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Resumen  
Los ríos de montaña son, con distancia, el caso más difícil de modelación hidráulica debido a las características 

de su lecho y sus mecanismos de disipación de energía en función de su morfología irregular. La resistencia, 

llamada también rugosidad o fricción juega un papel importante en los modelos de canal abierto 1-D para estimar 

diferentes variables. El parámetro de resistencia contiene todos los procesos disipativos en un río de montaña y 

suele valorarse mediante mediciones de campo, existiendo diferentes metodologías para estimarlo. En 

consecuencia, es fundamental determinar qué metodología es la más adecuada para predecirla. El parámetro de 

resistencia determinado en campo no siempre es el mismo que el utilizado en un modelo hidrodinámico. En la 

presente investigación diferentes morfologías han sido estudiadas en el río Quinuas (Ecuador): grada, lecho plano, 

y cascada. Los resultados muestran que las ecuaciones denominadas “Non-dimensional hydraulic geometry 

equations” (NDHG) son la mejor opción para predecir la velocidad en todos los tramos de ríos de montaña, además 

se ha desarrollado una metodología para encontrar sus parámetros. Las diferencias entre la rugosidad usada por el 

modelo matemático y la medida en campo dependen de la morfología y la magnitud de flujo. Finalmente, se 

implementó la técnica de “machine learning” que utiliza la física del sistema (Physics Informed Neural Network), 

con resultados satisfactorios para encontrar los niveles de agua y para la calibración del parámetro de resistencia.  

Palabras clave: Resistencia al flujo; HEC-RAS; Physic informed neural network; Canal abierto; Río de montaña.
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Abstract 
Mountain -rivers are, by far, the most challenging case to model because of its bed characteristics and their energy 

dissipation mechanisms depending on its irregular morphology. Resistance, roughness, or friction parameter are 

equivalent terms. It plays an important role in 1-D open channel models to estimate different variables. Moreover, 

this parameter contains all the dissipative processes in a mountain river, and it is usually valued through field 

measurements, existing different methodologies to estimate it. Consequently, it is essential to determine which 

methodology is the most adequate to predict it. The resistance parameter determined in field is not always the 

same as the one used in a hydrodynamic model. In this thesis; cascades, plane bed, and step-pool has been studied 

in the Quinuas river (Ecuador). “Non-dimensional hydraulic geometry equations” (NDHG) were the best option 

to predict velocity in all the mountain river reaches. The parameters of NDHG varies depending on the author, 

therefore a methodology based on some field measurements to estimate the NDHG parameters was developed. 

The differences between model and field resistance coefficient depends on the morphology and flow magnitude. 

A machine learning technique using the system physics was develop providing optimal results to predict water 

depths and to calibrate resistance parameter.  

Keywords: Flow resistance; HEC-RAS model; Physic informed neural network; Open channel; Mountain river.
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Chapter 1  

1 Introduction  

1.1 Background 
Rivers has been an upside and downside for human development. They have been essential in the human development 

providing drinking water, power supply, navigation, and receiving wastewater from cities (Chapra, 2008). However, 

rivers can be a menace for humans as well. Flooding is considered one of the most damaging natural disasters which 

occurrence is increasing due to global warming (Camp et al., 2016; Douben, 2006). Thus, improving knowledge of the 

interaction of water and its boundaries will collaborate to an increased understanding of the river behavior. The focus of 

the present thesis is the mountain rivers and the study of the main feature of the river hydraulics: the resistance to flow.  

To understand the resistance to flow, the bed material needs to be considered. Firstly, it has a bimodal distribution 

(Bathurst, 2002). Indeed, the bed material is coarse poorly sorted (Wohl, 2000) with the presence of boulders which 

protrude above water level (Jarrett, 1984). Secondly, boulders increase flow resistance because water hits its protruding 

surface producing jets between them (Pagliara & Chiavaccini, 2006) and eddies behind it depends on the concentration 

of boulders (Jarrett, 1984). Thirdly, the water depth has the same magnitude as bed material producing a near-bed flow 

(Aberle & Smart, 2003; Maxwell & Papanicolaou, 2001). Thus, there is a low relative submergence (d/D84) with a range 

between 4 to 10 (Bathurst, 2002) . Fourthly, while in plane rivers the velocity distribution is semi-logarithmic, in 

mountain rivers there is a S-shape velocity distribution (Wohl, 2000). Therefore, the analysis of resistance in mountain 

rivers is crucial and challenging due to the complex interaction of the river with its boundaries (Romero et al., 2010). 

The resistance to flow in an open channel under the supposition of one-dimensional flow is considered through a 

parameter called “rugosity”. There are different rugosity parameters present in the literature such as Chezy (C), Darcy–

Weisbach (f), and Manning (n). The former two (f and n) are used in this thesis for field measurements and for 

hydrodynamic modelling. f is dimensionless and has physical interpretation being widely used in resistance measurement 

research (Ferguson, 2007), while n is the resistance parameter present in the energy equation widely used for hydraulic 

modeling (eg. HEC-RAS). 

There are different methodologies to estimate the Physical Resistance Parameter (PRP) based on field data and 

observations (Marcus et al., 1992): empirical equations, photography’s, or tables (Wohl, 1998). Methods based on tables 

and photography’s consist of finding a reach similar than the one under study which is intrinsically biased. A better 

option is the use of empirical equations. These equations require variables that are easily measurable and needs to 

consider at-a-site as well as between-site effects on resistance to be reliable (Bathurst, 2002; Ferguson, 2007). 

Nevertheless, available formulas to estimate f may have errors of around 30% because they were developed through the 

average of variations in multiple sites (Bathurst, 2002). There are different types of empirical equations such as 

Semilogarithmic (Bathurst, 1985), Exponential   (Bathurst, 2002), and Nondimensional Hydraulic Geometry Equations 

(Ferguson, 2007), each of them tested under different conditions: different morphologies, flume and field data. The field 

data is limited to rivers in the United States and Europe, but field data from an Andean river is limited to Romero et al. 

(2010). Thus; a first step in this work is to determine the best equation to predict resistance in all the available reaches 

and then to propose a procedure to find its parameters.  

Hydraulic models (HM) are intended to replicate the flow of a fluid (Teng et al., 2017). Furthermore, One-dimensional 

HM are still used and are considered a good predictor of river and canal hydraulic modeling when adequate topographic 

data is available (Cook & Merwade, 2009; Horritt & Bates, 2002). These models are popular due to a low computational 

demand and low investment in data collection since only point measurements of flow and water depth are required 

(Horritt & Bates, 2002; Teng et al., 2017). One-dimensional HM include some assumptions to represent the reality 

mathematically leading to structural errors (Bozzi et al., 2015). Moreover, there are errors in input data, model 

parameters and calibration data leading to model output uncertainties (Jung & Merwade, 2012). Thus, there is not a 

single set of optimal parameters, instead there is a set of parameters which has the same model performance which is 

called equifinality. A methodology called Generalized Likelihood Uncertainty Estimation (GLUE) is available to 

consider equifinality and to study the resistance parameter in one-dimensional HM needed to obtain representative 

results (Wohl, 1998). The Effective Resistance Coefficient (ERC) found with GLUE is a resistance parameter which 

contains the different processes playing important effects on model results (Horritt & Bates, 2002), but is not necessary 

the same as the physical resistance parameters (PRP). Hence, based on the important role of resistance parameter in HM, 
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it seems crucial to know the conditions when there is a marked difference between PRP and ERC. Indeed, those 

discrepancies could affect model performance.     

Deep learning is a technique able to approximate the behavior of a system based on data input (Raissi et al., 2017b; 

Tartakovsky et al., 2020). In some physical systems the availability of data is limited, so the introduction of the governing 

physics as additional information in deep learning has resulted in the so-called Physics-Informed Deep Learning (PIDL) 

(Raissi et al., 2017b). The inclusion of physical laws in the deep learning technique reduces dependency on large, high-

quality data sets and provides a robust model with physical significance (Raissi, Yazdani, et al., 2018; Wang et al., 

2020). The computations of the derivatives in deep learning are through Automatic Differentiation (AD) (Wang et al., 

2020). AD refers to a family of techniques where the derivative calculation is divided into elementary operations where 

symbolic differentiation is used, then the values are stored and accumulated to generate the overall derivative value 

(Güneş Baydin et al., 2018). PIDL can solve forward and inverse problems. In a forward problem, the training points 

are obtained from boundary and initial conditions where the conservative equations are enforced to obtain a stable 

solution  (Mao et al., 2020). An inverse problem consists of deducing the hidden quantities such as parameters using 

scattered and noisy observations (Raissi et al., 2017a). Physics Informed Deep Learning has been successfully used to 

solve hydraulic benchmark cases (Mao et al., 2020; Raissi et al., 2017a, 2017b; Wang et al., 2020). Consequently, PIDL 

is an promising methodology to test in mountain rivers to predict the water level profile as well as to calibrate the 

resistance parameter being both important problems during hydrodynamic modelling. 

One of the most challenging cases for modelling in mountain rivers is the analysis of Step-pool. This is a common 

morphology in mountain rivers with a staircase shape where risers are steps and pools are treads (Maxwell & 

Papanicolaou, 2001). Steps are generally formed of different materials, such as alluvial boulders, large wood debris, or 

bedrock (Curran & Wohl, 2003; MacFarlane & Wohl, 2003); while pools are made of finer granulometric materials (Lee 

& Ferguson, 2002). In steps, water jets are produced where the flow is supercritical. When the water falls into the pools, 

a hydraulic jump is produced, forming air pockets (Chin & Wohl, 2005). This morphology plays an important 

environmental and hydraulic role in steep rivers (MacFarlane & Wohl, 2003), helping the oxygen transfer to the water 

body. However, due to the process described, its hydraulic modeling is defiant. In this thesis, we have employed a widely 

used hydrodynamic model HEC-RAS to simulate different river reaches as well as PIDL. PIDL has gained interest in 

the hydraulic field due to the use of conservation laws. Based on the literature review, it is the first time that HEC RAS 

and PIDL results are compared in the simulation of mountain rivers.  

Finally, there are two important aspects to be discussed. First, it is important to notice that the term roughness refers to 

the flow resistance produced when water flows above or through a certain roughness element. Thus, resistance and 

roughness parameter in this case are the equivalent. Second, all the reaches under analysis have a unidimensional 

preferential flow, so the use of one-dimensional models approach make sense. In Table 1.1 some advantages and 

disadvantages of different dimensional models are explained.  

Table 1.1: Advantages and disadvantages of different models 

Model Advantage Disadvantage 

One-dimensional 

Less computational demand 

More simple mathematical 

formulation 

Punctual field data needed for 

validation 

The results are cross-sectional 

averages. 

Some physical phenomena are not 

considered e.g. turbulence, 

interaction main channel-flood plain 

Two and Three Dimensional 

More complex mathematical 

formulation  

 Include additional physical 

phenomena  

The output provides distributed data  

 

Requires more modeler experience 

High computational demand 

Much more detailed distributed 

field data is required 

 

 

1.2 Objectives  
In this thesis, resistance has been researched from two points of view. Firstly, a Physical Resistance Parameter (PRP) 

which is measured through field measurements. Secondly, an Effective Resistance Coefficient (ERC) based on GLUE 

experiments comparing the predictability of models with different resistance values. Given that PRP and ERC are 

available, the aims of this research project has therefore been: 
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• To compare the fitting performance of several empirical resistance equations to predict velocity in mountain rivers. 

Then, to develop a new methodology to estimate the parameters of the best equation.  

• To assess two important parameters in a hydrodynamic model for steady state flow: resistance factor and Representative 

Friction Slope Method (RFSM) applying GLUE methodology on HEC-RAS modelling. The calibrated resistance 

parameter found with GLUE (ERC) is compared with the resistance parameter obtain thought field measurements 

(PRP). Furthermore, the influence of the RFSM is determine during the energy equation solution in HEC-RAS 

modelling.  

• To use Physics Informed Deep Learning as an alternative method to calibrate resistance factor in mountain rivers having 

results comparable to GLUE.   

1.3 Thesis outline  
 Figure 1.1 depicts a graphical description of the different aims of this thesis and how they relate with each other until 

reaching PIDL. This model uses the results and measurements of all the working packages. 



  

 

Juan Sebastián Cedillo Galarza 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: 

Introduction  

Chapter 2: 

Literature 

Review  

Chapter 3: PRP -

Velocity estimated with 

field measurements 

Chapter 4: ERC 

calculated through 

GLUE 

Chapter 6: 

Conclusions  

Chapter 5: PIDL 

Resistance 

Partitioning  

Common 

Morphologies  

Resistance 

Field 

Measurement 

Resistance 

Coefficient 

Evaluation  

Unsteady 

Resistance  

Empirical Resistance 

Equations (ERE) 

predictability  

Methodology to estimate 

parameters in ERE 

GLUE experiments 

varying ERC and 

RFSM  

RFSM influence on 

modelling 

ERC compared to PRP   

 

Forward Problem: 

*Benchmark cases 

*Step-pool case  

Inverse problem: 

*Step-pool Case   

Best 

ERE 

Field Measurements at 

different reaches.   PRP 
Likeli-

hood 

curves 

HEC-

RAS 

model 

ERC values  

PIDL 

Scheme  

Topographic 

data 

Velocity 

Data 

 

 

 

 

 

Field data 

HEC-RAS 

PIDL 

Figure 1.1: Thesis description and relation between different chapters 
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Chapter 2 deals with several aspects of mountain rivers required to understand next chapters. The key aspects of the 

literature review can be listed as follows: Resistance Partitioning, Common Morphologies, Resistance Field 

Measurements, Resistance Coefficient Evaluation, and Unsteady Resistance.  

Chapter 3 deals with the estimation of Physical Resistance Parameter (PRP) to estimate mean velocity in the studied 

reaches. Furthermore, different empirical equation to estimate flow resistance as well as to estimate mean velocity were 

tested. The equation with the best predictability was studied deeply to find a methodology to estimate its parameters.  

The GLUE experiments to find Effective Resistance Coefficient (ERC) and the effect of varying Representative Friction 

Slope Method (RFSM) when energy equation is solved in HEC-RAS is given in Chapter 4. Furthermore, a comparison 

between PRP and ERC is done under different dissipative conditions at different reaches.  

In chapter 5 a PIDL model was assembled for open channels with different profiles and a real case for forward problems. 

