agua Prototipo (SEDICON 30m ³ /s considerando	velocidades 62
	5.3	Pati	ón de flujo de sedimentos - prototipo (SEDICON 30 m³/s)	63
	5.	3.1	Granulometría del cauce natural (Río Coca)	63
	5.	3.2	Granulometría propuesta por SEDICON	64
	5.	3.3	Pruebas de sensibilidad - simulación del flujo de sedimentos	65
	5.4	Pati	ón de flujo de agua - Bieri 32.5 m³/s Sin velocidades iniciales	66
	5.5	Pati	ón de flujo de agua - Bieri 32.5 m³/s considerando velocidades iniciales	s67
	5.	5.1	Pruebas de sensibilidad - simulación del flujo de agua	67
6	С	ONCL	JSIONES Y RECOMENDACIONES	70
7	В	IBLIOG	GRAFÍA	73

ÍNDICE DE TABLAS

Tabla 1 Escalamiento para el modelo de Yellow River	. 24
Tabla 2 Caudal de entrada, 33.60m ³ /s y nivel normal de operación en la toma	. 27
Tabla 3 Caudal de entrada, 33.60m ³ /s y niveles altos de operación en la toma	. 27
Tabla 4 Caudal de entrada, 32.50m ³ /s y nivel normal de operación en la toma	. 28
Tabla 5 Escalas usadas en el modelo CFE	. 30
Tabla 6 Determinación del caudal y volumen de agua para la remoción de sedimento por	
cámara	. 32
Tabla 7 Condiciones iniciales para el diseño de las unidades SEDICON	. 34
Tabla 8 Velocidad de sedimentación de las partículas	. 35
Tabla 9 Distribución longitudinal de las partículas en función de su tamaño	. 35
Tabla 10 Capacidad de las unidades SEDICON	. 36
Tabla 11 Archivo control - Cálculo del flujo de agua	. 45
Tabla 12 Archivo control – Cálculo flujo de sedimentos	. 45
Tabla 13 Condiciones Iniciales – Simulación de flujo (Geometría SEDICON)	. 48
Tabla 14 Condiciones iniciales – Simulación de flujo de agua (Geometría BIERI)	. 53
Tabla 15 Granulometría del cauce natural (Rio Coca)	. 56
Tabla 16 Granulometría propuesta por SEDICON para el sistema de lavado	. 60
Tabla 17 Patrón de flujo de agua sin considerar velocidades iniciales – SEDICON (30m ³ /s)	. 61
Tabla 18 Patrón de flujo de agua considerando velocidades iniciales – SEDICON 30m ³ /s	. 62
Tabla 19 Eficiencia del desarenador (SEDICON 30m ³ /s) – Granulometría cauce natural	. 63
Tabla 20 Concentración de sedimentos en secciones de interés – Granulometría cauce	
natural	. 64
Tabla 21 Eficiencia del desarenador (SEDICON 30m ³ /s) – Granulometría SEDICON	. 64
Tabla 22 Concentración de sedimentos en secciones de interés – Granulometría SEDICON	165
Tabla 23 Prueba de sensibilidad - Variando el parámetro de Shields	. 65
Tabla 24 Patrón de flujo de agua sin considerar velocidades iniciales - BIERI 32.5m ³ /s	. 66
Tabla 25 Patrón de flujo de agua considerando velocidades iniciales - BIERI 32.5m ³ /s	. 67
Tabla 26 Velocidades máximas y mínimas en secciones de interés, variando el nivel de	
operación	. 68
Tabla 27 Velocidades máximas y mínimas en secciones de interés, variando coeficiente de	;
rugosidad	. 68
Tabla 28 Velocidades máximas y mínimas en secciones de interés, variando coeficientes d	е
relajación	. 69

ÍNDICE DE FIGURAS

Figura	1 Ubicación del proyecto hidroeléctrico Coca Codo Sinclair1	17
Figura	2 Esquema de las obras de captación $_0$ 1	8
Figura	3 Vista en planta y sección longitudinal del prototipo del desarenador2	20
Figura	4 Curva granulométrica para el prototipo y para el modelo de Yellow River2	<u>2</u> 4
Figura	5 Sección de la cámara para el sistema de lavado BIERI2	25
Figura	6 Sección longitudinal de la cámara (Desde la toma hasta el cuenco estabilizador) 2	25
Figura	7 Curva granulométrica del sedimento del prototipo y del sedimento del modelo CFE3	30
Figura	8 Sección de la cámara para el sistema de lavado SEDICON	31
Figura	9 Distribución granulométrica de las partículas de sedimento usadas para el cálculo d	le
las unio	dades SEDICON en el prototipo3	34
Figura	10 Distribución de sedimentos a lo largo de la cámara del desarenador	36
Figura	11 Diseño del proceso de simulación en SSIIM4	17
Figura	12 Valores de entrada Figura 13 Ventana previa a la 4	19
Figura	14 Archivos boogie, control y koordina generados automáticamente en SSIIM5	50
Figura	15 Estructura del archivo koordina modificado5	50
Figura Figura	 15 Estructura del archivo koordina modificado. 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales	50 51
Figura Figura Figura	 15 Estructura del archivo koordina modificado. 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales	50 51 51
Figura Figura Figura Figura	 15 Estructura del archivo koordina modificado. 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales	50 51 51 51
Figura Figura Figura Figura Figura	 15 Estructura del archivo koordina modificado. 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 17 Secciones del mallado – SSIIM 18 Residuales luego de la convergencia – Cálculo flujo de agua 19 Archivo control - Simulación de flujo de agua – con velocidades iniciales 	50 51 51 51 51 52
Figura Figura Figura Figura Figura	 15 Estructura del archivo koordina modificado. 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 17 Secciones del mallado – SSIIM 18 Residuales luego de la convergencia – Cálculo flujo de agua 19 Archivo control - Simulación de flujo de agua – con velocidades iniciales 20 Interpolación de velocidades y archivo innflow 	50 51 51 51 52 53
Figura Figura Figura Figura Figura Figura	15 Estructura del archivo koordina modificado. 5 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 5 17 Secciones del mallado – SSIIM 5 18 Residuales luego de la convergencia – Cálculo flujo de agua 5 19 Archivo control - Simulación de flujo de agua – con velocidades iniciales 5 20 Interpolación de velocidades y archivo innflow 5 21 Secciones del mallado – SSIIM 5	50 51 51 51 52 53 54
Figura Figura Figura Figura Figura Figura Figura	15 Estructura del archivo koordina modificado. 5 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 5 17 Secciones del mallado – SSIIM 5 18 Residuales luego de la convergencia – Cálculo flujo de agua 5 19 Archivo control - Simulación de flujo de agua – con velocidades iniciales 5 20 Interpolación de velocidades y archivo innflow 5 21 Secciones del mallado – SSIIM 5 22 Interpolación de velocidades a partir del modelo físico 5	50 51 51 51 52 53 53 54 55
Figura Figura Figura Figura Figura Figura Figura	15 Estructura del archivo koordina modificado. 5 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 5 17 Secciones del mallado – SSIIM 5 18 Residuales luego de la convergencia – Cálculo flujo de agua 5 19 Archivo control - Simulación de flujo de agua – con velocidades iniciales 5 20 Interpolación de velocidades y archivo innflow 5 21 Secciones del mallado – SSIIM 5 22 Interpolación de velocidades a partir del modelo físico 5 23 Primera sección en SSIIM con velocidades iniciales 5	50 51 51 52 53 54 55 55
Figura Figura Figura Figura Figura Figura Figura Figura	15 Estructura del archivo koordina modificado. 5 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 5 17 Secciones del mallado – SSIIM 5 18 Residuales luego de la convergencia – Cálculo flujo de agua 5 19 Archivo control - Simulación de flujo de agua – con velocidades iniciales 5 20 Interpolación de velocidades y archivo innflow 5 21 Secciones del mallado – SSIIM 5 22 Interpolación de velocidades a partir del modelo físico 5 23 Primera sección en SSIIM con velocidades iniciales 5 24 Archivo control – Cálculo flujo de sedimentos – granulometría cauce natural (Rio 5	50 51 51 51 52 53 54 55 55
Figura Figura Figura Figura Figura Figura Figura Figura Coca)	 15 Estructura del archivo koordina modificado. 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 17 Secciones del mallado – SSIIM 18 Residuales luego de la convergencia – Cálculo flujo de agua 19 Archivo control - Simulación de flujo de agua – con velocidades iniciales 20 Interpolación de velocidades y archivo innflow 21 Secciones del mallado – SSIIM 22 Interpolación de velocidades a partir del modelo físico 23 Primera sección en SSIIM con velocidades iniciales 54 Archivo control – Cálculo flujo de sedimentos – granulometría cauce natural (Rio 	50 51 51 52 53 54 55 55 57
Figura Figura Figura Figura Figura Figura Figura Coca) Figura	15 Estructura del archivo koordina modificado. 5 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 5 17 Secciones del mallado – SSIIM 5 18 Residuales luego de la convergencia – Cálculo flujo de agua 5 19 Archivo control - Simulación de flujo de agua – con velocidades iniciales 5 20 Interpolación de velocidades y archivo innflow 5 21 Secciones del mallado – SSIIM 5 22 Interpolación de velocidades a partir del modelo físico 5 23 Primera sección en SSIIM con velocidades iniciales 5 24 Archivo control – Cálculo flujo de sedimentos – granulometría cauce natural (Rio 5 25 Archivos de resultados para el cálculo del flujo de sedimentos 5	50 51 51 52 53 54 55 55 57 58
Figura Figura Figura Figura Figura Figura Figura Coca) Figura Figura	 15 Estructura del archivo koordina modificado. 16 Archivo control - Simulación de flujo de agua – sin velocidades iniciales 17 Secciones del mallado – SSIIM 18 Residuales luego de la convergencia – Cálculo flujo de agua	50 51 51 52 53 54 55 55 57 58 59

LISTA DE SÍMBOLOS

T_r: periodo de tiempo

Le: longitud (horizontal y vertical) equivalente en similitud geométrica

Q_e: caudal equivalente en similitud de Froude

V_e: velocidad equivalente en similitud de Froude

 η_e : rugosidad equivalente en similitud de Froude

 t_e : tiempo equivalente en similitud de Froude

θ: parámetro de Shields

Vs: velocidad de sedimentación

- g: aceleración de la gravedad
- d: diámetro de partícula de sedimento
- p: densidad relativa de la partícula de sedimento

Cd: coeficiente de arrastre

- ϵ : disipación de energía cinética turbulenta.
- k: energía cinética turbulenta.
- P_k : producción de turbulencia.
- ks: rugosidad equivalente a un diámetro de partícula en la cama.
- w: velocidad de caída del sedimento

Γ: coeficiente de difusión

- v_T : viscosidad Eddy
- S_c: número de Schmidt

C bed: carga suspendida

- D₅₀: diámetro de la partícula de sedimento
- au: esfuerzo de corte en la cama
- τ_c : esfuerzo de corte crítico para el movimiento de partículas de sedimento
- ρ_s : densidad del sedimento
- ρ_w : densidad del agua
- ν = viscosidad del agua
- g: aceleración de la gravedad
- a: nivel de referencia equivalente a la altura de rugosidad
- i: número de secciones transversales del nodo
- j: número de secciones longitudinales del nodo
- x: coordenada en las abscisas del nodo
- y: coordenada en las ordenadas del nodo
- z: coordenada en el eje vertical del nodo

LISTA DE ABREVIATURAS

SSIIM: Sediment Simulation In Water Intakes with Multiblock option/ Simulación de movimiento de sedimentos para flujo de agua con opción de bloques múltiples

CCS: Coca Codo Sinclair

NTNU: Norwegian University of Science and Technology/ Universidad de Noruega de Ciencia y Tecnología

CFD: Computational Fluid Dynamics/ Dinámica de Fluidos Computacional

CFRD: Concrete Face Rockfill Dams/ presa de enrocado con pantalla de concreto

msnm: metros sobre el nivel del mar

NAMO: Nivel de aguas máximas ordinarias

NAME: Nivel de aguas máximas extraordinarias

NAMC: Nivel de aguas máximas catastrófico

CFE: Comisión Federal de Electricidad - México

Yo, María Bernarda Luzuriaga Hermida, autora de la tesis "SIMULACIÓN NUMÉRICA DEL FLUJO DE SEDIMENTOS EN EL DESARENADOR DEL PROYECTO HIDROELÉCTRICO COCA CODO SINCLAIR", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de INGENIERO CIVIL. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Cuenca, Mayo 2014

ERMARDA

Bernarda Luzuriaga H. CI: 010563322-6

Cuenca Patrimonio Cultural de la Humanidad. Resolución de la UNESCO del 1 de diciembre de 1999

Av. 12 de Abril, Ciudadela Universitaria, Teléfono: 405 1000, Ext.: 1311, 1312, 1316

e-mail cdjbv@ucuenca.edu.ec casilla No. 1103 Cuenca - Ecuador

Yo, Diana Alexandra Amaya Zhingre, autora de la tesis "SIMULACIÓN NUMÉRICA DEL FLUJO DE SEDIMENTOS EN EL DESARENADOR DEL PROYECTO HIDROELÉCTRICO COCA CODO SINCLAIR", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de INGENIERO CIVIL. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Cuenca, Mayo 2014

ШÜ

Diana Amaya Z. Cl: 1104356678

Cuenca Patrimonio Cultural de la Humanidad. Resolución de la UNESCO del 1 de diciembre de 1999

Av. 12 de Abril, Ciudadela Universitaria, Teléfono: 405 1000, Ext.: 1311, 1312, 1316

e-mail cdjbv@ucuenca.edu.ec casilla No. 1103

Yo, María Bernarda Luzuriaga Hermida, autora de la tesis "SIMULACIÓN NUMÉRICA DEL FLUJO DE SEDIMENTOS EN EL DESARENADOR DEL PROYECTO HIDROELÉCTRICO COCA CODO SINCLAIR", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de mi exclusiva responsabilidad.

Cuenca, Mayo 2014

DERNARDA

Bernarda Luzuriaga H. CI: 010563322-6

Cuenca Patrimonio Cultural de la Humanidad. Resolución de la UNESCO del 1 de diciembre de 1999 Av. 12 de Abril, Ciudadela Universitaria, Teléfono: 405 1000, Ext.: 1311, 1312, 1316 e-mail cdjbv@ucuenca.edu.ec casilla No. 1103 Cuenca - Ecuador

Yo, Diana Alexandra Amaya Zhingre, autora de la tesis "SIMULACIÓN NUMÉRICA DEL FLUJO DE SEDIMENTOS EN EL DESARENADOR DEL PROYECTO HIDROELÉCTRICO COCA CODO SINCLAIR", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de mi exclusiva responsabilidad.

Cuenca, Mayo 2014

IIII

Diana Amaya Z. Cl: 1104356678

Cuenca Patrimonio Cultural de la Humanidad. Resolución de la UNESCO del 1 de diciembre de 1999 Av. 12 de Abril, Ciudadela Universitaria, Teléfono: 405 1000, Ext.: 1311, 1312, 1316 e-mail cdjbv@ucuenca.edu.ec casilla No. 1103 Cuenca - Ecuador

DEDICATORIA

"Al dueño de la sabiduría, por permitirme un poco de conocimiento... Dios"

Bernarda Luzuriaga H.

"A la felicidad y orgullo de mi esposo, mis hijos y mi madre"

Diana Amaya Z.

AGRADECIMIENTO

"La nobleza vive de la parte del que da, el agradecer está de parte del que recibe"

A Dios por ser el origen inspirador.

A mi padre por su fortaleza, a mi madre por su prudencia, gracias por tener sus miradas amorosas en mi camino.

A mis profesores, por transmitir sus conocimientos y aclarar mis dudas

A mis hermanos y esas personas incondicionales en mi vida.

Todo ha sido y será posible por ustedes...

Bernarda Luzuriaga H.

A Dios por guiar mi camino y permitirme una meta más.

A mi esposo por su gran amor, paciencia, fortaleza y apoyo.

A mi madre, por ser un apoyo incondicional e infinito en mi vida y por luchar por mí.

A mis profesores por guiarme con su conocimiento y experiencia.

A mis familiares y amigos, personas bondadosas, que durante éste camino, supieron darme su aliento y extenderme su mano para continuar.

Diana Amaya Z.

1 INTRODUCCIÓN

"Acuérdate, cuando estudies el agua, de alegar primero la experiencia y después la razón"

Leonardo da Vinci (1452-1519)

1.1 Justificación

La modelización física a escala reducida en modelos morfológicos, se había constituido en la única alternativa para el estudio de problemas relacionados con flujo de sedimentos en obras hidráulicas. Si bien, los modelos físicos responden satisfactoriamente al entendimiento de procesos de transporte de sedimentos de fondo con material grueso, para procesos de suspensión, la modelización física del transporte de sedimentos es muy limitada debido a los efectos que introduce el escalamiento. De manera particular, en proyectos de generación hidroeléctrica, la problemática del diseño de los desarenadores radica en el control de los sedimentos, ya que se debe lograr altas eficiencias de retención para impedir el ingreso de los mismos hacia la maquinaria hidroeléctrica y evitar la abrasión, desgaste y reducción de su vida útil. Por ello, se considera necesario el desarrollo de modelos numéricos (1), así como el entendimiento y análisis de su desempeño como herramienta de soporte para la concepción, diseño y toma de decisiones en procedimientos de operación.

En los últimos años, el incremento en las capacidades y velocidad de cálculo de los computadores, ha permitido la introducción de paquetes computacionales para modelización numérica tridimensional como una herramienta de simulación potente que complementa la modelización física (2). El uso conjunto de la modelización física y numérica, modelos híbridos, permite el estudio de diversos escenarios con la interacción de ambos tipos de modelización así como la implementación de soluciones optimizadas en el diseño o en un prototipo (3). Los modelos tridimensionales 3D representan el estado más avanzado para la modelización, pues mediante estos, es posible calcular las tres componentes espaciales de la velocidad de flujo de agua y resolver fenómenos de flujo como el transporte de sedimentos (4). De entre los diferentes modelos disponibles, se ha optado por SSIIM debido a la capacidad de modelización conjunta del movimiento del agua y de flujo de sedimentos en condiciones de lecho móvil y geometrías complejas (5).

1.2 Objetivo general

Establecer el patrón de flujo de agua y sedimentos en el desarenador del Proyecto Hidroeléctrico Coca Codo Sinclair, mediante la modelización numérica, haciendo uso del software SSIIM.

1.2.1 Objetivos específicos

 Definir los parámetros que intervienen en la modelización numérica basados en las características del prototipo y modelo físico para el caudal de diseño.

¹ (Agraval, 2005)

² (Novak, Moffat, & Nalluri, 2001)

³ (Novak, Moffat, & Nalluri, 2001)

⁴ (Vásquez, 2003)

⁵ (Fernandez, Delgado, Herrero, & Salete, 2011)

- Implementar el modelo numérico SSIIM al modelo físico y prototipo del desarenador del Proyecto Coca Codo Sinclair.
- Evaluar el desempeño hidráulico del desarenador, mediante la comparación de los resultados del modelo físico y estudios realizados al prototipo respecto a los obtenidos en el modelo numérico desarrollado, considerando parámetros relativos a velocidades de flujo, concentración de sedimentos y zonas de depósito de sedimentos en el desarenador.

1.3 Alcance

El presente estudio se realizó para determinar el patrón de flujo de agua y sedimentos del desarenador del Proyecto Hidroeléctrico Coca Codo Sinclair CCS, haciendo uso de la modelización numérica mediante el software libre SSIIM (Sediment Simulation In Water Intakes with Multiblock option) desarrollado por el Dr. Nils Olsen de la NTNU (Norwegian University of Science and Technology). Mediante el trabajo propuesto, se espera dar un importante aporte al entendimiento, aplicación y desarrollo de conocimiento en modelización numérica para la optimización del diseño y operación de obras hidráulicas para proyectos de ingeniería del agua.

Los resultados del estudio se constituyen en un importante aporte para el desarrollo futuro de documentos de divulgación técnica/científica que se ejecutan a través del Laboratorio de Hidráulica & Dinámica de Fluidos y el Grupo de Hidráulica del Departamento de Ingeniería Civil de la Universidad de Cuenca.

2 DESARENADOR DEL PROYECTO COCA CODO SINCLAIR

2.1 Descripción general del proyecto

El proyecto hidroeléctrico Coca Codo Sinclair, de 1500 Megavatios (MW) de potencia instalada, se encuentra ubicado, al noreste de la República del Ecuador entre las provincias de Napo y Sucumbíos. El área de drenaje de interés del proyecto, en su mayor parte terreno montañoso bordeado por la Cordillera Central, está constituido por la cuenca del río Coca hasta el sitio denominado el Salado (zona de captación), que cubre una superficie aproximada de 3600km² (6).

Figura 1.- Ubicación del proyecto hidroeléctrico Coca Codo Sinclair

⁶ (Hidroeléctrica Coca Codo Sinclair, 2013) Autoría: Bernarda Luzuriaga H.

Diana Amaya Z.

Al ser la cuenca del río Coca una zona de transición de los Andes al Llano Amazónico, la precipitación varía progresivamente desde 1331mm en la estación Papallacta (Andes), hasta 6122mm en la Estación Reventador (Amazonía). En cuanto a la temperatura en la zona de captación (El salado), los rangos de variación de las temperaturas medias mensuales y anuales son pequeñas, sin embargo las diferencias de temperatura a lo largo del día son grandes ya que presentan mínimos de 10.5°C y 30° C como máximos (7).

Las estructuras más importantes que conforman el proyecto se dividen en obra de captación, túnel de conducción, embalse compensador, tuberías de presión y casa de máquinas.

2.1.1 Esquema de las obras de Captación

Las obras de captación (presa CFRD, vertedero, compuerta de lavado, toma y desarenador) se localizan en el río Coca, un kilómetro abajo de la confluencia de los ríos Quijos y Salado. A continuación se describen brevemente los elementos que constituyen la obra de captación (8).

Figura 2.- Esquema de las obras de captación (9)

La presa de enrocamiento con cara de concreto (CFRD) está localizada en la margen derecha del río Coca y tiene una longitud de 143.20m (1289.50msnm), un ancho de corona de 8m y una altura de 31.50m; con taludes de 1:1.5 tanto aguas arriba como aguas abajo.

El vertedero está formado por 8 vanos de 20m de longitud, con la cresta elevada a 1275.50msnm (NAMO), para descargar caudales en época de crecidas de 6020m³/s con un período de retorno Tr = 200 años. Para caudales de 8900m³/s de un Tr = 10000 años, la elevación del embalse alcanzará los 1284.25msnm (NAME); y para una crecida catastrófica de 15000m³/s la elevación en el embalse llegaría a la cota 1288.30msnm (NAMC).

La *compuerta de lavado* de gravas, se ubica en la margen derecha del vertedero, presenta tres orificios con su base a la elevación 1260msnm, uno con compuerta radial de 8 x 8 m (vano uno) y por dos compuertas planas de 4.5 x 4.5 m. El vertedero y el desarenador están separados por un muro de 90m de longitud a la elevación 1275.50msnm.

⁷ (Hidroeléctrica Coca Codo Sinclair, 2011)

⁸ (Hidroeléctrica Coca Codo Sinclair, 2013)

⁹ (www.ccs.gob.ec, 2012)

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

La *toma* que capta 222m³/s, está emplazada a la derecha del vertedero. El eje de la toma a lo largo de la dirección de flujo y el eje del aliviadero forman un ángulo de 70°. Tiene un ancho total de 80m y se compone de 16 entradas (3.10m base x 3.30m altura) donde cada par de entradas desde la toma, dotan de caudal a cada una de las 8 cámaras del desarenador. La elevación del asiento de las compuertas de entrada es de 1270msnm.

El ducto de caudal ecológico se emplaza al lado derecho de la toma y sus dimensiones son 1.50m x 2m.

El *desarenador* de longitud total igual a 259.5m, está formado por 8 cámaras de sedimentación codificadas de #1 a #8 de izquierda a derecha respectivamente, donde cada cámara de sedimentación (151.50m de longitud total por 13m de ancho) se integra a una sección de conexión aguas arriba (45m de longitud y 7.80m de ancho) y una conexión aguas abajo con el cuenco disipador (63m de longitud).

El tramo de transición (curva) entre la sección aguas arriba y la sección de decantación, varia su anchura gradualmente desde 7.80m hasta llegar a la zona inicial de decantación de 13m de ancho, donde se encuentran tres rejillas disipadoras de energía o tranquilizadoras espaciadas 3m entre sí. La rejillas están elaboradas por barras de acero angulares de L60x60x6mm con espaciamiento neto de 120mm (primera rejilla), L50x50x5mm con espaciamiento neto de 70mm (segunda rejilla) y L40x40x4mm con espaciamiento neto de 40mm (tercera rejilla).

Las dimensiones transversales de la zona de decantación de la cámara son: ancho neto de 13m, una parte vertical superior de 8.63m, una parte trapezoidal inferior de 3.67m y una parte rectangular ubicada en la parte baja de 2m de base por 3.50m de altura. La elevación de la parte inferior de las cámaras es de 1261.20msnm.

El cuenco disipador de 111m de ancho por 38.30m de longitud, es la parte que conecta las cámaras sedimentadoras aguas abajo con el túnel de aducción. Su función está ligada a disipar la energía del flujo liberado de las cámaras del desarenador, para conducir el agua hacia el túnel de aducción. En la parte lateral izquierda, posee un vertedero con dos compuertas basculantes de 6m de ancho a un nivel de 1271.90msnm, que sirven para la descarga de caudal excesivo hacia el río cuando el caudal de desvío supera los 222m³/s.

Las vistas en planta y sección longitudinal del prototipo del desarenador se indican en la siguiente figura.

Figura 3.- Vista en planta y sección longitudinal del prototipo del desarenador

2.2 Principales aspectos relacionados a operación

Según los diseños definitivos del desarenador, la operación es como se describe a continuación (10):

- El nivel normal de desviación es de 1275.50msnm y se capta un caudal de 222m³/s.
- El caudal normal de desvió de cada una de las 8 cámaras es 27.75m³/s, sin incluir el caudal de lavado (2.30m³/s).
- La descarga máxima para cada cámara es de 32.25m³/s (considerando que puede haber un exceso de hasta 4.50m³/s). Dado que el caudal máximo en el túnel de conducción es de 222m³/s, el exceso será controlado mediante el aliviadero lateral.
- Las compuertas de admisión estarán parcialmente abiertas para desviar el caudal de diseño cuando el flujo aguas arriba sea mayor a 32.25m³/s.
- El desarenador detendrá la operación cuando el nivel aguas arriba de las compuertas de admisión (toma) esté sobre los 1279.69msnm (nivel máximo de desviación).
- Algunas cámaras detendrán la operación para asegurar el nivel de 1275.50msnm aguas arriba de la toma cuando el flujo aguas arriba sea menor al flujo de diseño (bajo el nivel de desvío) de modo que las otras cámaras tengan el nivel de desvío normal.
- El nivel de agua en el cuenco amortiguador será de 1274.73m cuando el caudal de desvío sea de 222m³/s en el desarenador.
- El ducto ecológico suministra no menos del caudal ecológico 20m³/s durante el tiempo de operación normal. Los ductos de limpieza se detendrán cuando el desarenador detenga la operación (nivel de aguas arriba de la toma sobre la 1279.69m).

2.3 Condiciones hidráulicas proyectadas

Los requerimientos hidráulicos con los que debe cumplir el desarenador para su correcto funcionamiento se describen a continuación (11):

El desarenador se ha diseñado de manera que las cámaras sedimentadoras retengan el 100% de partículas de arena mayores o iguales 0.25mm.

La velocidad de flujo en las cámaras del desarenador no debe superar los 0.35m/s.

La velocidad de sedimentación proyectada es menor a 3.5cm/s.

La velocidad de flujo en el canal de transición debe ser menor a 1.5m/s, en la condición de flujo máximo.

La descarga máxima del sistema de lavado SEDICON es de 2.3m³/s para cada cámara.

2.4 Hidrología de sedimentos

Los sedimentos transportados en el área de drenaje del río Coca, se presentan en su mayor parte como carga suspendida. Según los estudios, estadísticamente, la carga

¹⁰ (Hidroeléctrica Coca Codo Sinclair, 2013)

¹¹ (Hidroeléctrica Coca Codo Sinclair, 2013)

anual promedio de sedimentos en suspensión que llega al río Coca en la zona de captación es de 18 millones de toneladas, de los cuales 7.80 millones de toneladas ingresarían a los desarenadores (12).

La concentración de sedimentos presente al ingresar el agua al desarenador, considerada para diseño de las obras es de 5 kg/m³ que corresponde a un flujo de sedimentos de 4140Tn/h.

 ¹² (Hidroeléctrica Coca Codo Sinclair, 2013)
 Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

3 ANÁLISIS DE LOS INFORMES DE LOS MODELOS REALIZADOS PARA EL DESARENADOR DEL PROYECTO HIDROELÉCTRICO COCA CODO SINCLAIR

Para establecer el número definitivo de cámaras sedimentadoras que integran el desarenador y que determinan el sistema de lavado más eficiente para la remoción de sedimentos, el Proyecto ha ejecutado el estudio "Investigación experimental sobre el rendimiento de la cámara # 7 del desarenador de la central hidroeléctrica CCS con el sistema de lavado BIERI" llevado a cabo en los laboratorios de Yellow River en Zhengzhou – China, y el estudio "Modelo físico para verificar el funcionamiento de la cámara No. 6 con el sistema de lavado Succionador SEDICON" desarrollado por la Comisión Federal de Electricidad CFE en Cuernavaca–México. Así mismo, y para efectos de evaluar el prototipo del desarenador con el sistema de lavado SEDICON, el Proyecto ejecutó un estudio en el modelo numérico 2D "SED-TRAP".

Los ensayos en los modelos físicos de la Comisión Federal de Electricidad CFE-México y del laboratorio YELLOW RIVER de China, se llevaron a cabo para 6 y 7 cámaras respectivamente puesto que cada uno de los estudios es una comprobación del rendimiento según el número de cámaras. Estos estudios incluyen también ensayos para el lavado de sedimento con el sistema BIERI (Yellow River) y SEDICON Sluicer (CFE) ya que aún no estuvo definido el sistema de lavado a usarse en el desarenador. El hecho de probar un sistema de lavado en cada modelo hizo variar ligeramente la geometría de la sección transversal de la cámara sedimentadora en la zona trapezoidal y el canal de lavado.

3.1 Modelo físico de Yellow River - China

El estudio "Investigación experimental sobre el rendimiento de la cámara # 7 del desarenador de la central hidroeléctrica CCS" llevado a cabo en los laboratorios de Yellow River en Zhengzhou – China, fue realizado con el fin de evaluar el rendimiento del desarenador al agregar una nueva cámara (cámara #7).

En el modelo físico los ensayos se hicieron en dos etapas de acuerdo a las condiciones del agua:

- Agua limpia: Aquí se estudió el comportamiento hidráulico en términos de patrón de flujo y distribución de velocidad para los diferentes niveles de operación de la toma.
- Agua con carga de sedimentos: Se realizaron para observar el comportamiento de los sedimentos dentro de la cámara de sedimentación antes y durante el lavado mediante el sistema BIERI a fin de determinar el desempeño del mismo.