The same PIDL structure was used to solve an inverse problem in a real case and to compare results with chapter 4.   
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Chapter 2  

2 Flow resistance literature review  

2.1 Introduction  
Studies in mountain streams have evolved from the analysis of grain resistance from straight reaches to analyze more 

resistance components at different bed morphologies. Jarrett (1984) developed an investigation of grain resistance in 21 

straight and uniform high-gradient reaches at Rocky mountains of Colorado. Bathurst (1985) studied total resistance 

with a combination of field and flume data. Field data came from riffles and other typical steep mountain reaches in 

British mountains. Bathurst (2002) research of grain resistance is based on literature data with uniform flow reaches. 

Maxwell & Papanicolaou (2001) performed a flume experiment to determine geometric as well as resistance 

characteristics of step-pools. Lee & Ferguson (2002) combined field and flume experiments to study step-pools formed 

by boulders, bedrock, and not large woody debris (LWD) where  the resistance length scale was modified. Aberle & 

Smart (2003) develops a flume study with different bed profiles since the hydraulic resistance change with bed surface 

and not with a characteristic diameter. Curran & Wohl (2003) studied the effect of LWD on resistance in 20 step-pools. 

Wilcox & Wohl (2006) did a flume experiment where the effects on resistance of different LWD configurations is 

obtained. Ferguson (2007) developed nondimensional hydraulic geometry equations (NDGH) based on filed velocity 

data from different countries. Wilcox & Wohl (2006) did a flume experiment where the effects on resistance of different 

LWD configurations is obtained. Ferguson (2007) developed nondimensional hydraulic geometry equations (NDGH) 

based on filed velocity data from different countries. The data includes morphologies such as runs, riffle, pool-riffle, 

and step-pool without woody debris or bed rock. Comiti et al. (2007) use filed data plus additional published data of 

majority step-pools to research modifications in NDGH equations. The inclusion of relative steepness to these equations 

provides the best result. Pagliara et al. (2008) simulates rock chutes with crushed stone and smooth lead hemispheres. 

It was showed that the increase of boulder concentration increases the formation of eddies behind boulders due to the 

higher interaction of water surface with particle surface. Comiti et al. (2009)  studied the change in resistance 

characteristics in step-pools at nappe and skimming flow. Romero et al. (2010) took data of five steep rivers in 

Cochabamba Bolivia to test the applicability of several empirical equations. Zimmermann (2010) used flume 

experiments to investigate the consequences of modifications in a NDHG where the resistance length was modified and 

an additional term was added. David et al. (2010) researched nine step-pools, five cascades, and one plane-bed. This 

data was used to look for correlation of resistance parameter f with different control variables. Cascade and step-pool 

has different control variables due to the dominance of a certain resistance components. Besides; when the predictability 

of empirical equations is analyzed, it is required separate data according to bed morphology. Rickenmann & Recking 

(2011) used 2890 field measurements to test the velocity predictability of new dimensionless variables to develop a new 

NDHG. Nitsche et al. (2012) investigates the results of six reaches in the swiss alps including plane bed/riffle, step-

pool, and cascade morphologies complemented with eight other Swiss mountain streams. First, they find through a 

dimensional analysis the dimensionless variables found by Rickenmann & Recking (2011). Second, all the data 

collapsed to a single power law of both dimensionless variables including a prefactor which correlate with boulder 

density independently of the resistance length for NDHG.      

The goal of the current chapter paper is to provide an overview of certain aspects of field resistance. An explanation and 

suitability of the application of Resistance Partitioning is given in Section 2.2. Section 2.3 introduces common 

morphologies present in mountain rivers. In this section there is a geometric as well as resistance description of each 

one. Section 2.4 and Section 2.5 illustrates methodologies to measure field resistance and methodologies for its 

prediction. Finally, section 2.7 contains information related with non-stationary resistance.   

2.1 Resistance partitioning 

2.1.1 Methodology description 
Partitioning methodology considers that the total hydraulic resistance is composed of multiple components both 

independent and additives (Wilcox et al., 2006) . Indeed, the components are grain and form resistance.  

Grain resistance is generated due to the interaction of water with bed material along the river (bed-resistance) (Curran 

& Wohl, 2003). In contrast to Plane Rivers, where grain resistance is not important at high flows, in Mountain Rivers 

with a bed of coarse poorly sorted clasts, bed forms, and small relative depth, this resistance component becomes 

representative (Aberle & Smart, 2003). Grain resistance is composed of skin friction and drag force. The former one is 

the viscous and shear dissipation created by the vertical distribution of velocities while the latter is created by a pressure 

gradient which opposes flow when water interacts with an obstacle (Wohl, 2000). 
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Form resistance is the degradation of energy due to flow obstacles that create drag forces, pressure differences, flow 

separation and macroscale resistance (Curran & Wohl, 2003; Ferro & Giordano, 1991). This component depends on 

the geometry of the obstacle, changes in channel alignment, cross-sectional shape, slope, and flow velocity (Ferro & 

Giordano, 1991). Spill resistance is a component that is part of the form resistance, it occurs due to sudden deceleration 

of water resulting of hydraulic jumps, extreme turbulence and vertical falls produced in the tumbling flow (Curran & 

Wohl, 2003).  

Assuming the concept of Resistance Partitioning, then the Friction slope, 𝑆𝑓, can be divisible into the Friction slope due 

to the grain resistance, 𝑆𝑓−𝑔𝑟𝑎𝑖𝑛 , and Friction slope due to the bed forms, 𝑆𝑓−𝑓𝑜𝑟𝑚  (Eq.(2.1)).   

Sf=Sf-grain+Sf-form 
(2.1) 

Combination with the Darcy–Weisbach resistance equation produces the Eq. (2.2) 

f U2

8 g R
=

fgrain U2

8 g R
+

fform U2

8 g R
 (2.2) 

A simplification of parameters produces Eq. (2.3) where 𝑓𝑔𝑟𝑎𝑖𝑛 and  𝑓𝑓𝑜𝑟𝑚 are the friction factors to grain resistance 

and bed forms respectively.   

f=fgrain+fform (2.3) 

2.1.2 Limitations   
Although resistance partitioning is a widely applied methodology, there is controversy in its use. According to 

Zimmermann (2010), resistance partitioning is not entirely useful in mountain rivers since bed material, such as 

boulders and cobbles, generates at the same time fgrain and fform. These phenomena can be illustrated in the flume study 

developed by Wilcox et al. (2006). In that study flow resistance is mainly created by bed sediments, spill over step-pool 

bed forms, and large woody debris (LWD). The results of this study showed that:  

• Partitioning estimates are highly sensitive to the order in which the components are calculated: measured or 

left-over terms in Eq. (2.3). 

• Left-over parameter is over-estimated since it contains the interactions of resistance components. 

• The combined effect of LWD and spill over-steps dominates flow resistance. 

• Grain resistance is a small component of total resistance.  

 

2.3 Common bed morphologies in mountain rivers 
Early mountain rivers studies did not have a standard description of the morphologies present in a river reach. Jarrett 

(1984) did not provide a description of studied morphologies. In that study, a wide range of reach characteristics is 

covered. Bathurst (1986) studied two types of sites; in the first one, a river-reach compound of riffle and pool at both 

sites, upstream and downstream, while the second one, a boulder bed without pools is described. Marcus et al. (1992) 

describes the longitudinal characteristics of the bed material along the reaches. In 1997, Montgomery & Buffington 

(1997) proposes for the first time a standardization of the different types of morphologies present in the mountain rivers 

based on common characteristics in field observations. Moreover, in alluvial channels five-reach types are recognized: 

cascade, step-pool, plane bed, pool riffle, and dune-riffle. More recently, David et al. (2010) presented a study in which 

mountain rivers morphology is dominated by plane- beds, cascade, and step-pool. 
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Table 2.1: Mountain river morphology, schemes adapted from (Chin & Wohl, 2005; Comiti et al., 2009; Maxwell & 

Papanicolaou, 2001; Montgomery & Buffington, 1997)  

Plan view Profile 

 

Plain bed (SO=0.01-0.03 m/m) 

 

 

Cascade (SO>0.06 m/m) 

 
 

 

Step-pool (SO=0.03-0.1 m/m) 
 

 
 

 

2.3.1 Plane bed 

2.3.1.1 Description 
Plane bed morphology occurs in straight-aligned channels where bed material consists on cobbles and gravels 

(Montgomery & Buffington, 1997), Refers to Table 2.1. In this morphology, there is no regular bed form patterns 

(David et al., 2010). 

2.3.1.2 Resistance characteristics 
In this morphology there is interaction of water with bed material only which produces grain resistance and form 

resistance. 
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2.3.2 Cascade 

2.3.2.1 Description 
Cascade presents a longitudinal and transversal disorganization of cobbles and boulders (Table 2.1). Around and over 

these particles the flow pattern is: wake, jet and tumbling flow (Montgomery & Buffington, 1997). 

2.3.2.2 Resistance characteristics 
The presence of particle with intermediate diameter bigger than 64mm (boulders and cobbles) produces different 

dissipative processes besides skin friction. At low flows, these big bed material protrude above water level producing 

wave drag (David et al., 2010). Most of the energy dissipation is produced by jet and wake flow around big clast which 

produces tumbling flow and turbulence (Montgomery & Buffington, 1997).  

2.3.3 Step-pool 

2.3.3.1 Description 
Step-pool is the most common morphology in gravel beds and have a staircase regular pattern (Maxwell & 

Papanicolaou, 2001), Refers Table 2.1. Steps are composed of alluvial boulders (MacFarlane & Wohl, 2003), large 

wood debris (LWD), a combination of both, or bed rock (Curran & Wohl, 2003) while Pools are behind every step, 

where finer material is trapped (Lee & Ferguson, 2002). 

Step-pools has important hydraulic and environmental function in steep rivers (MacFarlane & Wohl, 2003). Steps 

reduce the available potential energy to be transformed into kinetic energy for sediment transport (Chin & Wohl, 2005). 

In pools, the flow velocity is reduced resulting in a limitation of conveyance of hazardous flooding events downstream 

(MacFarlane & Wohl, 2003) as well as the deposition of sediment and nutrients. The former phenomena improve 

aquatic habitat and water quality (Curran & Wohl, 2003; MacFarlane & Wohl, 2003). Step-pools regulates resistance 

through vertical adjustment of bed and uniformly spaced steps. This is accomplished with the relation H/L/SO (H step 

height; L step length) having a constant range of 1 to 2 (Chin & Wohl, 2005) . 

Step-pools flow patterns is called Nappe flow (Comiti et al., 2009) having a change between subcritical and supercritical 

flow. There is supercritical flow at step lip where a water jet is form and plunge into the next pool where air pockets 

and hydraulic jump is formed producing the change from supercritical to subcritical flow (Tumbling flow) (Chin & 

Wohl, 2005).  

The presence or not of Large Wood Debris (LWD) at step lips influence the geometric characteristics  (Wilcox & Wohl, 

2006). LWD occurrence increases step height (Curran & Wohl, 2003) and pool length. On the other hand, its absence 

produces step-pools with higher frequency of steps but with smaller step height and pool length (MacFarlane & Wohl, 

2003). 

2.3.3.2 Resistance characteristics 
In Step-pools, both steps and pools contribute with form resistance. In steps there is an interaction of flow with step-

forming material producing flow separation, channel expansion and contraction due to boulders and irregularities 

(Curran & Wohl, 2003). Furthermore, in pools there is water deacceleration as a consequence of a hydraulic jump 

producing spill resistance (Chin & Wohl, 2005).  

The presence of LWD influences all resistance components in step-pools (MacFarlane & Wohl, 2003). LWD reduce 

fgrain due to the damming effect that occurs in pools increasing water depth and relative submergence (d/DXX; d water 

depth and DXX is a characteristic bed material diameter)(MacFarlane & Wohl, 2003; Wilcox & Wohl, 2006). fform is 

influenced by changes in the channel-width leading to variations in channel-form increasing the resistance component 

(MacFarlane & Wohl, 2003). LWD forms higher steps with longer pools where bigger hydraulic jumps are formed and 

more energy is dissipated (MacFarlane & Wohl, 2003). Hence, fspill is higher because this resistance component depends 

on the height and length step ratio (H/L). Wilcox & Wohl (2006) developed a flume experiment with homogenous bed 

material stick to the bed where LWD are simulated with PVC pipes. This study concludes that the position, density, 

orientation, and length of LWD has diverse effects on resistance. 
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2.4 Resistance field measurement 

2.4.1 Description 
Several methods have been proposed in the literature to estimate the parameters required for resistance measurement, 

one of the main causes of the wide variety existing in predictive equations. Equations based on uniform flow are used 

to estimate field resistance, one of the most used is the Darcy–Weisbach resistance Eq. (2.4). 

f=
8 g R Sf

U2
 

(2.4) 

Where: 

g gravitational acceleration (L T−2) 

R Hydraulic radius (L) 

Sf Energy slope (-) 

U Velocity (𝐿 𝑇−1) 

According to Aberle & Smart (2003), there are two general ways to collect data in mountain rivers. In the first 

methodology, a specific cross-section is chosen where: area, water level, and velocity (using current meter) are 

measured. SO, the discharge is obtained through the continuity equation (Eq.(2.5)). In this methodology, for each cross-

section m water-depth measurements at constant width intervals (Δwi) must be taken to obtain a mean water-depth (Eq. 

(2.6)). Area (A) is obtained with integration of those depths. Note that this methodology depends on the selection of 

representative cross-sections in the river-reach. In the second methodology, discharge, and velocity are measured using 

tracers. The mean-depth is calculated using the continuity equation (Eq. (2.5)). This methodology may provide better 

results because the velocity is determined by using tracers instead of the current meter. The current meter in Mountain 

Rivers could present difficulties due to its low relative immersion submergence.  

 

Q=U A=U w d 
  (2.5) 

Where: 

U velocity (L T−1) 

A cross sectional area (L2) 

w wetted width (L) 

d mean depth (L) 

 

d=
∑ di∙∆wi

∑ ∆wti
   (2.6) 

 

Where: 

di measured depth at certain nΔwi (L) 

 Geometric characteristics in Mountain Rivers are measured by using theodolite and stadia rod (MacFarlane & Wohl, 

2003), laser theodolite (David et al., 2010), total station (Curran & Wohl, 2003; Lee & Ferguson, 2002), and LIDAR 

(Yochum, 2010). Additionally, the reach under study is commonly divided into cross sections perpendicular to the 

primary flow (MacFarlane & Wohl, 2003). The number of cross sections varied from three (Bathurst, 1985) to ten or 

eleven (MacFarlane & Wohl, 2003).Therefore, the parameters in Eq. (2.4) are averaged values of all the cross sections 
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that structure the river-reach studied. The longitudinal profile is measured through thalweg points (Curran & Wohl, 

2003; MacFarlane & Wohl, 2003; Yochum, 2010) so that the mean bed slope (SO) is obtained with a linear regression 

of collected points (David et al., 2010). 

The gradient of the energy line in the river, Sf, is calculated with Eq. (2.7) which can be approximated with Sw (Water 

surface gradient) or SO (Bed slope). Bathurst (1985) got better results when Sf = Sw approach is used, attributing these 

results to small velocity head gradient, local resistance effects and velocities in mountain rivers which hide the long-

stream changes. David et al. (2010) studied a step-pool while Yochum & Bledsoe (2010) studied step-pool, cascade, 

and plane bed reaches; both studies considered the Sw approach. On the other hand, the use of SO produces a difference 

in resistance estimation of +/- 5% when Eq. (2.4) is applied (Lee & Ferguson, 2002). Marcus et al. (1992) states that the 

difference between Sf and SO can reach 30% at bankfull stage. 

      

Sf=Sw+

(1-k)∙
∆∙α∙U

2∙g

L
 

(2.7) 

 

Where: 

Sf Energy gradient (-) 

Sw Water surface slope (-). 𝑆𝑤 = 𝑆𝑂 +
𝜕𝑑

𝜕𝑥
 

d water level (L) 

U velocity (L 𝑇−1) 

L reach length (L) 

g gravity acceleration (L 𝑇−2)   

The application of the Tracer Slug Injection (TSI) methodology, where discharge and velocity are measured, in shallow, 

turbulent and morphological complex mountain rivers has become a viable alternative given the satisfactory results 

obtained (Curran & Wohl, 2003; Wilcox & Wohl, 2006). In the literature, two tracers are the most widely used: 

Rhodamine WT (David et al., 2010; Yochum, 2010) and Salt (Aberle & Smart, 2003; Curran & Wohl, 2003; Lee & 

Ferguson, 2002; MacFarlane & Wohl, 2003; Wilcox & Wohl, 2006).  

In TSI methodology, a certain amount of tracer mass is punctually injected at a certain distance upstream from the 

measurement device. The devices to be installed are a fluorometer or an electrical conductivity probe, for the Rhodamine 

WT or the salt, respectively. These devices register the pass of the tracer wave in the river. Hence, for Rhodamine WT 

a change in fluorescence over time is obtained while for salt a change in conductivity is recorded. Then, both tracers’ 

curves through calibration parameters are converted into concentration curves in time.  

In this thesis TSI has been applied using salt. The distance between injection point and measurement point is the mixing 

length. According to Hudson & Fraser (2005a) a safe mixing length must be at least 10 times the channel width. The 

conductance curve should have a strong signal where the difference between the baseline and the peak conductivity 

should be 50-100 μS/cm. Besides, the peak must be less than the suggested sensitivity toxicity threshold: 400 μS/cm. 

The conductance curve should be smooth with no irregularities such as: double peaks or extended tails. In this research, 

during discharge and velocity measurements all the previous criteria was followed to ensure an adequate quality of the 

conductance curves.  

Flow is measured using the mass balance criterion, where tracer mass conservation is applied (Hudson & Fraser, 2005b), 

Eq. (2.8) and (2.9). Velocity is calculated by dividing the reach length (Thalweg distance) and the time-of-travel (Curran 

& Wohl, 2003; MacFarlane & Wohl, 2003; Yochum, 2010). The time-of-travel can be obtained from one concentration 

or two concentration curves of the tracer.  
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Q=
M

∑ Ct∙tin
   (2.8) 

Where: 

M tracer mass [M] 

Ct Concentration [𝑀 𝐿−3] 

tin time interval [T] 

Ct=(ECt-ECO)∙CF 
  (2.9) 

 

ECt Fluorescence or conductivity [𝐿−1𝑀−2𝑇−3𝐼−1] 

ECO Natural fluorescence or conductivity in the water body 

CF conversion factor to transform into concentration [-] 

Different methodologies have been proposed to estimate the time-of-travel from the concentration curve, some detailed 

hereafter. The centroid time-of-travel consists of the time corresponding to the center of mass of the concentration curve 

(Figure 2.1), Eq. (2.10). Indeed, this methodology has been used with two concentration curves in different studies 

(Curran & Wohl, 2003; David et al., 2010; Lee & Ferguson, 2002). Even tough David et al. (2010) considers this 

methodology as consistent, Zimmermann (2010) posits this methodology underestimate velocity. First arrival time-of-

travel is the time when the concentration starts to increase, and peak time-of-travel corresponds to the time of peak 

concentration. These techniques are considered to vary with the reach length (Curran & Wohl, 2003), however the peak 

time-of-travel was used in the research of MacFarlane & Wohl (2003). According to Zimmerman (2010), the harmonic 

time-of-travel methodology provides better performance when a single probe is used. In addition, Waldon 

(2004)considers that the harmonic procedure is adequate when the factor to be determined in a relationship is in the 

denominator. Note that a wrong determination of travel time can affect the resistance prediction process. 

tc=
∫ t∙C(x,t)∙dt

∞

0

∫ C(x,t)∙dt=Ix

∞

0

   (2.10) 

 

Where: 

t Integration variable [T] 

C(x,t) Concentration at a certain point x at time t [ 𝑀 𝐿−3] 

tc Centroid traveling time [T] 

 

tH=
1

∫
px(t)∙dt

t
∞

0

;px(t)=
C(x,t)

Ix

 (2.11) 

  

Where: 

tH Harmonic travel time [T] 
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Figure 2.1: Conductance-time curves 

The methodology to sample bed material is called pebble counting. In this methodology a particle is randomly 

picked from the riverbed and its intermediate axes is measured. Once a certain number of particles are sampled, 

a cumulative distribution function regarding to the bed size material is created and the percentiles of the bed 

material can be calculated (e.g. D84) (Wolman, 1954).  

The sampling process is based on a grid system where the reach is divided into transects in which a sample frame 

is used. There are several devices to measure the intermediate axes such as rulers, calipers, templates, or pebble 

box (Bunte & Abt, 2001). 

According to the literature, the number of particles to be sampled varies according to the morphology under 

study. In a study reach containing riffle with pools or a boulder-cobble bed, 100 particles are sampled following 

the Wolman sampling technique (Bathurst, 1985, 2002; Marcus et al., 1992; Wolman, 1954), but if the study 

reach includes multiple bed forms such as plane bed, step-pool, and cascades the number of particles increase to 

300 particles (David et al., 2010; Yochum, 2010). In step-pools, the Wolman method is applied for step-forming 

and pool-forming material which means to sample 100 particles from each one (Curran & Wohl, 2003; 

MacFarlane & Wohl, 2003). Note that an increase in the number of samples decreases the estimation error in the 

distribution of bed material. The precision-sample size relationship is not linear (Bunte & Abt, 2001).  

A summary of diverse methodologies used to estimate different variables according to the literature is presented 

in Table 2.2.  
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Table 2.2: Field measurement methodologies 

Reference SO range 
Experiment 

Type 

Velocity 

measurement 

methodology 

Depth 

determination 
Observations 

(Jarrett, 1984) 0.2-4% Natural Current-meter NA 

Uniform flow conditions 

with straight reaches and 

minimal vegetation. 21 

rivers. 

Flow range: 0.34-128.27 

m3s-1 

Velocity range: 0.27-2.64 m 

s-1 

(Bathurst, 

1985) 

0.398-

3.73 

Flume and 

Natural 
NA 

For methodology 

which considers 

non-uniformity in 

the flow (velocity 

head gradient), 

depth was 

measure as a 

weighted average 

with the cross-

section width 

Most of the data has a 

relative submergence 

0.43<d/D84<7.1. 

Flow range: 0.14-0.19 m3 s-1  

(Bathurst, 

2002) 
0.1-5% Natural NA Hydraulic radio 

27 sites under ideal 

conditions with uniform and 

in bank flow 

(Maxwell & 

Papanicolaou, 

2001) 

3-7 % Flume NA NA 

Flume experiment where 

natural sediment was 

obtained 

(Lee & 

Ferguson, 

2002) 

3-18% 

 

 

 

 

  

Natural 

Reach averaged 

velocity and flow 

calculated with 

salt injection 

Calculated 

through 

continuity 

Equation d=q/U 

There is an error analysis. 

Flow error is determined 

through replication. There is 

an estimation of width error 

which influence other 

variables error such as d, R, 

(1/f)1/2. 

Flow range: 0.6-3.8 m3 s-1 

Velocity range: 0.7-2.1 m s-

1 

(Aberle & 

Smart, 2003) 

Two 

profiles 

So=7.5% 

and 

So=2.1% 

Flume 

Velocity is 

measured by salt 

dilution 

Once the velocity 

and width has 

been measured, 

depth is 

determined using 

the continuity 

Equation 

considering a 

rectangular cross- 

section. 

Data covered d/D84<5 

(Curran & 

Wohl, 2003) 

0.071-

0.18 m 

m-1 

Natural 
Salt tracer 

injection 
NA 

Study oriented to determine 

the effect of Large Woody 

Debris in step-pools. fspill is 

the left-over variable with 

an effect of 90% of total 

resistance. However, 

authors caution of these 
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values due to fform 

estimation. 

(Wilcox et al., 

2006) 

0.05, 

0.10, and 

0.14 m 

m-1 

Flume 

Reach averaged 

velocity 

calculated with 

salt injection 

Calculated 

through 

continuity 

Equation d=q/U 

The sensibility to the 

partitioning results is 

analyzed by using four 

methodologies to calculate 

grain, spill, and debris 

resistance. 

Flow range: 0.004-0.064 

m3s-1 

Velocity range: 0.27-2.64 

ms-1 

(Ferguson, 

2007) 

0.07-

21% 
Natural 

Some of the data 

uses salt wave 

travel time 

Continuity 

Equation, 𝑑 =
𝑄

𝑤 𝑈
, Q and U 

determined by 

tracers 

Between VPE and NDHG, 

NDHG follows the trend of 

the data over most of the 

range of data 

(Comiti et al., 

2007) 

8% to 

21% 
Natural 

Velocity is 

measured with 

salt dilution, with 

the lag between 

conductivity 

peaks 

Once the velocity 

and width has 

been measured, 

depth is 

determined using 

the continuity 

equation 

considering a 

rectangular cross 

section. 

Two analysis at-a-site to 

know how resistance is 

affected by relative 

submergence, channel slope 

and other variables. 

Between-site analysis to 

obtain field-based 

dimensionless Eq.s more 

reliable over a wide range 

of flow conditions. 

Flow range: 0.08-1.86 m3/s 

Velocity range: 0.2-1.4 m/s 

(Pagliara et 

al., 2008) 
2.4-8.8% Flume NA 

Evaluated from 

Manning 

Test of resistance in long 

chutes using smooth lead 

spheres. 

Flow range: 0.001-0.04 m3/s  

(Comiti et al., 

2009) 
14% Flume 

Velocity is 

measured through 

salt injection and 

measurement 

with two 

conductivity 

probes 

Calculated 

through 

continuity 

Equation d=q/U 

During experiments 

skimming and nappe flow 

was tested as well as flow 

resistance partitioning. 

Flow range: 1-16 m3/s  

(Romero et 

al., 2010) 

3 

reaches 

per 

river:               

Lower 

zone 

1.1-3% 

Intermed

iate zone 

1.4-

10.2% 

Upper 

zone 

2.1-

11.3% 

Natural NA NA 

Data taken from 5 rivers 

during dry season only. 

Reaches does not have 

vegetation. 

Flow range: 0.027-2.37 m3/s  
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(Zimmermann

, 2010) 

3 to 23 

% 
Flume 

Velocity is 

measured through 

salt injection and 

measurement 

with two 

conductivity 

probes 

Continuity 

Equation with 

estimations of 

mean velocity 

There is an analysis of 

uncertainty to know if the 

error between observed and 

predicted f is due to 

measurement uncertainties 

or unexplained error. 

Flow range: 0.001-0.009 

m3/s 

Velocity range: 0.2-1 m/s 

(David et al., 

2010) 

0.017-

0.195 

m/m 

Natural 

Rhodamine WT 

dye tracer 

measured by 

fluorometer 

LIDAR scans to 

calculate a reach 

average depth 

from multiple 

cross sections 

In this study q* have proved 

to represent relative grain 

submergence and 

differences in flow. Besides, 

in cascades there is close 

relation R/D84 with 

resistance implying 

dominance of grain 

resistance. In step-pools 

R/H explain a great 

proportion of resistance 

variability and indicates the 

submergence of steps. 

Flow range: 0.01-1.85 m3/s 

Velocity range: 0.11-2.07 

m/s 

(Rickenmann 

& Recking, 

2011) 

0.004-24 Natural Several methods 

Two cases: 1) d is 

an input in the 

formulations 2) Q 

is used as input. 

Darcy-Weisbach 

and a certain 

resistance 

Equation are 

combined to 

obtain the 

hydraulic radius 

(R). R in narrow 

rivers is equal to 

depth (d) 

Improve of the previous 

NDHG Eq. obtained by 

Ferguson (2007). 

Flow range: 0.01-1950 m3/s 

Velocity range: 0.03-4.3 

m/s 

(Nitsche et 

al., 2012) 
2-38% Natural  

Continuity 

Equation, Trace 

Travel time: 

Uranine and 

Sodium Chloride 

The depth is 

solved from an 

equivalent cross-

section using the 

measured flow 

and reach-

averaged 

velocity. 

Use of data from six stream 

reaches including plane-

bed, cascade, and step-pool 

plus eight additional swiss 

mountain streams.  

 

Flow range: 0.0005-40 m3 s-

1 
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(Cedillo et al., 

2021a) 
3.16-9.3 Natural  

Trace Travel 

time: Sodium 

Chloride  

Continuity 

Equation  

Data from six reaches 

including: Two step-pools, 

three cascades, and one 

plane bed.   

2.4.2 Measurement 
In the process of measurement and estimation of resistance there are two sources of uncertainty, the first 

component is related to the assumptions assumed to the flow pattern called Data analysis and the second one 

associated to the uncertainty in the measurements themselves (Bathurst, 1985). 

Data analysis considers the physical simplifications made in the presented mathematical formulation. As an 

illustration, Equation 2.4 is valid for uniform flow, an assumption that is generally not maintained in Mountain 

Rivers where the depth and slope of the water surface change from one section to another over time (Bathurst, 

1985). 