Los criterios de similitud geométrica, de movimiento del flujo y de movimiento de sedimentos usados para este modelo físico se resumen en la siguiente tabla:

Similitud	Nombre		Escala	Modelo	Proto	tipo	Observaciones
Cimilitud goom átriog	Escala Horizontal	L _e	20	20	1		
Similia geometrica	Escala Vertical	L _e	20	20	1		
	Caudal	$Q_e = L_e^{5/2}$	1789	0,124 m³/s	222	m³/s	Nivel de operación (1275,5m)
Similitud del	Velocidad	$V_e = L_e^{1/2}$	4,47	0,223 m/s	1	m/s	
(Similitud de Froude)	Rugosidad	$n_e = L_e^{1/6}$	1,65	0,008	0,013		Material modelo: vidrio orgánico
	Tiempo	$t_e = L_e^{1/2}$	4,47	13,42 seg	1	min	
	Densidad Aparente		1,29	2,10 t/m³	2,70	t/m³	
	Densidad aparente seca		1,67	0,78 t/m ²	1,30	t/m³	
Similitud del movimiento de	Densidad aparente relativa		1,55				
sedimentos	Velocidad de sedimentación		4,47				
suspendidos (ceniza de carbón quemado)	Tamaño del grano		2,88	0,156 mm	0,45	mm	d50
	Concentración de los sedimentos		0,83				
	Temperatura del Agua			10 ° C	20	° C	

Tabla 1.- Escalamiento para el modelo de Yellow River

La curva granulométrica del tamaño de partículas del prototipo y curva granulométrica usada en el modelo físico se muestra en la siguiente figura:

Figura 4.- Curva granulométrica para el prototipo y para el modelo de Yellow River

El modelo se realizó para la evaluación de la cámara adicionada al desarenador (cámara No.7) y sistema de lavado de sedimentos BIERI. Según el funcionamiento del sistema, la geometría de la sección transversal de la cámara es la siguiente:

Figura 6.- Sección longitudinal de la cámara (Desde la toma hasta el cuenco estabilizador)

Autores: Bernarda Luzuriaga H. Diana Amaya Z.

De acuerdo a la escala geométrica 1:20 establecida, el modelo físico del desarenador considerando desde las obras de toma hasta el cuenco estabilizador, ocupa un espacio de 14.90m de largo por 7.50m de ancho.

Las condiciones y herramientas para el ensayo fueron las siguientes:

- El flujo de entrada del modelo fue controlado mediante un medidor de flujo electromagnético.
- El caudal en la galería de lavado fue medido con un vertedero rectangular.
- La concentración de sedimentos se determinó con un picnómetro.
- El nivel de agua fue medido con una sonda.
- La velocidad de flujo se midió con un medidor de corriente LS-401(hélice).

3.1.1 Resultados de los ensayos del Modelo de Yellow River

Patrón de flujo de agua y distribución de velocidad en la cámara

El estudio del patrón de flujo de agua y distribución de velocidades en la cámara #7, se realizó para tres valores de caudal de ingreso a la cámara (33.60 – 32.50 - 31.70) m³/s. Para el caudal 33.60m³/s se variaron los niveles en la toma hasta alcanzar el nivel máximo de operación (1280msnm). Para los caudales 32.50 m³/s y 31.70 m³/s las pruebas se realizaron únicamente para el nivel normal de operación (1275.50msnm).

El patrón de flujo fue registrado mediante fotografías en: a) En la curva de ingreso a la cámara sedimentadora, b) Antes y después de las rejillas aquietadoras, c) En la parte central de la cámara de sedimentación, y d) A la salida de la cámara, en la zona de transición.

Para determinar las caídas en la zona de las rejillas aquietadoras, centro de la cámara y cuenco estabilizador se obtuvo un perfil longitudinal de la superficie de agua. En este perfil se indica el intervalo de variación de nivel de agua.

La distribución de velocidad fue medida en ocho secciones transversales, dos secciones al inicio de la curva (9 puntos por sección), 5 secciones en el cuerpo central (24 puntos por sección) y una sección a la salida de la cámara (9 puntos en la sección).

Cada uno de los ensayos se resume en las siguientes tablas:

	Resultados del Modelo Físico de los Desarenadores Coca Codo Sinclair							
	Niveles Normales en la Toma y en la Cámara Estabilizadora							
Cámara	Descripción	Lectura	Observaciones					
	Nivel en la toma	1275,50 msnm	Caudal desviado 222m ³ /s					
Caudal	Nivel en cuenco estabilizador	1274,73 msnm						
	Caudal Medido en la 7 cámara	33,60 m³/s	Galería de lavado de sedimentos cerrada					
	En la curva luego de la toma		Foto					
Patrón de Flujo	Cerca de las rejillas estabilizadoras		Foto : Una caida de agua se observa a alrededor de la primera rejilla. Al pasar la tercera rejilla el flujo es estable.					
	En la parte central de la cámara		Foto : Flujo estable					
	Cerca a la salida		Foto					
Perfil Longitudinal de la Superficie	Nivel de agua en el cuerpo principal Perfil Longitudinal para nivel en la toma: 1275,50	1275,16 - 1275,20 msnm	Valores cercanos al valor de diseño en la parte central de la cámara.					
	Velocidades en la curva Sección Transversal en las Abscisas: 0-022,54 0-014,00	1,07 - 1,84 m/s	La velocidad de flujo es mayor en el lado izquierdo que en el derecho. (Velocidades máxima y mínima)					
Distribución de Velocidad	Velocidades en el cuerpo central Sección Transversal en las Abscisas: 0+002,00 0+020,00 0+060,00 0+100,00 0+140,00	1,00 m/s	La velocidad de flujo es mayor cerca del fondo que cerca de la superficie. La velocidad máxima es de 1,0 m/s, desfavorable para la sedimentación.					
	Velocidades a la salida de la cámara Sección Transversal en las Abscisas: 0+163,83	3,11 -3,52 m/s	Distribución de velocidad relativamente uniforme					

Tabla 2.- Caudal de entrada, 33.60m³/s y nivel normal de operación en la toma

	Resultados del Modelo Físico de los Desarenadores Coca Codo Sinclair				
	N	iveles Altos en la Toma			
Cámara	Descripción	Lectura	Observaciones		
	Nivel en la toma	1277,1278,1279,1280 msnm	Caudal desviado 222m ³ /s		
Caudal	Nivel en cuenco estabilizador	1274,73 msnm			
	Caudal Medido en la 7 cámara	33,60 m³/s	Galería de lavado de sedimentos cerrada		
Patrón de Fluio	En la curva luego de la toma		Fotos: Flujo turbulento luego de las compuertas. La superficie del agua fluctúa hasta 0,66m. Diferencia de niveles de agua en la curva, máximo valor observado 1,55m.		
	Cerca de las rejillas estabilizadoras		Fotos: Flujo estable aguas abajo de las rejillas.		
	En la parte central de la cámara		Fotos: Superficie ondulante en rangos de 0,1m.		
	Cerca a la salida				
Perfil Longitudinal de la Superficie	Nivel de agua en el cuerpo principal Perfil Longitudinal para los niveles en la toma: 1277, 1278, 1279, 1280	1275,16 - 1275,22 msnm	Superficie ondulante en la parte central de la cámara		
	Velocidades en las compuertas de ingreso Sección Transversal en las Abscisa: 0-045,00	6,62 m/s	Distribución de velocidad en los orificios izquierdo y derecho, para apertura de la compuerta variando (1,29 - 0,81)m. Mayor velocidad cerca del fondo que cerca de la superficie. La velocidad en el fondo aumenta conforme aumenta el nivel en la toma. Valor máximo medido 6,62 m/s.		
Distribución de Velocidad	Velocidades en la curva Sección Transversal en las Abscisas: 0-022,54 0-014,00	0,69 - 2,81 m/s	Mayor velocidad a la izquierda que a la derecha por efecto de la curva. La diferencia de velocidad aumenta mientras mayor es el nivel de agua a la entrada.		
	Velocidades en el cuerpo central Sección Transversal en las Abscisas: 0+002,00 0+020,00 0+060,00 0+100,00 0+140,00	0,22 - 0,80 m/s	Para niveles mayores en la toma, la distribución de velocidad muestra mayores velocidades cerca del fondo. La velocidad máxima medida 1,0 m/s, desfavorable para la sedimentación.		
	Velocidades a la salida de la cámara Sección Transversal en las Abscisas: 0+163,83	2,96 -3,41 m/s	No hay cambios apreciables respecto a las velociades cuando la toma trabaja con el nivel normal.		

Tabla 3.- Caudal de entrada, 33.60m³/s y niveles altos de operación en la toma

La siguiente tabla, presenta un cambio considerado como mejora en las condiciones de ensayo y consiste en suprimir el espacio entre las rejillas tranquilizadoras y el fondo de la cámara.

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

	Resultados del Modelo Físico de los Desarenadores Coca Codo Sinclair						
	Niveles Normales en la Toma y en la Cámara Estabilizadora						
Cámara	Descripción	Lectura	Observaciones				
	Nivel en la toma	1275,5 msnm	Caudal desviado 222m ³ /s				
Caudal	Nivel en cuenco estabilizador	1274,73 _{msnm}					
	Caudal Medido en la 7 cámara	32,50 m³/s	Galería de lavado de sedimentos cerrada				
	En la curva luego de la toma		Foto : Ligera caída de la superficie en la curva.				
Patrón de Flujo	Cerca de las rejillas estabilizadoras		Foto : Una caída de agua se observa a alrededor de la primera rejilla. Menor remanso cerca a la primera rejilla.				
	En la parte central de la cámara		Foto : Flujo estable				
	Cerca a la salida		Foto				
Perfil Longitudinal de la Superficie	Nivel de agua en el cuerpo principal Perfil Longitudinal para nivel en la toma: 1275,50	1275,14 - 1275,19 msnm	Valores cercanos al valor de diseño en la parte central de la cámara. Nivel de agua estable.				
	Velocidades en la curva		No se realizaron mediciones en este tramo que conduce hacia la cámara sedimentadora.				
Distribución de Velocidad	Velocidades en el cuerpo central Sección Transversal en las Abscisas: 0+002,00 0+020,00 0+060,00 0+100,00 0+140,00	0,21 - 0,44 m/s	La velocidad se distribuye mas uniformemente con las rejillas estabilizadoras asentadas en el fondo.				
	Velocidades a la salida de la cámara Sección Transversal en las Abscisas: 0+163,83		No se realizaron mediciones en este tramo que conduce hacia la cámara sedimentadora.				

Tabla 4.- Caudal de entrada, 32.50m³/s y nivel normal de operación en la toma

Para el caso de caudal de ingreso 31.70m³/s y nivel normal de operación, se realizaron mediciones únicamente en la parte central de cámara y no se detectaron diferencias apreciables en cuanto a distribución de velocidad, por esa razón no se presenta una tabla resumen para estas condiciones.

Pruebas sobre el rendimiento del sistema de lavado BIERI

La remoción de sedimentos con el sistema BIERI se lleva a cabo mediante 6 módulos en cada cámara, cada uno de 25m de longitud con 48 orificios (0.19 x 0.20 m en el prototipo), que descargan en un ducto común de 2 x 2 m. La primera unidad es la más cercana a la captación, mientras que la sexta unidad es la más alejada. La operación de cada una de las unidades se realiza una a una, no de manera simultánea. Para verificar el rendimiento del sistema de lavado, se determinó en primer lugar el caudal de lavado y luego se procedió a realizar pruebas de lavado para evaluar la eficiencia.

<u>Caudal de Lavado</u>

El caudal de lavado para los sedimentos acumulados en la sección trapezoidal del desarenador, se estableció en condiciones normales de operación (1275.5msnm -Toma y 1274.73msnm -Cuenco estabilizador). Estos caudales se fijaron cuando las unidades BIERI primera y sexta se hallen trabajando para diferentes niveles de agua a la salida de la galería (1261msnm, 1265.78msnm y 1266.33msnm). Luego se obtuvieron perfiles longitudinales de la superficie para dichos niveles.

Los resultados mostraron lo siguiente:

- Mayor caudal: 19.27m³/s cuando trabaja la 1° unidad BIERI y el nivel de salida de la galería está a 1261.00msnm.
- Menor caudal: 11.87m³/s con la 6° unidad BIERI trabajando y el nivel de salida de la galería a 1266.33msnm.

Los perfiles longitudinales mostraron que cuando sube el nivel de agua a la salida de la galería, el perfil longitudinal de la superficie de agua incrementa ligeramente.

- Unidad BIERI No. 1 Trabajando: El perfil longitudinal oscila entre valores de 1274.90msnm - 1275.02msnm en el cuerpo central de la cámara sedimentadora.
- Unidad BIERI No. 6 Trabajando: El perfil longitudinal oscila entre valores de 1274.96msnm - 1275.06msnm en el cuerpo central de la cámara sedimentadora.

Pruebas de Lavado

Las pruebas de lavado se llevaron a cabo para las condiciones normales de operación (1275.5msnm -Toma y 1274.73msnm -Cuenco estabilizador) y nivel máximo de agua a la salida de la galería (1266.33msnm – 6° Unidad BIERI trabajando). Se dividió en dos ensayos, según el espesor de la capa de sedimentos depositada en la sección trapezoidal de la cámara de sedimentación. Se realizaron mediciones de concentración de sedimentos a la salida de la galería para diferentes intervalos de tiempo.

- Depósito de espesor 1.50m (715m³): Al inicio del lavado se presentaron concentraciones de 38kg/m³, a los 6minutos concentraciones de 10kg/m³ y a los 8minutos concentraciones de 5kg/m³.
- Depósito de espesor 3m: Al inicio del lavado se presentaron concentraciones de 84kg/m³, a los 8minutos concentraciones de 6kg/m³ y a los 12 minutos concentraciones de 5kg/m³.

Se hizo una estimación superficial sobre el funcionamiento del sistema de lavado, es decir; asumiendo que se opera en un lapso de 48minutos (6 módulos por 8 minutos), con un caudal medio de 15.57m³/s, el volumen necesario para la operación del sistema es de 44841.60m³ de agua cada vez que se opere. Con lo anterior se puede estimar que el consumo de agua por metro cúbico de sedimento depositado es de 62.71m³. Los datos anteriores sumados a un registro fotográfico indican la ausencia de depósitos remanentes demostrando el trabajo del sistema de limpieza BIERI. Sin embargo, luego de los ensayos, por cuestiones de eficiencia, se sugiere trabajar con un espesor de sedimentos máximo de 1.50m que corresponde al primer caso.

3.2 Modelo Físico de la CFE de México

El estudio del modelo físico desarrollado por la Comisión Federal de Electricidad CFE en Cuernavaca – México, fue realizado para verificar el funcionamiento de la cámara No. 6 con el sistema de lavado "Succionador SEDICON". Los ensayos en este modelo físico estuvieron direccionados al funcionamiento del sistema de lavado SEDICON, antes que al estudio y registro del patrón de flujo del agua con sedimentos, por esta razón se dividieron los ensayos de la siguiente manera:

- Selección del tipo de material para usar como sedimento en el modelo.
- Determinación de caudales de lavado y niveles de descarga para espesores de sedimento de 1.50m y 3m desde la base de la tolva.
- Tiempo de remoción de sedimentos

Los criterios de similitud asumidos y calculados para el modelo se pueden observar en la siguiente tabla:

Similitud	Nombre		Escala	Mode	elo	Proto	tipo	Observaciones
Similitud goom átriog	Escala Horizontal	L _e	20	20		1		
Similiud geometrica	Escala Vertical	L _e	20	20		1		
	Caudal	$Q_e = L_e^{5/2}$	1788,85	0,124	m³/s	222	m³/s	Nivel de operación (1275,50msnm)
Similitud del	Velocidad	$V_e = L_e^{1/2}$	4,47	0,223	m/s	1	m/s	
(Similitud de Froude)	Rugosidad	$n_e = L_e^{1/6}$	1,647	0,008		0,013		Material modelo: vidrio orgánico
	Tiempo	$t_e = L_e^{1/2}$	4,47	13,42	seg	1	min	
	Densidad aparente		1,11	2,42	t/m³	2,70	t/m³	2,42 t/m³ Pertenece al material Mazatepec
Similitud del movimiento de	Tamaño del grano		1	0,27	mm	0,27	mm	d50
sedimentos suspendidos (ceniza	Concentración de los sedimentos	Durand - Condolios		2,36	%	8,5	%	
de carbón quemado)	por volumen	Dos - Capas		1,94	%	21	%	
	Temperatura del Agua					20	°C	No especificado para el modelo

Tabla 5.- Escalas usadas en el modelo CFE

La curva granulométrica del tamaño de partículas del prototipo y curva granulométrica de los materiales usados en el modelo físico se muestra en la siguiente figura:

Figura 7.- Curva granulométrica del sedimento del prototipo y del sedimento del modelo CFE

La geometría de la sección transversal del desarenador, compuesto por 6 cámaras y considerando el sistema de lavado Succionador SEDICON se muestra en la siguiente figura:

Figura 8.- Sección de la cámara para el sistema de lavado SEDICON

Puesto que este modelo fue realizado para el desarenador compuesto por 6 cámaras, el caudal de ingreso fue de 37m³/s en la cámara número 6.

El sedimento sembrado para llevar a cabo cada uno de los ensayos fue vaciado en la cámara sedimentadora hasta alcanzar el nivel 1.50m o 3m en la tolva.

La sección trasversal del sistema SEDICON, se identificó como más ventajosa en lo que se refiere a volumen de sedimentos retenidos, ya que estos no solo se acumulan en la sección trapezoidal sino también en el canal rectangular de lavado.

3.2.1 Resultados de los ensayos del modelo de la CFE México

Como se mencionó antes, los ensayos fueron direccionados al funcionamiento del sistema de lavado SEDICON. Por esta razón, para cada ensayo se plantearon condiciones para un determinado espesor de sedimentos sembrados en el canal y la tolva de la cámara sedimentadora.

Selección del tipo de material para usar como sedimento en el modelo

Como opciones para material que represente el sedimento en el modelo físico, fueron seleccionados 4 tipos de material con los cuales se hicieron 2 ensayos previos. Dos tipos fueron desechados por problemas relacionados con cohesividad y compactación, y los dos restantes fueron usados para los diferentes ensayos.

Material 1: Arena Volcánica – Ajusco (A)Densidad de 2.55 Tn/m³ Material 2: Arena Presa Soledad – Mazatepec (M).....Densidad de 2.42 Tn/m³

Pruebas sobre el rendimiento del sistema de lavado SEDICON Sluicer

La remoción de sedimentos mediante el sistema de lavado SEDICON, se realizó a través de 5 módulos independientes, integrados a lo largo de cada cámara sedimentadora. Estos módulos de 30m de longitud, están compuestos por tubos ranurados de 450mm de diámetro que se asientan en la sección de la tolva y en la parte inferior del canal. Las tuberías ranuradas son unidas mediante unidades de acoplamiento en una tubería de salida, que asegura la distribución uniforme entre las dos tuberías ranuradas y mantenga un flujo equilibrado con una concentración máxima permisible. La operación de cada uno de los módulos pudo realizarse sola o de manera simultánea.

Las pruebas de rendimiento del sistema de lavado SEDICON, se hicieron para dos tipos de material y dos condiciones de espesor de sedimentos 1.50m y 3m.

Caudal y Volumen de Lavado

El caudal y volumen de agua a usarse para el lavado de los sedimentos acumulados en la sección trapezoidal del desarenador, se estableció en condiciones normales de operación (1275.5msnm - Toma y 1274.73msnm – Cuenco estabilizador). Para cada ensayo se varió el tipo de material, altura de sedimentos en la tolva y el nivel de agua en la descarga. Los resultados de dichos ensayos se muestran en la siguiente tabla:

Resul	Resultados del Modelo Físico de los Desarenadores Coca Codo Sinclair				
	Niveles Normales en la To	oma y en la Cámara	a Estabilizadora		
	Descripción	Ensayo 3	Ensayo 4	Ensayo 5	
	Nivel en la toma	1275,50 msnm	1275,50 msnm	1275,50 msnm	
Caudal	Nivel en cuenco estabilizador	1274,73 msnm	1274,73 msnm	1274,73 msnm	
	Caudal Medido en la 6 cámara	37 m³/s	37 m³/s	37 m³/s	
Matarial	Tipo de Material	Ajusco	Mazatepec	Mazatepec	
Maleriai	Densidad	2,55 Tn/m³	2,42 Tn/m³	2,42 Tn/m³	
	Espesor de sedimento en la tolva	3 m	3 m	1,50 m	
	Volumen de material a remover	1053 m³	1053 m³	715 m³	
Condiciones de	Nivel de agua en la descarga	1265 msnm		1266,33 msnm	
Desazolve	Caudal medio empleado	0,87 m³/s	1,60 m³/s	1,15 m³/s	
	Tiempo medio empleado	7,40 h	0,86 h	1,16 h	
	Volumen de agua para limpieza	115884 m³	24833 m³	23827 m³	
				Volumen de	
Observaciones		Descarga ahogada	Descarga libre	sedimenos igual a	
		2000al ga allogada	2000al ga lior o	la condición 1,50m	
				en el sistema Bieri	

Tabla 6.- Determinación del caudal y volumen de agua para la remoción de sedimento por cámara

Según lo expuesto en la tabla, en el ensayo 5 se pusieron las mismas condiciones con las que se realizó la limpieza de la cámara con el sistema BIERI, para poder comparar la eficiencia de los dos sistemas de lavado de sedimentos.

Pruebas de Lavado para 1.50m y 3m de sedimentos

Las pruebas de lavado para diferentes espesores de sedimento desde el fondo de la tolva, consideran también el sedimento acumulado en el canal rectangular. Las pruebas se realizaron en este caso para afinar el nivel de descarga óptimo y determinar el consumo de agua por metro cúbico de sedimento depositado.

Se dividió en dos ensayos, según el espesor de la capa de sedimentos sobre la sección trapezoidal de la cámara de sedimentación y se determinó el volumen de agua requerido por el sistema para diferentes niveles de agua en el tanque amortiguador.

- Depósito de espesor 1.50m.- Con 1.50m a partir de la tolva (1053m³) sumado al volumen de sedimentos del canal rectangular (960m³) da como resultado un volumen acumulado de sedimentos de 2013m³. En condiciones normales de operación (1275.5msnm Toma y 1274.73msnm Cuenco estabilizador) y nivel de agua variando a la salida de la galería, de manera que el tirante de agua en la descarga oscile de 0.0m a 8m. Se requiere un consumo de agua de 11.90m³ a 47.95m³ por metro cúbico de sedimento depositado, para realizar el lavado de sedimentos.
- Depósito de espesor 3m.- Con 3m a partir de la tolva (3311m³) sumado al volumen de sedimentos del canal rectangular (960m³) da como resultado un volumen acumulado de sedimentos de 4271m³. En condiciones normales de operación (1275.5msnm Toma y 1274.73msnm Cuenco estabilizador) y nivel de agua variando a la salida de la galería, de manera que el tirante de agua en la descarga oscile de 0m a 8m. Se requiere un consumo de agua de 8.7m³ a 29.64m³ por metro cúbico de sedimento depositado, para realizar el lavado de sedimentos.

Los datos anteriores, sumados a un registro fotográfico, muestran el correcto funcionamiento del sistema de lavado SEDICON para el nivel máximo de sedimentos en la tolva (3m), lo cual le da una gran ventaja sobre el sistema BIERI. De acuerdo a los resultados en ambos modelos se puede resaltar que el sistema BIERI requiere un volumen de agua de 44841.60m³, mientras el sistema SEDICON requiere 23827.10m³ de agua para realizar la limpieza en las mismas condiciones de operación y volumen de sedimentos.

3.3 Sistema de lavado del prototipo - SEDICON Sluicer

El informe de cálculo y diseño del sistema de lavado SEDICON fue desarrollado por la empresa SEDICON AS (www.sedicon.no/index), luego de que se definiera (por ensayos realizados en los modelos físicos) como el sistema de lavado más óptimo a aplicar en el prototipo del desarenador. En dicho informe se abordan criterios de diseño del sistema SEDICON, fundamento teórico y solución para la remoción de sedimentos, operación y mantenimiento. La geometría del prototipo del desarenador usado en el documento es la indicada en el capítulo dos (Figura 3).

3.3.1 Criterios de Diseño

En esta parte se describen las condiciones de entrada para el diseño de las unidades SEDICON, tales como, niveles de operación, granulometría del sedimento y la velocidad de sedimentación para los diferentes diámetros de partículas con los cuales se llevaron a cabo los cálculos.

	Condiciones iniciales							
	Caudal de entrada en la captación	222	m³/s					
	Nivel de agua en el desarenador	1275,10	msnm					
Niveles de Operación	Nivel de agua en la descarga	1266,33	msnm					
y Caudal	Número de cámaras sedimentadoras	8						
	Caudal de ingreso en cada cámara	27,70	m³/s					
	Caudal de lavado	2,30	m³/s					
	Concentración de Sedimentos Entrante	5	kg/m3					
	Total de Sedimentos de Entrada	4140	Tn/h					
Sedimento	Carga de sedimentos en cada cámara	517,50	Tn/h					
	Densidad de los sedimentos en Seco	1,50	Tn/m³					
	Densidad de las partículas de Sedimento	2,65	Tn/m³					

Tabla 7.- Condiciones iniciales para el diseño de las unidades SEDICON

En la curva granulométrica establecida, el tamaño de grano del sedimento presenta diámetros, entre 2mm y 0.20mm como se muestra en la figura a continuación. Esta difiere de la granulometría del cauce natural, para dar condiciones desfavorables al diseño del sistema de lavado.

Figura 9.- Distribución granulométrica de las partículas de sedimento usadas para el cálculo de las unidades SEDICON en el prototipo.

La velocidad de sedimentación ha sido obtenida para 8 diámetros de partícula mediante la ecuación:

$$Vs = \sqrt{\frac{4 * g * d * (\rho - 1)}{3Cd}}$$

Donde el valor del coeficiente de arràstre Cd ha sido calculado mediante la ecuación de D. G. Thomas. Las velocidades se muestran en la siguiente tabla.

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

Tamaño de Partícula	Velocidad de Sedimentación
(mm)	(cm/s)
1.700	18.300
0.850	11.500
0.420	6.100
0.210	2.630
0.141	1.620
0.106	1.150
0.053	0.252
0.027	0.066

Tabla 8.- Velocidad de sedimentación de las partículas

3.3.2 Patrón de Depósito de Sedimentos en el Desarenador

Según el modelo numérico 2D denominado "SED-TRAP" llevado a cabo para el diseño de las unidades SEDICON, el comportamiento de los sedimentos en la cámara sedimentadora sería de la siguiente manera:

Distribución longitudinal de los sedimentos depositados por tamaño de partícula

Según el modelo numérico desarrollado por SEDICON, se determina la distribución granulométrica de los sedimentos en cada una de las 5 unidades de 30m en las que se ha dividido cada una de las cámaras sedimentadoras. En base a estas curvas obtenidas, se establece el tamaño de la partícula d_{50} en cada unidad, para poder aproximar la distribución longitudinal de las partículas en función de su tamaño.

La siguiente tabla muestra la unidad, distancia a la que se realizó la sección transversal para obtener la curva granulométrica y el valor de la partícula d_{50} de dicha curva granulométrica.

Tamaño Medio de Partícula en Cada Unidad						
Unidad	Distancia desde la Entrada (m)	Partícula d_{50} (mm)				
1	12	0,90				
2	35	0,70				
3	62	0,30				
4	92	0,19				
5	128	0,10				

Tabla 9.- Distribución longitudinal de las partículas en función de su tamaño

Ubicación de los depósitos de sedimentos

Lo esperado en cuanto al depósito de sedimentos, es que el material más grueso se asiente primero ocupando la parte inicial de la cámara, mientras el material más fino se deposita sucesivamente a lo largo de la cámara conforme el tamaño disminuye.

La distribución de los sedimentos a lo largo del desarenador calculado mediante SED-TRAP fue la siguiente:

Figura 10 .- Distribución de sedimentos a lo largo de la cámara del desarenador

Eficiencia del desarenador

Según las condiciones de operación del desarenador y las características de sedimento la eficiencia general proyectada para el sedimentador fue de 85%. Adicionalmente, si se considera partículas mayores a 0.20mm, la eficiencia del sedimentador resultante fue mayor al 99%.

Solución para la remoción de sedimentos

El informe hace referencia al diseño civil, a la explicación de los componentes y al cálculo de la capacidad de las tuberías en las unidades SEDICON, mediante los criterios de Durand - Condolios y Modelo de dos Capas. Luego de un análisis de los criterios y comparación con los resultados experimentales, el estudio decidió optar por el Modelo de dos Capas, el cual al ser aplicado determina en cada unidad la carga de sedimentos, tamaño medio de partícula, capacidad de lavado de sedimentos y consumo de agua por unidad.

CAPACIDAD DE LAS UNIDADES SEDICON (Concentración 5kg/m ³)								
UNIDAD		Unidad 1	Unidad 2	Unidad 3	Unidad 4	Unidad 5		
Longitud tubería de salida	m	30	53	80	110	146		
Capacidad neta de remosión	tn/h	298	302	590	695	854		
Max. Consumo de Agua	m³/s	1,21	1,11	0,99	0,90	0,83		
Tiempo de llenado hasta 1264,7msnnm	h	0,90	1,30	3,30	7,10	13,20		
Carga de sedimentos en la unidad	t/h	197	143	66	35	23		
Volumen antes del lavado	m ³	117,50	125	142,50	165	200		
Peso	tn	176,30	187,50	213,80	247,50	300		
Tiempo empleado para lavado	h	0,59	0,62	0,36	0,36	0,35		
Tiempo de cada secuencia de lavado	h	1,50	1,90	3,6	7,5	13,5		

Tabla 10.- Capacidad de las unidades SEDICON

Según los resultados de capacidad dados por el modelo seleccionado, fue determinado el caudal de lavado de 2.3m³/s (considerando que las unidades uno y dos funcionen simultáneamente)

4 MÉTODOS

Para la simulación numérica del flujo de sedimentos en el desarenador de estudio, se ha considerado implementar el modelo numérico SSIIM (Sediment Simulation In Water Intakes with Multiblock option), a fin de obtener el patrón de flujo de agua y de los procesos asociados de transporte de sedimentos. Dadas las diferentes condiciones y consideraciones hechas en los estudios de modelización física tanto para el estudio del comportamiento de los sedimentos así como para el sistema de lavado, en el presente trabajo se ha optado por dividir la simulación numérica en dos partes.

La primera parte comprende la simulación del flujo de agua limpia en el prototipo del desarenador, bajo las mismas condiciones iniciales propuestas en los ensayos del modelo físico. De esta simulación se han obtenido las velocidades de flujo a lo largo de la cámara a diferentes niveles y la dirección de los vectores de velocidad. Así mismo, se ha identificado la presencia o formación de vórtices y flujos preferenciales.

La segunda parte simula el comportamiento de los sedimentos, a fin de obtener valores de concentración de sedimentos a lo largo de la cámara, diámetro mínimo retenido y zonas de depósito. La simulación del flujo de sedimentos, se ha realizado a nivel de prototipo para poder efectuar un estudio comparativo con los resultados del estudio de sedimentos llevado a cabo para el diseño del sistema de lavado (SEDICON Sluicer) del desarenador.

4.1 Dinámica de Fluidos Computacional

La dinámica de fluidos computacional (CFD) por sus siglas en inglés, es una rama de la mecánica de fluidos que utiliza métodos numéricos y algoritmos para simular el comportamiento de los flujos de fluidos y fenómenos de transferencia de calor y materia. Para esto se basa en la resolución numérica de las ecuaciones fundamentales de conservación de la masa, conservación del *momentum* y ecuación del transporte.

Los modelos CFD trabajan dividiendo el dominio de interés (geometría), en una serie de pequeños volúmenes discretos usando una malla para modelización. Las propiedades físicas del fluido, tales como temperatura, velocidad, presión, etc. son calculadas en cada uno de estos volúmenes como solución de las ecuaciones fundamentales, logrando predecir el comportamiento del fluido con gran detalle en el dominio estudiado.

Un cálculo de CFD consta de 3 procesos:

- Definición del problema: Delimitación de la geometría, discretización del dominio (generación de la malla de cálculo), consideración de aspectos físicos, condiciones iniciales y definición de los parámetros de cálculo.
- Solución numérica: Afinación de parámetros de entrada y cálculo, refinamiento de la malla y obtención de resultados.
- Análisis de resultados y generación de representaciones

Mallas Computacionales

La generación de la malla normalmente es la que demanda mayor cuidado y tiempo en un modelo CFD, pues su calidad se ve reflejada en los resultados. Según su configuración las mallas se dividen en estructuradas y no estructuradas.