During the direct measurement of a physical quantity, that quantity has a possible range of values in which the 

value can oscillate (Eq. (2.12)) due to the uncertainty in measurement process. The sources of uncertainties can 

be classified and then quantified using the standard deviation, δX. Three sets of uncertainty are differentiated, 

which are due to: Resolution, Random, and Systematic errors. 

Resolution error (δXres) deals with instrument resolution uncertainty. When a quantity is measured an instrument 

only provides a value with a certain accuracy, so the true value can oscillate between a certain range which is the 

resolution. The measurement variation has an uniform probability distribution. The uncertainty due to resolution 

error according to Fornasini (2008) is given by Eq. (2.13). 

Random errors (δXcas) appear when repeated measurements of the same variable give different values due to 

parameters that act independently, simultaneously, and randomly. The distribution of random errors corresponds 

to a normal distribution of means for discrete data, Eq. (2.14).  

Systematic error (δXsys) are a constant deviation from all measurements and are produced, for example, by the 

lack of calibration of the measuring instrument. The distribution of systematic error depends on the available 

data.  

Total uncertainty is the combination of Resolution and Systematic error or Random and Systematic error. 

Resolution and Random errors are not combined since are mutually exclusive (Fornasini, 2008). The combination 

is a quadratic sum Eq. (2.16). 

XO±δX 
(2.12) 

 

Where: 

XO: Central Value 

δX: Uncertainty associated with the measure of a quantity X. It should contain two significant digits.  

δXres=
∆X

√12
 (2.13) 

 

Where: 

∆X: In case of analog devices ∆𝑋 is the distance between instrument ticks, while for digital instruments is the 

unit value of the least significant digit. 
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δXcas=√
1

N(N-1)
∑ ((xi-m

*)2)

N

i=1

 

(2.14) 

 

Where: 

N: Number of measurements taken 

xi: measurement value 

m*: average of the measurements (Eq. 2.15) 

m*=
1

N
∑ xi

N

i=1

 
(2.15) 

 

 

δXtot=√∑(δXi)
2 (2.16) 

 

The resistance is calculated using direct measurements of variables made in the field. Such measurements 

inherently carry on an error, which leads to an error in the calculation of resistance being quantified with the 

methodology called propagation of uncertainty. This procedure was used by Mrokowska, Rowiński, et al. (2015) 

to determine the uncertainty in shear velocity and by Mrokowska, Rowí et al. (2015) for uncertainty in resistance 

for unsteady conditions. Thus, Darcy–Weisbach resistance parameter depends on R, Sf, and U (Eq. (2.4)) and its 

uncertainty is obtained with Eq. (2.17). 

δf=
∂f

∂R
∙δR+

∂f

∂Sf

∙δ𝑆𝑓+
∂f

∂U
∙δU 

(2.17) 

 

 

Comiti et al. (2007) claims that error in geometry measurements has a significant effect on resistance in Mountain 

Rivers. The main source of uncertainty is in the depth measurement due to the disturbance produced when 

introducing the measurement instruments. In addition, the estimated error in measurement of distances and 

median axes is ± 1% and ± 5%, respectively (Bathurst, 1985). The velocity and discharge have an uncertainty of 

±5% when two probes to measure the salt wave were used. Moreover, for indirect measurements the 

corresponding uncertainties are: d:12%, R: 22%, and (
1

𝑓
)

1

2
: 17%.  

Uncertainty affects the predictability test of empirical equations (Lee & Ferguson, 2002; Zimmermann, 2010). 

Indeed, it makes difficult to know whether the difference between measured and predicted resistance values is 

due to lack of predictivity of the equations or due to uncertainty of measurements. Furthermore, a known effect 

of uncertainty is to create dispersion between measured and predicted variables that determine the validity of 

adjusting the parameters of the law-flow (Lee & Ferguson, 2002; Zimmermann, 2010). Zimmermann (2010), 

implemented a methodology based on the parameters of Eq. 2.19.   

Ures=Upred-Umeas 
(2.18) 

 

Where: 

Ures Residual values 

Upred Predicted value 

Umeas Measure value 

δUres=δUmeas+δU pred+δUmean-bias 
 (2.19) 

 

𝛿𝑈𝑟𝑒𝑠 Cumulative error  
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𝛿𝑈𝑚𝑒𝑎𝑠 Uncertainty associated with measurement of variable U 

𝛿𝑈 𝑝𝑟𝑒𝑑 Uncertainty associated with prediction of variable U 

𝛿𝑈𝑚𝑒𝑎𝑛−𝑏𝑖𝑎𝑠 Difference between mean U predicted and mean U measured 

This methodology considers an unexplained difference between measured and predicted values when U res is 

bigger than 𝛿𝑈𝑟𝑒𝑠. 

2.5 Resistance coefficient evaluation  

2.5.1 Methodologies 
Different methods are useful to evaluate the resistance coefficient, more or less rigorous, with conceptual or 

empirical basis. The following are described, no desire to be exhaustive; Photography approach, Component 

Methods (Marcus et al., 1992), Tables (Yochum, 2010), and Empirical Equations (Zimmermann, 2010).  

In Photography approach, a sequence of photographs describing the characteristics of the channel under study, 

such as slope and width, are related with a resistance value.  This method questioned for its extreme simplicity; 

does not consider the variability of the resistance coefficient, highly dependent on flow, in Mountain Rivers 

(Marcus et al., 1992).  

The tables present estimates for the components of a channel, such as the bed material and the floodplain. A 

value is provided within a certain range. Note that the precision of the method is questionable.  

Component method is the decomposition of flow resistance into skin and form resistance components (Jarrett, 

1985). Cowan developed a procedure, based on influencing factors, to estimate a resistance value. Six of them 

are highlighted as fundamental in Eq. (2.20). 

n=(n0+n1+n2+n3+n4)∙m 
(2.20) 

 

where: n0: base resistance, n1: cross section irregularities, n2: channel variation, n3: obstructions, n4: channel 

vegetation, and m: degree of meandering. Each component is determined from a table of values based on the 

reach description under study. 

Empirical equations are mathematical expressions that relate flow resistance to certain geometric features or 

flow characteristics in a reach. Different types of mathematical expressions have been developed to predict 

resistance under specific conditions of flow and morphology, under the assumption of uniform flow and with 

different ways of measuring data (Aberle & Smart, 2003; Lee & Ferguson, 2002; Romero et al., 2010). 

2.5.2 Resistance prediction Eq. types 
There is not an agreement about how to relate flow resistance with bed characteristics in mountain rivers (Lee 

& Ferguson, 2002), so it was not surprised to find several types of equations to predict resistance parameter in a 

direct or indirect way.  

Equations based on a logarithmic approaches, Eq. (2.21) depicts the general form of these equations coming 

from the boundary layer theory (Aberle & Smart, 2003). 𝜅 is the Von Karman constant usually take as 0.4 

(Ferguson, 2007), however there is the need of calibration when applied for shallow rivers. The value of Br 

depends on cross- sections or relative submergence values (Aberle & Smart, 2003). A widely used version of 

these equations is Keulegan Equation obtaining by an integration of the semilogarithmic velocity profile through 

the flow depth (Ferguson, 2007; Lee & Ferguson, 2002). Keulegan formula is used as a measurement of grain 

resistance during flow resistance partitioning (Comiti et al., 2009; Wilcox & Wohl, 2006). ks is the resistance 

depth which is usually a multiple of a bed material percentile ks=m∙Dxx (Wilcox & Wohl, 2006). Following this 

further, this type of Equation has provided unexpected good results in Lee & Ferguson (2002), a step-pool study, 

through the changing of ks parameter where the best result was found with  ks=step∙D50. 

√
8

f
=

1

κ
∙ln (

d

ks

) +Br 

(2.21) 
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Potential expression, Eq. (2.22) shows the general form of these Equations (Zimmermann, 2010). A special case 

of this expression is Manning-Strickler where the parameter b is 1/6 (Ferguson, 2007). This type of Equations 

were not considered a good approximation for step-pools in Comiti et al. (2009).  

√
8

𝑓
= 𝑎 ∙ (

𝑅

𝑘𝑠

)
𝑏

 
(2.22) 

 

 

Field techniques are equations which relate a flow resistance parameter with only a bed size percentile, so it is 

valid for skin resistance only (Marcus et al., 1992). Additionally, it is not expected to work well in step-pools  

considering the research of David et al. (2010) where  there was no a single variable which provides a good flow 

resistance prediction in steep-pools.  

Regime Equations, these expressions relate the resistance parameter with geometric characteristics of the reach. 

They can be used only for grain resistance calculation (Marcus et al., 1992). The Equation got by Jarrett (1984) 

(Eq. (2.23)) is an example obtained from a wide range of channel types.  

𝑛 = 0.39 ∙ 𝑆𝑜
0.38 ∙ 𝑅−0.16 

(2.23) 

 

 

Non-Dimensional Hydraulic Geometry (NDHG), these Equations relate a non-dimensional velocity (U* 

Eq.(2.25)) with a non-dimensional unitary flow parameter (q* Eq.(2.26)) as is shown in Eq. (2.24) (Ferguson, 

2007). Rickenmann & Recking (2011) did a variation of Eq. (2.24) where c3 is equal to zero and effect of slope 

is taken into account in the modification of U*(Eq. (2.28) and q* (Eq. (2.27)). In Comiti et al. (2007), there is a 

direct relation of f and q* (Eq. (2.29)) where the  exponents are expected to change depending on the reach 

morphology. The upside of using these expressions is the not supposition of a velocity distribution or flow 

regime and for Eq. (2.24) there is no assumption of a resistance parameter (Zimmermann, 2010). Moreover, the 

term q* is not affected by measuring data errors (Ferguson, 2007). In addition; q* combined with SO explain 

most of the variation of resistance variations so an expression containing both is expected to have good prediction 

capabilities (Comiti et al., 2007; David et al., 2010). Besides; for step-pool reaches q* represents the flow regime 

for differentiation between nappe and skimming flow while for cascades, q* describe better the f variability than 

relative submergence (David et al., 2010).  

U*=ac1 q*
c2

 So
c3   (2.24) 

 

 

U*=
U

√g D84

    (2.25) 

 

 

q*=
q

√g D84
3

 (2.26) 

 

 

𝑞∗∗ =
𝑞

√𝑔 𝑆𝑜  𝐷84
3

 

 

(2.27) 

 

  

𝑈∗∗ =
𝑈

√𝑔 𝑆𝑜 𝐷84

 

 

(2.28) 
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𝑓 = −10.47 𝑞∗−1.13
 𝑆𝑜

1.12 

 
(2.29) 

 

Variable Power Equation (VPE) are obtained through the addition of Manning-Strickler formula and the 

Resistance Law, so the effects of deep water and shallow water are considered in one single expression. VPE 

limits, as relative submergence tends to infinite or zero, converges to Manning-Strickler formula or Resistance 

Law. This formulation (Eq. (2.30)) provides the best results in Ferguson (2007), following the tendency of 

resistance data as flow varies. 

(
8

f
)

1
2

=

a1∙a2∙
d

Dxx

√a1
2+a2

2∙ (
d

Dxx
)

5
3

 
(2.30) 

 

 

As seen above, there are different types of equations with different versions depending on the calibration data 

limiting the applicability. Those equations should be tested in new geographical regions where data is becoming 

available, for example the Andean region where only one study was found (Romero et al., 2010) and the 

regressions resulted in a simple logarithmic based Equation. Beyond that, at some places where the available 

data is scarce due to lack of funding, accessibility, or lack of required equipment limiting available data. Hence, 

the develop of correction factors for simpler expressions within a reasonable uncertainty seems needed. To 

conclude this analysis, Table 2.3 presents some resistance equations mentioned in the literature. 
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Table 2.3: Empirical Resistance Equations  

Reference Type of resistance  Resistance relation type 

(Jarrett, 1984) Grain-skin n=0.39⋅Sf
0.38 R-0.16 

(Bathurst, 1985) Total resistance  (
8

f
)

1/2

=5.62 log (
d

D84

) +4 

(Bathurst, 2002) Grain-skin 

(
8

f
)

1/2

=3.84 (
d

D84

)
0.547

SO≤0.8% 

(
8

f
)

1/2

=3.1 (
d

D84

)
0.93

SO≥0.8% 

(Maxwell & Papanicolaou, 2001) 
Total resistance in step-

pools 
√

8

f
=-3.73 log (

dstep D84

L d
) -0.8 

(Lee & Ferguson, 2002) 
Total resistance in step-

pools 

(
1

f
)

0.5

=2.03∙ log (12.2 
R

ks

) (1-0.1 
ks

R
) 

ks= step D50 

(Aberle & Smart, 2003) 
Total resistance in step 

pool  
√

8

f
=0.91 

d

s
 

(Ferguson, 2007) Grain-skin 

Variable Power Eq. 

(
8

f
)

1/2

=
a1 a2 (d/D84)

[a1
2+a2

2 (d/D84)5/3]1/2
 

a1: 6-7; a2:2.36 

Nondimensional Hydraulic Geometry 

U*=a1
0.6⋅q*

0.4

⋅S0.3   Deep flow 

U*=a2
0.4⋅q*

0.6

⋅S0.2   Shallow Flow 

U*=
U

√g Dxx

 

q*=
q

√g Dxx
3

 

 

(Comiti et al., 2007) 
Total resistance in step 

pool and cascades 
f=10.47 q*

-1.13

 SO 
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(Pagliara et al., 2008) Grain-skin 

(
8

f
)

1/2

=A+B ln (
d

D84

) 

A=ε B 

B=-7.82 SO+3.04 

ε=1.4 if there is no boulders 

ε=1.4⋅ e-2.98 Γ otherwise 

Γ=
NB π Dxx

2

4 w Li,j

 

 

(Comiti et al., 2009) 
Total resistance in step-

pools 

U*=1.18 q*0.82  Nappe flow 

U*=1.1 q*0.38 Skimming flow 

U*=1.24 q*0.83 All data 

(Romero et al., 2010) Grain-skin f=1.210 ln ( SO)+6.254  

(Zimmermann, 2010) 

Total resistance in self 

formed cascades 

reaches 

U*=3.5 [q*0.55 SO
0.32  

PL-0.14

w
] 

(Rickenmann & Recking, 2011) Total resistance 

U**=1.443 q**0.6  [1+ (
q**

43.78
)

0.8214

]

-0.2435

 

U**=
U

√g Sf D84

 

q**=
q

√g Sf D84
3

 

2.5.3 Use of D84 in resistance equations 
There is an extensive use of  D84 in resistance equations, for example as resistance length (Bathurst, 1985, 2002; 

Maxwell & Papanicolaou, 2001; Pagliara et al., 2008) or in Non-Dimensional Hydraulic Geometry equations 

where non-dimensional velocities and unitary flow use D84 (Comiti et al., 2007; Ferguson, 2007; Rickenmann 

& Recking, 2011).  Moreover, the reason behind this widely use of D84 in resistance equations may be attributed 

to the research of Bathurst (1985). This study concludes D84 provides a three-dimensional view of the bed 

composition since is related with the percentage of cross section and bed area covered by projecting boulders. 