- Malla estructurada: En una malla estructurada es posible hacer un arreglo coordenado, indicando la posición de todos los elementos de la misma. Su nombre se basa en el hecho de que se presenta un patrón repetitivo y regular llamado bloque. Este tipo de mallas se compone de elementos cuadriláteros en 2D y hexaedros en 3D. Lo ideal en estos casos es usar generadores de malla con ecuaciones elípticas que optimizan la forma al procurar mantener su ortogonalidad y uniformidad.
- Malla no estructurada: Una malla no estructurada es una colección arbitraria de elementos para llenar el dominio, la disposición de dichos elementos no posee un patrón discernible de ordenamiento. Este tipo de mallas está compuesto por triángulos en 2D y tetraedros en 3D. La ventaja de esta malla radica en que su generación es bastante automatizada y requiere pocos datos de entrada por parte del usuario, sin embargo los problemas suelen presentarse al momento de hacer arreglos especiales en la malla o refinar en zonas específicas.

Simulación Numérica de Procesos Hidrodinámicos

Una simulación es una técnica numérica para conducir experimentos en un computador, las cuales requieren ciertos tipos de modelos lógicos y matemáticos, que describen el comportamiento de un fenómeno (o algún componente de este) en períodos de tiempo (13).

Los diferentes métodos implementados en un modelo CFD para llevar a cabo la simulación numérica de un fenómeno hidráulico, se basan en la solución de las ecuaciones de Navier–Stokes, junto con modelos de turbulencia de distintos grados de complejidad, que van desde los modelo algebraicos de vorticidad para la viscosidad (k- ϵ , k- ω), hasta los modelos de tensión de Reynolds (RMS). Una vez finalizada la simulación, provee de resultados en puntos discretos del espacio y/o tiempo (14).

Estabilidad y Convergencia

Se dice que un método de solución numérica es estable, si no maximiza el error que aparece en el curso del proceso de solución. Para el caso de métodos iterativos, un método es estable si no diverge.

En lo que refiere a convergencia, se dice que un método numérico es convergente si la solución iterativa de las ecuaciones discretizadas, tiende a la solución exacta de las ecuaciones continuas cuando el espaciamiento de la malla tiende a cero.

¹³ (Naylor, 1996)

 ¹⁴ (Novak, Moffat, & Nalluri, 2001)
 Autoría: Bernarda Luzuriaga H.
 Diana Amaya Z.

4.2 Modelo numérico SSIIM

4.2.1 Generalidades

SSIIM (Sediment Simulation In Water Intakes with Multiblock option), es un programa desarrollado para la aplicación en investigaciones de Ingeniería Hidráulica en el estudio de flujo de agua y procesos de sedimentación que simula el movimiento de agua y sedimentos mediante una aproximación de un volumen de control con una malla tridimensional no ortogonal. El programa fue desarrollado en 1991 por la División de Ingeniería Hidráulica del Instituto Noruego de Tecnología. SSIIM es un software de uso libre. su instalador manual pueden descargarse aratuitamente V de http://folk.ntnu.no/nilsol/ssiim/.

Para calcular el flujo de agua, SSIIM resuelve las ecuaciones de Navier-Stokes con el modelo de turbulencia k-épsilon, mientras que el transporte de sedimentos se soluciona con la ecuación de convección-difusión. Estos cálculos a su vez son dependientes del tiempo y del mallado vertical móvil que toma en cuenta los cambios de nivel del agua y del lecho (15).

Existen dos versiones del programa, SSIIM1 y SSIIM2, siendo la principal diferencia entre estos, que en la primera se usa una malla estructurada de un solo bloque; y en la segunda se emplea una malla no estructurada que le permite generar más de un bloque. Una importante ventaja de la versión 2 sobre la versión 1, es la capacidad de generar algoritmos que modelicen geometrías complejas y simulen procedimientos de humedecido y secado de las mismas, mientras que SSIIM1 modeliza cuerpos de agua menores y más definidos (16). Es posible trabajar con las dos versiones simultáneamente, generando un mallado en SSIIM1 y transfiriéndolo a SSIIM2 o viceversa. Sin embargo, es importante mencionar que las dos versiones se encuentran aún en etapa de validación siendo la versión más nueva (SSIIM2) la más propensa a errores. En el presente trabajo, se hace uso de la versión SSIIM1 por lo que, para menciones posteriores, cuando se hable de SSIIM se hará referencia a dicha versión.

4.2.2 Fundamentos Hidráulicos del Modelo

Ecuaciones de Navier-Stokes

Las ecuaciones de Navier Stokes son un conjunto de ecuaciones diferenciales que describen cómo la velocidad, presión, temperatura, y la densidad de un fluido en movimiento están relacionadas. En la práctica, estas ecuaciones son muy difíciles de solucionar analíticamente por lo que actualmente se hace uso de los ordenadores para resolver las aproximaciones a la ecuaciones usando una variedad de técnicas como las diferencias finitas, volumen finito, elementos finitos, y métodos espectrales.

Las ecuaciones de Navier-Stokes (Conservación del *Momentum*) para flujo turbulento se resuelven para obtener la velocidad del agua, mientras que el modelo k-ɛ se utiliza

¹⁵ (Olsen, 2012)

¹⁶ (Olsen N. , 2012)

para calcular el esfuerzo cortante turbulento. Estas ecuaciones para un flujo de densidad no compresible y constante se expresan de la siguiente manera (17).

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_i} = \frac{1}{\rho} \frac{\partial}{\partial x_i} \left(-P \delta_{ij} - \rho \, \overline{u}_i \overline{u}_j \right)$$

El primer término de la izquierda es un término transitorio, mientras que el segundo es un término convectivo. Al lado derecho de la ecuación, el primer término hace referencia a la presión mientras que el segundo refiere al esfuerzo de Reynolds.

Modelo de Turbulencia k-ɛ

El concepto de viscosidad con el modelo de turbulencia k- ϵ se utiliza para modelar el término de esfuerzo de Reynolds.

$$\overline{-u_{\iota}u_{J}} = v_{T} \left(\frac{\partial U_{i}}{\partial x_{i}} + \frac{\partial U_{i}}{\partial x_{j}}\right) + \frac{2}{3} k\delta_{ij}$$

Los dos primeros términos del lado derecho de la ecuación forman la parte difusiva en la ecuación de Navier-Stokes, mientras que el tercer término se refiere a la presión

La viscosidad en el modelo k-ɛ se expresa como:

$$v_T = C_\mu \frac{k}{\varepsilon^2}$$

Definiéndose la energía cinética turbulenta k como:

$$k = \frac{1}{2} \overline{u_i u_j}$$

k se modela como:

$$\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\nu_T}{\sigma x_j} \frac{\partial U_i}{\partial x_j} \right) + P_k - \varepsilon$$

Donde P_k es dado por:

$$P_k = \nu_T \frac{\partial U_j}{\partial x_j} \left(\frac{\partial U_j}{\sigma x_i} + \frac{\partial U_i}{\sigma x_j} \right)$$

La disipación de k es ε , y se modela como:

$$\frac{\partial \varepsilon}{\partial t} + U_j \frac{\partial \varepsilon}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\nu_T \partial \varepsilon}{\sigma_k \partial x_j} \right) + C_{\varepsilon 1} \frac{\varepsilon}{k} P_k + C_{\varepsilon 2} \frac{\varepsilon^2}{k}$$

En todas las ecuaciones anteriores "C" son diferentes constantes en el modelo k- ϵ . El modelo k- ϵ es la turbulencia por defecto en el software SSIIM.

 ¹⁷ (Olsen N. , 2012)
 Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

Leyes de Pared

Se usa la ley de pared de los límites aproximados, según lo dado por Schlichting.

$$\frac{U}{u_x} = \frac{1}{k} ln\left(\frac{30y}{k_s}\right)$$

La rugosidad k_s es equivalente a un diámetro de partículas en la cama.

4.2.3 Modelo del Transporte de Sedimentos

El transporte de sedimentos convencionalmente se divide en, carga de fondo y carga suspendida. El movimiento y dispersión de sedimentos suspendidos en un cuerpo de agua, es calculado mediante la ecuación de Convección-Difusión con la fórmula de Van Rijn (18).

En la ecuación de convección-difusión el primer término expresa la convección de los sedimentos, es decir sedimentos transportados a través de las paredes del volumen finito, debido a la velocidad del agua en la pared. El segundo término indica la velocidad de caída de los sedimentos.

$$\frac{\partial c}{\partial t} + U_j \frac{\partial c}{\partial x_j} + w \frac{\partial c}{\partial z} = \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial}{\partial x_j} \right)$$

Donde *w* representa la velocidad de caída de sedimento, y el coeficiente de difusión Γ se toma a partir del modelo k- ϵ .

$$\Gamma = \frac{\nu_T}{S_c}$$

 S_c es el número de Schmidt ajustado a 1 por defecto en el modelo (SSIIM), aunque este puede ser modificado.

Para la carga suspendida Van Rijn desarrolló la siguiente fórmula de concentración.

$$C_{bed} = 0.015 \frac{D_{50}}{a} \frac{\left[\frac{\tau - \tau_c}{\tau_c}\right]^{1.5}}{\left\{D_{50} \left[\frac{(\rho_s - \rho_w)g}{\rho_w v^2}\right]^{\frac{1}{3}}\right\}^{0.03}}$$

Donde:

 D_{50} = Diámetro de la partícula de sedimento

 τ = Esfuerzo de corte en la cama

 τ_c = Esfuerzo de corte crítico para el movimiento de partículas de sedimento

 ρ_s = Densidad del sedimento

 ρ_w = Densidad del agua

 ν = Viscosidad del agua

g = Aceleración de la gravedad

a = Nivel de referencia equivalente a la altura de rugosidad

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

¹⁸ (Olsen N. , 2012)

4.2.4 Capacidades y Limitaciones del modelo SSIIM

La implementación de SSIIM puede ser hecha para múltiples aplicaciones, siendo de gran interés el cálculo de flujo de agua y de flujo y transporte de sedimentos, tema que engloba las siguientes posibles simulaciones (19):

- Cálculo de flujo permanente de agua con superficie y fondo de agua fijos.
- Cálculo de flujo no permanente de sedimentos con superficie y fondo de agua fijos.
- Cálculo de flujo no permanente de agua con superficie y fondo de agua fijos.
- Cálculo de flujo no permanente de agua con movimiento de la superficie de agua y fondo fijo.
- Cálculo de flujo no permanente de agua y sedimentos con superficie de agua fija y fondo móvil.
- Cálculo de flujo no permanente de agua y sedimentos con superficie y fondo de agua móviles.

Así mismo, SSIIM presenta algunas limitaciones:

- No considera los términos de difusión no ortogonales.
- En el mallado, las líneas en dirección vertical deben ser exactamente verticales.
- La viscosidad cinemática del fluido es equivalente a la del agua a 20°C. Ésta característica es parte de la codificación de SSIIM, por lo que, no se puede modificar.
- Debido a que el programa no ha sido desarrollado para ambientes marinos, los efectos de gradientes de densidad a causa de las diferencias de salinidad, no son consideradas.

4.2.5 Funcionamiento

SSIIM utiliza el método del volumen de control, es decir que, el cuerpo de agua a modelar debe discretizarse en volúmenes tridimensionales definidos por celdas en tres direcciones de preferencia ortogonales, cuyo tamaño y alineamiento tiene mayor influencia en la convergencia, precisión y tiempo computacional de la simulación.

Como todo programa de CFD, SSIIM consta de tres pasos:

- Pre-procesamiento.- Generación de la malla e ingreso de datos de entrada. Para el mallado debe considerarse la perpendicularidad de las líneas de cada celda; no deben existir ángulos menores a 45°, de no ser así, la convergencia de la solución es más lenta o no se da (20).
- Cálculos.- Cálculos de la velocidad del agua, flujo de sedimentos, cambios en los niveles de agua, etc. El cálculo finaliza el momento que el programa converge, lo cual sucede cuando en la ventana principal se puede observar que los valores de los residuales de, velocidad (X, Y y Z), continuidad, modelo de turbulencia képsilon, son menores a 1E⁻³ y se escribe el archivo de resultados.

¹⁹ (Olsen N. , 2012)

²⁰ (Olsen N. , 2012)

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

3. Post-procesamiento.- Visualización de resultados, ya sea con las vistas en planta, transversal o longitudinal generadas en SSIIM propiamente o a través de programas como, Tecplot y ParaView. Se generan vistas en 2D y 3D de la red y se visualizan los resultados de las variables que intervienen en la modelización del cuerpo de agua.

4.2.6 Ejecución de SSIIM y Procedimientos

Para ejecutar la simulación, al abrir el programa SSIIM emerge una ventana en la cual se ingresan los datos de entrada que el programa requiere para la generación del cuerpo de agua mediante una malla computacional. Los datos requeridos son: longitud, ancho y profundidad del cuerpo de agua, así como el número de secciones transversales y longitudinales que conformarán la malla. (Figura 12). Dados los datos iniciales, aparece la ventana principal del programa en la cual, está presente la barra de herramientas con las que se puede trabajar manualmente para editar la red del mallado y dar forma a la misma (en caso de geometría sencilla), editar datos de sedimentos, para activar vistas en planta, longitudinal y transversal del cuerpo de agua, para visualizar los vectores de velocidad del flujo, etc. (Figura 13). Una vez ingresados los datos de la geometría y mallado, en el mismo directorio se generan tres archivos nuevos (Figura 14): *boogie, control y koordina* los mismos que, para ser leídos o modificados, necesitan del bloc de notas.

Archivos de Pre - Procesamiento

Koordina.- Aquí se guardan el número de secciones transversales y longitudinales con las que se ha generado la malla computacional. Su formato es como sigue:

Donde:

i j x y z

i: número de secciones transversales del nodo
j: número de secciones longitudinales del nodo
x: coordenada en las abscisas del nodo
y: coordenada en las ordenadas del nodo
z: coordenada en el eje vertical del nodo

En el presente trabajo, por haberse tratado de geometrías diferentes a las convencionales, ha sido necesario modificar éste archivo para obtener el mallado ideal para la modelización. Un método muy práctico recomendado para resolver esto es mediante el uso de Autocad, Excel y el editor de mallas de SSIIM (21).

En base a los planos de Autocad con la geometría del cuerpo de agua a simular, se ha realizado una propuesta de mallado, dividiendo en tantos segmentos como se requiera a las líneas de contorno (laterales, de entrada y salida) del cuerpo de agua. Para obtener un buen mallado tanto en dirección longitudinal (x), transversal (y) y vertical (z), se ha procurado que cada volumen mantenga la misma relación de longitud en las tres dimensiones. Los puntos de los segmentos que integran las líneas de contorno, se han unido mediante una polilínea y fueron exportados a Excel con ayuda del comando *List* de Autocad.

Realizado esto, se han modificado los puntos en Excel de tal manera que su formato sea el mismo que el del archivo *koordina* y se han reemplazado los nuevos puntos en el archivo generado inicialmente. Se ha procedido con la ejecución del programa, implementándose la geometría con la opción *View* \rightarrow *GridEditor* y luego con *Generate* \rightarrow *Transfinite l* \rightarrow *Implementation*.

En un principio, el valor de la coordenada z es asumida cero, esto se debe a que los valores de los diferentes niveles verticales no han sido modificados. Se ha creado entonces un archivo adicional llamado *geodata* el cual fue editado con Excel y el bloc de notas.

Geodata.- Contiene la topografía o batimetría sobre la que se ha de moldear el fondo del cuerpo de agua. Aquí se ha definido el valor de z según el formato que se indica abajo. Al ser leído e implementado con las opciones $View \rightarrow Grid \ Editor \ y \ Generate \rightarrow Implementation por SSIIM, se modifica el archivo koordina, tomando los nuevos valores productos de la interpolación de las curvas de nivel contenidas en el archivo geodata. Su formato es el siguiente:$

E x y z

Donde:

E: se usa para contar el número de puntos.

x: coordenada en las abscisas.

y: coordenada en las ordenadas.

z: altura del fondo de agua.

Después de la última línea con las coordenadas del último punto, se ha agregado una línea más con el siguiente formato:

 $Z x_T y_T z_T$

Donde:

 x_T : total de coordenadas en x

 y_T : total de coordenadas en y

 z_T : total de coordenadas en z

Implementada la geometría en su totalidad (Figura 15 y Figura 17), para empezar la simulación se ha definido los procesos de cálculo en dos etapas; la primera que es la referente al patrón de flujo de agua (Figura 16) y la segunda al flujo de sedimentos (Figura 24). Para ello se ha modificado el archivo control generado inicialmente.

Innflow.- Este archivo se usa para leer las velocidades en tres direcciones para la condición de frontera aguas arriba. Al correr SSIIM el programa busca el archivo y usa los datos. Si el archivo no existe, se escribe un mensaje de advertencia en el archivo boogie y el programa continúa normalmente.

En cada línea se inicia con el caracter E, seguido de los índices j, k (horizontal y vertical) y los componentes de velocidad x, y, z de cada una de las celdas de la sección transversal aguas arriba (Figura 20). El archivo presenta la siguiente estructura:

Ejkxyz

Control.- En este archivo se almacenan los algoritmos necesarios para la simulación, es decir, aquí se ingresan las condiciones hidráulicas y numéricas que van a gobernar el modelo. El ingreso de dichas condiciones se ha realizado mediante los data set, los cuales cumplen con el siguiente formato:

"Letra mayúscula" "Número" "Datos"

En el cuadro siguiente, se muestran los comandos empleados en el archivo control para la simulación del patrón de flujo (22)(23)(24):

т	Título de la simulación.
F 2 W	Ejecución automática del cálculo de flujo.
G 1	Número de secciones, transversales, longitudinales y verticales, y número de sedimentos a simularse.
G 3	Distribución en porcentaje de la altura de la sección transversal.
G 7	Secciones de entrada y salida del flujo de agua.
W 1	M de Strickler, caudal de entrada y tirante aguas abajo.
W 2	Secciones de análisis para la interpolación de la superficie de agua.
W 4	Condiciones de pared.
К1	Total de iteracines e intervalo de actualización de la superficie de agua.
К 2	Leyes de pared laterales y superficie.

Tabla 11.- Archivo control - Cálculo del flujo de agua

Una vez que se ha corrido SSIIM con este nuevo archivo control, se genera automáticamente en el mismo directorio donde se está corriendo el programa, un archivo llamado result, el cual contiene los cálculos del flujo de agua, que se han tomado para el cálculo del flujo de sedimentos. Resuelto el cálculo del flujo de agua, se ha procedido con el cálculo de flujo y transporte de sedimentos con los algoritmos descritos a continuación:

т	Título de la simulación.
F 2 RIS	Ejecución automática del cálculo de trasnporte de sedimentos.
F 11	Peso específico de sedimentos y coeficiente de Shields $ heta$
F 33	Intervalo de tiempo y númerod e iteraciones internas.
F 37	Algoritmo para el cálculo de sedimentos impermanente.
F 68	Algoritmo para el cálculo del flujo de sedimentos, sin que se vuelva a calcular el flujo de agua.
G 1	Número de secciones, transversales, longitudinales y verticales, y número de sedimentos a simularse.
G 3	Distribución en porcentaje de la altura de la sección transversal.
G 7	Secciones de entrada y salida del flujo de agua.
G 21	Algoritmo para cálculo de sedimentos en secciones de interés.
I	Concentración de cada tamaño de sedimentos (Kg/s), en la sección trasnversal aguas arriba.
S	Diámetro y velocidad de caída de cada tamaño de sedimento.
Ν	Grupo de sedimentos y fracción de cada tamaño en el 100%
В	Distribución en la malla de los grupos N de sedimentos.
W 1	M de Strickler, caudal de entrada y tirante aguas abajo.
W 2	Secciones de análisis para la interpolación de la superficie de agua.
W 4	Condiciones de pared.
К1	Total de iteracines e intervalo de actualización de la superficie de agua.
К 2	Leyes de pared laterales y superficie.

Tabla 12.- Archivo control - Cálculo flujo de sedimentos

Bernarda Luzuriaga H. Autoría: Diana Amaya Z.

²² (Ordinola, 2009) ²³ (Agraval, 2005)

²⁴ (Olsen N. , 2012)

Archivos de Post – Procesamiento

Result.- Este archivo de salida se escribe luego de converger el cálculo del flujo de agua. Los resultados descritos son los valores de cinco variables calculadas para cada celda. Dichas variables son: Velocidad del agua en tres direcciones (x,y,z), presión, energía cinética de turbulencia (k) y la disipación de la energía turbulenta (ϵ). Este archivo ha sido usado como dato de entrada para los cálculos del flujo de sedimentos.

Boogie.- Aquí se registran los resultados intermedios del cálculo; muestra la eficiencia de atrapamiento y distribución del tamaño del grano del sedimento. Si se usa la opción F1 D, es posible obtener parámetros de las secciones transversales como área de la sección transversal, radio hidráulico, velocidad promedio y tirante de agua. Si al realizar la simulación se presentan problemas en la convergencia o con el mallado, es en este archivo donde se registran los posibles errores cometidos. Si los resultados son satisfactorios, *boogie* indica también la memoria computacional requerida para la convergencia.

Conres.- Es un archivo que se escribe luego del cálculo del flujo de sedimentos. Cada línea presenta tres índices que indican el número del nodo, seguido del valor de la concentración total y por último se escriben las concentraciones (como fracciones de volumen) para cada tamaño de partícula.

Fracres.- Cada línea del archivo describe una célula del fondo. Los dos primeros números identifican la célula en la red estructurada. El tercer número da el espesor de la capa activa de sedimentos en metros, seguida de las fracciones de cada tamaño de sedimentos. Por último se indica el valor de la capa inactiva y las fracciones de cada tamaño de sedimentos en esta capa.

XCYC y Koosurf - Contienen la geometría de la rejilla, estos archivos se usan cuando se reinician cálculos que han cambiado la malla. El *koosuf* es idéntico al archivo *koordina*, excepto que el nivel de la superficie es también escrita en cada línea. El archivo *xcyc* contiene los valores de las direcciones *x*, *y* y *z* de todas las intersecciones de la malla.

4.2.7 Simulación numérica e implementación de SSIIM

Luego de revisar y analizar las condiciones de ensayo y finalidad de estudio, tanto en los modelos físicos (Yelow River y CFE) como en el modelo numérico para el diseño del sistema de lavado (SEDICON). De acuerdo a los objetivos del presente trabajo, se ha visto procedente simular únicamente el tramo que comprende a la zona de sedimentación de la cámara, así como el optar por dividir en dos partes la simulación en SSIIM para poder comparar y discutir los resultados bajo las diferentes condiciones.

Las razones para dicha división son las siguientes:

- En ninguno de los tres casos revisados se presenta un estudio completo del comportamiento de flujo de agua y de sedimentos en la cámara sedimentadora.
- Las condiciones de entrada, material, granulometrías y geometría del desarenador especialmente en la sección transversal, difieren en los tres informes revisados.

- El estudio desarrollado por la CFE en el modelo físico, se centra más en las capacidades del sistema de lavado (SEDICON), al enfatizar las condiciones de desazolve.
- El registro del patrón de flujo de agua limpia y comportamiento hidráulico de la cámara sedimentadora, se realiza únicamente en el modelo físico Yellow River.
- El comportamiento de los sedimentos fue estudiado solo a nivel de prototipo en el informe de diseño y cálculo del sistema de lavado SEDICON.
- En los ensayos de prueba de los dos sistemas de lavado (BIERI y SEDICON) en los modelos físicos, se colocó el sedimento directamente en la tolva, lo cual no permitió registrar y evaluar el asentamiento y distribución del mismo.

Lo expuesto anteriormente ha llevado a plantear y realizar la simulación numérica de acuerdo al siguiente esquema:

Figura 11.- Diseño del proceso de simulación en SSIIM

Las celdas resaltadas en color corresponden a un desarrollo completo de los análisis y resultados.

La primera parte comprende la *simulación del flujo de agua* limpia para dos escenarios diferentes:

- Escenario 1: Condiciones iniciales propuestas en el estudio del modelo físico Yellow River. Es decir, geometría BIERI para caudal de 32.5m³/s y niveles normales de operación; planteando la simulación con y sin valores iniciales de velocidad. Se ha llevado a cabo esta simulación con el fin de observar la importancia de dar velocidades iniciales y evaluar la sensibilidad del modelo numérico; ante el cambio de parámetros en las condiciones de borde y parámetros matemáticos para el cálculo en SSIIM. En esta configuración de modelización, se ha simulado también con un caudal 30m³/s a fin de obtener datos de velocidades iniciales que se han aplicado en el Escenario 2.
- Escenario 2: Condiciones del diseño definitivo. Geometría (SEDICON) para caudal 30m³/s, planteando la simulación con y sin valores iniciales de velocidad.

De la simulación del flujo de agua se han obtenido resultados como, vectores de velocidad de flujo en secciones longitudinales y transversales, velocidades horizontales, esfuerzos de corte en el fondo de la cámara y localización de flujos preferenciales.

La segunda parte constituye la *simulación del flujo de sedimentos.* Una vez resuelta la simulación del flujo de agua para el Escenario 2 sin considerar valores iniciales de velocidad, se llevó a cabo la simulación del flujo de sedimentos para dos granulometrías diferentes:

- Granulometría 1: Planteada por SEDICON para el diseño del sistema de lavado.
 Esta simulación se ha hecho con la finalidad de comparar los resultados del estudio con la simulación.
- Granulometría 2: Perteneciente al cauce natural (Rio Coca).

Los resultados de esta parte de la simulación muestran valores de concentración de sedimentos, zonas de depósito a lo largo de la cámara, diámetro mínimo retenido, aspectos de la eficiencia del desarenador.

4.3 Simulación del Flujo de Agua

4.3.1 SEDICON (Sin velocidades iniciales)

Condiciones Iniciales

La simulación numérica del flujo de agua sin carga de sedimentos para los diseños definitivos del desarenador con sistema de lavado SEDICON se ha realizado como paso previo al cálculo del Flujo de sedimentos con las siguientes condiciones iniciales.

Simulación del Flujo de Agua en la Cámara Desarenadora Geometría - Sedicon						
Condiciones	Iniciales					
Sistema de Lavado	Sedicon					
Número de Cámaras	8					
Caudal Entrada	27,70 m³/s					
Caudal de Lavado	2,3 msnm					
Nivel de Agua en la Cámara	1275,10 msnm					
Rugosidad Ho (Bien Terminado)	0,013					
Temperatura de Agua	20 °C					

Tabla 13.- Condiciones Iniciales – Simulación de flujo (Geometría SEDICON)

El caudal de entrada, corresponde al caudal normal de operación (30m³/s) para cada una de las 8 cámaras cuando se capta 222m³/s, el nivel de agua en la desviación es de 1275.5msnm y el nivel el cuenco amortiguador de 1274.73msnm.

Geometría

Para el estudio del patrón de flujo de agua y flujo de sedimentos, no se consideró toda la geometría de la cámara N°8 del desarenador desde la entrada hasta el cuenco amortiguador. Para el estudio se ha tomado un tramo de 159m de longitud por 13m de ancho comprendido entre la tercera rejilla tranquilizadora y la compuerta que conecta con el cuenco estabilizador. Es decir se ha modelado geométricamente una zona

previa a la cámara de sedimentación (3m), cámara de sedimentación (150m), y una parte de la conexión con el cuenco estabilizador (6m). El valor del nivel de agua 1275.10msnm que se indica en las condiciones iniciales corresponde a 11.40m desde la base en la geometría ingresada. Esto se puede observar claramente en el *Anexo 1*.

Archivo Control - Generación de la Malla Computacional

La malla computacional que contiene la geometría de los volúmenes que integran el cuerpo de agua a modelar, se ha generado mediante Autocad hasta definir las dimensiones más convenientes para los volúmenes (Capitulo 4.2.6). En esta etapa también se ha revisado zonas con geometrías que puedan provocar divergencia o lenta convergencia (cuando se forman ángulos menores a 45°). Se realizaron 2 modificaciones.

- En la zona inicial de la cámara se incrementaron 3m en los cuales se mantiene la geometría de la sección transversal de la cámara, por conveniencia de cálculo en SSIIM. Anexo 1
- La segunda variación en el mallado tiene que ver con la modificación de la geometría al final de la cámara al conectarse con el canal que conduce hacia el cuenco estabilizador. Aquí se ha cambiado la pared vertical al final de la cámara por una inclinada que forma un ángulo de 72° con la horizontal. Anexo 1

Luego de revisar bibliografía referente al mallado y consultar con el manual de SSIMM, se optó por trabajar con un mallado cuyos volúmenes sean de aproximadamente 1m en las tres dimensiones. Para esto se establecieron los siguientes números de secciones:

- 159 Secciones Transversales
- 15 Secciones Longitudinales
- 13 Secciones Verticales

Al abrir SSIIM, la información requerida inicialmente son los valores de longitud, ancho del canal, nivel de agua en el cuerpo, número de secciones transversales y número de secciones longitudinales.

Una vez ingresados estos datos una nueva ventana emerge donde se muestran los valores de los residuales que luego al correr la simulación, indican la convergencia del modelo.

 SSIM for Windows 1.1

 File
 View
 Input Edit
 Calculation
 Variable
 Level/section
 Scale
 Move
 Print

 Residual x-velocity:
 0.000000e+000
 Residual y-velocity:
 0.000000e+000
 Residual z-velocity:
 0.000000e+000

 Residual turb. k:
 0.000000e+000
 Residual epsilon:
 0.000000e+000

 Residual turb. k:
 0.000000e+000
 Residual epsilon:
 0.000000e+000

 Initial - velocity
 Initialion terminated ok
 Plotting grid

 Max.
 Min.
 Min.

Figura 12.- Valores de entrada SSIIM-SEDICON

Figura 13.- Ventana previa a la

Simulación-SSIIM

A continuación al recurrir a los comandos *View* \rightarrow *Grid Editor, View* \rightarrow *Cross Section, View* \rightarrow *Longitudinal,* es posible visualizar una malla rectangular con el número de secciones indicadas anteriormente. Esta malla debe ser modificada en el archivo *koordina* con las coordenadas de los puntos sacados de los planos de Autocad que definen los límites del cuerpo de agua y las secciones transversales. Para esto se cierra SSIIM y en el directorio donde se ejecutó el programa aparecen los archivos que se generan automáticamente dentro de los cuales está el *koordina*.

C C C C C C C C C C C C C C C C C C C							
Organizar ▼ 🖬 Abrir Compartir con ▼ Grabar Nueva carpeta 🛛 🔠 ▼ 🗍 🔞							
☆ Favoritos	<u>^</u>	Nombre	Fecha de modifica	Тіро	Tamaño		
Descargas		📄 boogie	21/05/2014 11:50	Archivo	1.958 KB	No hay	
🧮 Escritorio		control	23/05/2014 19:19	Archivo	1 KB	ninguna	
🖳 Sitios recientes		koordina 🛛	27/04/2014 23:16	Archivo	69 KB	vista previ disponible	
😻 Dropbox		🛃 ssiim1w64_45	17/11/2013 15:20	Aplicación	2.589 KB	disponible	
	+ 4		m		•		
ssiim1w6 Aplicació	4_45 n	Fecha de modifica 17/11/2013 15:20 F Tamaño: 2,52 MB	echa de creación: 23/0	5/2014 18:40			

Figura 14.- Archivos boogie, control y koordina generados automáticamente en SSIIM

Una vez editada la malla en Excel y Bloc de Notas se reemplaza el archivo koordina inicial. Dada la simplicidad de la geometría de la cámara se omitió la creación del archivo *geodata* para los niveles de la cama, por lo que estos fueron modificados también en el archivo *koordina* simultáneamente con las coordenadas X y Y.