However, some studies have shown that D84 is not a good description of the bed material in step-pools. Aberle 

& Smart (2003) in a step-pool study found D84 is not representative of the height of the resistance layer since it 

cannot measure the vertical resistance extent or the irregular bed structure. Further, for step-pool there are other 

options instead of D84 such as s (standard deviation of bed elevations). Lee & Ferguson (2002) based on flume 

and field data in step-pool systems tested a logarithmic equation (Eq. (2.21) type). In this study, the resistance 

height was tested with different grain size percentiles and microtopographic parameters. The best result was 

found when ks=mstep D50 where m has a variation between 1.6 to 2.6. Moreover, step D84 failed to consolidate 

all the resistance sources.  



  

 

Juan Sebastián Cedillo Galarza 40 

 

2.5.4 Resistance equations: error and requirements 
The knowledge of the empirical resistance equation uncertainty is important since it allows to be concern of the 

possible resistance values and to be considered at any application. Jarrett (1984) regime equation based on slope 

and hydraulic radius have an average error of 28 %, which increases as the relative submergence decrease below 

7. The error found by Bathurst (2002) to standard resistance equations is on average 30 %. The error is attributed 

to the focus on between-site variations and measurement difficulties. Furthermore, David et al. (2010) posits that 

due to different resistance components at different reaches the use of empirical resistance equations in other 

mountain reaches can reach an error of 66%.  

A resistance equation must fulfill certain conditions to be consider as useful. It should contain easy to measure 

parameters, to be obtained from a wide range of flow data (Jarrett, 1984), to consider at-a-site as well as between-

site variations (Bathurst, 2002). Moreover, David et al. (2010) states that resistance variability is better explained 

by a combination of control variables and the relation of those control variables changes as a function of the 

morphology.   

An incorrect determination of resistance factor may lead to an incorrect determination of traveling time, mean 

velocity flow, and produce instability in one dimensional and two-dimensional models (Yochum, 2010).  

2.6 Unsteady resistance 
Until now resistance has been analyzed from a steady point of view. However; during the passing of a flood 

wave, resistance and the hydraulic behavior of the river has different patterns. The passing of a flood wave is 

unsteady flow requiring the use of 1-D flow  “Saint-Venant” equations Mrokowska, Rowí, et al. (2015). Those 

equations are obtained by applying conservation of mass (“Continuity equation Eq.(2.32)”), and the Newton’s 

second law (“Momentum conservation equation Eq. (2.33)”) to a finite element. In  Eq. (2.33)  
∂h

∂x
 is the 

hydrostatic pressure term, 
U

g
∙

∂U

∂x
 represents the advective acceleration, 

1

g
∙

∂U

∂t
 is the local acceleration, 

∂z

∂x
 represents 

the bed slope, and SF is the friction slope (Mrokowska, Rowí, et al., 2015).  

Under unsteady conditions, the friction slope SF is obtained from the momentum equation (Eq. (33)).  where 

each partial derivative is evaluated from measured data at different cross sections (Knight, 1981). Nevertheless, 

measurements has a high resolution in time but not in space, so the analysis of  
∂h

∂x
  is complex. Mrokowska, 

Rowiński, et al. (2015) compare different differential quotients during the calculation of shear velocity in a flume 

experiment resulting a central difference quotient the most convenient way to estimate 
∂h

∂x
. This approximation 

was used in Mrokowska, Rowí, et al. (2015) to estimate Manning coefficient , friction slope and shear velocity 

in order to know the viability of simplifications in momentum equation.  

Depending on the wave, some terms of momentum equation (Eq. (2.33)) can be omitted, nevertheless according 

to Mrokowska, Rowí, et al. (2015) in upland rivers all the terms should be considered. Furthermore, Knight 

(1981) used the full set of Eq.  (2.33)  in an estuary to determine SF and Darcy-Weisbach equation (Eq. 2.4) to 

determine f, in this research the surface slope is the dominant term.  

Vegetation have shown to have influence in the resistance patterns. When experiments are carried out in a river 

or flume with an in-bank flow with no influence of vegetation, the resistance pattern consist on a descending  

parameter during the rising branch of the hydrogram followed by an ascension in the falling branch (Graf & Qu, 

2004; Mrokowska, Rowí, et al., 2015). On the other hand, a different pattern was found in the field experiment 

developed by Sellin & van Beesten (2004) where there was low, bankfull, and overbank flow data in a compound 

channel with berm vegetation. Resistance was calculated using a single channel method where Manning 

resistance parameter is calculated in a nominal cross section. The resulting resistance patterns for a single flood 

wave pass change in comparison with the previous explained case. During the recession limb there is an increase 

in the discharge capacity which means a decrease of the resistance due to flattening of vegetation. Sellin & van 

Beesten (2004) also analyzed resistance patterns in a period of three months.  The resistance for in-bank flow 

was characterize by a high frequency noise, while the resistance corresponding to rain generated flows producing 

flow in a compound channel has lower frequencies and irregular oscillations. In the former case there is a 

decrease of resistance value when dry period returns and the presence of a new resistance plateau. 

The rating curve is the relation Discharge (Q)-Water Depth (d). Moreover; when uniform flow is used the energy 

gradient SF is approximated with bed gradient SO, and the relation Q-d is unique. On the other hand, when SF is 
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calculated with Saint-Venant Equation, the rating curve has loop shape (Graf & Qu, 2004). Besides, the loop 

shape has been observed during flume (Graf & Qu, 2004) as well as field measurements (Sellin & van Beesten, 

2004) where its width indicates the importance of the pressure terms as well as inertia terms in the Saint-Venant 

Equations. Additionally, the presence or absence of sediment transport can alter the shape of the rating curve as 

well as its pattern (Graf & Qu, 2004). 

Unsteady flow produces variations of resistance as hydrograph varies. Furthermore, there is data scarcity for this 

type of flow. Thus, it seems necessary to increase the unsteady experiments specially at field conditions. The 

patterns of resistance found will be of great importance to improve modelling prediction in the future.   
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2.7 Conclusions 
In the current paper two aspects of resistance has been analyzed: resistance partitioning and resistance prediction. 

In resistance partitioning, an analysis of its application with the most common morphology found in rivers step-

pools is used to illustrate the use of this methodology, then an analysis of its viability in mountain rivers is done. 

In resistance prediction, important aspects are treated such as different formulations, error, field methodologies 

to take data for prediction and measurement, and its uncertainty. Finally, some analysis of the unsteady case is 

done to illustrate the variation present in resistance when flood waves pass. 

Mountain rivers has different characteristics than plain rivers such as shallow flows, with small relative 

submergence, on average subcritical flow and S-shape velocity profile. The most common morphologies are 

cascade, step-pool, and plane beds.   

Resistance partitioning considers that total resistance is composed of additive linear components, but mountain 

bed material influences different resistance components with different proportions. In a flume experiment, where 

different resistance components were measured under different orders, the leftover component was the biggest 

since it contained the different resistance component interactions. Thus, resistance partitioning is an interesting 

methodology to have a partial idea of the contribution of resistance components, nevertheless depending on the 

applied methodology the results may differ and the unmeasured resistance components will be bigger (Wilcox 

& Wohl, 2006).   

There are different empirical equations to predict resistance. Furthermore, the use of a certain resistance equation 

in a reach should be done with caution since it was obtained under different conditions having an error which 

can reach 66 %. These equations use D84 as resistance height. However, for step-pool case the use of a multiple 

of step D50 or standard deviation of bed (s) is more advisable to reflect the resistance bed structure. Hence, an 

adequate determination of the resistance height according to local conditions bed as well as flow conditions is 

necessary. 

There is controversy about the approximation of SF with SO or SW. Some authors state the mountain rivers 

conditions do not produce an important difference of SF with SO, but an error as high as 30% can be present. 

Indeed; before carrying out any simplification for SF, it is necessary to check the kinetic energy gradient. In a 
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next step, a comparison of SF and SO should be done only then is possible to be sure the uncertainty introduced 

by any simplification.   

Velocity measurements using tracers divide authors opinion since there are different methodologies which are 

applied in different studies. Thus, it seems interesting to compare different methodologies under different flow 

and bed conditions. The validation data will be obtained with other methodology such as current meter where 

possible. 

Direct as well as indirect measurements should contain an uncertainty value. During comparison of resistance 

equation fitting, an uncertainty methodology should be applied to know if the lack of predictability of a certain 

equation is due to incapacity to follow the resistance pattern or uncertainty in its measurement or prediction. The 

highest uncertainty is introduced by water depth measurement according to the reviewed literature. 

The resistance pattern during the pass of a flood wave depends on the presence or not of vegetation, and there 

are certain common patterns for in bank flow. Additionally, the energy gradient SF under unsteady conditions is 

obtained through Saint-Venant equations, which means the field measurement of each component in the 

differential equation, nevertheless the resistance parameter uses relation for uniform flow since there is no a 

better approximation.  
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Chapter 3 

3 Flow resistance prediction in headwater mountain 

streams morphologies 
Redrafted from:  

Cedillo, S., Sánchez-Cordero, E., Timbe, L., Samaniego, E., & Alvarado, A. (2021). Resistance Analysis of 

Morphologies in Headwater Mountain Streams. Water, 13(16), 2207. https://doi.org/10.3390/w13162207 

Abstract: River flow velocity is determined by the energy available for flow motion and the energy fraction lost 

by flow resistance. We compared the performance of different equations for the Darcy-Weisbach resistance 

coefficient (f) and empirical equations to predict flow velocity. The set of equations was tested using data from 

the Quinuas headwater mountain river in the Andean region. The data was collected in three Cascades, two Step-

pools, and one Plane-bed covering a wide range of velocity magnitudes. The results reveal that nondimensional 

hydraulic geometry equations (NDHG) with a Nash-Sutcliffe efficiency index (EF) varying from 0.6–0.85 

provide the most accurate velocity prediction. Furthermore, the study proposes a methodology applicable to all 

morphologies for defining the NDHG parameters using easily measured field data. The results show an 

improvement in predictability with EF values in the range of 0.81–0.86. Moreover, the methodology was tested 

against data from the literature, which was not divided into morphologies providing EF values of around 0.9. 

The authors encourage the application of the presented methodology to other reaches to obtain additional data 

about the NDHG parameters. Our findings suggest that those parameters could be related to reach characteristics 

(e.g., certain characteristic grain size), and in that case, the methodology could be useful in ungauged streams. 

Keywords: bed resistance; Cascade; mountain river; Plane-bed ; Step-pool; streams and rivers 

3.1 Introduction 
Prediction of the mean velocity in a river is important from a scientific and practical point of view. 

Nondimensional hydraulic geometry equations (NDHG) are capable of directly estimating the mean velocity but 

have parameters that vary according to the river morphology (Comiti et al., 2007). Indirect mean velocity 

estimation using the Manning, Chézy, or Darcy-Weisbach equations is also common. Predictive empirical 

equations (PEEs) are focused mainly on the prediction of the Darcy–Weisbach (f) dimensionless resistance 

parameter, which has a physical meaning. However, PEEs face several challenges in mountain rivers. First, each 

PEE is derived under different flow conditions and river morphologies, using different measuring techniques 

(Aberle & Smart, 2003). Second, mountain river characteristics such as steep slopes (bed slope (SO) greater than 

0.2%) (Papanicolaou et al., 2004), an average depth comparable to bed material size (Ferguson, 2007), and a 

coarse, poorly sorted clast (Bathurst, 2002) result in resistance patterns that differ from plane rivers. Third, 

mountain river morphologies such as Step-pools (Chin & Wohl, 2005; Curran & Wohl, 2003; David et al., 2010; 

MacFarlane & Wohl, 2003), Cascades (Montgomery & Buffington, 1997; Nitsche et al., 2012), and Plane-beds 

(David et al., 2010) add complexity to resistance analysis as each morphology possesses different resistance 

characteristics. Authors have estimated PEE uncertainties of 30% (Bathurst, 2002) and 66% (David et al., 2010) 

in mountain rivers. Hence, an analysis of PEE for mountain streams under different flow, geographical, and 

dissipative conditions is needed to improve velocity estimation approaches. 

Nondimensional hydraulic geometry equations (NDHG) relate dimensionless velocity to dimensionless unitary 

flow (U*-q* or U**-q**), providing a direct estimation of velocity. Ferguson (2007) obtained this expression when 

bed shear stress and the generalized power law were related by the term (8/f)0.5 to produce a U*-q* expression. 

Rickenmann & Recking (2011) modified U* and q* by adding the energy slope, resulting in U**-q**. These 

variables were found by Nitsche et al. (2012) in applying a dimensional analysis. NDHG equations have been 

successfully calibrated in different experiments. Comiti et al. (2007) used 177 velocities and flow resistance data 

from Cascades and Step-pools. Comiti et al. (2009) developed a flume study investigating the resistance at the 

nappe and skimming flow in Step-pools. Zimmermann (2010) conducted 31 experiments in a flume for 

Cascades. Nitsche et al. (2012) used data from the Swiss Alps in Plane-bed/riffle, Step-pool, and Cascade 

morphologies; they found a prefactor for the relation U**-q** that depends on the boulder concentration. The 

NDHGs cited in the literature possess different parameters; some NDHGs differ in equation structure, which 

limits their applicability. 
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Studies around the world have yielded several types of PEEs. Jarrett (1984) used discharge data at 21 reaches 

with uniform flow and minimal vegetation in the Rocky Mountains of Colorado to study different reach 

conditions. After several regressions, the resulting equation expressed n proportional to SF (Energy Slope) and 

R (Hydraulic Radius). Bathurst (1985)  found a semilogarithmic relation ((8/f)0.5 = f(log(d/D84); d: mean water 

depth and D84: 84th percentile of the grain-size distribution) for the resistance parameter using measured data in 

upland British rivers, data from previous studies, and flume data. Bathurst (2002) used data from the literature 

with uniform flow and a certain range of flows, slopes, and bed material from the United Kingdom, the US, and 

the Czech Republic. These data were used to calibrate two exponential equations for resistance depending on 

the reach slope. Maxwell & Papanicolaou (2001) performed a flume experiment with a natural river gravel bed, 

producing a semilogarithmic equation for resistance prediction in Step-pools. Lee & Ferguson (2002) studied 

resistance in Step-pools using field and flume data. Field data were collected at sites meeting certain slope range, 

grain size, accessibility, and morphology requirements. A semilogarithmic equation was obtained, but the best 

option for resistance length was D50 of the step material. Aberle & Smart (2003) conducted a flume experiment 

investigating the resistance in Step-pools. They found that the standard deviation of bed elevation (s standard 

deviation of residuals between the linear trend of bed elevation and the bed elevation) is a better representation 

of resistance height in an exponential equation. Ferguson (2007) based his analysis on data from riffles, runs, 

Step-pools, and pool-riffles in the UK, the US, New Zealand, and Italy to calibrate a variable power equation 

for shallow and deep flows. Romero et al. (2010) derived a logarithmic relation for resistance depending on the 

riverbed slope using data from five rivers in Bolivia. According to Wohl (2013), there is not a best empirical 

equation to predict the resistance parameter in mountain rivers because the characteristics of mountain rivers 

make it difficult to estimate resistance. 