El archivo koordina finalmente obtenido corresponde a:

koordina: Bloc de	notas			23
Archivo Edición	Formato Ver	Ayuda		
Archivo Edición 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 10 1 11 1 12 1 13 1 14 2 2 2 3 2 6 2 7 2 8 2 9 2 10 2 12 2 13 2 13 2 15 3 1	Formato Ver 0.0000 0 0.0000 1 0.0000 2 0.0000 3 0.0000 3 0.0000 3 0.0000 5 0.0000 5 0.0000 5 0.0000 6 0.0000 7 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.00000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.6150 1 0.6150 1 0.6150 1 0.6150 1 0.6150 1	Ayuda .0000 .0000 .0000 .0000 .0000 .0000 .5000 .5000 .00000 .000000 .00000 .00000 .00000000	$\begin{array}{c} 4.6700\\ 4.0000\\ 3.3300\\ 2.6700\\ 2.0000\\ 1.3500\\ 2.0000\\ 1.3500\\ 2.0000\\ 0.0000\\ 1.3500\\ 2.0000\\ 2.6700\\ 3.3300\\ 2.6700\\ 3.3300\\ 2.6700\\ 2.0000\\ 1.3500\\ 2.6700\\ 1.3500\\ 2.6700\\ 1.3500\\ 2.6700\\ 1.3500\\ 2.6700\\ 1.3500\\ 2.6700\\ 1.3500\\ 2.6700\\ 1.3500\\ 2.6700\\ 1.3500\\ 1.0000\\ 1.3500\\ 1.0000\\ 1.3500\\ 1.0000\\ 1.0000\\ 1.3500\\ 1.000\\ 1.00$	
*	1.4092 2	. 0000	5. 5500	► d

Figura 15.- Estructura del archivo koordina modificado.

También debe modificarse el archivo *control* con los data sets para la simulación del flujo de agua. El archivo control empleado se muestra en la figura siguiente:

Figura 16.- Archivo control - Simulación de flujo de agua - sin velocidades iniciales

Al correr nuevamente SSIIM con los archivos koordina y control modificados, y visualizado el mallado definitivo se tiene:

Figura 17.- Secciones del mallado - SSIIM

Finalmente, mediante los comandos Calculation \rightarrow Waterflow 3D se calcula el flujo de agua y tras esperar el tiempo que esta simulación requiere para que su solución converja (residuales menores a $1E^3$), se obtuvieron los siguientes valores en los residuales.

Figura 18.- Residuales luego de la convergencia - Cálculo flujo de agua

4.3.2 SEDICON (Con velocidades iniciales)

Condiciones Iniciales

También se ha estudiado el comportamiento del patrón de flujo de agua, cuando a la entrada de la cámara se da valores iniciales de velocidad. Es decir, la velocidad inicial no está condicionada únicamente por el caudal y el área de la sección transversal de ingreso, sino por corrientes de flujo preferencial formadas en el canal que conecta la captación con la cámara sedimentadora. Las velocidades iniciales aplicadas a las condiciones geométricas y de caudal del diseño definitivo, se sacaron a partir de las mediciones obtenidas en la simulación BIERI para caudal de 30m³/s como se explica más adelante.

Los otros valores de entrada para la simulación como caudal, niveles de operación, rugosidad, etc. son los mismos indicados en la Tabla 13.

Geometría

En cuanto a la geometría se mantiene la misma indicada en la Figura 17.

Archivo Control - Generación de la Malla Computacional

Al incorporar velocidades iniciales, el archivo control difiere en el uso del data set G7, el cual se suprime ya que el programa debe leer un archivo de entrada denominado *innflow* (creado en el directorio donde está el ejecutable de SSIIM), que contiene las velocidades para cada celda del mallado de la primera sección transversal del modelo numérico.

La estructura del archivo control es la que muestra a continuación:

📃 control: Bloc de notas	
Archivo Edición Formato Ver Ayuda	
T SEDICON30:P.FLUJO-V.INI F 1 D	
F 2 W G 1 159 15 13 8	
G 3 0.0000 8.4061 16.8132 25.2193 33.6254 42.0325 50.4386 58.8447 67.2518 75.6579 84.0640 92.4711 100.0000 w 1 77 30 11.40	=
w 2 5 1 3 146 151 159 к 1 3600 60000	
К 2 0 1 К 3 0.2 0.2 0.2 0.05 0.2 0.2	Ŧ

Figura 19.- Archivo control - Simulación de flujo de agua - con velocidades iniciales

Para obtener las velocidades a partir de puntos ya conocidos y poder asignar valores a cada celda, para crear el archivo *innflow*, con ayuda de Autocad Civil 3D se han interpolado los valores de velocidad conocidos y se han generado curvas de velocidad dentro de la sección de estudio.

La figura a continuación indica la interpolación generada en Autocad Civil 3D y el archivo *innflow* estructurado a partir de la gráfica.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	📃 innflo	w: Bloc de	notas			×
	Archivo	Edición	Formato	Ver Ayuda		
		Edición 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2	Formato 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 12 13 4 5 6 7 8 9 10 11 12 12 13 14 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12 12	Ver Ayuda 0.271 0.26 0.245 0.245 0.24 0.255 0.28 0.28 0.265 0.25 0.265 0.265 0.265 0.266 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.271 0.275 0.284 0.285 0.285 0.285 0.285 0.265 0.275 0.2	000000000000000000000000000000000000000	< m

Figura 20.- Interpolación de velocidades y archivo innflow

Con el mismo archivo *koordina* y al igual que en la simulación anterior, mediante los comandos *Calculation* \rightarrow *Waterflow* 3D se ha calculado el flujo de agua y la convergencia respectiva (residuales menores a 1E-³).

4.3.3 BIERI (Sin velocidades iniciales)

Puesto que se ha descrito detalladamente, en la sección anterior, el proceso para el cálculo del flujo de agua con y sin velocidades iniciales. En esta parte se resaltarán aspectos importantes tomados en cuenta, para la simulación de la cámara desarenadora con geometría BIERI estudiada en el modelo físico Yellow River.

Condiciones Iniciales

La simulación del flujo de agua sin carga de sedimentos para el modelo físico Yelow River se realizó para las siguientes condiciones:

Simulación del Flujo de Agua en la Cámara Desarenadora Geometría - Bieri						
Condiciones Iniciales						
Sistema de Lavado	Bieri					
Número de Cámaras	7					
Caudal Entrada	32,50 m³/s					
Nivel de Agua en la Cámara	1275,17 msnm					
Rugosidad Hormigon	0,013					
Temperatura de Agua (Simulación)	20 °C					

Tabla 14.- Condiciones iniciales – Simulación de flujo de agua (Geometría BIERI)

El caudal de entrada, corresponde a un caudal de 32.50m³/s para cada una de las 7 cámaras cuando se capta 222m³/s, el nivel de agua en la desviación es de 1275.5msnm y el nivel el cuenco amortiguador de 1274.73msnm.

Geometría

Al igual que en la geometría del diseño definitivo (SEDICON), no se considera toda la geometría de la cámara N°7, también se ha tomado un tramo (159m de longitud por 13m de ancho) comprendido entre la tercera rejilla tranquilizadora y la compuerta que conecta con el cuenco estabilizador. Es decir se ha modelado geométricamente, una zona previa a la cámara de sedimentación (3m), cámara de sedimentación (150m), y una parte de la conexión con el cuenco estabilizador (6m). El valor del nivel de agua 1275.17msnm que se indica en las condiciones iniciales corresponde a 9.85m desde la base en la geometría ingresada.

Archivo Control - Generación de la Malla Computacional

La estructura del archivo control es semejante a la explicada para la simulación SEDICON sin velocidades iniciales. Respecto a la malla, en este caso se optó por trabajar con volúmenes de aproximadamente 1m en las tres dimensiones. Para esto se plantearon los siguientes números de secciones:

- 159 Secciones Transversales
- 14 Secciones Longitudinales
 - 12 Secciones Verticales

4.3.4 BIERI (Con velocidades iniciales)

Condiciones Iniciales

Para esta simulación, los valores de entrada son los expuestos en la Tabla 14 pero añadiendo a esto velocidades iniciales a la entrada de la cámara. Las velocidades iniciales ingresadas en la primera sección se obtienen de las mediciones dadas en el modelo físico Yellow River (Geometría BIERI) para caudal de 32.5 m³/s a los 2 m de la tercera rejilla tranquilizadora. Las cuales, según el informe fueron tomados con un medidor de corriente LS-40 de hélice.

Geometría

La geometría usada es la misma indicada en la Figura 21.

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

Archivo Control - Generación de la Malla Computacional

La estructura del archivo *control* se ha modificado de tal manera que quede como el que se indica en la Figura 19. Es decir, se ha suprimido el data set G7, para que el programa lea el archivo *innflow*. En el modelo físico se tomaron 24 mediciones en la sección transversal las cuales fueron ingresadas en Autocad Civil 3D. Mediante interpolación se determinaron los valores de velocidad para cada celda del mallado, con el fin de elaborar el archivo *innflow* con la estructura antes indicada. La siguiente figura muestra las mediciones del modelo físico y las curvas generadas mediante interpolación, para dar valores de velocidad a las celdas de la malla.

Figura 22.- Interpolación de velocidades a partir del modelo físico

Una vez estructurado el archivo *innflow* y al ejecutar SSIIM, la primera sección registra las velocidades iniciales de la siguiente manera.

Figura 23.- Primera sección en SSIIM con velocidades iniciales

4.3.5 BIERI para caudal de 30 m³/s (con velocidades iniciales)

Para esta simulación se tomaron los archivos generados en BIERI con caudal 32.50 m³/s y se modificó el valor del caudal de entrada en el archivo *control* por un valor de 30 m³/s. Este cambio se hizo con la finalidad de obtener velocidades en la cuarta sección (cuando se estabiliza el modelo numérico), las cuales se aplicaron como velocidades iniciales en la simulación SEDICON para 30 m³/s (Figura 20) y poder evaluar su efecto.

4.4 Simulación del Transporte de Sedimentos

Para determinar la eficiencia del desarenador, SSIIM establece situaciones específicas como: geometría estática (nivel de agua y cauce) y flujo permanente. Evaluándolos en un período corto de tiempo, en el cual no se esperan variaciones importantes físicas, en el fondo (por erosión y/o depósito), ni de las condiciones hidráulicas. Por lo tanto, los algoritmos a usarse deben garantizar flujo de agua permanente y condiciones de sedimentos no permanentes (situación seudo-estática). Dichas condiciones no permanentes en los sedimentos se dan debido a que ingresan con una concentración constante, pero su comportamiento una vez dentro de la cámara no es permanente.

Una vez resuelto el comportamiento hidráulico (simulación del flujo de agua sin carga de sedimentos) del cuerpo de agua, se inicia la simulación del flujo de sedimentos al introducir el material sólido expresado como concentración. Para resolver esto, SSIIM requiere la generación de un nuevo archivo control y la lectura del archivo result producto de la simulación del flujo de agua limpia. El estudio del flujo de sedimentos en el diseño definitivo (geometría SEDICON) se ha llevado a cabo para dos granulometrías como se indicó al inicio de esta sección:

4.4.1 SEDICON - Granulometría del Cauce Natural (Río Coca)

Condiciones Iniciales - Características del Sedimento

La simulación del flujo de sedimentos para el diseño definitivo del desarenador se realiza a partir de los resultados de la simulación del flujo de agua (SEDICON 30 m³/s), sin considerar velocidades iniciales. La granulometría para el primer caso corresponde a la del cauce natural (Rio Coca) y presenta las siguientes características:

Concentración a la entrada: 5 kg/m³.

Densidad de los sedimentos 2.65 gr/cm³

Distribución granulométrica: 9 tamaños representativos, de los cuales los 6 son menores al diámetro de la partícula de diseño.

Las velocidades de sedimentación han sido calculadas con el criterio de Fair y Geyer (25).

GRANULOMETRÍA CAUCE NATURAL (RIO COCA)								
N° Partícula	Diámetro (mm)	%Pasa	% Retenido	Concentración kg/m3	Concentración Inicial (kg/30 m3)	Diámetro (m)	Velocidad de Sedimentación (m/s)	
1	2,00	100	0			0,00200	0,3374	
2	0,50	99	1	0,05	1,50	0,00050	0,1132	
3	0,25	95	4	0,20	6,00	0,00025	0,4330	
4	0,10	49	46	2,30	69,00	0,00010	0,0084	
5	0,07	29	20	1,00	30,00	0,00007	0,0042	
6	0,06	24	5	0,25	7,50	0,00006	0,0031	
7	0,05	17	7	0,35	10,50	0,00005	0,0022	
8	0,04	12	5	0,25	7,50	0,00004	0,0014	
9	0,01	3	9	0,45	13,50	0,00001	0,0001	
			3	0,15	4,50			
	TOTAL		100	5,00	150			

Tabla 15.- Granulometría del cauce natural (Rio Coca)

Archivo Control – Ejecución en SSIIM

El archivo *control* para el cálculo del flujo de sedimentos debe incluir necesariamente los data sets F37 y F68 que le dan las condiciones no permanentes. Además debe contener datos de entrada de los sedimentos como: densidad específica y parámetro de Shields (F11), distribución granulométrica (N), concentración del afluente (I), tamaño de la partícula y su respectiva velocidad de sedimentación (S), etc.

Algunos data sets usados en el cálculo del flujo de agua se mantienen como: G1, G3, G7 que tienen que ver con la geometría del cuerpo de agua. También se conservan W1 y W2 que tienen que ver con los parámetros de entrada como caudal, tirante aguas abajo, número de Strickler y secciones de interpolación para los cálculos.

La estructura del archivo *control* con cada uno de los data sets que intervienen en el cálculo del flujo de sedimentos se describen detalladamente en la Tabla 12 de la sección 4.2.6. Para este caso, usando la granulometría del cauce natural (Rio Coca) el archivo *control* para sedimentos queda como se muestra a continuación:

Control: Bloc de notas		x
Archivo Edición Formato Ver Ayuda		
T F.SEDI-G.PROTOTIPO F 1 D F 2 RIS F 4 0.5 50 0.0001 F 11 2.65 0.052 F 33 50 100 F 37 1 F 68 2		
G 1 159 15 13 8 G 3 0.0000 8.4061 16.8132 25.2193 33.6254 42.0325 50.4386 58.8447 67.2518 75.6579 84.0640 92.4711 G 7 0 1 2 15 2 13 0 0 30 1.0 0.0 0.0 G 7 1 -1 2 15 2 13 0 0 30 1.0 0.0 0.0 G 21 1 4 2 15 2 13 G 21 1 33 2 15 2 13 G 21 1 33 2 15 2 13 G 21 1 91 2 15 2 13	100.0000	
G 21 1 120 2 15 2 13 G 21 1 149 2 15 2 13 G 21 1 159 2 15 2 13 I 1 1.5 I 2 6.0 I 3 69.0 I 4 30.0 I 5 7.50		
$\begin{bmatrix} 1 & 6 & 10.50 \\ 1 & 7 & 7.5 \\ 1 & 8 & 18 \\ 5 & 1 & 0.00550 & 0.11320 \\ 5 & 2 & 0.000250 & 0.43300 \\ 5 & 3 & 0.00010 & 0.00840 \\ 5 & 4 & 0.00070 & 0.00420 \\ 5 & 5 & 0.000060 & 0.00310 \\ 5 & 5 & 0.000060 & 0.00320 \\ \end{bmatrix}$		E
5 7 0.000040 0.00140 5 8 0.000010 0.00010 N 0 1 0.01 N 0 2 0.04 N 0 3 0.46 N 0 4 0.20 N 0 5 0.05 N 0 5 0.07		
$ \begin{bmatrix} N & 0 & 7 & 0 & 05 \\ N & 0 & 8 & 0.12 \\ N & 0 & 8 & 0.0 \\ W & 1 & 77.0000 & 30 & 11.40 \\ W & 2 & 5 & 1 & 3 & 146 & 151 & 159 \\ K & 1 & 360 & 60000 \\ K & 1 & 360 & 60000 \\ L & 0 & 0 & 0 & 0 \\ L & 0 & 0 $		
K 5 0.5 0.5 0.1 0.3 0.3 K 5 1 1 1 1 1 1 K 6 1 1 1 0 0 0		-

Figura 24.- Archivo control – Cálculo flujo de sedimentos – granulometría cauce natural (Rio Coca)

Para correr la parte complementaria de la simulación y resolver el flujo de sedimentos es necesario crear un nuevo directorio donde deben estar el ejecutable de SSIIM, archivo *koordina*, nuevo archivo *control* y la copia del archivo *result* del flujo de agua limpia calculado en la primera parte de la simulación.

Al ejecutar el programa se observa en la pantalla principal los cambios de los tiempos de paso de acuerdo a lo establecido en el F33. Los resultados del flujo de sedimentos se escriben cuando se alcanza el número de iteraciones especificadas en el data set K1. En este caso se escriben cuando las iteraciones llegan a 360 con tiempos de paso de 50, es decir a los 18000 segundos (360 x 50). Así el sedimento que entra a la Autoría: Bernarda Luzuriaga H.

Diana Amaya Z.

cámara tras 18000 segundos es de 2700000 kg (18000s x 150kg/s), lo que en volumen de sedimentos considerando un peso específico de 2650kg/m³ es de 1018.9 m³.

Los archivos que se generan en el directorio donde se ejecuta SSIIM, cuando se resuelve el flujo de sedimentos son: *bedfrac, boogie, conres, fracres, koosurf* y *xcyc*.

	I-30 🕨 Sedicon Sedimentos 🕨 Gra	nulometria Prototipo	- ∮j	Buscar Gra 🔎				
Organizar 🔻 🖬 Abrir Compartir con 🔻 Grabar Nueva carpeta 🛛 🔠 💌 🗍 🔞								
☆ Favoritos	Nombre	Fecha de modifica	Тіро					
📜 Descargas	dedfrac	21/05/2014 16:55	Archivo NEW					
📃 Escritorio	🗋 boogie	24/05/2014 23:26	Archivo					
🗐 Sitios recientes	conres	21/05/2014 16:55	Archivo NEW					
💱 Dropbox	control	24/05/2014 23:24	Archivo	No hay				
	fracres	21/05/2014 16:55	Archivo NEW	ninguna vista				
Bibliotecas	koordina	27/04/2014 23:16	Archivo	previa				
Documentos	koosurf	21/05/2014 16:55	Archivo	disponible.				
Mágenes	result	22/05/2014 18:59	Archivo					
J Música	ssiim1w64_45	17/11/2013 15:20	Aplicación					
Vídeos	🗋 хсус	21/05/2014 16:55	Archivo					
-	•	III	Þ					
ssiim1w6	4_45 Fecha de modifica 17/11/20	13 15:20						
	Fecha de creación: 24/05/20	14 21:13						

Figura 25.- Archivos de resultados para el cálculo del flujo de sedimentos

Los resultados que se obtienen son los siguientes:

Archivo *boogie*

Eficiencia, en la sección *morphology* del archivo *boogie* se muestra el tiempo en segundos, el número de iteraciones y 7 columnas cuyos valores de concentración se expresan como fracción de volumen. Cada columna indica lo siguiente:

- Primera: Muestra una numeración correspondiente a la nomenclatura de los diámetros de sedimento (ingresados en el data set I) que intervienen en la simulación.
- Segunda: Entrada de sedimentos
- Tercera: Salida de sedimentos
- Cuarta: Capa activa de la carga de fondo
- Quinta: Capa inactiva de la carga de fondo
- Sexta: Carga suspendida
- Séptima: Defecto de continuidad, producto de simular una condición seudoestática. Se debe procurar que el defecto sea menor a 0.01

Concentración en secciones de interés, mediante los data sets G21 se ingresan al archivo control las secciones donde se quiere conocer la concentración. En el caso de la cámara del desarenador, los G21 se registran cada 30 m, es decir al final de cada una de las 5 unidades.

En el archivo *boogie*, la concentración en la sección se expresa en kg/s. y las secciones se numeran de menor a mayor, como se ve en la siguiente figura:

Doogie: Bloc de notas	x
Archivo Edición Formato Ver Ayuda	
Time: 18000.000000 seconds 359 Sedim. continuity: In, Out, SuspCh, Bedch., Bedmove, ContDef., MoveDef: (m3, incl. water) Dt: 5.660377e+000 1.762317e+000 4.879946e-004 3.931330e+000 0.000000e+000 3.375737e-002 3.931330e+000 Sum: 2.037736e+003 6.195319e+002 2.874465e+001 1.408321e+003 -5.253012e-014 1.166748e+001 1.408321e+003 Grains size breakdown: (m3, no, water)	*
Size: Inflow Outflow LayerActive LayerInac. Suspended Defect 1 1.018868e+001 8.061264e-002 3.732583e-004 1.010435e+001 3.846077e-003 9.536070e-005 2 4.075472e+001 3.249637e-001 -1.188301e-002 4.044136e+001 4.076403e-003 6.787794e-007 3 4.686792e+002 5.928569e+000 -1.422186e-001 4.611066e+002 2.456711e+000 -4.948052e-002 4 2.037736e+002 5.189767e+001 1.533762e-001 1.594713e+002 3.340234e+000 -1.061558e+001 5 5.094340e+001 2.488798e+001 3.33801e-002 2.998083e+001 1.121723e+000 -4.935532e+000 6 7.132075e+001 5.102121e+001 2.398206e-002 2.754018e+001 1.905843e+000 -8.919189e+000 7 5.094340e+001 4.587710e+001 -1.424157e-003 1.038663e+001 1.535735e+000 -6.626056e+000 8 1.222642e+002 1.297478e+002 -5.554383e-002 1.737971e+000 4.004156e+000 -1.129674e+001 Flux 1 = 134.287347 Flux 2 = 77.181607	
Flux 3 = 57.178286 Flux 4 = 48.192690 Flux 5 = 43.057143 Flux 6 = 43.069647	
Flux 7 = 46.701392	-

Figura 26.- Archivo boogie – Eficiencia y concentraciones en secciones de interés (18000s)

Volumen en metros cúbicos del cambio total en el fondo, este valor es dado al final del archivo *boogie*. De acuerdo al manual de SSIIM un metro cúbico de sedimentos en el fondo contiene aproximadamente 0.5m³ de agua y 0.5m³ de partículas de sedimento, cuyo peso seco es de 1320kg (0.5m³ x 2650kg/m³).

boogie: Bloc de notas	x
Archivo Edición Formato Ver Ayuda	
Time: 18000.000000 seconds Have written conrest file	*
lotal change in bed levels: 1.410208e+003 qubic meter	S 🔻

Figura 27.- Volumen del cambio total en el fondo

Visualizador gráfico de SSIIM

- Curvas de concentración en la sección transversal.
- Curvas de concentración en planta
- Altura de depósito de sedimentos.

Ejemplos de estos gráficos son visibles en el Anexo 3.

4.4.2 SEDICON (Granulometría SEDICON)

Condiciones Iniciales - Características del Sedimento

Cuando se diseñó el sistema de lavado, se buscó dar condiciones desfavorables de granulometría y velocidad de sedimentación. Por esta razón se planteó una granulometría diferente a la del prototipo con las siguientes características.

Concentración a la entrada: 5 kg/m³

Densidad de los sedimentos 2.65 gr/cm³

Distribución granulométrica: 8 tamaños representativos, de los cuales los 4 son menores al diámetro de la partícula de diseño (< 0.25mm).

Las velocidades de sedimentación han sido calculadas con el criterio de D.G. Thomas (26).

GRANULOMETRÍA SEDICON									
N° Partícula	Diámetro (mm)	%Pasa	% Retenido	Concentración kg/m3	Concentración Inicial (kg/30 m3)	Diámetro (m)	Velocidad de Sedimentación (m/s)		
1	1,700	96	4	0,20	6,00	0,001700	0,18300		
2	0,850	74	22	1,10	33,00	0,000850	0,11500		
3	0,420	50	24	1,20	36,00	0,000420	0,06100		
4	0,310	38	12	0,60	18,00	0,000310	0,02630		
5	0,141	24	14	0,70	21,00	0,000141	0,01620		
6	0,106	21	3	0,15	4,50	0,000106	0,01150		
7	0,053	8	13	0,65	19,50	0,000053	0,00252		
8	0,027	3	5	0,25	7,50	0,000027	0,00066		
3 0,15 4,50									
	TOTAL		100	5	150				

Tabla 16.- Granulometría propuesta por SEDICON para el sistema de lavado

La simulación del flujo de sedimentos se realizó también a partir de los resultados de la simulación del flujo de agua (SEDICON 30 m³/s), sin considerar velocidades iniciales.

Archivo Control – Ejecución en SSIIM

El archivo *control* y su ejecución en SSIIM se elaboró de la misma manera que lo explicado anteriormente para el caso de la granulometría del cauce natural.

Con la simulación bajo estas condiciones se ha buscado comparar lo simulado con los resultados de eficiencia del informe de diseño del sistema de lavado SEDICON.

5 RESULTADOS Y DISCUSIÓN

5.1 Patrón de flujo de agua Prototipo (SEDICON 30m³/s sin velocidades iniciales)

		Planta		A lo largo de los 149m de la cámara las líneas de corriente se distribuyen de manera uniforme. No se forman flujos preferenciales o vórtices.
	Cámara	Longitudinal		El flujo presenta un comportamiento laminar. Los vectores de velocidad indican que la tendencia del flujo se desarrolla de manera longitudinal.
		Transversal	aanzan Secciot tatwental #00	La corriente principal tiene una tendencia central
Vectores de Velocidad	Salida de la Cámara	Planta		En la zona de transición donde se reduce el área de la sección transversal, los vectores de velocidad indican un aumento de velocidad; sin embargo hasta el punto de estudio el flujo aun es laminar.
		Longitudinal		El flujo se direcciona hacia la superficie durante la reducción de la sección
		Transversal	Automatical and the second and the s	Internamente los vectores de velocidad convergen hacia el centro y producen aumentos de velocidad, luego cambian de dirección hacia las paredes del canal y nuevamente convergen hacia el centro. Esto indica la posible formacion de turbulencia en puntos mas bajos.
Velocidades	Planta (Nivel Nº 13)			En la cámara Máximo 0.333m/s Minimo 0.250m/s En la transición Máximo 2.40m/s Minimo 0.380m/s Salida (canal rectangular)
Horizontales	Sección Transversal Nº 141		0+021.00 0+141.00	Sección Transversal № 141 Maxima 0,299 m/s Mínima 0,175 m/s
Número de Froude				El número de Froude en la cámara oscila entre los valores (0,025 y 0,52). Al ser menor a 1 indica que el flujo es subcrítico.
Esfuerzo de Corte	03	3		Los esfuerzos de corte son bajos a lo largo de toda la cámara (0,07 -0,12)N/m ² . Pero la salida alcanzan valores de hasta 24,7N/m ² debido a la reducción de la sección e incremento de velocidades del flujo de agua.

Tabla 17.- Patrón de flujo de agua sin considerar velocidades iniciales - SEDICON (30m³/s)

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

5.2 Patrón de flujo de agua Prototipo (SEDICON 30m³/s considerando velocidades iniciales)

		Planta	Presenta el mismo comporta	miento registr	ado en la simulación para				
		Longitudinal	condiciones sin velocidades	iniciales.					
Vectores de Velocidad	Cámara	Transversal	Los vectores de velocidad se y mantienen esa tendencia 31m de la cámara hasta la tr direccionan hacia las pared	Los vectores de velocidad se concentran hacia 5 puntos preferenciales y mantienen esa tendencia durante los primeros 30m. A partir de los 31m de la cámara hasta la transición de salida los vectores se direccionan hacia las paredes de la cámara.					
		Planta							
	Salida de la Cámara	Longitudinal	Presenta el mismo comporta condiciones sin velocidades	Presenta el mismo comportamiento registrado en la simulación para condiciones sin velocidades iniciales.					
		Transversal							
	Planta		En la cámara En la transiciór	Máximo Minimo Máximo	0.371m/s 0.297m/s 2.050m/s				
Velocidades Horizontales			Salida (canal rectangular)	Minimo Máximo	0.790m/s 2.880m/s				
	Secciones Trans	sversales	Sección Maxim Mínima	Transversal № a 0,398 a 0,218	141 m/s m/s				
Número de Froude	El número de Fr el flujo es subc	oude en la cár rítico.	nara oscila entre los valores	(0,03 y 0,68). Al	ser menor a 1 indica que				
Esfuerzo de Corte	Los esfuerzos de corte son bajos a lo largo de toda la cámara (0,09 - 0,25)N/m². Pero la salida alcanzan valores de hasta 26,8 N/m² debido a la reducción de la sección e incremento de velocidades del flujo de agua.								

Tabla 18.- Patrón de flujo de agua considerando velocidades iniciales – SEDICON 30m³/s

Cuando no se dan velocidades iniciales en la entrada de la cámara la simulación se ejecuta con velocidades condicionadas únicamente por el caudal y el área de la sección transversal. Mientras que al dar valores iniciales es posible integrar comportamientos del flujo de agua precedentes a la zona de estudio.

En el caso del prototipo, al realizar la simulación sin velocidades iniciales, en la cámara se registra una velocidad máxima de 0.34m/s (Nivel 13); mientras que al ingresar condiciones iniciales estas influyen a lo largo de toda la cámara, pero sobre todo en la primera unidad (30m), alcanzando velocidades de hasta 0.38m/s (Nivel 13), la cual supera la velocidad de diseño de 0.35m/s. Anexo 2

Cuando se dan velocidades iniciales, se registran velocidades mayores a la de diseño, sin embargo el patrón de flujo tiene el mismo comportamiento, es decir flujo laminar.

El número de Froude menor a uno indica flujo subcrítico para ambos casos.

En lo que respecta al esfuerzo de corte, este aumenta cuando aumenta la velocidad.

5.3 Patrón de flujo de sedimentos - prototipo (SEDICON 30 m³/s)

Para determinar la eficiencia del desarenador, en SSIIM se considera que una cantidad insignificante de sedimentos fluye cerca del fondo y que la mayor parte se halla en suspensión. La solución del flujo de sedimentos se resuelve haciendo uso de la ecuación de convección difusión.

Para llevar a cabo la simulación se han analizado y variado ciertos parámetros, a fin de observar su efecto en el patrón del flujo de sedimentos y la eficiencia de la cámara desarenadora.

El modelo se corrió durante 18000 segundos con un tiempo de paso de 50 segundos con el archivo control indicado en la figura 24.

5.3.1 Granulometría del cauce natural (Río Coca)

La curva de distribución granulométrica del cauce natural, que se estudia para determinar la eficiencia, posee arenas y finos (limo - arcilla), de los cuales aproximadamente el 70% de los sedimentos son arenas y el 30% son finos (Tabla 15).

Eficiencia

La eficiencia se determina en función de los volúmenes de afluencia y efluencia de los sedimentos para cada tamaño en la cámara sedimentadora dados como fracción de volumen (m³). También es posible observar la cantidad de sedimentos presentes en la capa inactiva, activa y la carga suspendida.

Para efectos de comparación, la eficiencia del desarenador se ha calculado para:

		CÁLCULO DE EFICIENCIA - GRANULOMETRÍA CAUCE NATURAL (RIO COCA)										
					Def	ecto		% Remoció	ón			
	N°	Tamaño	Afluencia de	Efluencia de	Capa	Сара	Carga	Defecto	Defecto	Remoción	Remoción	Remoción
			Sedimentos	Sedimentos	Activa	Inactiva	Suspendida			Total	Arena	Limos y
												Arcillas
		(mm)	(m³)	(m³)	(m³)	(m³)	(m³)	(m³)	%	%	%	%
Arena Media												
2,00 mm↓	1	0,5	10,19	0,08	0,00	10,10	0,00	0,00	0,0	99	99	
Arena Fina	2	0,25	40,75	0,32	-0,01	40,44	0,00	0,00	0,0	99	99	
0,250 mm↓	3	0,1	468,68	5,93	-0,14	461,11	2,46	-0,05	0,0	99	99	
	4	0,07	203,77	51,90	0,15	159,47	3,34	-10,62	-5,2	75		75
Limos Arcillas	5	0,06	50,94	24,89	0,03	29,98	1,12	-4,94	-9,7	51		51
0,075 mm↓	6	0,05	71,32	51,02	0,02	27,54	1,91	-8,92	-12,5	28		28
	7	0,04	50,94	45,88	0,00	10,39	1,54	-6,63	-13,0	10		10
										66	00	41

Tabla 19.- Eficiencia del desarenador (SEDICON 30m³/s) – Granulometría cauce natural

Según los resultados obtenidos, los valores de remoción son satisfactorios para el diámetro de la partícula de diseño (0.25mm) ya que se alcanza el 99%.