This study tested the performance of eleven empirical resistance equations with the objective of mimicking the 

measured velocity for the most common morphologies at the headwater of an Andean Mountain river. The 

applied approach guaranteed interpretation of the suitability of each equation for three morphologies: Cascade, 

Step-pool, and Plane-bed. The test showed that NDHG equations are the best option for all morphologies. The 

novelty of this study lies in the development of a methodology that enables the derivation of NDHG equation 

parameters through regression analysis. The proposed approach im-proves the estimation of velocity, resistance 

parameters, and traveling time in mountain rivers. 

3.2 Materials and methods 

3.2.1. River reach 
For this study, experimental data were collected from a 1500 m longitudinal section in the headwaters of the 

Quinuas river (Figure 3.1), located in the province of Azuay, Ecuador. The river section is situated between 0 + 

000 at 3664.4 masl and 1 + 431.13 at 3605.77 masl, with a mean slope of 4%. This reach was selected given the 

relatively large variation in river morphology consisting of three Cascades, two Step-pools, and one Plane-bed. 

Table 3.1 presents pictures and schemes of each morphology to illustrate its bed characteristics. The geometric 

characteristics of each morphology are presented in Table 3.2. The reach length was measured along the thalweg; 

the bed slope (SO) for each morphology was obtained through linear regression of thalweg points. 
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Figure 3.1: Plan view of the studied 1500 km river reach showing the sequence of the sub-reaches 

and the location of the meteorological station. 
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Table 3.1: Longitudinal profiles and pictures of Cascade, Step-pool, and Plane-bed.  

Profile Picture 

Plain bed 

 

 

Cascade  

 

 

Step-pool  
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Table 3.2: Average geometry characteristics of the studied reaches. 

Reach Length (m) SO (%) sΔz (m) 1 s (m) 2 k3 (m) 3 dstep (m) 4 lstep (m) 4 

Measured 

Manning 

Range 

Cascade 1 11.95 8.82% 0.041 0.022 0.287   0.120–

0.264 

Step-pool 1 12.22 6.10% 0.288 0.177 0.435 0.491 6.61 
0.108–

0.414 

Cascade 2 14.58 9.30% 0.282 0.179 1.299   0.139–

0.510 

Step-pool 2 11.82 8.08% 0.197 0.107 0.336 0.442 3.49 
0.178–

0.472 

Plane-bed 1 6.26 3.16% 0.039 0.017 0.197   0.036–

0.242 

Cascade 3 18.08 8.50% 0.427 0.214 0.474   0.142–

0.456 
1 s∆z is the standard deviation of the difference between consecutive thalweg points. Adapted from Lee & 

Ferguson (2002).  

2 s is the standard deviation of residuals between the linear trend of bed elevation and the corresponding bed 

elevation points Lee & Ferguson (2002).  

3 k3 is the average of the maximum difference of each consecutive triplet of points in the thalweg. Adapted from 

Lee & Ferguson (2002).  

4 dstep and lstep represent the height and spacing of the steps in the Step-pool morphologies, respectively. See 

illustration in Table 3.1 (Curran & Wohl, 2003). 

The river cross-section (XS) in the reaches without abundant vegetation was measured with a differential   GPS 

Trimble® R6 instrument; in reaches with abundant trees, a total station Sokkia® 550 RX was used. The average 

geometry of each reach was calculated from three XSs, as shown in Table 3.2, except for Cascade 3, where the 

reach was divided into five XSs. The wetted width (w) at each cross-section was estimated with a measuring 

tape, excluding the width of the boulders stretching above the water level. The average depth (d) at each XS was 

computed using the continuity equation assuming a rectangular XS (Eq. (3.1)). These values were averaged per 

reach to yield a weighted average water depth (Aberle & Smart, 2003). 

Q=U A=U w d (3.1) 

where Q is the discharge (m3 s-1), U is the mean flow velocity (m s-1), A is the XS area below the water surface 

(m2), w is the wetted width at the water surface (m), and d is the mean water depth (m). 

The resistance parameter was estimated using field measurements of discharge, velocity, and energy slope. The 

discharge was measured using the dilution-gauging method because in small streams, especially in low-flow 

conditions, measuring flow using the standard wading rod method is difficult and inaccurate. The dilution-

gauging method is based on measuring the dilution of a known volume of conservative salt tracer (Hudson & 

Fraser, 2005a). NaCl was used for its low cost and wide use in small river studies (Curran & Wohl, 2003; 

MacFarlane & Wohl, 2003; Moore, 2005; Wilcox & Wohl, 2006). Velocity was evaluated through the reach 

length and the subtraction of time-of-travel from conductance curves read upstream and downstream of the 

reach. Two HOBO U24-00 freshwater conductivity data loggers with a resolution time of 1.0 s were placed 

upstream and downstream of the reach. The traveling time of each conductance curve was calculated using the 

harmonic method (Nitsche et al., 2012). Energy slope (SF) was estimated as the water surface slope (SW) 

(Bathurst, 1986; David et al., 2010). Pebbles were counted to estimate bed material distribution (Bunte & Abt, 

2001). The number of sampled elements was 400 for each reach. Data were taken at flow magnitudes from 0.03 

m3 s-1 to almost 1 m3 s-1. During that flow range, there was in-bank flow. However, only for the highest flow 

reaches such as Plane-bed and Step-pool received bank full flow. The Cascades did not reach bank full flow 

because of its high slope. Table 3.2 depicts the range of Manning’s coefficient measured at each studied reach. 

Hence, the data range presents a complete overview of different velocity magnitudes, which are closely related 

to the resistance characteristics. The resistance parameter used in this study is the Darcy-Weisbach resistance 
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coefficient (f); most literature from the last three decades has used this parameter given its physical interpretation 

and dimensionless units (Ferguson, 2007). f is estimated with Equation (3.2). 

(8/f)0.5=U/(g R Sf)
0.5 (3.2) 

 

where g is the gravitational acceleration (m s-2), R represents the hydraulic radius (m), SF is the energy slope, 

and U is the velocity (m s-1). 

3.2.2. Empirical resistance equations 
The equations tested for velocity prediction are listed in Table 3.3. Most of the equations estimate the resistance 

parameter as (8/f)1/2. The velocity was computed using Equation (3.2). Estimations of NDHG equations derive 

flow velocity through the following steps: (1) Estimation of dimensionless unitary flow; (2) estimation of 

dimensionless velocity with the NDHG equation; (3) velocity estimation with the dimensionless unitary velocity 

definition. 

Table 3.3: Resistance equations tested in this chapter. 

Reference Code Type of Resistance Equation 

(Bathurst, 1985) BA1985 Total resistance 

(8/f)0.5 = 5.62 log(d/D84) + 4 

D84 corresponds to the 84th percentile of the 

grain-size distribution. 

d is the mean water depth 

(Bathurst, 2002) BA2002 Grain-skin 

(8/f)0.5 = 3.84 (d/D84)0.547; SO ≤ 0.8% 

(8/f)0.5 =  3.1 (d/D84)0.93; SO ≥ 0.8% 

SO is bed slope 

(Maxwell & Papanicolaou, 2001) MaPa2002 
Total resistance in 

Step-pool 
(8/f)0.5 =  −3.73 log ((dstep D84)/(lstep d)) − 0.8 

(Lee & Ferguson, 2002) LFe2002 
Total resistance in 

Step-pool 

(1/f)0.5 = 2.03 log (12.2R /ks)(1 − 0.1ks/R ) 

ks=  D5,D16,D25,D50,D75,D84,D95,s,s∆z,k3,lstep, dstep 

Dxx corresponds to the xxth percentile of the 

grain-size distribution. 

s,s∆z, k3,lstep, and dstep has been define in 

Table 3.1 and Table 3.2 

(Aberle & Smart, 2003) AbSm2003 
Total resistance in 

Step-pool 
(8/f)0.5 = 0.91d/s 

(Ferguson, 2007) 

(a) 

FeVPE2007 

(b) 

FeNHGE2007 

Grain-skin 

(a) Variable Power Equation 

(8/f)0.5 = [c1c2(d/D84)]/[c1
2 + c2

2(d/D84)5/3]0.5 

c1: 6 − 7; c2: 2.36 

(b) Nondimensional Hydraulic Geometry 

Deep flow: 

U∗ = a1
0.6q∗0.4Sf

0.3 

Shallow Flow: 
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U∗ = a2
0.4q∗0.6Sf

0.2 

U* and q*: 

U∗ = U/(gDxx)0.5 

q∗ = q/(gDxx
3)

0.5
;Dxx=D84 

 

(Comiti et al., 2007) Co2007 

Total resistance in 

Step-pool and 

Cascade 

f = 10.47q∗−1.13SO 

(Comiti et al., 2009) Co2009 
Total resistance in 

Step-pool 

U∗ = 1.18q∗0.82
 Nappe flow 

U∗ = 1.1q∗0.38
 Skimming flow 

U∗ = 1.24q∗0.83
All data 

U* and q*: 

U∗ = U/(g Dxx)0.5 

q∗ = q/(g Dxx
3)

0.5
;Dxx=D84 

 
(Romero et al., 2010) Ro2010 Grain-skin f = 1.210ln(SO) + 6.254 

(Zimmermann, 2010) 
(1) Zi12010 

(2) Zi22010 

Total resistance in 

self-formed 

Cascade reaches 

(1) U∗ = 1.45q∗0.55SO
0.32 

(2) U∗ = 3.5[q∗0.55SO
0.32lstep

−0.14/w] 

U* and q*: 

U∗ = U/(g Dxx)0.5 

q∗ = q/(g Dxx
3)

0.5
;Dxx=D84 

w is water surface width 

(Rickenmann & Recking, 2011) RiRe2011 Total resistance 

U∗∗ = 1.443q∗∗0.6[1 + (q∗∗/43.78)0.8214]−0.2435 

U∗∗ = U/(gSfD84)0.5 

q∗∗ = q/(gSfD84
3)

0.5
 

3.2.3. Statistical performance metrics 
Generally, statistical metrics provide information about a single aspect or projection of the model error. Thus, it 

is advisable to use a combination of metrics to assess the overall model performance (Chai & Draxler, 2014). In 

this study, six metrics were selected: the root mean square error (RMSE), a qualitative methodology in which 

larger model errors have more weight than smaller ones (Chai & Draxler, 2014; Willmott & Matsuura, 2005); 

the logarithm of RMSE to determine the model prediction capacity for low values (Ferguson, 2007); the 

prediction errors (PE) counting the number of predicted values that are greater than twice or less than half as 

large as the observed values (Ferguson, 2007); the average standard error of estimation (SX), which gives the 

mean percentage of the model error relative to the observations (Romero et al., 2010); the Nash–Sutcliffe 

efficiency index (EF), a metric widely used to determine the model goodness-of-fit with flexibility and reliability 

(McCuen et al., 2006; Merz & Blöschl, 2004; Nayak et al., 2013); the mean average error (MAE) considered by 

(Willmott & Matsuura, 2005) is a better indicator of the average error than RMSE. Ritter & Muñoz-Carpena 

(2013) provided a table with a range of EF values, a useful tool for interpreting the score of the model goodness-

of-fit. 

RMSE and MAE are transformed into a relative version for some analyses. Hence, these two metrics are divided 

by the average of the observed values and multiplied by 100 to obtain a percentage. 
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3.2.4. Determination of NDHG parameters 
In this research, a methodology to determine the NDHG equation parameters is proposed. The Rickenmann & 

Recking (2011) dimensionless velocity (Eq. (3.4)) and unitary flow (Eq. (3.5)) obtained by Nitsche et al. (2012) 

in the dimensional analysis are used in this process. The form presented in Eq. (3.3) was selected for the 

methodology development. 

𝑈∗∗ = 𝑎1 𝑞∗∗𝑎2 𝑆𝑓
𝑎3 (3.3) 

𝑞∗∗ = 𝑞/(𝑔 𝑆𝑓  𝐷84
3)

0.5
 (3.4) 

𝑈∗∗ = 𝑈/(𝑔 𝑆𝑓  𝐷84)
0.5

 (3.5) 

where q (m2 s-1) is the unitary flow (q = Q w-1) and D84 (m) corresponds to the 84th percentile of the grain-size 

distribution. 

Eq. (3.3) was linearized through the application of logarithms: 

𝑙𝑜𝑔(𝑈∗∗) = 𝑙𝑜𝑔(𝑎1) + 𝑎3𝑙𝑜𝑔(𝑆𝑓) + 𝑎2𝑙𝑜𝑔(𝑞∗∗) (3.6) 

Eq. (3.6) resembles the equation of a line: 

𝑦 = 𝑚 𝑥 + 𝑎 (3.7) 

where the parameters m and a are related to Eq. (3.6) and expressed as Eqs. (3.8) and (3.9): 

𝑚 = 𝑎2 (3.8) 

𝑎 = 𝑙𝑜𝑔(𝑎1) + 𝑎3𝑙𝑜𝑔(𝑆𝑓) (3.9) 

where m and a are values from the linear regression of U** and q**. However, there are two equations with 

three unknowns in the system to be solved. An additional equation, Eq. (3.10), was obtained from Ferguson 

2007), who used the generalized power law and the bed shear stress. 

𝑈/𝑈∗ = 𝑐(𝑑/𝐷𝑥𝑥)𝑏 (3.10) 

where U* is the shear velocity (m s-1) and DXX is a characteristic grain size (m) taken here as D84; c and b are 

constant parameters. 