Concentración en Secciones de Interés

Se determinaron concentraciones en diferentes secciones transversales a lo largo de la cámara específicamente al término de cada unidad. Los resultados muestran que hay

una gran reducción en las 2 primeras unidades, es decir, en los 60 metros iniciales se retiene cerca de los 2/3 de sedimento que ingresa al sistema.

Concentración en Secciones de Interés								
	N°	Sección	Concentración (kg/s)					
Entrada	1	4	134,29					
Unidad 1	2	33	77,18					
Unidad 2	3	62	57,18					
Unidad 3	4	91	48,19					
Unidad 4	5	120	43,06					
Unidad 5	6	149	43,07					
Salida	7	159	46,70					

Tabla 20.- Concentración de sedimentos en secciones de interés – Granulometría cauce natural

Mediante el visualizador gráfico de SSIIM es posible observar también concentraciones totales o por tamaño de sedimento como fracción de volumen en diferentes secciones transversales o a diferentes niveles desde el fondo como se aprecia en el Anexo 3.

Cambios en el Fondo

Según el archivo de resultados de SSIIM, el volumen del cambio total en el fondo de la cámara es de: 1410 m³.

5.3.2 Granulometría propuesta por SEDICON

Se estudió también la eficiencia del desarenador para el escenario de diseño del sistema de lavado SEDICON. Es decir con una granulometría compuesta de aproximadamente el 90% de arenas y 10% de finos. Donde los criterios aplicados para la determinación de la velocidad de caída (D.G. Thomas) son mucho más conservadores respecto al usado en la granulometría del prototipo (Fair y Geyer).

Eficiencia

Para efectos de comparación, la eficiencia del desarenador se ha calculado para:

- Todas las partículas (arena, limo y arcillas)......78 %

		CÁLCULO DE EFICIENCIA - GRANULOMETRÍA SEDICON											
					Def	ecto		% Remoció	ón				
	N°	Tamaño	Afluencia de Sedimentos	Efluencia de Sedimentos	Capa Activa	Capa Inactiva	Carga Suspendida	Defecto	Defecto	Remoción Total	Remoción Arena	Remoción Limos y Arcillas	
		(mm)	(m³)	(m³)	(m³)	(m³)	(m³)	(m³)	%	%	%	%	
	1	1,700	40,75	1,00	-0,06	39,81	0,01	0,00	0,0	98	98		
Arena Media	2	0,850	224,15	5,53	-0,33	218,86	0,08	0,01	0,0	98	98		
2,00 mm↓	3	0,420	244,53	6,10	-0,34	238,61	0,17	0,01	0,0	98	98		
	4	0,310	122,26	3,09	-0,11	119,12	0,20	-0,01	0,0	97	97		
Arena Fina	5	0,141	142,64	3,68	0,02	138,66	0,39	-0,02	0,0	97	97		
0,250 mm↓	6	0,106	30,57	0,84	0,06	29,59	0,13	-0,02	-0,1	97	97		
Limos Arcillas	7	0,053	132,45	85,72	0,77	58,04	3,32	-14,98	-11,3	35		35	
0,075 mm↓	8	0,027	83,60	81,10	-0,03	4,71	2,62	-8,86	-10,6	3		3	
										70	07	10	

Tabla 21.- Eficiencia del desarenador (SEDICON 30m³/s) – Granulometría SEDICON

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

Según los resultados obtenidos los valores de remoción son satisfactorios para el diámetro de la partícula de diseño (0.25mm) ya que se alcanza el 97%.

Al contrastar estos valores de eficiencia con los alcanzados según los estudios del diseño del sistema de lavado SEDICON se observan diferencias del 7% en eficiencia general y 2% en eficiencia para partículas mayores a 0.25mm

Concentración en Secciones de Interés

Se determinaron concentraciones en las mismas secciones transversales que en la simulación anterior, es decir al término de cada unidad. Los resultados muestran que hay una gran reducción en la primera unidad, es decir en los 30 metros iniciales se retiene más de los 2/3 de sedimento que ingresa al sistema.

Concentración en Secciones de Interés								
	NI ⁰	Conión	Concentración					
	IN	Seccion	(kg/s)					
Entrada	1	4	92,80					
Unidad 1	2	33	31,34					
Unidad 2	3	62	26,69					
Unidad 3	4	91	24,56					
Unidad 4	5	120	22,97					
Unidad 5	6	149	23,94					
Salida	7	159	28,54					

Tabla 22.- Concentración de sedimentos en secciones de interés - Granulometría SEDICON

Cambios en el Fondo

Volumen del cambio total en el fondo: 1654 m³

5.3.3 Pruebas de sensibilidad - simulación del flujo de sedimentos

Para la prueba de sensibilidad en el cálculo del flujo de sedimentos se varió el valor del parámetro de Shields entre 0.047 que es el valor de defecto en SSIIM y el valor de 0.056 que se establece en la literatura convencional como límite para inicio de movimiento.

Luego de ejecutar las simulaciones, se determinó que el porcentaje de remoción de los sedimentos no varía en más del 1%, por lo que la eficiencia prácticamente es la misma.

Eficiencia								
Shielde	Remoción	Remoción	Remoción Limos					
Silleius	Total	Arena	y Arcillas					
0,047	77,76	97,44	18,72					
0,052	77,81	97,46	18,89					
0,056	77,88	97,48	19,08					

Tabla 23.- Prueba de sensibilidad - Variando el parámetro de Shields

Con ambas granulometrías la eficiencia del desarenador es alta cuando se evalúan solo partículas de arena o partículas superiores a la partícula de diseño.

5.4 Patrón de flujo de agua - Bieri 32.5 m³/s Sin velocidades iniciales

		Modelo Físico	Simulación	Comentario
	Planta			Tanto en el modelo físico como en el modelo numérico, a lo largo del tramo de la cámara desarenadora (149m), se registra una distribución uniforme de las líneas de corriente.
Cámara	Longitudinal			Del mismo modo que el comportamiento en planta, los vectores de velocidad indican una distribución uniforme y que la tendencia del flujo se desarrolla de manera longitudinal, en el modelo físico y numérico.
	Transversal	No se registra comportamiento del patron de flujo.	8421.00 8422.00	El modelo numérico indica que la corriente principal tiende a concentrarse al centro de la cámara.
	Planta			En la zona de transición (modelo físico y numérico), donde se reduce el área de la sección transversal, los vectores de velocidad muestran mayor concurrencia produciendo un aumento de velocidad. Sin embargo, el flujo es laminar a lo largo de todo el canal.
Salida de la Cámara	Longitudinal			El flujo se direcciona hacia la superficie durante la reducción de la sección.
	Transversal	No se registra comportamiento del patron de flujo.	Diffe	El comportamiento de los vectores de velocidad, en la cámara desarenadora, indica que dichos vectores se direccionan hacia la superficie de agua y en la salida del canal adoptan un comportamiento distinto, unos convergen hacia el centro y otros hacia la pared derecha lo cual indica la posible formacion de turbulencia en puntos mas bajos.
Planta (Nivel No 13)				En la cámara Máximo 0.348m/s Minimo 0.297m/s En la transición Máximo 1.979m/s Minimo 0.705m/s Salida (canal rectangular) Máximo 2.298m/s
Secciones Transversales		0+021.00	0+141.00	Sección Transversal N° 141 Máxima 0.344 m/s Mínima 0.212 m/s

Tabla 24.- Patrón de flujo de agua sin considerar velocidades iniciales - BIERI 32.5m³/s

Tanto en el modelo físico como en la simulación, los vectores de velocidad indican que la tendencia del flujo se desarrolla de manera longitudinal y no hay la presencia de flujos preferenciales o formación de vórtices, por lo que hasta el punto de estudio, el patrón de flujo tiene un comportamiento laminar. Sin embargo, como se puede observar en la figura del modelo físico y simulación (en la salida), el flujo se vuelve turbulento.

5.5 Patrón de flujo de agua - Bieri 32.5 m³/s considerando velocidades iniciales

		Planta	Presenta el mis	mo comportamie	nto registrado	o en la simulación sin				
		Longitudinal	velocidades ini	velocidades iniciales.						
Vectores de Velocidad	Cámara	Transversal	Los vectores de la superficie y fo primeros 30m. A vectores se dire trapezoidal) y e zona de la trans paredes de la c	Los vectores de velocidad se concentran en puntos preferenciales en la superficie y fondo manteniendo este comportamiento durante los primeros 30m. A partir de los 31m de la cámara hasta los 141m los vectores se direccionan hacia las paredes en el fondo (en la zona trapezoidal) y en la parte rectangular se dirigen a la superficie. En la zona de la transición de salida, los vectores se direccionan hacia las paredes de la cámara.						
	Salida de la	Planta								
		Longitudinal	Presenta el mismo comportamiento registrado en la simulación sin velocidades iniciales.							
		Transversal								
				En la cámara	Máximo	0.417m/s				
					Minimo	0.250m/s				
Velocidades	Dlar	ata		En la transición	Máximo	2.177m/s				
Horizontales	ridi	11.0			Minimo	0.701m/s				
				Salida (canal rectangular)	Máximo	2.545m/s				

Tabla 25.- Patrón de flujo de agua considerando velocidades iniciales - BIERI 32.5m³/s

Cuando se consideran velocidades iniciales, el comportamiento del flujo es diferente, alrededor de los primeros 30m se observa la presencia de flujos preferenciales, siendo éstos más visibles en las primeras secciones y disminuyendo en tanto la longitud avanza. Esto se puede confirmar con lo registrado en el Anexo 4.

5.5.1 Pruebas de sensibilidad - simulación del flujo de agua

Las pruebas de sensibilidad se realizaron con el objetivo de tener resultados que nos permitan evaluar la influencia de parámetros numéricos, condiciones hidráulicas y físicas en la simulación.

Como una primera prueba, se obtuvieron velocidades horizontales variando el nivel de operación en la cámara hasta la salida, con los siguientes resultados:

		1275.1	7msnm	1275.19	msnm
		Sin Velocidades Iniciales m/s	Con Velocidades Iniciales m/s	Sin Velocidades Iniciales m/s	Con Velocidades Iniciales m/s
0,004.00	Máxima	0.3062	0.4195	0.3055	0.4195
0+004.00	Mínima	0.3049	0.2394	0.3042	0.2394
0+021 00	Máxima	0.3075	0.4010	0.3067	0.4010
0-021.00	Mínima	0.2828	0.2562	0.2822	0.2562
0+1/11 00	Máxima	0.3440	0.3875	0.3432	0.3876
0+141.00	Mínima	0.2120	0.2183	0.2114	0.2181
0+158.00	Máxima	2.3773	2.6357	2.3508	2.6127
	Mínima	1.9739	2.1302	1.9520	2.1111

Tabla 26.- Velocidades máximas y mínimas en secciones de interés, variando el nivel de operación.

Los niveles se variaron entre 1275.17msnm y 1275.19 msnm, que fue lo descrito en el modelo físico. Según lo registrado, la influencia del cambio de nivel de operación, sobre las velocidades horizontales afecta al tercer decimal cuando las lecturas se realizan en m/s, por lo que puede decirse que no es apreciable.

En la segunda prueba, las velocidades horizontales fueron registradas para el nivel de operación más alto (1275.19msnm) con diferentes valores de rugosidad.

		η=0.013		η=0.015		η=0.017	
		Sin Velocidades Iniciales m/s	Con Velocidades Iniciales m/s	Sin Velocidades Iniciales m/s	Con Velocidades Iniciales m/s	Sin Velocidades Iniciales m/s	Con Velocidades Iniciales m/s
0+004.00	Máxima	0.3055	0.4195	0.3055	0.4191	0.3055	0.4187
	Mínima	0.3042	0.2394	0.3040	0.2400	0.3036	0.2398
0+021.00	Máxima	0.3067	0.4010	0.3070	0.3997	0.3074	0.3983
	Mínima	0.2822	0.2562	0.2778	0.2564	0.2727	0.2526
0+141.00	Máxima	0.3432	0.3875	0.3461	0.3895	0.3494	0.3919
	Mínima	0.2114	0.2562	0.2022	0.2109	0.1928	0.2032
0+158.00	Máxima	2.3508	2.6127	2.3484	2.6104	2.3456	2.6077
	Mínima	1.9520	2.1111	1.9690	2.0854	1.8951	2.0526

Tabla 27.- Velocidades máximas y mínimas en secciones de interés, variando coeficiente de rugosidad.

Los resultados de esta prueba, para el caso sin velocidades iniciales, no muestran variaciones importantes en las dos primeras abscisas y el máximo valor de la tercera. En el valor mínimo de la tercera abscisa hay una notoria diferencia entre las velocidades correspondientes a rugosidad 0.013 y 0.017, 0.21m/s y 0.19m/s respectivamente. Las velocidades para la abscisa cuatro varían en el tercer decimal.

Una tercera prueba se hizo con los valores más altos del nivel de operación y rugosidad, realizando variaciones en los coeficientes de relajación. Se cambiaron los data sets correspondientes al número de iteraciones y paso de tiempo, dando valores altos y bajos para ver su influencia.

		K1 Y K	3 Bajos	K1 Y K3 Altos		
		Sin Velocidades Iniciales m/s	Con Velocidades Iniciales m/s	Sin Velocidades Iniciales m/s	Con Velocidades Iniciales m/s	
0+004.00	Máxima	0.3055	0.4187	0.3055	0.4187	
	Mínima	0.3064	0.2398	0.3036	0.2398	
0+021.00	Máxima	0.3074	0.3983	0.3074	0.3983	
	Mínima	0.2727	0.2526	0.2727	0.2526	
0+141.00	Máxima	0.3494	0.3919	0.3494	0.3919	
	Mínima	0.1928	0.2032	0.1928	0.2032	
0+158.00	Máxima	2.3456	2.6077	2.3456	2.6077	
	Mínima	1.8951	2.0526	1.8951	2.0526	

Tabla 28.- Velocidades máximas y mínimas en secciones de interés, variando coeficientes de relajación.

Para K1 y K3, bajos y altos, y sin condiciones de velocidad inicial; el valor de velocidad es exactamente el mismo, excepto en el mínimo correspondiente a la primera abscisa. Para el caso con condiciones iniciales, todos los valores en las cuatro abscisas son los mismos.

Como resultado de éstas pruebas de sensibilidad se puede decir que, dado el caso, no se refleja mayor diferencia en las velocidades del flujo de agua, pues éstos valores difieren casi en su totalidad en el tercer decimal y para fines prácticos no se considera velocidades con más de dos decimales, teniendo entonces como resultados finales los datos expuestos en las secciones 5.4 y 5.5. Una ampliación de estos ensayos está en el Anexo 4.

Se usaron los resultados del modelo físico para contrastar el comportamiento del patrón de flujo de agua y velocidades ante variaciones:

- En las velocidades iniciales
- En la rugosidad
- En el nivel de agua
- En los coeficientes de relajación en SSIIM

Lo que se pudo evaluar durante todos los cambios aplicados al modelo es que, el hecho de dar velocidades iniciales influye en 0.05m/s, mientras que al variar los parámetros estudiados en las pruebas de sensibilidad la influencia en las velocidades no supera 0.01m/s. Los resultados de velocidades en la simulación, con condiciones iniciales de velocidad, se asemejan más a lo medido en el modelo físico a lo largo de toda la cámara.

6 CONCLUSIONES Y RECOMENDACIONES

- Se ha realizado la construcción del modelo numérico SSIIM para el desarenador del proyecto hidroeléctrico Coca Codo Sinclair utilizándose la información y los resultados de los modelos físicos: i) Modelo de Yellow River (China), y ii) Modelo físico de la Comisión Federal de Electricidad (México), así como los resultados de la modelización numérica del prototipo para el Proyecto que fuera ejecutada mediante 2D "SED-TRAP", para realizar un estudio comparativo del desempeño del modelo de estudio.
- Se ha realizado para el Proyecto, la simulación de los procesos de flujo en dos escenarios que reproducen las condiciones establecidas en el modelo físico de Yellow River, y que pronostican el comportamiento de la obra bajo las condiciones establecidas en el modelo de la CFE.
- Se ha realizado la simulación de procesos de transporte de sedimento para el modelo sistema de lavado de sedimento (SEDICON) adoptado por el Proyecto
- En la simulación realizada en el prototipo, el estudio permite establecer que obviar velocidades de entrada como condición de frontera tienen un efecto de subestimación de las velocidades de flujo en la cámara de sedimentación. Para el análisis realizado, y considerando valores de entrada de velocidad, el modelo SSIIM registra valores de hasta 0.38 m/s el cual, aunque corresponde a flujo laminar, es superior al valor de diseño de 0.35 m/s. Por otro lado, la no consideración de velocidades de entrada al modelo, indica velocidades máximas en la cámara de tan solo 0.34 m/s.
- En referencia a los procesos de transporte de sedimento, para el estudio se ha considerado la distribución granulométrica del prototipo (material del Río Coca), que presenta aproximadamente 70% de arena y 30% de material fino.
- La eficiencia del desarenador ha sido evaluada de manera discriminada por tamaño de partículas, obteniéndose valores de 66% (total de la mezcla), 99% de atrapamiento para el caso de arenas, y 41% de atrapamiento para el caso de partículas finas.
- Adicionalmente, el estudio permite caracterizar la variación de la concentración de carga en suspensión para diferentes secciones de interés, las mismas que van desde 134 kg/s en la entrada, hasta 47 kg/s a la salida de la estructura.
- Como un escenario adicional de modelización, se consideró la distribución granulométrica propuesta por el diseño de SEDICON, mismo que considera una proporción de 90% de arena y 10% de material fino. Para este escenario, el

estudio mediante modelo SSIIM indica eficiencia de atrapamiento de 78% para el total de la mezcla, 97% para arenas y 41% de atrapamiento para finos.

- En consideración del diámetro de interés para el proyecto (0.25mm), los resultados permiten concluir que existe una excelente eficiencia de retención.
- Para la granulometría del río Coca, se proyecta adicionalmente, un cambio en la configuración del fondo equivalente a un volumen de 1410 m³ correspondiente a un periodo de simulación de 18000 s (5 horas), mientras que para la granulometría ensayada por Sedicon se obtendría un volumen de 1654 m³.
- El análisis del parámetro crítico para considerar movimiento incipiente, permite establecer que la influencia en el resultado referente a remoción de sedimento es menor a 1%, por lo tanto no es un parámetro sensible en la modelización numérica.
- En lo que respecta a la implementación de la simulación con geometría Bieri, lo que se pudo evaluar durante todos los cambios aplicados al modelo es que, el hecho de dar velocidades iniciales incrementa las velocidades en (0.05 0.07)m/s en la cámara, 0.2m/s en la transición y 0.25m/s en la salida. Mientras que al variar los parámetros estudiados en las pruebas de sensibilidad la influencia en las velocidades no supera 0.01m/s.
- La eficiencia del desarenador es satisfactoria. Pues se alcanzan altas retenciones para tamaños de sedimento superiores a 0.075mm.
- Se recomienda, como trabajo complementario realizar una calibración final del modelo SSIIM para el proyecto Coca Codo Sinclair, para ello será necesario realizar la medición de parámetros importantes de flujo para diferentes condiciones de operación de la obra y para diferentes secciones. Este trabajo, si bien es exhaustivo, se considera importante para disponer de una herramienta más completa que permitirá la toma de decisiones y la optimización de su funcionamiento.
- Sobre la base del estudio comparativo realizado entre los resultados obtenidos por SSIIM y los resultados que fueran obtenidos por los modelos físicos, se concluye que el modelo numérico SSIIM es adecuado para el análisis y simulación de procesos de flujo y procesos de transporte de sedimentos asociados a obras hidráulicas para sedimentación.
- Es necesario indicar sin embargo, la importancia que tiene la generación de un archivo de control bien estructurado que contenga información y parámetros de

contorno apropiados que reflejen las reales condiciones o condiciones esperadas en las cuales se desempeñará la obra a estudiar.

- La implementación de la geometría, para la simulación del cuerpo de agua, es el proceso que mayor tiempo cuidado requiere, pues de éste depende el éxito para obtener una buena malla computacional que genere resultados confiables. Se recomienda realizar pruebas de validación y de afinamiento de la configuración de la malla.
- Por otro lado, es recomendable realizar diversos ensayos en una misma simulación, variando los intervalos de paso de tiempo para cada iteración, cambiando coeficientes de relajación, etc. a fin de obtener una buena convergencia y estabilidad de la simulación.
- Se recomienda continuar con el estudio del modelo numérico SSIIM, realizando la implementación en modelos hidráulicos construidos o que se prevean construir a través del Laboratorio de Hidráulica & Dinámica de Fluidos de la Universidad de Cuenca, a fin de evaluar el desempeño en otros aspectos como: transporte de carga de lecho en embalses, variación de la tasa de concentración en bocatomas, campos de flujo en obras anexas como vertederos, desagües de fondo, entre otras.

7 BIBLIOGRAFÍA

www.ccs.gob.ec. (2012). Recuperado el 5 de Noviembre de 2013, de http://www.ccs.gob.ec/index.php?option=com_allvideoshare&view=video&slg=coca-codo-001&orderby=default&Itemid=132

Agraval, A. (Junio de 2005). Master Thesis. *Numerical Modelling of Sediment Flow in Tala Desilting Chamber*. Trondheim, Norway.

Fernandez, J., Delgado, P., Herrero, S., & Salete, E. (2011). *Simulación tridimensional del flujo fluvial en el barranco del Bufadero, en Tenife, mediante ANSYS-CFX y XFlow.* Recuperado el 29 de Abril de 2013, de www.ingenieríadelagua.com: http://www.ingenieriadelagua.com/2004/JIA/Jia2011/pdf/p492.pdf

Hidroeléctrica Coca Codo Sinclair. (2011). *Desing report - Volume II - Hydrologic and sediment analysis.* Quito - Ecuador.

Hidroeléctrica Coca Codo Sinclair. (2013). *Memoria de cálculo hidráulico del desarenador en la obra de captación.* Quito, Ecuador.

Krochin, S. (1978). Diseño Hidráulico. Quito, Ecuador: Escuela Politécnica Nacional.

Martín Vide, J. (2003). *Ingeniería de Rios.* Universidad Politécnica de Cataluña - Cataluña: Alfaomega Grupo Editor.

Naylor, T. (1996). Técnicas de Simulación en Computadoras.

Novak, P., Moffat, A., & Nalluri, C. (2001). *Estructuras Hidráulicas* (2a Edición ed.). Mc Graw-Hill, Interamericana S.A.

Olsen, N. (2000). *CFD Algorithms for Hydraulic Engineering.* Noruega: The Norwegian University of Science and Technology.

Olsen, N. (2012). *Numerical Modelling and Hydraulics.* Trondheim: Department of hydraulic and Environmental Engineering The Norwegian University of Science and Technology.

Ordinola, J. (2009). Simulación numerica tridimensional del comportamiento hidráulico del embalse Limón - Proyecto Olmos. Piura - Perú.

Reyes, J. (2003). XIV Congreso Nacional de Ingeniería Civil. *Problemas presentados y soluciones adoptadas, durante el diseño, de los desarenadores construidos en el Perú*, (pág. 10). Iquitos, Perú.

Rocha, A. (1998). *Introducción a la Hidráulica Fluvial*. Lima - Perú: Universiadad Nacional de Ingeniería - Facultad de Ingeniería Civil.

Sparrow, E. (2008). Recuperado el 15 de Julio de 2013, de Universidad Nacional del Santa - Biblioteca Central: http://biblioteca.uns.edu.pe/saladocentes/archivoz/publicacionez/trabajo_de_desarenad or1__tmp4a134267.pdf

Vásquez, J. (2003). *www.oocities.org/hidropiura*. Recuperado el 15 de Abril de 2013, de Modelación Numérica en Hidráulica: http://www.oocities.org/hidropiura/ModelNum.pdf

Yellow River Engineering Consulting Co. (2012). *Experimental Research on Performance of Newly Added Sedimentation Sub-basin and Desilting System of the CCS Hydropower Station Complex.*

Yellow River Engineering Consulting Co. (2012). *Investigación experimental sobre el rendimiento de la cámara #7 del desarenador de la central hidroeléctrica CCS.* Zhengzhou - China.

ANEXOS

ANEXO 2: Resultados en SSIIM - Patrón de flujo de agua prototipo (SEDICON 30m³/s)

Vectores de velocidad

Planta

Logitudinal

Transversal

Velocidad horizontal en diferentes niveles

Planta

Nivel #3

Nivel #6

Nivel #9

Nivel #13

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

Esfuerzos de corte en el fondo

Número de Froude

Velocidad horizontal en diferentes secciones transversales con y sin velocidades iniciales

ANEXO 3: Resultados en SSIIM - Patrón de flujo de sedimentos prototipo (SEDICON 30 m³/s)

Concentración de sedimentos

Planta y Secciones Transversales

Altura de depósito de sedimentos

Concentración de sedimentos variando el parámetro de Shields - SEDICON

Secciones transversales

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

ANEXO 4: Resultados en SSIIM-Patrón de flujo de agua BIERI 32.5 m³/s

Vectores de velocidad considerando condiciones iniciales de velocidad y sin considerar.

Secciones Transversales

Velocidad horizontal con diferentes niveles de operación con y sin condiciones iniciales de velocidad

	SIMULACIÓN			
MODELO FÍSICO	1275.1	7msnm	1275.1	9msnm
	Sin Velocidades Iniciales	Con Velocidades Iniciales	Sin Velocidades Iniciales	Con Velocidades Iniciales
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Legend 0.306222 m/s 0.30605 m/s 0.30572 m/s 0.30578 m/s 0.30578 m/s 0.305138 m/s 0.305138 m/s 0.304921 m/s 0+004.00	Legend 0.419503 m/s 0.399488 m/s 0.359474 m/s 0.291444 m/s 0.291444 m/s 0.291444 m/s 0.291444 m/s 0.291444 m/s 0.291415 m/s 0.4004.00	Legend 0.305/476 m/s 0.305/476 m/s 0.305/876 m/s 0.306/876 m/s	Legend 0.41951 4m/s 0.389496m/s 0.359478m/s 0.239442m/s 0.239442m/s 0.239442m/s 0.239447m/s 0.239442m/s 0.239442m/s 0.239442m/s 0.239442m/s 0.239447m/s 0.4004.00
1036 0.36 0.40 0.39 0.29 1275 1030 0.35 0.40 0.47 0.27 1275 1030 0.35 0.38 -0.39 0.32 1271 1031 0.37 0.38 -0.38 0.32 1271 0.31 0.37 0.38 0.37 138 0.31 0.31 0.31 0.31 1267 1269 1259 0.31 0.31 1267 1269 0.31 0.31 0.31 0.31 1267 1269 0.31 0.31 1267 1269 1269 0.31 0.31 0.31 1267 1269 0.31 0.31 0.31 1267 1269 0.31 0.31 0.31 1267 1269 0.31 0.31 0.31 1267 1269 0.31 0.31 0.31 0.31	Legend 0.307489 m/s. 0.303373 m/s. 0.295143 m/s. 0.295143 m/s. 0.295147 m/s.	Legend 0.376832 m/s 0.376832 m/s 0.3785211 m/s 0.328551 m/s 0.328551 m/s 0.288520 m/s 0.40095 m/s 0.40005 m/s 0.4	Legend 0.305739 m/s 0.302641 m/s 0.295434 m/s 0.294446 m/s 0.294446 m/s 0.29430 m/s 0.296250 m/s 0.296250 m/s 0.296250 m/s	Legend 0.30994 m/s 0.376852 m/s 0.326537 m/s 0.326537 m/s 0.326537 m/s 0.326537 m/s 0.326537 m/s 0.326537 m/s 0.326537 m/s 0.200333 m/s 0.200333 m/s 0.220033 m/s 0.220030 m/s 0.220030 m/s 0.220030 m/s 0.220030 m/s 0.220030 m/s 0.22000 m/s 0.2200
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Legend 0.343980 m/s 0.343980 m/s 0.231995 m/s 0.25199 m/s 0.255991 m/s 0.255991 m/s 0.255991 m/s 0.255991 m/s 0.255991 m/s 0.255991 m/s 0.212000 m/s 0.21200 m/s 0.2	Legend 0.38751 6 M/s 0.38751 6 M/s 0.393101 m/s 0.32093 m/s 0.32101 m/s 0.26477 m/s 0.246477 m/s 0.246477 m/s 0.4141.00	Legend 0.343228 m/s 0.321259 m/s 0.2217323 m/s 0.227323 m/s 0.23387 m/s 0.23387 m/s 0.23387 m/s 0.23387 m/s 0.4141.00	Legend - 0.397590 m/s - 0.353355 m/s - 0.31121 m/s - 0.302807 m/s - 0.246418 m/s - 0.246
En los ensayos del modelo físico, no se registran mediciones de velocidad en esta abscisa.	Legend 2.377320 m/s. 2.310005 m/s. 2.24250 m/s. 2.175615 m/s. 2.041145 m/s. 0+158.00	Legend 2.635706 m/s 2.65147 m/s 2.382928 m/s 2.241409 m/s 2.214409 m/s 0+158.00	Legend 2.350831 m/s. 2.284351 m/s. 2.217071 m/s. 2.151391 m/s. 2.018431 m/s. 2.018431 m/s. 0.415851 m/s. 0.4158.00	Legend 2.512744 m/s. 2.522131 m/s. 2.45218 m/s. 2.361905 m/s. 2.2194678 m/s. 2.194678 m/s. 0+158.00

Secciones Transversales

Secciones Transversales

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

Velocidad horizontal con diferentes coeficientes de relajación con y sin condiciones iniciales