In Eq. (3.10), U* and d are replaced with their definitions. After a mathematical process, Eq. (3.11) is obtained, 

which is the same obtained by Ferguson (2007). This equation contains parameter mO, defined in Eq. (3.12). 

𝑈∗∗ = 𝑐1−𝑚𝑜𝑆𝑓
(1−𝑚𝑜)/2𝑞∗∗𝑚𝑜 (3.11) 

𝑚𝑜 = (2𝑏 + 1)/(2𝑏 + 3) (3.12) 

Combining Eqs. (3.8), (3.9), and (3.11), we derived the parameters in Eq. (3.3). Eqs (3.13)–(3.15), are expressed 

as 

𝑚 = 𝑎2 = 𝑚𝑜 (3.13) 

Thus, the slope m of the regression is equal to mO. 

𝑎3 = (1 − 𝑚)/2 (3.14) 

𝑎1 = 10𝑎/𝑆𝑓
𝑎3 (3.15) 
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3.2.5. Variance decomposition methodology (VDM)   

VDM decomposes the variance of the total error, as shown in Eq. (3.17). The variance of the total error increases 

as the model output increases. To obtain a constant variance independent of the model output magnitude, a Box–

Cox transformation was applied. 

Both observed and predicted values of velocity are transformed using Equation (3.16). λ is calibrated through 

the minimization of the variance of the error of the transformed predicted and measured velocities. The resulting 

lowest variance is taken as the total residual error variance in Eq. (3.17). The observation error variance for 

velocity is based on an error of 5% obtained by Lee & Ferguson (2002). 

𝐵(𝑌) = (𝑌𝜆 − 1)/𝜆 (16) 

𝑆𝑒
2

𝑌
= 𝑆𝑒

2
𝑌−𝑌𝑜

− 𝑆𝑒
2

𝑌𝑜
 (17) 

where Y is the model output variable, S is the standard deviation, Se
2

Y-Yo is the total residual error variance, Se
2

Y 

is the model error variance, and Se
2
Yo is the observation error variance. 

3.2.6. Test with data from literature   
An additional performance test was developed using data available from the literature. Jarrett (1984) provides 

data from 21 reaches in the Rocky Mountains of Colorado. However, data from two reaches could not be used 

because D84 data was not available. Bathurst (1985)  presents data from 16 British rivers. Both data sets were 

joined comprising 121 measurements with flows ranging from 0.137 to 129 m3 s-1, for this data set the 

morphology of each reach was not specified.  

The proposed methodology used 50% of the data randomly chosen to estimate a1, a2, and a3 (Figure 3.2) and 

predict U** with the remaining 50% of the data. Moreover, Zimmermann (2010), the best fitting equation for 

Cascade and Step-pool, was used to predict the same data. In this equation, instead of using SO, SF was used 

since this parameter was provided in the dataset.  

 

Figure 3.2: Linear regression of Eq. (3.3) for 50% of the data provided in (Jarrett, 1984) and (Bathurst, 1985)  

randomly chosen.  
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3.3 Results 

3.3.1 Best fitting equation 
The performance of the empirical equations listed in Table 3.3 was compared with the measured velocities in 

the Cascades, Step-pools, and Plane-bed. Table 3.4 presents the NDHG equations with the best fitting properties 

for the Cascade, Step-pool, and Plane-bed river reaches. For Cascades and Step-pools, the Zi12010 equation 

(Zimmermann, 2010) is the best; for the Plane-bed, the Co2009 equation (Comiti et al., 2009) performs best, 

except for the SX metric for which the FeNHGE2007 (Ferguson, 2007) fits best. 

Table 3.4: Statistical fitting metrics for Cascade, Step-pool, and Plane-bed morphologies. 

Morphology Name RMSE RMSElog PE SX MAE EF 

Cascade 

Zi12010 0.061 0.066 0 16.761 0.046 0.834 

FeNHGE2007 0.102 0.099 0 26.936 0.078 0.536 

Co2007 0.104 0.127 1 25.546 0.078 0.514 

Step-pool 

Zi12010 0.085 0.096 0 26.582 0.062 0.731 

FeNHGE2007 0.137 0.132 1 39.106 0.102 0.294 

RiRe2011 0.141 0.137 1 40.786 0.107 0.253 

Plane-bed 

Co2009 0.153 0.102 0 28.914 0.108 0.631 

FeNHGE2007 0.162 0.116 0 23.485 0.122 0.585 

RiRe2011 0.164 0.117 0 23.719 0.123 0.577 

The metrics indicate that performance depends on the morphology. For Cascades, the Zi12010 prediction 

performs well according to (Ritter & Muñoz-Carpena, 2013). The relative RMSE and MAE are similar, 16% 

and 12%, respectively. For Step-pools, Zi12010 performs acceptably. The difference between relative RMSE 

(23%) and MAE (17%) is the same as for Cascades, approximately 5%, indicating that there are no significant 

differences between residual magnitudes for these morphologies. For the Plane-bed, Co2009 demonstrated 

unsatisfactory performance, with a higher difference between relative RMSE (30%) and MAE (21%) than for 

Cascades and Step-pools, indicating higher residual values than for the other morphologies. The best equations 

for all morphologies do not have cases with predicted and observed values (PE) that differ by a factor greater 

than two or less than 0.5. The model error relative to the observed value (SX) illustrates that for a Plane-bed the 

best equation is FeNHGE2007. The Co2009 equation omits SF, and FeNHGE2007 includes SF. The morphology 

with the lowest model error relative to the observed value is Cascade (17%); Step-pool and Plane-bed have 

similar values (approximately 25%). 

3.3.2. Estimation of NDHG Parameters 
Implementation of the proposed methodology to calculate the NDHG exponents first requires a check that 

log(q**)-log(U**) follows a linear trend. Figure 3.3 indicates a linear tendency for all of the morphologies, with 

a coefficient of determination (R2) greater than 0.85 for all fittings, although the slope m and the independent 

factor a vary considerably between the studied morphologies. 

The estimated coefficients of NDHG for each morphology are presented in Table 3.5. Parameter a1 varies from 

1.73–2.31; the value range of parameter a2 depends on the morphology and is 0.75 for the Plane-bed, 

considerably higher for Cascades and Step-pools (0.48–0.57). The opposite is true for a3; the Plane-bed value 

(0.12) is less than the values for Cascades and Step-pools (0.21–0.26). 
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Table 3.5: NDHG exponents based on the proposed methodology. 

Morphology m a SO a1 a2 a3 a2/a3 

Cascade 1 0.478 0.089 0.088 2.31 0.48 0.26 1.83 

Cascade 2 0.590 0.034 0.093 1.76 0.59 0.21 2.88 

Cascade 3 0.569 0.056 0.085 1.94 0.57 0.22 2.64 

Plane-bed 1 0.751 0.185 0.032 2.36 0.75 0.12 6.02 

Step-pool 1 0.565 0.064 0.061 2.13 0.57 0.22 2.60 

Step-pool 2 0.531 -0.019 0.081 1.73 0.53 0.23 2.26 
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Figure 3.3: Linear regression of Equation (3): (a) Cascade 1; (b) Cascade 2; (c) Cascade 3; (d) Step-pool 1; (e) 

Step-pool 2; (f) Plane-bed. 

Table 3.6 shows the performance metrics of the NDHG equations according to the proposed methodology 

(NDHGCA, NDHGSP, and NDHGPB). Comparison of Table 3.4 and Table 3.6 reveals that the proposed 

approach produces improved quality metrics. The derived equations demonstrate good performance according 

to the EF metrics. The difference between relative RMSE and MAE has been reduced to 4.6% on average for all 

morphologies; the residual magnitudes are uniform. The model error relative to the observed values decreases 

significantly for Step-pool and Plane-bed morphologies; the improvement in the Cascade morphology is less 

evident. PE illustrates that the proposed NDHG equations did not produce any point with predicted and observed 

values that differ by a factor of less than 0.5 or greater than two. 
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Table 3.6: Comparison of proposed NDHG equations with previously best-performing empirical equations. 

Morphology Name RMSE RMSElog PE SX MAE EF 

Cascade NDHGCA 0.055 0.052 0 11.865 0.037 0.863 

Step-pool NDHGSP 0.070 0.076 0 18.208 0.052 0.817 

Plane-bed NDHGPB 0.098 0.076 0 19.101 0.076 0.848 

3.3.3. Variance decomposition methodology (VDM) 
The calibration required for the Box–Cox transformation provides the following data: Cascade, λ = 0; Step-pool, 

λ = 1; Plane-bed, λ = 0. When λ = 0, the Box–Cox transformation is a logarithmic transformation BC(Y) = 

log(Y). The use of calibrated parameters allows the decomposition of the variance, as shown in Table 3.7. Table 

3.7 reveals that most of the error variance is contained in the model output. There are slight differences in the 

variance of observation errors, but analysis can be conducted based on the ratio of the relative to total residual 

error variance. Hence, the Cascade morphology exhibited the largest observation error variance, followed by 

Plane-bed and Step-pool. The calibration data was used to calculate the band presented in Figure 3.4; for all 

three morphologies, approximately 70% of the data is inside the band. 

Table 3.7: Variance decomposition methodology for the studied morphologies. 

 Cascade Step-Pool Plane-Bed 

Term Value % Value % Value % 

Se2Yo 8.986E-05 3.336 6.786E-05 1.367 1.532E-04 2.532 

Se2Y 0.00260 96.664 0.00490 98.633 0.00590 97.468 

Se2Y-Yo 0.00269 100.00 0.00496 100.00 0.00605 100.00 
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Figure 3.4: Plot of observed and predicted velocity values: (a) Cascade; (b) Step-pool; (c) Plane-bed. 

3.3.4. Test with data from literature 
Figure 3.2 depicts the linear regression of U** and q** of randomly chosen 50% of literature data. The regression 

provides the information needed to estimate a1, a2, and a3. The obtained equation was called NHDGlit. Table 3.8 

compares the performance of NHDGlit and Zi12010. In this Table, three metrics have been used: RMSEa and 

MAEa are dimensionless versions of RMSE and MAE, defined as a percentage of the observations mean, and 

EF is the Nash–Sutcliffe efficiency index. RMSEa and MAEa depict a marked predictive superiority of NHDGlit 

against Zi12010. According to EF, NHDGlit has a very good performance rating, however, Zi12010 EF shows 

an unsatisfactory performance rating (Ritter & Muñoz-Carpena, 2013).  

Table 3.8: Comparison of the proposed NDHG equation (NDHGlit) with the previously best-performing 

empirical equation. 

Method RMSEa (%) MAEa (%) EF 

Zi12010 53 43 0.296 

NHDGlit 19 13 0.910 

3.4 Discussion 

3.4.1 Characteristics of NDHG equations 
Bathurst (2002) suggested that a resistance equation needs two parameters, one representing at-a-site resistance 

variation, and the other representing between-site resistance differences. At-a-site variations are usually related 

to the relative submergence d/D84 (Maxwell & Papanicolaou, 2001). According to Bathurst (1985), D84 provides 

a 3-D image of the bed material disposition. However, Aberle & Smart (2003) state that D84 is not a good 

resistance height for Step-pools. Indeed, q* is considered a better at-a-site parameter, as any measurement error 

affects the observed and predicted values (Ferguson, 2007). In this study, the same function is attributed to q**, 

as the equation structure is the same. The difference between q* and q** is that q** comprises SF in its 

denominator. The between-sites parameter, SF (Zimmermann, 2010), represents the change in morphology 
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(Bathurst, 2002). Moreover, it is expected that the exponents in non-dimensional hydraulic equations change 

with morphology (Comiti et al., 2007). 

In NDHG equations, the dimensionless unitary flow is less sensitive to measurement errors (Ferguson, 2007), 

and its combination with SO explains most of the resistance variation (Comiti et al., 2007; David et al., 2010). 

These equations do not assume any distribution of velocity or resistance parameter (Zimmermann, 2010). The 

velocity distribution in mountain rivers has an S-shape (Bathurst, 1985); in low-land rivers, the velocity 

distribution is semi-logarithmic. When Eq. (3.1) is used to calculate velocity, there is an assumption of uniform 

flow; this is not the case for mountain rivers, which are characterized by changes in water depth and surface 

slope at each XS (Bathurst, 1985). However, there is no better alternative for relating a resistance parameter with 

velocity. Dimensionless equations are preferred for the following reasons: (1) the exponents are also 

dimensionless; (2) in these equations, the common physics for all of the reaches are taken from empirical data 

(Parker et al., 2003, 2007). 

3.4.2 NDHG parameters 
Previous studies proposed constant exponents for NDHG equations (Comiti et al., 2009; Ferguson, 2007; 

Zimmermann, 2010). However, Nitsche et al. (2012) identified variability in a1. Nitsche et al. (2012) used data 

from six reaches with different morphologies and eight other Swiss mountain streams. In addition, a1 depends 

on the concentration of boulders Γ; the term containing slope was not included in their equation and a2 was fixed 

as 0.6. Nevertheless, we found a1, a2, and a3 to have different values for each studied site. According to the 

proposed methodology, these coefficients depend on the regression parameters of log(q**)-log(U**) and the 

energy slope. Hence, this methodology requires collecting field data at different flow magnitudes, which is not 

possible in all cases. The authors consider that regression parameters m and a may be related to bed material or 

profile characteristics. Lacking sufficient data, we could not conduct this analysis. However, it would be possible 

to find an expression for m and a with additional data.  

NDHG parameters depict certain patterns as a function of the reach morphology. The order of magnitude of a2 

(~0.5) and a3 (~0.2) for Cascades and Step-pools are the same as in the literature; this is not the case for the 

Plane-bed. The relation between a2 and a3 is key to the importance of at-a-site variations compared to between-

site variations in resistance. In Cascades and Step-pools, the at-a-site variation parameter has an exponent (a2) 

that is 2.4 times larger on average than the between-site variation parameter (a3). In a Plane-bed, this difference 

increases to 6.02 (a2/a3), illustrating that the effect of between-site variations in resistance is not relevant in a 

Plane-bed, which is logical, as there are no periodic bedforms in a Plane-bed. Ferguson (2007) found an a2/a3 

ratio of 3:1 in pool-riffles, riffles, runs, and Step-pool reaches. This ratio is close to the value obtained for 

Cascade 2 in Table 3.5. Zimmermann (2010) conducted flume experiments in self-formed Cascade streams with 

a resulting a2/a3 ratio of 1.71, like the result for Cascade 1 in Table 3.5. Thus, the relations estimated with the 

proposed methodology are like those found in the literature for field and flume experiments. 

The values for a1 obtained with the proposed method are clearly higher than those presented in the literature. 