Secciones Transversales

ANEXO 5: Archivo koordina – geometría SEDICON

	:	v	v	-
•	J	^	у	2
1	1	0.000	0.000	4.670
1	2	0.000	1.000	4.000
1	3	0.000	2.000	3.330
1	4	0.000	3.000	2.670
1	5	0.000	4.000	2.000
1	6	0.000	5.000	1.350
1	7	0.000	5.500	1.000
1	8	0.000	6.500	0.000
1	9	0.000	7 50 0	1000
1	10	0.000	8 000	1350
1	10	0.000	0.000	2.000
-	11	0.000	9.000	2.000
1	12	0.000	10.000	2.670
1	13	0.000	11.000	3.330
1	14	0.000	12.000	4.000
1	15	0.000	13.000	4.670
2	1	0.615	0.000	4.670
2	2	0.615	1.000	4.000
2	3	0.615	2.000	3.330
2	4	0.615	3.000	2.670
2	5	0.615	4.000	2.000
2	6	0.615	5.000	1.350
2	7	0.615	5 500	1000
2	,	0.015	6.500	0.000
2	0	0.015	0.500	0.000
2	9	0.615	7.500	1.000
2	10	0.615	8.000	1.350
2	11	0.615	9.000	2.000
2	12	0.615	10.000	2.670
2	13	0.615	11.000	3.330
2	14	0.615	12.000	4.000
2	15	0.615	13.000	4.670
3	1	1.489	0.000	4.670
3	2	1.489	1.000	4.000
3	3	1,489	2.000	3.330
3	4	1,489	3.000	2.670
3	5	1489	4 000	2 000
3	6	1/80	5.000	1350
0	7	1.400	5.000	1.000
3	/	1.489	5.500	1.000
3	8	1.489	6.500	0.000
3	9	1.489	7.500	1.000
3	10	1.489	8.000	1.350
3	11	1.489	9.000	2.000
3	12	1.489	10.000	2.670
3	13	1.489	11.000	3.330
3	14	1.489	12.000	4.000
3	15	1.489	13.000	4.670
4	1	2.671	0.000	4.670
4	2	2.671	1.000	4.000
4	- 3	2 671	2 000	3 330
-	1	2.671	3,000	2 670
7		2.071	4 000	2.070
4	5	2.071	4.000	2.000
4	6	2.671	5.000	1.350
4	7	2.671	5.500	1.000
4	8	2.671	6.500	0.000
4	9	2.671	7.500	1.000
4	10	2.671	8.000	1.350
4	11	2.671	9.000	2.000
4	12	2.671	10.000	2.670
			11.000	2 2 2 2
4	13	2.671	11.000	3.330
4	13 14	2.671	12.000	4.000

i	j	x	У	z
5	1	3.699	0.000	4.670
5	2	3.699	1.000	4.000
5	3	3.699	2.000	3.330
5	4	3.699	3.000	2.670
5	5	3.699	4.000	2.000
5	6	3.699	5.000	1350
5	7	3.699	5.500	1.000
5	8	3 699	6 500	0.000
5	9	3 699	7 500	1000
5	10	3 600	8.000	1350
5	11	2 600	0.000	2 000
5	10	3.600	10,000	2.000
5	12	3.099	11,000	2.070
5	14	3.099	12.000	3.330
5	14	3.699	12.000	4.000
0	CI	3.699	13.000	4.670
6	1	4.727	0.000	4.670
6	2	4.727	1.000	4.000
6	3	4.727	2.000	3.330
6	4	4.727	3.000	2.670
6	5	4.727	4.000	2.000
6	6	4.727	5.000	1.350
6	7	4.727	5.500	1.000
6	8	4.727	6.500	0.000
6	9	4.727	7.500	1.000
6	10	4.727	8.000	1.350
6	11	4.727	9.000	2.000
6	12	4.727	10.000	2.670
6	13	4.727	11.000	3.330
6	14	4.727	12.000	4.000
6	15	4.727	13.000	4.670
7	1	5.755	0.000	4.670
7	2	5.755	1.000	4.000
7	3	5.755	2.000	3.330
7	4	5.755	3.000	2.670
7	5	5.755	4.000	2.000
7	6	5.755	5.000	1.350
7	7	5.755	5.500	1.000
7	8	5.755	6.500	0.000
7	9	5.755	7.500	1.000
7	10	5.755	8.000	1.350
7	11	5.755	9.000	2.000
7	12	5.755	10.000	2.670
7	13	5,755	11.000	3.330
7	14	5.755	12.000	4.000
7	15	5 755	13 000	4 670
8	.0	6 783	0.000	4 670
8	2	6 783	1000	4 000
8	2	6 783	2.000	3 330
0	4	6 79 2	2.000	2.670
0 8	4 5	6 782	4 000	2.070
0	6	6 70 3	5.000	1250
0	7	6 70 0	5.000	1.300
0		0.703	0.000	0.000
ő	ð	0.783	0.500	0.000
ð	9	0.783	7.500	1.000
8	10	6.783	8.000	1.350
8	11	6.783	9.000	2.000
8	12	6.783	10.000	2.670
8	13	6.783	11.000	3.330
8	14	6.783	12.000	4.000
8	15	6.783	13.000	4.670

i	j	х	У	z
9	1	7.811	0.000	4.670
9	2	7.811	1.000	4.000
9	3	7.811	2.000	3.330
9	4	7.811	3.000	2.670
9	5	7.811	4.000	2.000
9	6	7.811	5000	1350
9	7	7.811	5 500	1000
9	8	7.811	6.500	0.000
9	0	7.011	7 500	1000
0	10	7.011	8.000	1250
9	11	7.011	9.000	2 000
9	10	7.011	9.000	2.000
9	12	7.011	11.000	2.070
9	13	7.011	10.000	3.330
9	14	7.811	12.000	4.000
9	ci	7.811	13.000	4.670
10	1	8.839	0.000	4.670
10	2	8.839	1.000	4.000
10	3	8.839	2.000	3.330
10	4	8.839	3.000	2.670
10	5	8.839	4.000	2.000
10	6	8.839	5.000	1.350
10	7	8.839	5.500	1.000
10	8	8.839	6.500	0.000
10	9	8.839	7.500	1.000
10	10	8.839	8.000	1.350
10	11	8.839	9.000	2.000
10	12	8.839	10.000	2.670
10	13	8.839	11.000	3.330
10	14	8.839	12.000	4.000
10	15	8.839	13.000	4.670
11	1	9.867	0.000	4.670
11	2	9.867	1.000	4.000
11	3	9.867	2.000	3.330
11	4	9.867	3.000	2.670
11	5	9.867	4.000	2.000
11	6	9.867	5.000	1.350
11	7	9.867	5.500	1.000
11	8	9.867	6.500	0.000
11	9	9.867	7.500	1.000
11	10	9.867	8.000	1,350
11	.0	9 867	9,000	2 000
11	12	9 867	10 000	2 670
11	13	9.867	11,000	3 3 3 0
11	1/	9.867	12 000	4 000
11	15	0.967	12.000	4.000
10	1	10 905	0.000	4.070
12	-	10.095	0.000	4.670
12	2	10.895	1.000	4.000
12	3	10.895	2.000	3.330
12	4	10.895	3.000	2.670
12	5	10.895	4.000	2.000
12	6	10.895	5.000	1.350
12	7	10.895	5.500	1.000
12	8	10.895	6.500	0.000
12	9	10.895	7.500	1.000
12	10	10.895	8.000	1.350
12	11	10.895	9.000	2.000
12	12	10.895	10.000	2.670
12	13	10.895	11.000	3.330
12	14	10.895	12.000	4.000
12	15	10.895	13.000	4.670

i	j	x	у	z
13	1	11.923	0.000	4.670
13	2	11.923	1.000	4.000
13	3	11.923	2.000	3.330
13	4	11.923	3.000	2.670
13	5	11.923	4.000	2.000
13	6	11.923	5.000	1.350
13	7	11.923	5.500	1.000
13	8	11.923	6.500	0.000
13	9	11.923	7.500	1.000
13	10	11.923	8.000	1.350
13	11	11.923	9.000	2.000
13	12	11.923	10.000	2.670
13	13	11.923	11.000	3.330
13	14	11.923	12.000	4.000
13	15	11.923	13.000	4.670
14	1	12.951	0.000	4.670
14	2	12.951	1.000	4.000
14	3	12.951	2.000	3.330
14	4	12.951	3.000	2.670
14	5	12.951	4.000	2.000
14	6	12.951	5.000	1.350
14	7	12.951	5.500	1.000
14	8	12.951	6.500	0.000
14	9	12.951	7.500	1.000
14	10	12.951	8.000	1.350
14	11	12.951	9.000	2.000
14	12	12.951	10.000	2.670
14	13	12.951	11.000	3.330
14	14	12.951	12.000	4.000
14	15	12.951	13.000	4.670
15	1	13.979	0.000	4.670
15	2	13.979	1.000	4.000
15	3	13.979	2.000	3.330
15	4	13.979	3.000	2.670
15	5	13.979	4.000	2.000
15	6	13.979	5.000	1.350
15		13.979	5.500	1.000
CI 45	8	13.979	6.500	0.000
15	9 10	12 0 70	7.500 8.000	1250
15	10	12 0 70	0.000	2.000
15	12	13 979	10,000	2.000
15	13	13 979	11,000	3 330
15	14	13 979	12 000	4 000
15	15	13 979	13 000	4 670
16	.0	15.007	0.000	4.670
16	2	15.007	1.000	4.000
16	3	15.007	2.000	3.330
16	4	15.007	3.000	2.670
16	5	15.007	4.000	2.000
16	6	15.007	5.000	1.350
16	7	15.007	5.500	1.000
16	8	15.007	6.500	0.000
16	9	15.007	7.500	1.000
16	10	15.007	8.000	1.350
16	11	15.007	9.000	2.000
16	12	15.007	10.000	2.670
16	13	15.007	11.000	3.330
16	14	15.007	12.000	4.000
16	15	15.007	13.000	4.670

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

i	j	x	У	z
17	1	16.035	0.000	4.670
17	2	16.035	1.000	4.000
17	3	16.035	2.000	3.330
17	4	16 0 3 5	3 000	2 670
	5	16.035	4 000	2 000
17	6	16.035	5.000	1350
17	7	16.035	5.000	1000
17		10.035	5.500	0.000
17	8	10.035	6.500	0.000
17	9	16.035	7.500	1.000
1/	10	16.035	8.000	1.350
1/	11	16.035	9.000	2.000
17	12	16.035	10.000	2.670
17	13	16.035	11.000	3.330
17	14	16.035	12.000	4.000
17	15	16.035	13.000	4.670
18	1	17.063	0.000	4.670
18	2	17.063	1.000	4.000
18	3	17.063	2.000	3.330
18	4	17.063	3.000	2.670
18	5	17.063	4.000	2.000
18	6	17.063	5.000	1.350
18	7	17.063	5.500	1.000
18	8	17.063	6 500	0.000
18	9	17.063	7 50 0	1000
10	10	17.003	8.000	1250
10	10	17.003	0.000	1.350
18	11	17.063	9.000	2.000
18	12	17.063	10.000	2.670
18	13	17.063	11.000	3.330
18	14	17.063	12.000	4.000
18	15	17.063	13.000	4.670
19	1	18.091	0.000	4.670
19	2	18.091	1.000	4.000
19	3	18.091	2.000	3.330
19	4	18.091	3.000	2.670
19	5	18.091	4.000	2.000
19	6	18.091	5.000	1.350
19	7	18.091	5.500	1.000
19	8	18.091	6.500	0.000
19	9	18.091	7.500	1.000
19	10	18.091	8.000	1.350
19	11	18.091	9.000	2.000
19	12	18.0.91	10,000	2,670
10	12	18 0 9 1	11000	3 330
10	14	19.001	12,000	4.000
10	14	10.031	12.000	4.000
19	G	10.091	0.000	4.070
20	1	19.119	0.000	4.670
20	2	19.119	1.000	4.000
20	3	19.119	2.000	3.330
20	4	19.119	3.000	2.670
20	5	19.119	4.000	2.000
20	6	19.119	5.000	1.350
20	7	19.119	5.500	1.000
20	8	19.119	6.500	0.000
20	9	19.119	7.500	1.000
20	10	19.119	8.000	1.350
20	11	19.119	9.000	2.000
20	12	19.119	10.000	2.670
20	13	19.119	11.000	3.330
20	14	19.119	12.000	4.000

i	j	x	У	z
21	1	20.147	0.000	4.670
21	2	20.147	1.000	4.000
21	3	20.147	2.000	3.330
21	4	20.147	3.000	2.670
21	5	20.147	4.000	2.000
21	6	20 147	5000	1350
21	7	20 147	5 500	1000
21	8	20 147	6 500	0.000
21	9	20 147	7.500	1000
21	10	20 147	8 000	1350
21	.0	20 147	9 000	2 000
21	12	20 147	10 000	2 670
21	13	20 147	11 0 0 0	3 330
21	14	20 147	12 000	4 000
21	15	20 147	13 000	4 670
22	1	21 175	0.000	4.670
22	2	21 175	1000	4 000
22	2	21.175	2 000	3 3 3 0
22	1	21.175	2.000	2.550
22	4	21.175	4 000	2.070
22	6	21.1/0	-+.000	1250
22	7	21.1/0	5.000	1000
22		21.1/3	6.500	0.000
22	0	21.1/0	7.500	1000
22	9	2 1.175	7.500	1.000
22	10	21.175	8.000	1.350
22	40	2 1.175	9.000	2.000
22	12	21.175	10.000	2.670
22	13	21.175	11.000	3.330
22	14	21.175	12.000	4.000
22	CI	21.1/5	13.000	4.670
23	1	22.202	0.000	4.670
23	2	22.202	1.000	4.000
23	3	22.202	2.000	3.330
23	4	22.202	3.000	2.670
23	5	22.202	4.000	2.000
23	0	22.202	5.000	1.350
23	/	22.202	5.500	1.000
23	8	22.202	6.500	0.000
23	9	22.202	7.500	1.000
23	10	22.202	8.000	1.350
23	11	22.202	9.000	2.000
23	12	22.202	10.000	2.670
23	13	22.202	11.000	3.330
23	14	22.202	12.000	4.000
23	15	22.202	13.000	4.670
24	1	23.230	0.000	4.670
24	2	23.230	1.000	4.000
24	3	23.230	2.000	3.330
24	4	23.230	3.000	2.670
24	5	23.230	4.000	2.000
24	6	23.230	5.000	1.350
24		23.230	5.500	1.000
24	8	23.230	6.500	0.000
24	9	23.230	7.500	1.000
24	10	23.230	8.000	1.350
24	11	23.230	9.000	2.000
24	12	23.230	10.000	2.670
24	13	23.230	11.000	3.330
24	14	23.230	12.000	4.000
24	15	23.230	13.000	4.670

i	j	x	У	z
25	1	24.258	0.000	4.670
25	2	24.258	1.000	4.000
25	3	24.258	2.000	3.330
25	4	24.258	3.000	2.670
25	5	24.258	4.000	2.000
25	6	24,258	5.000	1.350
25	7	24.258	5.500	1.000
25	8	24,258	6.500	0.000
25	9	24.258	7.500	1.000
25	10	24.258	8.000	1.350
25	11	24.258	9.000	2.000
25	12	24.258	10.000	2.670
25	13	24.258	11.000	3.330
25	14	24,258	12.000	4.000
25	15	24.258	13.000	4.670
26	1	25286	0.000	4 670
26	2	25.286	1.000	4.000
26	- 3	25286	2 000	3 330
26	4	25286	3 000	2 670
26	5	25.286	4.000	2.000
26	6	25286	5000	1350
26	7	25286	5.500	1000
26	. 8	25286	6.500	0.000
26	9	25286	7.500	1000
26	10	25.286	8.000	1350
26	11	25.286	9.000	2 000
26	12	25.286	10.000	2.000
26	13	25.286	11,000	3 330
26	1/	25.286	12 000	4 000
26	15	25.286	12.000	4.000
27	10	26.200	0.000	4.670
27	2	26.314	1000	4.000
27	2	26.31/	2 000	3 3 3 0
27	1	26.314	3.000	2 670
27	- 5	26.31/	4 000	2.010
27	6	26.314	5,000	1350
27	7	26.314	5.000	1000
27	8	26.314	6 500	0.000
27	0	26.314	7 500	1000
27	10	26.314	8.000	1350
27	11	26.314	9,000	2 000
27	12	26.314	10 000	2.000
27	13	26.314	11000	3 330
27	14	26.314	12 000	4 000
27	15	26.314	13 000	4 670
28	.0	27.342	0.000	4 670
28	2	27342	1000	4 000
28	- 3	27.342	2 000	3 330
28	4	27.342	3 000	2 670
28	5	27,342	4.000	2.000
28	6	27.342	5.000	1,350
28	7	27.342	5.500	1.000
28	8	27.342	6.500	0.000
28	9	27.342	7.500	1.000
28	10	27.342	8.000	1.350
28	11	27.342	9.000	2.000
28	12	27.342	10.000	2.670
28	13	27.342	11.000	3.330
28	14	27.342	12.000	4.000
28	15	27.342	13.000	4.670

i	j	x	У	z
29	1	28.370	0.000	4.670
29	2	28.370	1.000	4.000
29	3	28.370	2.000	3.330
29	4	28.370	3.000	2.670
29	5	28.370	4.000	2.000
29	6	28.370	5.000	1.350
29	7	28.370	5.500	1.000
29	8	28.370	6.500	0.000
29	9	28.370	7.500	1.000
29	10	28.370	8.000	1.350
29	11	28.370	9.000	2.000
29	12	28.370	10.000	2.670
29	13	28.370	11.000	3.330
29	14	28.370	12.000	4.000
29	15	28.370	13.000	4.670
30	1	29.398	0.000	4.670
30	2	29.398	1.000	4.000
30	3	29.398	2.000	3.330
30	4	29.398	3.000	2.670
30	5	29.398	4.000	2.000
30	6	29.398	5.000	1.350
30	7	29.398	5.500	1.000
30	8	29.398	6.500	0.000
30	9	29.398	7.500	1.000
30	10	29.398	8.000	1.350
30	11	29.398	9.000	2.000
30	12	29.398	10.000	2.670
30	13	29.398	11.000	3.330
30	14	29.398	12.000	4.000
30	15	29.398	13.000	4.670
31	1	30.426	0.000	4.670
31	2	30.426	1.000	4.000
31	3	30.426	2.000	3.330
31	4	30.426	3.000	2.670
31	5	30.426	4.000	2.000
31	6	30.426	5.000	1.350
31	7	30.426	5.500	1.000
31	8	30.426	6.500	0.000
31	9	30.426	7.500	1.000
31	10	30.426	8.000	1.350
31	11	30.426	9.000	2.000
31	12	30.426	10.000	2.670
31	13	30.426	11.000	3.330
31	14	30.426	12.000	4.000
31	CI 1	30.426	0.000	4.670
32	1	31.434	1000	4.070
32	2	31.434	2.000	4.000
32	3	21/5/	2.000	2.670
32	4	31/5/	4 000	2.070
32	C A	31/5/	5,000	2.000
32	7	31/5/	5.000	1000
32	י פ	31/5/	6 500	0.000
32	٩	31/15/	7 500	1000
32	10	31454	8 000	1350
32	11	31454	9 000	2 000
32	12	31454	10 000	2.000
32	ے۔ 12	31454	11000	3 330
32	14	31454	12,000	4,000
32	15	31454	13,000	4 670
52	15	51.404	.5.000	4.070

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

13.000

4.670

20 15

19.119

i	j	х	У	z
33	1	32.482	0.000	4.670
33	2	32,482	1.000	4.000
33	- 3	32 482	2 000	3 330
22	4	22.402	2.000	2.670
33	4	32.462	3.000	2.670
33	5	32.482	4.000	2.000
33	6	32.482	5.000	1.350
33	7	32.482	5.500	1.000
33	8	32.482	6.500	0.000
33	9	32.482	7.500	1.000
33	10	32.482	8.000	1.350
33	11	32.482	9.000	2.000
33	12	32.482	10.000	2.670
33	13	32,482	11.000	3.330
33	1/	32/182	12 000	4 000
33	15	22.402	12.000	4.000
33	G	32.402	13.000	4.670
34	1	33.510	0.000	4.670
34	2	33.510	1.000	4.000
34	3	33.510	2.000	3.330
34	4	33.510	3.000	2.670
34	5	33.510	4.000	2.000
34	6	33.510	5.000	1.350
34	7	33.510	5.500	1.000
34	8	33.510	6.500	0.000
34	9	33.510	7.500	1.000
34	10	33,510	8.000	1.350
34	11	33 510	9.000	2 000
24	12	22 510	10,000	2.000
34	12	33.510	10.000	2.070
34	13	33.510	11.000	3.330
34	14	33.510	12.000	4.000
34	15	33.510	13.000	4.670
35	1	34.538	0.000	4.670
35	2	34.538	1.000	4.000
35	3	34.538	2.000	3.330
35	4	34.538	3.000	2.670
35	5	34.538	4.000	2.000
35	6	34.538	5.000	1.350
35	7	34.538	5.500	1.000
35	8	34.538	6.500	0.000
35	9	34.538	7.500	1,000
35	10	34 538	8 000	1350
25	11	34 52 9	a 000	2 000
35	10	24.500	5.000	2.000
35	12	34.538	10.000	2.670
35	13	34.538	11.000	3.330
35	14	34.538	12.000	4.000
35	15	34.538	13.000	4.670
36	1	35.566	0.000	4.670
36	2	35.566	1.000	4.000
36	3	35.566	2.000	3.330
36	4	35.566	3.000	2.670
36	5	35.566	4.000	2.000
36	6	35.566	5.000	1.350
36	7	35.566	5.500	1.000
36	8	35 566	6.500	0.000
36	0	35.566	7 50.0	1000
20	9 40	35.000	0.000	1.000
36	10	35.566	8.000	1.350
36	11	35.566	9.000	2.000
36	12	35.566	10.000	2.670
36	13	35.566	11.000	3.330
36	14	35.566	12.000	4.000

i	j	x	У	z
37	1	36.594	0.000	4.670
37	2	36.594	1.000	4.000
37	3	36.594	2.000	3.330
37	4	36.594	3.000	2.670
37	5	36.594	4.000	2.000
37	6	36.594	5.000	1.350
37	7	36.594	5.500	1.000
37	8	36.594	6.500	0.000
37	9	36.594	7.500	1.000
37	10	36.594	8.000	1.350
37	11	36.594	9.000	2.000
37	12	36.594	10.000	2.670
37	13	36.594	11.000	3.330
37	14	36.594	12.000	4.000
37	15	36.594	13.000	4.670
38	1	37.622	0.000	4.670
38	2	37.622	1.000	4.000
38	3	37,622	2,000	3,330
38	4	37,622	3,000	2.670
38	5	37.622	4.000	2.000
38	6	37,622	5,000	1.350
38	7	37.622	5.500	1.000
38	8	37.622	6.500	0.000
38	9	37.622	7.500	1.000
38	10	37.622	8.000	1,350
38	11	37.622	9.000	2.000
38	12	37.622	10.000	2.670
38	13	37.622	11.000	3.330
38	14	37.622	12.000	4.000
38	15	37.622	13.000	4.670
39	1	38.650	0.000	4.670
39	2	38.650	1.000	4.000
39	3	38.650	2.000	3.330
39	4	38.650	3.000	2.670
39	5	38.650	4.000	2.000
39	6	38.650	5.000	1.350
39	7	38.650	5.500	1.000
39	8	38.650	6.500	0.000
39	9	38.650	7.500	1.000
39	10	38.650	8.000	1.350
39	11	38.650	9.000	2.000
39	12	38.650	10.000	2.670
39	13	38.650	11.000	3.330
39	14	38.650	12.000	4.000
39	15	38.650	13.000	4.670
40	1	39.678	0.000	4.670
40	2	39.678	1.000	4.000
40	3	39.678	2.000	3.330
40	4	39.678	3.000	2.670
40	5	39.678	4.000	2.000
40	6	39.678	5.000	1.350
40	7	39.678	5.500	1.000
40	8	39.678	6.500	0.000
40	9	39.678	7.500	1.000
40	10	39.678	8.000	1.350
40	11	39.678	9.000	2.000
40	12	39.678	10.000	2.670
40	13	39.678	11.000	3.330
40	14	39.678	12.000	4.000
40	15	39.678	13.000	4.670

i	j	x	У	z
41	1	40.706	0.000	4.670
41	2	40.706	1.000	4.000
41	3	40.706	2.000	3.330
41	4	40.706	3.000	2.670
41	5	40,706	4.000	2.000
41	6	40 706	5000	1350
41	7	40.706	5 500	1000
41	,	40.706	6.500	0.000
41	0	40.706	0.500	0.000
41	9	40.706	7.500	1.000
41	10	40.706	8.000	1.350
41	11	40.706	9.000	2.000
41	12	40.706	10.000	2.670
41	13	40.706	11.000	3.330
41	14	40.706	12.000	4.000
41	15	40.706	13.000	4.670
42	1	41.734	0.000	4.670
42	2	41.734	1.000	4.000
42	3	41.734	2.000	3.330
42	4	41.734	3.000	2.670
42	5	41.734	4.000	2.000
42	6	41734	5,000	1350
42	7	41.734	5 500	1000
42	,	41724	6.500	0.000
42	0	41.734	0.500	0.000
42	9	41.734	7.500	1.000
42	10	41.734	8.000	1.350
42	11	41.734	9.000	2.000
42	12	41.734	10.000	2.670
42	13	41.734	11.000	3.330
42	14	41.734	12.000	4.000
42	15	41.734	13.000	4.670
43	1	42.762	0.000	4.670
43	2	42.762	1.000	4.000
43	3	42.762	2.000	3.330
43	4	42.762	3.000	2.670
43	5	42.762	4.000	2.000
43	6	42.762	5.000	1.350
43	7	42.762	5.500	1.000
43	8	42.762	6.500	0.000
43	9	42 762	7 500	1000
43	10	42 762	8 000	1350
40	11	42.762	0.000	2 000
43	10	42.702	9.000	2.000
43	12	42.702	10.000	2.070
43	13	42.762	11.000	3.330
43	14	42.762	12.000	4.000
43	15	42.762	13.000	4.670
44	1	43.790	0.000	4.670
44	2	43.790	1.000	4.000
44	3	43.790	2.000	3.330
44	4	43.790	3.000	2.670
44	5	43.790	4.000	2.000
44	6	43.790	5.000	1.350
44	7	43.790	5.500	1.000
44	8	43.790	6.500	0.000
44	9	43.790	7.500	1.000
44	10	43.790	8.000	1.350
44	11	43.790	9.000	2.000
44	12	43.790	10.000	2.670
44	13	43 790	11000	3 330
44	1/	43 700	12 000	4 000
44	45	42 700	12 000	4.000
44	15	43.790	I3.000	4.670

i	j	x	У	z
45	1	44.818	0.000	4.670
45	2	44.818	1.000	4.000
45	3	44.818	2.000	3.330
45	4	44.818	3.000	2.670
45	5	44.818	4.000	2.000
45	6	44.818	5.000	1.350
45	7	44.818	5.500	1.000
45	8	44.818	6.500	0.000
45	9	44.818	7.500	1.000
45	10	44.818	8.000	1.350
45	11	44.818	9.000	2.000
45	12	44.818	10.000	2.670
45	13	44.818	11.000	3.330
45	14	44.818	12.000	4.000
45	15	44.818	13.000	4.670
46	1	45.846	0.000	4.670
46	2	45.846	1.000	4.000
46	3	45.846	2.000	3.330
46	4	45.846	3 000	2 670
46	5	45.846	4 000	2 000
46	6	45.846	5.000	1350
46	7	45.846	5.000	1.000
40	, 0	45.040	6.500	0.000
40	0	45.040	7.500	1000
40	9	45.646	7.500	1.000
40	10	45.846	8.000	1.350
40	11	45.846	9.000	2.000
40	12	45.846	10.000	2.670
46	13	45.846	11.000	3.330
46	14	45.846	12.000	4.000
46	15	45.846	13.000	4.670
47	1	46.874	0.000	4.670
47	2	46.874	1.000	4.000
47	3	46.874	2.000	3.330
47	4	46.874	3.000	2.670
47	5	46.874	4.000	2.000
47	6	46.874	5.000	1.350
47	7	46.874	5.500	1.000
47	8	46.874	6.500	0.000
47	9	46.874	7.500	1.000
47	10	46.874	8.000	1.350
47	11	46.874	9.000	2.000
47	12	46.874	10.000	2.670
47	13	46.874	11.000	3.330
47	14	46.874	12.000	4.000
47	15	46.874	13.000	4.670
48	1	47.902	0.000	4.670
48	2	47.902	1.000	4.000
48	3	47.902	2.000	3.330
48	4	47.902	3.000	2.670
48	5	47.902	4.000	2.000
48	6	47.902	5.000	1.350
48	7	47.902	5.500	1.000
48	8	47.902	6.500	0.000
48	9	47.902	7.500	1.000
48	10	47.902	8.000	1.350
48	11	47.902	9.000	2.000
48	12	47.902	10.000	2.670
48	13	47.902	11.000	3.330
48	14	47.902	12.000	4.000
48	15	47.902	13.000	4.670

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

13.000

4.670

36 15 35.566

i	i	Y	v	7
40	J 1	49.020	y	4 670
49	2	40.930	1000	4.070
49	2	40.930	2.000	4.000
49	3	40.930	2.000	3.330
49	4	40.930	3.000	2.070
49	5	40.930	4.000	2.000
49	0 7	48.930	5.000	1.350
49		48.930	5.500	1.000
49	8	48.930	6.500	0.000
49	9	48.930	7.500	1.000
49	10	48.930	8.000	1.350
49	11	48.930	9.000	2.000
49	12	48.930	10.000	2.670
49	13	48.930	11.000	3.330
49	14	48.930	12.000	4.000
49	15	48.930	13.000	4.670
50	1	49.958	0.000	4.670
50	2	49.958	1.000	4.000
50	3	49.958	2.000	3.330
50	4	49.958	3.000	2.670
50	5	49.958	4.000	2.000
50	6	49.958	5.000	1.350
50	7	49.958	5.500	1.000
50	8	49.958	6.500	0.000
50	9	49.958	7.500	1.000
50	10	49,958	8.000	1350
50	11	49.958	9.000	2.000
50	12	49 958	10 000	2 670
50	13	49 958	11000	3 330
50	1/	40.000	12 000	4 000
50	15	49.950	13 000	4.670
50	1	49.900	0.000	4.070
51	2	50.980	1000	4.070
51	2	50.900	1.000	4.000
51	3	50.986	2.000	3.330
51	4	50.966	3.000	2.670
51	5	50.986	4.000	2.000
51	6	50.986	5.000	1.350
51	/	50.986	5.500	1.000
51	8	50.986	6.500	0.000
51	9	50.986	7.500	1.000
51	10	50.986	8.000	1.350
51	11	50.986	9.000	2.000
51	12	50.986	10.000	2.670
51	13	50.986	11.000	3.330
51	14	50.986	12.000	4.000
51	15	50.986	13.000	4.670
52	1	52.014	0.000	4.670
52	2	52.014	1.000	4.000
52	3	52.014	2.000	3.330
52	4	52.014	3.000	2.670
52	5	52.014	4.000	2.000
52	6	52.014	5.000	1.350
52	7	52.014	5.500	1.000
52	8	52.014	6.500	0.000
52	9	52.014	7.500	1.000
52	10	52.014	8.000	1.350
52	11	52.014	9.000	2.000
52	12	52.014	10.000	2.670
52	13	52.014	11.000	3.330
52	14	52 0 14	12 000	4 000

i	j	x	У	z
53	1	53.042	0.000	4.670
53	2	53.042	1.000	4.000
53	3	53.042	2.000	3.330
53	4	53.042	3.000	2.670
53	5	53.042	4.000	2.000
53	6	53.042	5.000	1.350
53	7	53.042	5.500	1.000
53	8	53.042	6.500	0.000
53	9	53.042	7.500	1.000
53	10	53.042	8.000	1.350
53	11	53.042	9.000	2.000
53	12	53.042	10.000	2.670
53	13	53.042	11.000	3.330
53	14	53.042	12.000	4.000
53	15	53.042	13.000	4.670
54	1	54.070	0.000	4.670
54	2	54.070	1.000	4.000
54	3	54.070	2.000	3.330
54	4	54.070	3.000	2.670
54	5	54.070	4.000	2.000
54	6	54 070	5000	1350
54	7	54 070	5.500	1000
54	, 8	54.070	6 500	0.000
54	q	54.070	7 500	1000
54	10	54.070	8.000	1250
54	11	54.070	9,000	2 000
54	12	54.070	10,000	2.000
54	12	54.070	11,000	2.070
54	14	54.070	12.000	3.330
54	14	54.070	12.000	4.000
54	GI A	54.070	0.000	4.670
55	2	55.096	1000	4.670
55	2	55.096	1.000	4.000
55	3	55.098	2.000	3.330
55	4	55.096	3.000	2.670
55	с С	55.098	4.000	2.000
55	0	55.098	5.000	1.350
55		55.098	5.500	1.000
55	8	55.098	6.500	0.000
55	9	55.098	7.500	1.000
55	10	55.098	8.000	1.350
55	11	55.098	9.000	2.000
55	12	55.098	10.000	2.670
55	13	55.098	11.000	3.330
55	14	55.098	12.000	4.000
55	15	55.098	13.000	4.670
56	1	56.126	0.000	4.670
56	2	56.126	1.000	4.000
56	3	56.126	2.000	3.330
56	4	56.126	3.000	2.670
56	5	56.126	4.000	2.000
56	6	56.126	5.000	1.350
56	7	56.126	5.500	1.000
56	8	56.126	6.500	0.000
56	9	56.126	7.500	1.000
56	10	56.126	8.000	1.350
56	11	56.126	9.000	2.000
56	12	56.126	10.000	2.670
56	13	56.126	11.000	3.330
56	14	56.126	12.000	4.000
56	15	56.126	13.000	4.670

i	j	x	у	z
57	1	57.154	0.000	4.670
57	2	57.154	1.000	4.000
57	3	57.154	2.000	3.330
57	4	57.154	3.000	2.670
57	5	57.154	4.000	2.000
57	6	57.154	5.000	1.350
57	7	57.154	5.500	1.000
57	8	57.154	6.500	0.000
57	9	57.154	7.500	1.000
57	10	57.154	8.000	1.350
57	11	57.154	9.000	2.000
57	12	57,154	10.000	2.670
57	13	57.154	11.000	3.330
57	14	57 154	12 000	4 000
57	15	57 154	13 000	4 670
58	.0	58 18 2	0.000	4 670
58	2	58 18 2	1000	4 000
58	2	58 18 2	2,000	3 3 3 0
50	1	50.102	2.000	2,670
50	4	50.102	3.000	2.070
50	5	50.102	4.000	2.000
58	6	58.182	5.000	1.350
58	/	58.182	5.500	1.000
58	8	58.182	6.500	0.000
58	9	58.182	7.500	1.000
58	10	58.182	8.000	1.350
58	11	58.182	9.000	2.000
58	12	58.182	10.000	2.670
58	13	58.182	11.000	3.330
58	14	58.182	12.000	4.000
58	15	58.182	13.000	4.670
59	1	59.210	0.000	4.670
59	2	59.210	1.000	4.000
59	3	59.210	2.000	3.330
59	4	59.210	3.000	2.670
59	5	59.210	4.000	2.000
59	6	59.210	5.000	1.350
59	7	59.210	5.500	1.000
59	8	59.210	6.500	0.000
59	9	59.210	7.500	1.000
59	10	59.210	8.000	1.350
59	11	59.210	9.000	2.000
59	12	59.210	10.000	2.670
59	13	59.210	11.000	3.330
59	14	59.210	12.000	4.000
59	15	59.210	13.000	4.670
60	1	60.238	0.000	4.670
60	2	60.238	1.000	4.000
60	3	60.238	2.000	3.330
60	4	60.238	3.000	2.670
60	5	60.238	4.000	2.000
60	6	60.238	5.000	1.350
60	7	60.238	5.500	1.000
60	8	60.238	6.500	0.000
60	9	60.238	7.500	1.000
60	10	60.238	8.000	1.350
60	11	60.238	9.000	2.000
60	12	60.238	10.000	2.670
60	13	60 238	11000	3 330
60	14	60 238	12 000	4 000
60	15	60.238	13 000	4 670
55		00.200		

i	i	x	v	7
61	, 1	61266	0.000	4.670
61	2	61266	1000	4 000
61	- 3	61266	2 000	3 330
61	4	61266	3,000	2 670
61	5	61266	4 000	2 000
61	6	61266	5,000	1350
61	7	61266	5 500	1000
61	. 8	61266	6.500	0.000
61	9	61266	7.500	1.000
61	10	61266	8.000	1,350
61	11	61,266	9.000	2.000
61	12	61,266	10.000	2.670
61	13	61.266	11.000	3.330
61	14	61.266	12.000	4.000
61	15	61.266	13.000	4.670
62	1	62.293	0.000	4.670
62	2	62.293	1.000	4.000
62	3	62.293	2.000	3.330
62	4	62.293	3.000	2.670
62	5	62.293	4.000	2.000
62	6	62.293	5.000	1.350
62	7	62.293	5.500	1.000
62	8	62.293	6.500	0.000
62	9	62.293	7.500	1.000
62	10	62.293	8.000	1.350
62	11	62.293	9.000	2.000
62	12	62.293	10.000	2.670
62	13	62.293	11.000	3.330
62	14	62.293	12.000	4.000
62	15	62.293	13.000	4.670
63	1	63.321	0.000	4.670
63	2	63.321	1.000	4.000
63	3	63.321	2.000	3.330
63	4	63.321	3.000	2.670
63	5	63.321	4.000	2.000
63	0 7	63.321	5.000	1.350
63	/ 0	62 221	5.500	0.000
63	0	62 221	7.500	1000
63	9 10	63 321	8.000	1350
63	10	63 321	9,000	2 000
63	12	63.321	10 000	2.000
63	13	63.321	11.000	3.330
63	.0	63.321	12.000	4.000
63	15	63.321	13.000	4.670
64	1	64.349	0.000	4.670
64	2	64.349	1.000	4.000
64	3	64.349	2.000	3.330
64	4	64.349	3.000	2.670
64	5	64.349	4.000	2.000
64	6	64.349	5.000	1.350
64	7	64.349	5.500	1.000
64	8	64.349	6.500	0.000
64	9	64.349	7.500	1.000
64	10	64.349	8.000	1.350
64	11	64.349	9.000	2.000
64	12	64.349	10.000	2.670
64	13	64.349	11.000	3.330
64	14	64.349	12.000	4.000
64	15	64.349	13.000	4.670

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

13.000

4.670

52

15 52.014

i	j	x	У	z
65	1	65.377	0.000	4.670
65	2	65.377	1.000	4.000
65	3	65.377	2.000	3.330
65	4	65.377	3.000	2.670
65	5	65.377	4.000	2.000
65	6	65.377	5.000	1.350
65	7	65.377	5.500	1.000
65	8	65 377	6 500	0.000
65	q	65.377	7 500	1000
65	10	65.277	8 000	1250
65	10	65 277	0.000	2.000
05	40	05.377	9.000	2.000
65	12	05.377	10.000	2.670
65	13	65.377	11.000	3.330
65	14	65.377	12.000	4.000
65	15	65.377	13.000	4.670
66	1	66.405	0.000	4.670
66	2	66.405	1.000	4.000
66	3	66.405	2.000	3.330
66	4	66.405	3.000	2.670
66	5	66.405	4.000	2.000
66	6	66.405	5.000	1.350
66	7	66.405	5.500	1.000
66	8	66.405	6.500	0.000
66	9	66.405	7.500	1.000
66	10	66 405	8 000	1350
66	11	66 405	9.000	2 000
66	12	66 405	10,000	2.000
66	12	66.405	11.000	2.070
00	13	00.405	11.000	3.330
66	14	66.405	12.000	4.000
66	15	66.405	13.000	4.670
67	1	67.433	0.000	4.670
67	2	67.433	1.000	4.000
67	3	67.433	2.000	3.330
67	4	67.433	3.000	2.670
67	5	67.433	4.000	2.000
67	6	67.433	5.000	1.350
67	7	67.433	5.500	1.000
67	8	67.433	6.500	0.000
67	9	67.433	7.500	1.000
67	10	67.433	8.000	1.350
67	11	67.433	9.000	2.000
67	12	67.433	10.000	2.670
67	13	67.433	11.000	3.330
67	14	67.433	12.000	4.000
67	15	67.433	13.000	4,670
68	.5	68 461	0.000	4 670
68	2	68.461	1000	4.000
60	2	69.464	2.000	2.000
00	3	00.401	2.000	3.330
60	4	00.461	3.000	2.670
68	5	68.461	4.000	2.000
68	6	68.461	5.000	1.350
68	7	68.461	5.500	1.000
68	8	68.461	6.500	0.000
68	9	68.461	7.500	1.000
68	10	68.461	8.000	1.350
68	11	68.461	9.000	2.000
68	12	68.461	10.000	2.670
68	13	68.461	11.000	3.330
68	14	68 461	12 000	4 000

i	j	x	У	z
69	1	69.489	0.000	4.670
69	2	69.489	1.000	4.000
69	3	69.489	2.000	3.330
69	4	69.489	3.000	2.670
69	5	69.489	4.000	2.000
69	6	69.489	5.000	1.350
69	7	69.489	5.500	1.000
69	8	69.489	6.500	0.000
69	9	69.489	7.500	1.000
69	10	69.489	8.000	1.350
69	11	69.489	9.000	2.000
69	12	69.489	10.000	2.670
69	13	69.489	11.000	3.330
69	14	69.489	12.000	4.000
69	15	69.489	13.000	4.670
70	1	70.517	0.000	4.670
70	2	70.517	1.000	4.000
70	3	70.517	2.000	3.330
70	4	70.517	3.000	2.670
70	5	70.517	4.000	2.000
70	6	70.517	5.000	1.350
70	7	70.517	5.500	1.000
70	8	70.517	6.500	0.000
70	9	70.517	7.500	1.000
70	10	70.517	8.000	1.350
70	11	70.517	9.000	2.000
70	12	70.517	10.000	2.670
70	13	70.517	11.000	3.330
70	14	70.517	12.000	4.000
70	15	70.517	13.000	4.670
71	1	71.545	0.000	4.670
71	2	71.545	1.000	4.000
71	3	71.545	2.000	3.330
71	4	71.545	3.000	2.670
71	5	71.545	4.000	2.000
71	6	71.545	5.000	1.350
71	7	71.545	5.500	1.000
71	8	71.545	6.500	0.000
71	9	71.545	7.500	1.000
71	10	71.545	8.000	1.350
71	11	71.545	9.000	2.000
71	12	71.545	10.000	2.670
71	13	71.545	11.000	3.330
71	14	71.545	12.000	4.000
71	15	71.545	13.000	4.670
72	1	72.573	0.000	4.670
72	2	72.573	1.000	4.000
72	3	72.573	2.000	3.330
72	4	72.573	3.000	2.670
72	5	72.573	4.000	2.000
72	6	72.573	5.000	1.350
72	7	72.573	5.500	1.000
72	8	72.573	6.500	0.000
72	9	72.573	7.500	1.000
72	10	72.573	8.000	1.350
72	11	72.573	9.000	2.000
72	12	72.573	10.000	2.670
72	13	72.573	11.000	3.330
72	14	72.573	12.000	4.000
72	15	72.573	13.000	4.670

i	j	x	У	z
73	1	73.601	0.000	4.670
73	2	73.601	1.000	4.000
73	3	73.601	2.000	3.330
73	4	73.601	3.000	2.670
73	5	73.601	4.000	2.000
73	6	73.601	5.000	1.350
73	7	73.601	5.500	1.000
73	8	73 601	6 500	0.000
73	9	73.601	7 500	1000
72	10	72 601	8.000	1250
73	11	72.601	0.000	2 000
73	10	73.001	9.000	2.000
73	12	73.601	10.000	2.670
73	13	73.601	11.000	3.330
73	14	73.601	12.000	4.000
73	15	73.601	13.000	4.670
74	1	74.629	0.000	4.670
74	2	74.629	1.000	4.000
74	3	74.629	2.000	3.330
74	4	74.629	3.000	2.670
74	5	74.629	4.000	2.000
74	6	74.629	5.000	1.350
74	7	74.629	5.500	1.000
74	8	74.629	6.500	0.000
74	9	74.629	7.500	1.000
74	10	74 629	8 000	1350
74	11	74 629	9.000	2 000
7/	12	74 629	10,000	2 670
74	12	74.620	11,000	2.070
74	13	74.029	10.000	3.330
74	14	74.029	12.000	4.000
74	CI CI	74.629	13.000	4.670
75	1	/5.65/	0.000	4.670
75	2	/5.65/	1.000	4.000
75	3	75.657	2.000	3.330
75	4	75.657	3.000	2.670
75	5	75.657	4.000	2.000
75	6	75.657	5.000	1.350
75	7	75.657	5.500	1.000
75	8	75.657	6.500	0.000
75	9	75.657	7.500	1.000
75	10	75.657	8.000	1.350
75	11	75.657	9.000	2.000
75	12	75.657	10.000	2.670
75	13	75.657	11.000	3.330
75	14	75.657	12.000	4.000
75	15	75.657	13.000	4.670
76	.5	76 685	0.000	4 670
76	2	76 685	1000	4 000
76	2	76 685	2 000	3 3 3 0
70	1	76 695	2.000	2.330
70	4	70.005	3.000	2.070
70	c c	70.005	4.000	2.000
76	6	76.685	5.000	1.350
76	7	/6.685	5.500	1.000
76	8	76.685	6.500	0.000
76	9	76.685	7.500	1.000
76	10	76.685	8.000	1.350
76	11	76.685	9.000	2.000
76	12	76.685	10.000	2.670
76	13	76.685	11.000	3.330
76	14	76.685	12.000	4.000
76	15	76.685	13.000	4.670

				_
-	J	X	У	z
//	1	//./13	0.000	4.670
77	2	77.713	1.000	4.000
77	3	77.713	2.000	3.330
77	4	77.713	3.000	2.670
77	5	77.713	4.000	2.000
77	6	77.713	5.000	1.350
77	7	77.713	5.500	1.000
77	8	77.713	6.500	0.000
77	9	77.713	7.500	1.000
77	10	77.713	8.000	1.350
77	11	77.713	9.000	2.000
77	12	77.713	10.000	2.670
77	13	77.713	11.000	3.330
77	14	77.713	12.000	4.000
77	15	77.713	13.000	4.670
78	1	78.741	0.000	4.670
78	2	78.741	1.000	4.000
78	3	78.741	2.000	3.330
78	4	78.741	3.000	2.670
78	5	78.741	4.000	2.000
78	6	78,741	5.000	1,350
78	7	78,741	5.500	1.000
78	8	78,741	6.500	0.000
78	9	78 741	7.500	1000
78	10	78 741	8 000	1350
78	11	78 7/1	9,000	2 000
70	12	70.741	10,000	2.000
70	12	70.741	11.000	2.070
70	13	70.741	10.000	3.330
78	14	78.741	12.000	4.000
78	CI	78.741	13.000	4.670
79	1	79.769	0.000	4.670
79	2	79.769	1.000	4.000
79	3	79.769	2.000	3.330
79	4	79.769	3.000	2.670
79	5	79.769	4.000	2.000
79	6	79.769	5.000	1.350
79	7	79.769	5.500	1.000
79	8	79.769	6.500	0.000
79	9	79.769	7.500	1.000
79	10	79.769	8.000	1.350
79	11	79.769	9.000	2.000
79	12	79.769	10.000	2.670
79	13	79.769	11.000	3.330
79	14	79.769	12.000	4.000
79	15	79.769	13.000	4.670
80	1	80.797	0.000	4.670
80	2	80.797	1.000	4.000
80	3	80.797	2.000	3.330
80	4	80.797	3.000	2.670
80	5	80.797	4.000	2.000
80	6	80.797	5.000	1.350
80	7	80.797	5.500	1.000
80	8	80.797	6.500	0.000
80	9	80.797	7.500	1.000
80	10	80.797	8.000	1.350
80	11	80.797	9.000	2.000
80	12	80.797	10.000	2.670
80	13	80.797	11.000	3.330
80	14	80.797	12.000	4.000
80	15	80.797	13.000	4.670

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

13.000

4.670

68 15 68.461

i	j	x	У	z
81	1	81.825	0.000	4.670
81	2	81.825	1.000	4.000
81	3	81.825	2.000	3.330
81	4	81.825	3.000	2.670
81	5	81.825	4.000	2.000
81	6	81.825	5.000	1.350
81	7	81.825	5.500	1.000
81	8	81.825	6.500	0.000
81	9	81.825	7.500	1.000
81	10	81.825	8.000	1,350
81	11	81.825	9.000	2.000
81	12	81825	10 000	2 670
81	13	81825	11000	3.330
81	14	81825	12 000	4 000
81	15	81825	13 000	4.670
01	1	01.020	0.000	4.670
02		02.000	1000	4.070
02	2	02.000	1.000	4.000
82	3	82.853	2.000	3.330
82	4	82.853	3.000	2.670
82	с С	82.853	4.000	2.000
82	6	82.853	5.000	1.350
82	/	82.853	5.500	1.000
82	8	82.853	6.500	0.000
82	9	82.853	7.500	1.000
82	10	82.853	8.000	1.350
82	11	82.853	9.000	2.000
82	12	82.853	10.000	2.670
82	13	82.853	11.000	3.330
82	14	82.853	12.000	4.000
82	15	82.853	13.000	4.670
83	1	83.881	0.000	4.670
83	2	83.881	1.000	4.000
83	3	83.881	2.000	3.330
83	4	83.881	3.000	2.670
83	5	83.881	4.000	2.000
83	6	83.881	5.000	1.350
83	7	83.881	5.500	1.000
83	8	83.881	6.500	0.000
83	9	83.881	7.500	1.000
83	10	83.881	8.000	1.350
83	11	83.881	9.000	2.000
83	12	83.881	10.000	2.670
83	13	83.881	11.000	3.330
83	14	83.881	12.000	4.000
83	15	83.881	13.000	4.670
84	1	84.909	0.000	4.670
84	2	84.909	1.000	4.000
84	3	84.909	2.000	3.330
84	4	84.909	3.000	2.670
84	5	84,909	4.000	2,000
84	6	84.909	5.000	1.350
84	7	84,909	5.500	1,000
84	8	84,909	6.500	0,000
84	a	84 909	7 50 0	1000
8/	10	84 000	8 000	1350
84	11	84 000	9 000	2 000
84	12	84 000	10 000	2.000
04	42	04.000	11000	2.010
04	13	04.909	12 000	3.330
04	14	04.909	12.000	4.000
84	15	84.909	13.000	4.670

i	j	x	У	z
85	1	85.937	0.000	4.670
85	2	85.937	1.000	4.000
85	3	85.937	2.000	3.330
85	4	85.937	3.000	2.670
85	5	85.937	4.000	2.000
85	6	85.937	5.000	1.350
85	7	85.937	5.500	1.000
85	8	85.937	6.500	0.000
85	9	85.937	7.500	1.000
85	10	85.937	8.000	1.350
85	11	85.937	9.000	2.000
85	12	85.937	10.000	2.670
85	13	85.937	11.000	3.330
85	14	85.937	12.000	4.000
85	15	85.937	13.000	4.670
86	1	86.965	0.000	4.670
86	2	86.965	1.000	4.000
86	3	86.965	2.000	3.330
86	4	86.965	3.000	2.670
86	5	86.965	4.000	2.000
86	6	86.965	5.000	1.350
86	7	86.965	5.500	1.000
86	8	86.965	6.500	0.000
86	9	86.965	7.500	1.000
86	10	86.965	8.000	1.350
86	11	86.965	9.000	2.000
86	12	86.965	10.000	2.670
86	13	86.965	11.000	3.330
86	14	86.965	12.000	4.000
86	15	86.965	13.000	4.670
87	2	87.993	1000	4.670
07	2	97002	2.000	4.000
87	4	87993	3.000	2 670
87	5	87.993	4 000	2 000
87	6	87.993	5.000	1.350
87	7	87.993	5.500	1.000
87	8	87.993	6.500	0.000
87	9	87.993	7.500	1.000
87	10	87.993	8.000	1.350
87	11	87.993	9.000	2.000
87	12	87.993	10.000	2.670
87	13	87.993	11.000	3.330
87	14	87.993	12.000	4.000
87	15	87.993	13.000	4.670
88	1	89.021	0.000	4.670
88	2	89.021	1.000	4.000
88	3	89.021	2.000	3.330
88	4	89.021	3.000	2.670
88	5	89.021	4.000	2.000
88	6	89.021	5.000	1.350
88	7	89.021	5.500	1.000
88	8	89.021	6.500	0.000
88	9	89.021	7.500	1.000
88	10	89.021	8.000	1.350
88	11	89.021	9.000	2.000
88	12	89.021	10.000	2.670
88	13	89.021	11.000	3.330
88	14	89.021	12.000	4.000
88	15	89.021	13.000	4.670

i	i	Y	v	7
	J 1	00.040	y	4.670
09	-	90.049	0.000	4.070
89	2	90.049	1.000	4.000
89	3	90.049	2.000	3.330
89	4	90.049	3.000	2.670
89	5	90.049	4.000	2.000
89	6	90.049	5.000	1.350
89	7	90.049	5.500	1.000
89	8	90.049	6.500	0.000
89	9	90.049	7.500	1.000
89	10	90.049	8.000	1.350
89	11	90.049	9.000	2.000
89	12	90.049	10.000	2.670
89	13	90.049	11.000	3.330
89	14	90.049	12.000	4.000
89	15	90.049	13.000	4.670
90	1	91.077	0.000	4.670
90	2	91077	1000	4 000
<u>an</u>	2	91077	2 000	3 3 3 0
00 00	1	91077	3.000	2 670
00	-	01077	4.000	2.010
90	5	91.077	4.000	2.000
90	6	91.077	5.000	1.350
90	1	91.077	5.500	1.000
90	8	91.077	6.500	0.000
90	9	91.077	7.500	1.000
90	10	91.077	8.000	1.350
90	11	91.077	9.000	2.000
90	12	91.077	10.000	2.670
90	13	91.077	11.000	3.330
90	14	91.077	12.000	4.000
90	15	91.077	13.000	4.670
91	1	92.105	0.000	4.670
91	2	92.105	1.000	4.000
91	3	92.105	2.000	3.330
91	4	92.105	3.000	2.670
91	5	92.105	4.000	2.000
91	6	92.105	5.000	1.350
91	7	92,105	5.500	1.000
91	8	92 105	6 500	0.000
01	9	92.105	7 500	1000
01	10	92.100	8.000	1350
01	10	02.103	0.000	2 000
31	10	02.100	10 000	2.000
91	40	92.105	11000	2.070
91	13	92.105	12,000	3.330
91	14	92.105	12.000	4.000
91	15	92.105	13.000	4.670
92	1	93.133	0.000	4.670
92	2	93.133	1.000	4.000
92	3	93.133	2.000	3.330
92	4	93.133	3.000	2.670
92	5	93.133	4.000	2.000
92	6	93.133	5.000	1.350
92	7	93.133	5.500	1.000
92	8	93.133	6.500	0.000
92	9	93.133	7.500	1.000
92	10	93.133	8.000	1.350
92	11	93.133	9.000	2.000
92	12	93.133	10.000	2.670
92	13	93.133	11.000	3.330
92	14	93.133	12.000	4.000
92	15	93.133	13.000	4.670

	;	v	v	-
02	J 1	A 0.1.161	y	4.670
93	2	94.101	1000	4.670
93	2	94.101	2.000	3 3 3 0
03	1	94.101	3.000	2.670
93	- 5	94 161	4 000	2.070
93	6	94.161	5,000	1350
93	7	94 161	5.500	1000
93	, 8	94.161	6 500	0.000
93	9	94.161	7.500	1.000
93	10	94.161	8.000	1,350
93	11	94.161	9.000	2.000
93	12	94.161	10.000	2.670
93	13	94.161	11.000	3.330
93	14	94.161	12.000	4.000
93	15	94.161	13.000	4.670
94	1	95.189	0.000	4.670
94	2	95.189	1.000	4.000
94	3	95.189	2.000	3.330
94	4	95.189	3.000	2.670
94	5	95.189	4.000	2.000
94	6	95.189	5.000	1.350
94	7	95.189	5.500	1.000
94	8	95.189	6.500	0.000
94	9	95.189	7.500	1.000
94	10	95.189	8.000	1.350
94	11	95.189	9.000	2.000
94	12	95.189	10.000	2.670
94	13	95.189	11.000	3.330
94	14	95.189	12.000	4.000
94	15	95.189	13.000	4.670
95	1	96.217	0.000	4.670
95	2	96.217	1.000	4.000
95	3	96.217	2.000	3.330
95	4	96.217	3.000	2.670
95	5	96.217	4.000	2.000
95	6	96.217	5.000	1.350
95	/	96.217	5.500	1.000
95	8	96.217	6.500	0.000
95	9 10	90.217	7.500 8.000	1250
95	10	90.217	0.000	2.000
95	12	90.217	9.000	2.000
95	13	96 217	11,000	3 330
95	14	96 217	12 000	4 000
95	15	96.217	13.000	4.670
96	1	97.245	0.000	4.670
96	2	97.245	1.000	4.000
96	3	97.245	2.000	3.330
96	4	97.245	3.000	2.670
96	5	97.245	4.000	2.000
96	6	97.245	5.000	1.350
96	7	97.245	5.500	1.000
96	8	97.245	6.500	0.000
96	9	97.245	7.500	1.000
96	10	97.245	8.000	1.350
96	11	97.245	9.000	2.000
96	12	97.245	10.000	2.670
96	13	97.245	11.000	3.330
96	14	97.245	12.000	4.000
96	15	97.245	13.000	4.670

Bernarda Luzuriaga H. Autoría: Diana Amaya Z.

i	i	x	v	z
97	, 1	98 273	,	4 670
97	2	90.273	1000	4.000
97	2	90.273	2.000	4.000
97	3	90.273	2.000	3.330
97	4	98.273	3.000	2.670
97	5	98.273	4.000	2.000
97	6	98.273	5.000	1.350
97	7	98.273	5.500	1.000
97	8	98.273	6.500	0.000
97	9	98.273	7.500	1.000
97	10	98.273	8.000	1.350
97	11	98.273	9.000	2.000
97	12	98.273	10.000	2.670
97	13	98.273	11.000	3.330
97	14	98.273	12.000	4.000
97	15	98.273	13.000	4.670
98	1	99.301	0.000	4.670
98	2	99.301	1.000	4.000
98	3	99.301	2.000	3.330
98	4	99.301	3.000	2.670
98	5	99.301	4.000	2.000
98	6	99.301	5.000	1.350
98	7	99.301	5.500	1.000
98	8	99.301	6.500	0.000
98	9	99.301	7.500	1.000
98	10	99.301	8.000	1.350
98	11	99.301	9.000	2.000
98	12	99 301	10.000	2 670
90	12	99.001	11,000	3 330
00	14	00.201	12 000	4.000
90	14	99.301	12.000	4.000
90	G	99.301	0.000	4.070
99	1	100.329	0.000	4.670
99	2	100.329	1.000	4.000
99	3	100.329	2.000	3.330
99	4	100.329	3.000	2.670
99	5	100.329	4.000	2.000
99	6	100.329	5.000	1.350
99	7	100.329	5.500	1.000
99	8	100.329	6.500	0.000
99	9	100.329	7.500	1.000
99	10	100.329	8.000	1.350
99	11	100.329	9.000	2.000
99	12	100.329	10.000	2.670
99	13	100.329	11.000	3.330
99	14	100.329	12.000	4.000
99	15	100.329	13.000	4.670
100	1	101.357	0.000	4.670
100	2	101.357	1.000	4.000
100	3	101.357	2.000	3.330
100	4	101.357	3.000	2.670
100	5	101.357	4.000	2.000
100	6	101.357	5.000	1.350
100	7	101.357	5.500	1.000
100	8	101.357	6.500	0.000
100	9	101.357	7.500	1.000
100	10	101.357	8.000	1.350
10.0	.0	101357	9.000	2,000
10.0	12	101.357	10.000	2 670
100	12	101257	11000	2.010
100	1/	101.337	12 000	4 000
100	14	101.337	12.000	4.000
100	15	101.357	13.000	4.670

i	j	x	У	z
101	1	102.385	0.000	4.670
101	2	102.385	1.000	4.000
101	3	102.385	2.000	3.330
101	4	102.385	3.000	2.670
101	5	102.385	4.000	2.000
101	6	102.385	5.000	1.350
101	7	102.385	5.500	1.000
101	8	102.385	6.500	0.000
101	9	102.385	7.500	1.000
101	10	102,385	8.000	1350
101	11	102.385	9.000	2.000
101	12	102 385	10,000	2 670
10.1	13	102.385	11,000	3 330
10.1	14	102.000	12.000	4.000
101	14	102.303	12.000	4.000
40.0	G d	102.303	0.000	4.070
102	1	103.412	0.000	4.670
102	2	103.412	1.000	4.000
102	3	103.412	2.000	3.330
102	4	103.412	3.000	2.670
102	5	103.412	4.000	2.000
102	6	103.412	5.000	1.350
102	7	103.412	5.500	1.000
102	8	103.412	6.500	0.000
102	9	103.412	7.500	1.000
102	10	103.412	8.000	1.350
102	11	103.412	9.000	2.000
102	12	103.412	10.000	2.670
102	13	103.412	11.000	3.330
102	14	103.412	12.000	4.000
102	15	103.412	13.000	4.670
103	1	104.440	0.000	4.670
103	2	104.440	1.000	4.000
103	3	104.440	2.000	3.330
103	4	104.440	3.000	2.670
103	5	104,440	4.000	2.000
103	6	104,440	5.000	1350
10.3	7	104 440	5 500	1000
10.3	8	104 440	6 500	0.000
103	q	104 440	7 500	1000
103	10	104 440	8.000	1350
10.2	10	104.440	0.000	2,000
10.3	12	104.440	9.000	2.000
10.3	12	104.440	11.000	2.070
10.3	10	104.440	10.000	3.330
103	14	104.440	12.000	4.000
10.3	G	104.440	0.000	4.070
104	1	105.468	0.000	4.670
104	2	105.468	1.000	4.000
104	3	105.468	2.000	3.330
104	4	105.468	3.000	2.670
104	5	105.468	4.000	2.000
104	6	105.468	5.000	1.350
104	7	105.468	5.500	1.000
104	8	105.468	6.500	0.000
104	9	105.468	7.500	1.000
104	10	105.468	8.000	1.350
104	11	105.468	9.000	2.000
104	12	105.468	10.000	2.670
104	13	105.468	11.000	3.330
104	14	105.468	12.000	4.000
104	15	105.468	13.000	4.670

i	j	x	У	z
105	1	106.496	0.000	4.670
105	2	106.496	1.000	4.000
105	3	106.496	2.000	3.330
105	4	106.496	3.000	2.670
105	5	106.496	4.000	2.000
105	6	106.496	5.000	1.350
105	7	106.496	5.500	1.000
105	8	106.496	6.500	0.000
105	9	106.496	7.500	1.000
105	10	106.496	8.000	1.350
105	11	106.496	9.000	2.000
105	12	106.496	10.000	2.670
105	13	106.496	11.000	3.330
105	14	106.496	12.000	4.000
105	15	106.496	13.000	4.670
106	1	107.524	0.000	4.670
106	2	107.524	1.000	4.000
106	3	107.524	2.000	3.330
106	4	107.524	3.000	2.670
106	5	107.524	4.000	2.000
106	6	107.524	5.000	1.350
106	7	107.524	5.500	1.000
106	8	107.524	6.500	0.000
106	9	107.524	7.500	1.000
106	10	107.524	8.000	1.350
106	11	107.524	9.000	2.000
106	12	107.524	10.000	2.670
106	13	107.524	11.000	3.330
106	14	107.524	12.000	4.000
106	15	107.524	13.000	4.670
107	1	108.552	0.000	4.670
107	2	108.552	1.000	4.000
107	3	108.552	2.000	3.330
107	4	108.552	3.000	2.670
107	5	108.552	4.000	2.000
107	6	108.552	5.000	1.350
107	7	108.552	5.500	1.000
107	8	108.552	6.500	0.000
107	9	108.552	7.500	1.000
107	10	108.552	8.000	1.350
107	11	108.552	9.000	2.000
107	12	108.552	10.000	2.670
107	13	108.552	11.000	3.330
107	14	108.552	12.000	4.000
107	15	108.552	13.000	4.670
108	1	109.580	0.000	4.670
108	2	109.580	1.000	4.000
108	3	109.580	2.000	3.330
108	4	109.580	3.000	2.670
108	5	109.580	4.000	2.000
108	6	109.580	5.000	1.350
108	7	109.580	5.500	1.000
108	8	109.580	6.500	0.000
108	9	109.580	7.500	1.000
108	10	109.580	8.000	1.350
108	11	109.580	9.000	2.000
108	12	109.580	10.000	2.670
108	13	109.580	11.000	3.330
108	14	109.580	12.000	4.000
108	15	109.580	13.000	4.670

	-			_
I	J	x	у	z
109	1	110.608	0.000	4.670
109	2	110.608	1.000	4.000
109	3	110.608	2.000	3.330
109	4	110.608	3.000	2.670
109	5	110.608	4.000	2.000
109	6	110.608	5.000	1.350
109	7	110.608	5.500	1.000
109	8	110.608	6.500	0.000
109	9	110.608	7.500	1.000
109	10	110.608	8.000	1.350
109	11	110.608	9.000	2.000
109	12	110.608	10.000	2.670
109	13	110.608	11.000	3.330
109	14	110.608	12.000	4.000
109	15	110.608	13.000	4.670
110	1	111.636	0.000	4.670
110	2	111.636	1.000	4.000
110	3	111.636	2.000	3.330
110	4	111.636	3.000	2.670
110	5	111.636	4.000	2.000
110	6	111.636	5.000	1.350
110	7	111.636	5.500	1.000
110	8	111.636	6.500	0.000
110	9	111.636	7.500	1.000
110	10	111.636	8.000	1.350
110	11	111.636	9.000	2.000
110	12	111.636	10.000	2.670
110	13	111.636	11.000	3.330
110	14	111.636	12.000	4.000
110	15	111.636	13.000	4.670
111	1	112.664	0.000	4.670
111	2	112.664	1.000	4.000
111	3	112.664	2.000	3.330
111	4	112.664	3.000	2.670
111	5	112.664	4.000	2.000
111	6	112.664	5.000	1.350
111	7	112.664	5.500	1.000
111	8	112.664	6.500	0.000
111	9	112.664	7.500	1.000
111	10	112.664	8.000	1,350
111	11	112 664	9,000	2 000
111	12	112.664	10.000	2.670
111	13	112.664	11.000	3.330
111	14	112 664	12 000	4 000
111	15	112.664	13.000	4.670
112	1	113.692	0.000	4.670
112	2	113.692	1.000	4.000
112	3	113.692	2.000	3.330
112	4	113 692	3 000	2 670
112	5	113 692	4 000	2 000
112	6	113 692	5000	1350
112	7	113 692	5 500	1000
112	8	113,692	6.500	0.000
112	q	113 692	7 500	1000
112	10	113 692	8 000	1350
112	11	113 602	9 000	2 000
112	12	113 602	10 000	2.000
112	12	113 602	11,000	2.010
112	1/	113 602	12 000	3.330
140	14	112 600	12.000	4.000
١Ľ	CI	119.095	i3.000	4.070

Bernarda Luzuriaga H. Autoría: Diana Amaya Z.

i	j	x	у	z
113	1	114.720	0.000	4.670
113	2	114.720	1.000	4.000
113	3	114.720	2.000	3.330
113	4	114.720	3.000	2.670
113	5	114.720	4.000	2.000
113	6	114.720	5.000	1.350
113	7	114.720	5.500	1.000
113	8	114,720	6.500	0.000
113	9	114.720	7.500	1.000
113	10	114 72 0	8 000	1350
113	10	114.720	9.000	2 000
112	12	114.720	10,000	2.000
112	12	114.720	11,000	2.070
440	10	114.720	10.000	3.330
113	14	114.720	12.000	4.000
113	15	114.720	13.000	4.670
114	1	115.748	0.000	4.670
114	2	115.748	1.000	4.000
114	3	115.748	2.000	3.330
114	4	115.748	3.000	2.670
114	5	115.748	4.000	2.000
114	6	115.748	5.000	1.350
114	7	115.748	5.500	1.000
114	8	115.748	6.500	0.000
114	9	115.748	7.500	1.000
114	10	115.748	8.000	1.350
114	11	115.748	9.000	2.000
114	12	115.748	10.000	2.670
114	13	115.748	11.000	3.330
114	14	115 748	12 000	4 000
114	15	115 748	13 000	4 670
115	.0	116 776	0.000	4 670
115	2	116 776	1000	4.000
115	2	110.770	2.000	4.000
GIT	3	110.770	2.000	3.330
GIT	4	110.770	3.000	2.670
115	5	116.776	4.000	2.000
115	6	116.776	5.000	1.350
115	7	116.776	5.500	1.000
115	8	116.776	6.500	0.000
115	9	116.776	7.500	1.000
115	10	116.776	8.000	1.350
115	11	116.776	9.000	2.000
115	12	116.776	10.000	2.670
115	13	116.776	11.000	3.330
115	14	116.776	12.000	4.000
115	15	116.776	13.000	4.670
116	1	117.804	0.000	4.670
116	2	117.804	1.000	4.000
116	3	117.804	2.000	3.330
116	4	117.804	3.000	2.670
116	5	117.804	4.000	2.000
116	6	117.804	5.000	1.350
116	7	117.804	5.500	1.000
116	8	117 804	6.500	0.000
116	9	117,804	7.50.0	1,000
116	10	117.804	8 000	1350
110	10	117 004	0.000	2 000
140	11	117.004	9.000	2.000
110	12	117.804	10.000	2.070
116	13	117.804	11.000	3.330
116	14	117 804	12 000	4 0 0 0

i	j	x	У	z
117	1	118.832	0.000	4.670
117	2	118.832	1.000	4.000
117	3	118.832	2.000	3.330
117	4	118.832	3.000	2.670
117	5	118.832	4.000	2.000
117	6	118 832	5,000	1350
117	7	118 832	5 500	1000
117	8	118 832	6 500	0.000
117	0	118 832	7 500	1000
117	10	110.002	8.000	1250
117	10	110.032	0.000	1.350
117	11	110.032	9.000	2.000
117	12	118.832	10.000	2.670
117	13	118.832	11.000	3.330
11/	14	118.832	12.000	4.000
11/	15	118.832	13.000	4.670
118	1	119.860	0.000	4.670
118	2	119.860	1.000	4.000
118	3	119.860	2.000	3.330
118	4	119.860	3.000	2.670
118	5	119.860	4.000	2.000
118	6	119.860	5.000	1.350
118	7	119.860	5.500	1.000
118	8	119.860	6.500	0.000
118	9	119.860	7.500	1.000
118	10	119.860	8.000	1.350
118	11	119.860	9.000	2.000
118	12	119.860	10.000	2.670
118	13	119.860	11.000	3.330
118	14	119.860	12.000	4.000
118	15	119.860	13.000	4.670
119	1	120.888	0.000	4.670
119	2	120.888	1.000	4.000
119	3	120.888	2.000	3.330
119	4	120.888	3.000	2.670
119	5	120.888	4.000	2.000
119	6	120.888	5.000	1350
119	7	120 888	5 500	1000
119	8	120.888	6 500	0.000
110	0	120.000	7.500	1000
119	9 10	120.000	8.000	1250
119	10	120.000	0.000	1.330
119	11	120.888	9.000	2.000
119	12	i∠∪.ŏŏŏ	10.000	2.070
119	13	120.888	11.000	3.330
119	14	120.888	12.000	4.000
119	15	120.888	13.000	4.670
120	1	12 1.9 16	0.000	4.670
120	2	12 1.9 16	1.000	4.000
120	3	12 1.9 16	2.000	3.330
120	4	12 1.9 16	3.000	2.670
120	5	12 1.9 16	4.000	2.000
120	6	12 1.9 16	5.000	1.350
120	7	12 1.9 16	5.500	1.000
120	8	12 1.9 16	6.500	0.000
120	9	12 1.9 16	7.500	1.000
120	10	12 1.9 16	8.000	1.350
120	11	12 1.9 16	9.000	2.000
120	12	12 1.9 16	10.000	2.670
120	13	12 1.9 16	11.000	3.330
120	14	12 1.9 16	12.000	4.000
120	15	12 1.9 16	13.000	4.670
<u> </u>				

i	j	x	у	z
121	1	122.944	0.000	4.670
121	2	122.944	1.000	4.000
121	3	122.944	2.000	3.330
121	4	122 944	3 000	2 670
121	5	122 944	4 000	2 000
121	6	122 944	5,000	1350
121	7	122.344	5.000	1.000
121	,	122.044	6.500	0.000
121	0	122.944	7.500	1000
42.4	3	122.944	7.500	1.000
121	10	122.944	8.000	1.350
121	11	122.944	9.000	2.000
121	12	122.944	10.000	2.670
121	13	122.944	11.000	3.330
121	14	122.944	12.000	4.000
121	15	122.944	13.000	4.670
122	1	123.972	0.000	4.670
122	2	123.972	1.000	4.000
122	3	123.972	2.000	3.330
122	4	123.972	3.000	2.670
122	5	123.972	4.000	2.000
122	6	123.972	5.000	1.350
122	7	123.972	5.500	1.000
122	8	123.972	6.500	0.000
122	9	123.972	7.500	1.000
122	10	123.972	8.000	1.350
122	11	123.972	9.000	2.000
122	12	123.972	10.000	2.670
122	13	123.972	11.000	3.330
122	14	123.972	12.000	4.000
122	15	123.972	13.000	4.670
123	1	125.000	0.000	4.670
123	2	125.000	1.000	4.000
123	3	125.000	2.000	3.330
123	4	125.000	3.000	2.670
123	5	125.000	4.000	2.000
123	6	125.000	5.000	1.350
123	7	125.000	5.500	1.000
123	8	125.000	6.500	0.000
123	9	125.000	7.500	1.000
123	10	125.000	8.000	1.350
123	11	125,000	9,000	2 000
123	12	125,000	10 000	2 670
123	13	125.000	11,000	3 3 3 0
123	14	125.000	12 000	4 000
122	15	125.000	13 000	1.000
12.3	1	126.029	0.000	4.070
12.4	2	120.020	1000	4.070
124	2	120.020	1.000	4.000
124	3	120.020	2.000	3.330
124	4	120.020	3.000	2.670
124	с С	126.028	4.000	2.000
124	6	120.028	5.000	1.350
124		126.028	5.500	1.000
124	8	126.028	6.500	0.000
124	9	126.028	7.500	1.000
124	10	126.028	8.000	1.350
124	11	126.028	9.000	2.000
124	12	126.028	10.000	2.670
124	13	126.028	11.000	3.330
124	14	126.028	12.000	4.000
124	15	126.028	13.000	4.670

;	:	v	v	-
1	1	X	y	2
125	1	127.056	0.000	4.670
125	2	127.056	1.000	4.000
125	3	127.056	2.000	3.330
125	4	127.056	3.000	2.670
125	5	127.056	4.000	2.000
125	6	127.056	5.000	1.350
125	7	127.056	5.500	1.000
125	8	127.056	6.500	0.000
125	9	127.056	7.500	1.000
125	10	127.056	8.000	1.350
125	11	127.056	9.000	2.000
125	12	127.056	10.000	2.670
125	13	127.056	11.000	3.330
125	14	127.056	12.000	4.000
125	15	127.056	13.000	4.670
126	1	128.084	0.000	4.670
126	2	128.084	1.000	4.000
126	3	128.084	2.000	3.330
126	4	128.084	3.000	2.670
126	5	128.084	4.000	2.000
126	6	128.084	5.000	1.350
126	7	128.084	5.500	1.000
126	8	128.084	6.500	0.000
126	9	128.084	7.500	1.000
126	10	128.084	8.000	1.350
126	11	128.084	9.000	2.000
126	12	128.084	10.000	2.670
126	13	128.084	11.000	3.330
126	14	128.084	12.000	4.000
126	15	128.084	13.000	4.670
127	1	129.112	0.000	4.670
127	2	129.112	1.000	4.000
127	3	129.112	2.000	3.330
127	4	129.112	3.000	2.670
127	5	129.112	4.000	2.000
127	6	129.112	5.000	1.350
127	7	129.112	5.500	1.000
127	8	129.112	6.500	0.000
127	9	129.112	7.500	1.000
127	10	129.112	8.000	1.350
127	11	129,112	9.000	2.000
127	12	129.112	10.000	2.670
127	13	129,112	11.000	3.330
127	14	129 112	12 000	4 000
127	15	129,112	13.000	4.670
128	.0	130 140	0.000	4 670
12.8	2	130 140	1000	4 000
12.8	2	130 140	2 000	3 330
12.8	4	130 140	3,000	2 670
12.0	5	130 140	4 000	2.010
12.0	6	130.140	5.000	1350
120	7	130 140	5.000	1000
12.0	0	130.140	6.500	0.000
12 0	0	130 140	7 500	1000
120	40	120 140	1.000	1.000
120	IU 44	120.140	0.000	1.350
128	11	130.140	9.000	2.000
128	12	130.140	10.000	2.670
128	13	130.140	11.000	3.330
128	14	130.140	12.000	4.000
128	15	130.140	13.000	4.670

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

13.000

4.670

116

15 117.804

:	:	~		- 1
1	1	X	y	2
129	1	131.168	0.000	4.670
129	2	131.168	1.000	4.000
129	3	131.168	2.000	3.330
129	4	131.168	3.000	2.670
129	5	131.168	4.000	2.000
129	6	131.168	5.000	1.350
129	7	131.168	5.500	1.000
129	8	131.168	6.500	0.000
129	9	131.168	7.500	1.000
129	10	131.168	8.000	1.350
129	11	131.168	9.000	2.000
129	12	131 168	10 000	2 670
129	13	131 168	11000	3 330
120	14	13.1.16.8	12 000	4 000
12.9	14	121.100	12.000	4.000
129	G	13 1. 100	13.000	4.670
130	1	132.196	0.000	4.670
130	2	132.196	1.000	4.000
130	3	132.196	2.000	3.330
130	4	132.196	3.000	2.670
130	5	132.196	4.000	2.000
130	6	132.196	5.000	1.350
130	7	132.196	5.500	1.000
130	8	132.196	6.500	0.000
130	9	132.196	7.500	1.000
130	10	132.196	8.000	1.350
130	11	132.196	9.000	2.000
130	12	132,196	10.000	2.670
130	13	132,196	11.000	3.330
13.0	14	132 196	12 000	4 000
13.0	15	132.100	13.000	4.670
12.1	1	122.100	0.000	4.670
101	2	133.224	1000	4.070
131	2	133.224	1.000	4.000
131	3	133.224	2.000	3.330
131	4	133.224	3.000	2.670
131	5	133.224	4.000	2.000
131	6	133.224	5.000	1.350
131	7	133.224	5.500	1.000
131	8	133.224	6.500	0.000
131	9	133.224	7.500	1.000
131	10	133.224	8.000	1.350
131	11	133.224	9.000	2.000
131	12	133.224	10.000	2.670
131	13	133.224	11.000	3.330
131	14	133.224	12.000	4.000
131	15	133.224	13.000	4.670
132	1	134.252	0.000	4.670
132	2	134.252	1.000	4.000
132	3	134 252	2,000	3,330
132	4	134 252	3,000	2,670
12.2	- 5	13/ 252	4 000	2.010
12.2	с С	124.050	4.000	2.000
102	o T	134.252	5.000	1.350
132	7	134.252	5.500	1.000
132	8	134.252	6.500	0.000
132	9	134.252	7.500	1.000
132	10	134.252	8.000	1.350
132	11	134.252	9.000	2.000
132	12	134.252	10.000	2.670
132	13	134.252	11.000	3.330
13.2	1/	13/1 252	12 000	4 000

i	j	x	У	z
133	1	135.280	0.000	4.670
133	2	135.280	1.000	4.000
133	3	135.280	2.000	3.330
133	4	135.280	3.000	2.670
133	5	135.280	4.000	2.000
133	6	135.280	5.000	1.350
133	7	135.280	5.500	1.000
133	8	135.280	6.500	0.000
133	9	135.280	7.500	1.000
133	10	135.280	8.000	1.350
133	11	135.280	9.000	2.000
133	12	135,280	10.000	2.670
133	13	135.280	11.000	3.330
133	14	135.280	12.000	4.000
133	15	135.280	13.000	4.670
134	1	136.308	0.000	4 670
134	2	136.308	1000	4 000
134	- 3	136.308	2.000	3.330
13.4	4	136 308	3,000	2 670
13.4	5	136 308	4 000	2.010
13.4	6	136 308	5,000	1350
13.4	7	136 308	5.000	1000
12.4	, 0	126 209	6.500	0.000
12.4	0	126 209	7.500	1000
12.4	9 10	126 200	7.500	1250
134	10	130.300	0.000	1.350
134	10	130.300	9.000	2.000
134	12	130.300	11.000	2.070
134	13	130.300	10.000	3.330
134	14	136.308	12.000	4.000
134	CI	136.308	13.000	4.670
135	1	137.336	0.000	4.670
135	2	137.336	1.000	4.000
135	3	137.336	2.000	3.330
135	4	137.336	3.000	2.670
135	с С	137.336	4.000	2.000
135	0	137.336	5.000	1.350
135	/	137.336	5.500	1.000
135	8	137.336	6.500	0.000
135	9	137.336	7.500	1.000
135	10	137.336	8.000	1.350
135	11	137.336	9.000	2.000
135	12	137.336	10.000	2.670
135	13	137.336	11.000	3.330
135	14	137.336	12.000	4.000
135	15	137.336	13.000	4.670
136	1	138.364	0.000	4.670
136	2	138.364	1.000	4.000
136	3	138.364	2.000	3.330
136	4	138.364	3.000	2.670
136	5	138.364	4.000	2.000
136	6	138.364	5.000	1.350
136	7	138.364	5.500	1.000
136	8	138.364	6.500	0.000
136	9	138.364	7.500	1.000
136	10	138.364	8.000	1.350
136	11	138.364	9.000	2.000
136	12	138.364	10.000	2.670
136	13	138.364	11.000	3.330
136	14	138.364	12.000	4.000
136	15	138.364	13.000	4.670

i	j	х	у	z
137	1	139.392	0.000	4.670
137	2	139.392	1.000	4.000
137	- 3	139 392	2 000	3 330
137	4	139 392	3,000	2 670
137	- 5	139 392	4 000	2.010
127	6	120 202	5.000	1250
127	7	120 202	5.000	1.000
107		139.392	5.500	1.000
137	8	139.392	6.500	0.000
137	9	139.392	7.500	1.000
137	10	139.392	8.000	1.350
137	11	139.392	9.000	2.000
137	12	139.392	10.000	2.670
137	13	139.392	11.000	3.330
137	14	139.392	12.000	4.000
137	15	139.392	13.000	4.670
138	1	140.420	0.000	4.670
138	2	140.420	1.000	4.000
138	3	140.420	2.000	3.330
138	4	140.420	3.000	2.670
138	5	140.420	4.000	2.000
138	6	140.420	5.000	1.350
138	7	140.420	5.500	1.000
138	8	140.420	6.500	0.000
138	9	140.420	7.500	1.000
138	10	140.420	8.000	1.350
138	11	140.420	9.000	2.000
138	12	140.420	10.000	2.670
138	13	140.420	11.000	3.330
138	14	140.420	12.000	4.000
138	15	140.420	13.000	4.670
139	1	141.448	0.000	4.670
139	2	141.448	1.000	4.000
139	3	141,448	2.000	3.330
139	4	141.448	3.000	2.670
13.9	5	141448	4 000	2 000
13.9	6	141448	5000	1350
13.9	7	141448	5 500	1000
13.9	. 8	141448	6 500	0.000
13.0	0	1/1 / / / 8	7 500	1000
13.0	10	1/1 1 / / 8	8.000	1350
130	11	1/1//8	9,000	2 000
130	12	1/1//8	10,000	2.000
130	12	1/1//8	11,000	3 3 3 0
120	14	141 4 4 9	12 000	4.000
120	14	141.440	12.000	4.000
140	1	140,476	0.000	4.070
140	2	142.470	1000	4.670
140	2	142.476	1.000	4.000
140	3	142.476	2.000	3.330
140	4	142.476	3.000	2.670
140	5	142.476	4.000	2.000
140	6	142.476	5.000	1.350
140	7	142.476	5.500	1.000
140	8	142.476	6.500	0.000
140	9	142.476	7.500	1.000
140	10	142.476	8.000	1.350
140	11	142.476	9.000	2.000
140	12	142.476	10.000	2.670
140	13	142.476	11.000	3.330
140	14	142.476	12.000	4.000
140	15	142.476	13.000	4.670

	:			-
14.1	J	X	y	Z
14 1	2	143.504	1000	4.070
14 1	2	143.504	2.000	4.000
14.1	3	143.504	2.000	3.330
14 1	4	143.504	3.000	2.070
141	5	143.504	4.000	2.000
14 1	7	143.504	5.000	1.350
141	1	143.504	5.500	0.000
141	0	143.504	7.500	1000
141	9	143.504	7.500	1.000
14 1	10	143.504	0.000	1.300
141	11	143.504	9.000	2.000
14 1	12	143.504	11.000	2.070
141	14	143.504	12.000	3.330
14 1	14	143.504	12.000	4.000
14.1	CI 1	143.004	0.000	4.070
14.2	2	144.551	1000	4.070
14.2	2	144.551	1.000	4.000
14.2	3	144.551	2.000	3.330
14.2	4	144.531	3.000	2.070
142	5	144.551	4.000	2.000
142	0	144.531	5.000	1.350
14.2	1	144.551	5.500	0.000
14.2	0	144.551	7.500	1000
14.2	9	144.551	7.500	1.000
14.2	10	144.551	0.000	1.300
14.2	11	144.551	9.000	2.000
142	12	144.531	10.000	2.670
142	13	144.551	10.000	3.330
142	14	144.531	12.000	4.000
14.2	CI 1	144.551	0.000	4.070
14.3	2	145.559	1000	4.070
1/1 2	2	145.559	2.000	4.000
14.3	3	145.559	2.000	3.330
1/1 2	4	145.559	3.000	2.070
1/1 3	6	145.559	5.000	1350
1/1 3	7	14.5 559	5.000	1.000
1/1 3	8	14.5 559	6.500	0.000
1/1 3	0	14.5 559	7 500	1000
143	10	14.5 559	8.000	1350
1/1 3	10	14.5 559	9,000	2 000
143	12	14.5.559	10 000	2.000
143	13	14.5.559	11 0 0 0	3 330
143	.0	145.559	12,000	4,000
143	15	145.559	13.000	4.670
14.4	1	146.587	0.000	4.670
144	2	146.587	1.000	4.000
144	3	146.587	2.000	3.330
144	4	146.587	3.000	2.670
144	5	146.587	4.000	2.000
144	6	146.587	5.000	1.350
144	7	146.587	5.500	1.000
144	8	146.587	6.500	0.000
144	9	146.587	7.500	1.000
144	10	146.587	8.000	1.350
144	11	146.587	9.000	2.000
144	12	146.587	10.000	2.670
144	13	146.587	11.000	3.330
144	14	146.587	12.000	4.000
144	15	146.587	13.000	4.670
_			-	

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

13.000

4.670

132

15 134.252

i	j	x	У	z
145	1	147.615	0.000	4.670
145	2	147.615	1.000	4.000
145	3	147.615	2.000	3.330
145	4	147.615	3.000	2.670
145	5	147.615	4.000	2.000
145	6	147.615	5.000	1.350
145	7	147.615	5.500	1.000
145	8	147.615	6.500	0.000
145	9	147.615	7.500	1.000
145	10	147.615	8.000	1.350
145	11	147.615	9.000	2.000
145	12	147.615	10.000	2.670
145	13	147.615	11.000	3.330
145	14	147.615	12.000	4.000
145	15	147.615	13.000	4.670
146	1	148.643	0.000	4.670
146	2	148.643	1.000	4.000
146	- 3	148 643	2 000	3 330
146	4	148,643	3 000	2.670
146	5	148 643	4 000	2 000
146	6	148 643	5000	1350
146	7	148 643	5.500	1000
146	8	148 643	6.500	0.000
146	9	148.643	7.500	1.000
146	10	148 643	8 000	1350
146	11	148.643	9.000	2.000
146	12	148 643	10 000	2 670
146	13	148 643	11000	3 330
146	14	148 643	12 000	4 000
146	15	148 643	13 000	4 670
147	.0	149 671	0.000	4 670
147	2	149 671	1000	4 000
147	- 3	149 671	2 000	3 330
147	4	149.671	3.000	2.670
147	5	149 671	4 000	2 000
147	6	149 671	5000	1350
147	7	149 671	5.500	1000
147	. 8	149 671	6.500	0.000
147	9	149 671	7.50.0	1000
147	10	149 671	8 000	1350
147	11	149 671	9.000	2 000
147	12	149.671	10.000	2.670
147	13	149 671	11000	3 330
147	14	149.671	12.000	4,000
147	15	149.671	13.000	4.670
148	1	150.699	0.000	6.290
14.8	2	150 699	1000	6 2 9 0
148	- 3	150,699	2.000	6,290
148	4	150.699	3.000	6.290
148	5	150,699	4.000	6,290
148	6	150,699	5.000	6,290
148	7	150,699	5.500	6,290
148	, 8	150,699	6.500	6,290
14.8	a	150 699	7 50.0	6 290
148	10	150,699	8 000	6,290
14.9	11	150 600	9.000	6 200
14.8	12	150.699	10 000	6 290
1/ 0	12	150 600	11000	6 200
1/1 R	1/1	150 600	12 000	6 290

i	j	x	У	z
149	1	151.489	0.000	8.700
149	2	151.489	1.000	8.700
149	3	151.489	2.000	8.700
149	4	151.489	3.000	8.700
149	5	151.489	4.000	8.700
149	6	151.489	5.000	8.700
149	7	151,489	5.500	8.700
14.9	8	151 4 8 9	6 500	8 700
14.9	9	151 4 8 9	7 500	8 700
14.9	10	151 4 8 9	8 000	8 700
14.9	11	151 4 8 9	9.000	8 700
1/ 0	12	151/180	10,000	8 700
1/1 0	13	151/180	11,000	8 700
14.0	14	151.403	12.000	9 700
14.9	14	151.409	12.000	8 700
149	GI (151.469	13.000	8.700
150	1	151.683	0.000	9.290
150	2	151.683	1.000	9.290
150	3	151.683	2.000	9.290
150	4	151.683	3.000	9.290
150	5	151.683	4.000	9.290
150	6	151.683	5.000	9.290
150	7	151.683	5.500	9.290
150	8	151.683	6.500	9.290
150	9	151.683	7.500	9.290
150	10	151.683	8.000	9.290
150	11	151.683	9.000	9.290
150	12	151.683	10.000	9.290
150	13	151.683	11.000	9.290
150	14	151.683	12.000	9.290
150	15	151.683	13.000	9.290
151	1	152.489	0.000	9.700
151	2	152.489	1.000	9.700
151	3	152.489	2.000	9.700
151	4	152.489	3.000	9.700
151	5	152.489	4.000	9.700
151	6	152.489	5.000	9.700
151	7	152.489	5.500	9.700
151	8	152.489	6.500	9.700
151	9	152,489	7.500	9.700
151	10	152.489	8.000	9,700
151	11	152 489	9.000	9 700
151	12	152 489	10,000	9 700
151	13	152 / 89	11,000	9 700
151	14	152.480	12 000	9,700
151	15	152.489	13 000	9 700
152	.0	152.090	0.000	0.700
152	2	152.909	1000	9.700
152	2	152.909	1.000	9.700
152	3	152.909	2.000	9.700
152	4	152.969	3.000	9.700
152	5	152.989	4.000	9.700
152	6	152.989	5.000	9.700
152	7	152.989	5.500	9.700
152	8	152.989	6.500	9.700
152	9	152.989	7.500	9.700
152	10	152.989	8.000	9.700
152	11	152.989	9.000	9.700
152	12	152.989	10.000	9.700
152	13	152.989	11.000	9.700
152	14	152.989	12.000	9.700
152	15	152.989	13.000	9.700

i	j	х	У	z
153	1	153.441	0.951	9.700
153	2	153.441	1.493	9.700
153	3	153.441	2.375	9.700
153	4	153.441	3.256	9.700
153	5	153.441	4.138	9.700
153	6	153,441	5.019	9,700
153	7	153.441	5.619	9.700
153	8	153 441	6 500	9 700
153	9	153 441	7382	9 700
153	10	153 441	7 981	9 700
153	11	153 / / 1	8 862	9,700
152	12	152 / / 1	0.002	9.700
152	12	152 / / 1	10 624	9.700
150	14	152.441	11.024	9.700
153	14	153.441	11.507	9.700
153	CI CI	153.441	12.049	9.700
154	1	154.025	1.404	9.700
154	2	154.025	2.132	9.700
154	3	154.025	2.860	9.700
154	4	154.025	3.588	9.700
154	5	154.025	4.316	9.700
154	6	154.025	5.044	9.700
154	7	154.025	5.772	9.700
154	8	154.025	6.500	9.700
154	9	154.025	7.228	9.700
154	10	154.025	7.956	9.700
154	11	154.025	8.684	9.700
154	12	154.025	9.412	9.700
154	13	154.025	10.140	9.700
154	14	154.025	10.868	9.700
154	15	154.025	11.596	9.700
155	1	154.950	1.849	9.700
155	2	154.950	2.513	9.700
155	3	154.950	3.178	9.700
155	4	154.950	3.842	9.700
155	5	154.950	4.507	9.700
155	6	154.950	5.171	9.700
155	7	154.950	5.836	9.700
155	8	154.950	6.500	9.700
155	9	154.950	7.165	9.700
155	10	154.950	7.829	9,700
155	11	154 950	8 4 9 4	9 700
155	12	154,950	9.158	9,700
155	13	154 950	9.822	9 700
155	14	154 950	10 487	9 700
155	15	154.950	11.151	9,700
156	1	155 0 3 2	2 151	9 700
156	2	155.022	2.101	9.700
156	2	155 0 2 2	2.049	9.700
156	3	155 0 2 2	3.291	9.700
156	4	155 0 2 2	J.933	9.700
150	5 6	155 0 2 2	4.0/0	9.700
100	ە 7	100.932	5.210	9.700
100		155.932	5.858	9.700
dCI	8	100.932	0.500	9.700
156	9	155.932	7.142	9.700
156	10	155.932	7.784	9.700
156	11	155.932	8.426	9.700
156	12	155.932	9.068	9.700
156	13	155.932	9.709	9.700
156	14	155.932	10.351	9.700

15 155.932

10.849

9.700

156

i	j	x	у	z
157	1	156.941	2.350	9.700
157	2	156.941	2.788	9.700
157	3	156.941	3.407	9.700
157	4	156.941	4.026	9.700
157	5	156.941	4.644	9.700
157	6	156.941	5.263	9.700
157	7	156.941	5.882	9.700
157	8	156.941	6.500	9.700
157	9	156.941	7.119	9.700
157	10	156.941	7.737	9.700
157	11	156.941	8.356	9.700
157	12	156.941	8.975	9.700
157	13	156.941	9.593	9.700
157	14	156.941	10.212	9.700
157	15	156.941	10.650	9.700
158	1	157.962	2.463	9.700
158	2	157.962	2.930	9.700
158	3	157.962	3.525	9.700
158	4	157.962	4.120	9.700
158	5	157.962	4.715	9.700
158	6	157.962	5.310	9.700
158	7	157.962	5.905	9.700
158	8	157.962	6.500	9.700
158	9	157.962	7.095	9.700
158	10	157.962	7.690	9.700
158	11	157.962	8.285	9.700
158	12	157.962	8.881	9.700
158	13	157.962	9.476	9.700
158	14	157.962	10.071	9.700
158	15	157.962	10.537	9.700
159	1	159.002	2.500	9.700
159	2	159.002	3.071	9.700
159	3	159.002	3.643	9.700
159	4	159.002	4.214	9.700
159	5	159.002	4.785	9.700
159	6	159.002	5.357	9.700
159	7	159.002	5.928	9.700
159	8	159.002	6.500	9.700
159	9	159.002	7.071	9.700
159	10	159.002	7.643	9.700
159	11	159.002	8.214	9.700
159	12	159.002	8.785	9.700
159	13	159.002	9.357	9.700
159	14	159.002	9.928	9.700
159	15	159.002	10.500	9.700

Autoría: Bernarda Luzuriaga H. Diana Amaya Z.

13.000

6.290

148

15 150.699