The a1 value in our research varies from 1.83–2.87. Ferguson (2007) provided a value in the range of 1–1.74. 

Zimmermann (2010) obtained a value of 1.45. The difference in the values may be due to the data used to derive 

the equation. In this study, when a1, a2, and a3 were obtained, each site was analyzed independently. However, 

in the other studies, data from different reaches were used to calibrate the equations. The separation of the reaches 

is due to the different at-a-site and between-site variations of resistance, which led us to believe that the 

parameters are dependent on the regression parameters and relate to the reach characteristics. 

The values of m and a follow an evident pattern. Plane-bed values are higher than Cascade and Step-pool values. 

According to the results, this may be explained by smaller m and a values at higher resistance complexity. 

3.4.3 Variance decomposition methodology (VDM) 
Table 3.7 represents the variance decomposition of the NDHG equations for the analyzed morphologies. The 

trend shows that the variance of the observation error is higher in Cascades and Plane-beds than in Step-pools. 

Cascade and Plane-bed conductivity sensors cannot be installed in places without turbulence; these morphologies 

have bed material of significant size, which contributes to turbulence. In contrast, Step-pool data is collected 

from pools with a nearly stationary flow and smaller bed material. Moreover, Cascades and Plane-beds have the 

same calibration parameter for Box–Cox transformation (λ = 0); Step-pools have a calibration parameter of λ = 

1. 
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Table 3.7 clearly indicates that model error variance (Se2
Y) is the main component in the variance decomposition 

methodology. This term comprises different model output variances resulting from the model structure, the input, 

and the parameters. The model structure component is expected to be small because the NDHG equations 

represent the best equations for all examined morphologies. There was not a better equation structure for the 

performance of these equations. The inputs for this model are flow, gravity, wetted width, energy slope, and D84. 

The energy slope is approximated with the water level; the water level had an error of 1.5% of the standard 

deviation uncertainty. Wetted width had less than 0.14% of the standard deviation uncertainty. These values 

were computed through repeated measurements from different morphologies. Flow has an error of 5% according 

to Lee & Ferguson (2002), who used tracers for flow and velocity measurement. The bed material 84th quartile 

(D84) was obtained after sampling 400 particles at each reach to obtain the bed material distribution. Some studies 

sampled only 100 particles in studying pool-riffles and boulder-cobble beds (Bathurst, 1985, 2002; Marcus et 

al., 1992). The number of samples increased to 300 particles when additional morphologies were examined 

(David et al., 2010). It is evident that increasing the number of samples decreases the estimation error in the bed 

material distribution, given that the input parameters have a small influence on the model error variance. Hence, 

most of the model error variance corresponds to the parameters a1, a2, and a3. Table 3.4 presents the performance 

of different versions of NDHG equations with diverse parameter values. Figure 3.4 shows the band 

encompassing the mean error +/- standard deviation, which for a normal distribution includes 68.26% of the 

data. Given that 70% of the points fall inside the band for all morphologies, the normal distribution assumption 

is justified and the confidence interval of the model equals 70%. 

The use of standard deviation of bed elevations (s) has been tested as characteristic resistance length in multiple 

studies, however, s provides good results only in some of them. Aberle & Smart (2003) have successfully used 

s (s from 4.6 to14.6 mm) as a resistance parameter in a power equation in Step-pools to predict (8/f)0.5 based on 

flume data. Lee & Ferguson (2002) (s ranged from 0.068–0.257) use field and flume data from Step-pools to 

find an equation to predict (1/f)0.5. A log law equation provided good results when the effective resistance was 

step D84. Nitsche et al. (2012) (s lies in the range of 0.07 to 0.47) found an NDHG equation whose dimensional 

macro resistance parameters to calculate velocity and di-mensionless unitary flow was D84. In this study (s range 

0.022 to 0.214) different equations were tested, some of them with different representations of effective 

resistance, but NDHG equations provided the best fitting, and a new methodology to determine its parameters 

has improved fitting performance. All the NDHG equations used in this research utilize D84 to estimate velocity 

and dimensionless unitary flow, so this term seems to work well for these types of equations. 

3.5 Conclusions 
In this research, the flow resistance in three morphologies of a headwater mountain river was studied, in three 

Cascades, two Step-pools, and one Plane-bed. Each reach was divided into three to five XS where staff gauges 

were installed. Field measurements of water level and wetted width were collected at each XS. For each reach, 

flow and mean velocity were computed for different water level conditions. Different empirical equations for 

velocity prediction were tested using goodness-of-fit metrics. The equation with the best performance was 

calibrated to find expressions for its exponents. Moreover, variance de-composition methodology was used to 

estimate the uncertainty of the proposed method. As a final step, data from the literature was used to test the 

proposed methodology. 

The findings clearly indicate that the best equations for the studied morphologies are NDHG equations; no other 

type of equation exhibited similar performance. A methodology to find the NDHG exponents was proposed 

using logarithmic regression, the bed shear stress, and the generalized power law. The resulting equations for 

the exponents in the NDHG equations have variations according to the type of reach and depend on regression 

parameters, namely the slope and the independent terms (m, a). The derived Step-pool and Cascade ratios (a2/a3) 

are in accordance with data from the literature; for the Plane-bed, this ratio is larger due to the small influence 

of the between-site resistance variation component in this morphology. Besides, the proposed methodology was 

successfully used to predict data from the literature. The applicability of the proposed approach for estimating 

the exponents of NDHG equations can certainly be improved with additional data (experimental measures and 

other morphologies). As the m and a parameters may follow a certain pattern, this methodology is useful for 

ungauged streams. 
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Chapter 4 

4 Assessment of calibrated and measured based resistance 

parameter 
 

Redrafted from:   

Cedillo, Sebastián, Esteban Sánchez-Cordero, Luis Timbe, Esteban Samaniego, and Andrés Alvarado. 2021. 

“Patterns of Difference between Physical and 1-D Calibrated Effective Resistance Parameters in Mountain 

Rivers.” Water 13 (22): 3202. https://doi.org/10.3390/W13223202. 

Abstract: Due to the presence of boulders and different morphologies, mountain rivers contain various resistance 

sources. To correctly simulate river flow using 1-D hydrodynamic models, an accurate estimation of the flow 

resistance is required. In this article, a comparison between the physical resistance parameter (PRP) and effective 

resistance coefficient (ERC) is presented for three of the most typical morphological configurations in mountain 

rivers: cascade, step-pool, and plane-bed. The PRP and its variation were obtained through multiple 

measurements of field variables and an uncertainty analysis, while the ERC range was derived with a GLUE 

procedure implemented in HEC-RAS, a 1-D hydrodynamic model. In the GLUE experiments, two modes of the 

Representative Friction Slope Method (RFSM) between two cross-sections were tested, including the variation 

in the resistance parameter. The results revealed that the RFSM effect was limited to low flows in cascade and 

step-pool. Moreover, when HEC-RAS selected the RSFM, only acceptable results were presented for plane-bed. 

The difference between ERC and PRP depended on the flow magnitude and the morphology, and as shown in 

this study, when the flow increased, the ERC and PRP ranges approached each other and even over-lapped in 

cascade and step-pool. This research aimed to improve the resistance value selection process in a 1-D model 

given the importance of this parameter in the predictability of the results. In addition, a comparison was presented 

between the results obtained with the numerical model and the values calculated with the field measurements 

Keywords: effective resistance coefficient; physical resistance parameter; HEC-RAS; mountain-rivers; 

representative friction slope method; bed resistance 

4.1 Introduction 
Flow resistance in a river is given by the energy losses due to the interaction of water with its flowing contour. 

In 1-D and 2-D models, based on Saint-Venant/shallow water equations, the energy losses are expressed by an 

“effective resistance coefficient,” a parameter that encompasses the different levels of energy dissipation 

(Morvan et al., 2008). Thus, the parameter in question becomes an adjustment parameter for the correct 

prediction of results. The 1-D hydrodynamic model remains a suitable option for the numerical simulation of 

rivers, an approach that requires less computation and field data and that has been used widely for many years 

in river engineering (Cook & Merwade, 2009). The inherent uncertainties present in the application of a 1-D 

hydrodynamic model lead to discrepancies between the “effective resistance coefficient” (ERC) and the 

“physical resistance parameter” (PRP) calculated using field measurement data. 

The sources of uncertainty in hydrodynamic models can be categorized into two main groups: natural and 

epistemic (Teng et al., 2017). Natural uncertainties deal with the natural variation in a phenomenon (Papaioannou 

et al., 2017), while epistemic uncertainties are related to the lack of knowledge of a system. These uncertainties 

include: (a) model structure, due to simplifications performed in the model to bring a natural phenomenon into 

a mathematical representation (Blasone et al., 2008; Pappenberger et al., 2005) (b) solution procedure, how the 

equations are solved (energy equation, momentum and mass balance equation); (c) topography, for the geometric 

description of the study area (Cook & Merwade, 2009); (d) input and output data (Teng et al., 2017); and (e) 

model parameters such as the Manning resistance coefficient. One of the methods to study model uncertainty, 

with increasing popularity, is the Generalized Likelihood Uncertainty Estimation (GLUE), which considers the 

existence of a set of parameters and model structures with a similar performance reproducing validation data 

(Aronica et al., 2002; Beven & Binley, 2014; Blasone et al., 2008; Bozzi et al., 2015). 

GLUE is a Bayesian Monte Carlo method that recognizes the presence of errors in calibration data, model 

structure, and boundary conditions, rejecting the concept of a unique global optimum parameter set, instead 

accepting the existence of different parameter sets that are similar in producing good fit model predictions 
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(Beven & Binley, 1992; Blasone et al., 2008). In the literature, there are some studies where a certain GLUE 

framework has been used to study the effective resistance parameter. Pappenberger et al. (2005) performed a 

GLUE analysis in a 1-D unsteady flow experiment for two rivers with different boundary conditions and 

evaluation data. In that experiment, the resistance parameter and the weighting coefficient of the numerical 

scheme were varied in the GLUE framework. The type of boundary condition, evaluation data, geometry, and 

magnitude of the analyzed event influenced the combined likelihood curve behavior. The variation in the 

weighting coefficient did not alter the output of the model but influenced the number of valid runs. Bhola et al. 

(2019) performed a study in a 2-D unsteady HEC-RAS model with water height as calibration data. The reach 

was divided into five land uses, each with a certain range of resistance values. The uncertainty output bound was 

reduced from 1.26 m to 0.34 m (90% confidence interval) by constraining the objective function value for 

acceptable runs. Furthermore, there have been other investigations in which the GLUE framework was used to 

test different likelihood functions (Aronica et al., 1998; Jung & Merwade, 2012) or different types of calibration 

data (Aronica et al., 2002; Horritt & Bates, 2002). In those studies, a measured physical resistance value was not 

mentioned or compared with the obtained effective resistance value, but the distinction between both was 

emphasized (Pappenberger et al., 2005). 

In this study, a calibration process of the effective resistance coefficient (ERC) obtained from the 1-D component 

of HEC-RAS using the GLUE methodology was performed and compared with the physical resistance parameter 

(PRP) derived from field data. Within the GLUE framework, the 1-D model was configured with two different 

approaches based on the representative friction slope method (RFSM) between two cross-sections: in 

Experiment 1, the RFSM was manually selected, and in Experiment 2, the RFSM was automatically chosen. In 

this research, all the data were collected during inbank flow conditions, implying that the ERC values correspond 

to the main channel resistance. The ERC values were assessed against field measurements in three different 

morphologies (step-pool, cascade, and plane-bed) and three different flow magnitudes (high, medium, and low). 

The results revealed that the RFSM influence on model performance was limited to the morphology and the 

magnitude of the flow, and that the effective and real physical parameters differed. 

4.2 Materials and methods 

4.2.1. Study area 
The Quinuas reach, tributary of the Paute river basin, located between the eastern and western cordillera of the 

Andes in Ecuador, was selected for this study. The reach under-study has a length of 1.5 km and contains 

different morphologies such as plane-beds, cascades, and step-pools. The terrain level upstream of the reach (0 

+ 000) is 3664.4 m.a.s.l. and that downstream of the study reach is (1 + 431.13) 3605.77 m.a.s.l., resulting in an 

average bed slope of 4%. The following morphologies were selected in the 1.5 km river reach: Step-pool 1, 

Plane-bed 1, and Cascade 3 (see Figure 4.1 for their location), named herein in this article Step-pool, Plane-bed, 

and Cascade, respectively. 
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Figure 4.1: Location of the 1.5 km river reach with indication of the different morphologies. 

4.2.2. Field data 
Topographic information was gathered using a differential GPS (Trimble® R6) and total station survey 

(Sokkia® 550 RX) depending on the visibility. The objective was the capture of critical details with adequate 

measurement precision (see Figure 4.2). The measured cross-sections (XSs) were taken at certain relevant 

locations such as changes in bed slope or changes across XSs. 

Three staff gauges were used for measuring the water levels in the Step-pool 1 and Plane-bed 1 reaches (Figures 

4.2 a, c, respectively) and five staff gauges in the Cascade 3 reach (Figure 4.2b). In addition, at every staff gauge, 

the wetted width (w) was measured with a measuring tape, while the discharge (Q) was estimated using the 

dilution-gauging method with salt as a tracer (Hudson & Fraser, 2005a). Two HOBO U24-00 freshwater 

conductivity data loggers were placed upstream and downstream of the reach. These devices have an accuracy 

of 3%, a resolution of 1 µS/cm, and a temperature range of -2 to 36 °C . Figure 4.3 depicts the studied reaches 

and the used staff gauges. 

The flow velocity (U) was determined using two conductance curves, located upstream and downstream in each 

reach, using the Harmonic methodology (Nitsche et al., 2012) for defining the travel time. The velocity was 

calculated as the ratio between the distance between staff gauges and the mean travel time. The Friction Slope 

(SF) was approximated with the water surface slope (SW) (David et al., 2010), and the bed material distribution 

size was estimated using the pebble counting approach (Bunte & Abt, 2001) with a sample of 400 particles. The 

resistance coefficient was initially determined with the Darcy–Weisbach equation (Eq. (4.1)) with average 

geometric values for the cross-section of the selected reach. Thereafter, the f coefficient was transformed into 

Manning’s resistance parameter n using Eq. (4.2). 
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Figure 4.2: Profiles and topographic characteristics of morphologies under study. (a) Step-pool 1 (b) Cascade 3 

(c) Plain bed 1. 
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Figure 4.3 : Pictures of analyzed reaches. (a) Step-pool 1 (b) Cascade 3 (c) Plain bed 1. 

f = (8  g R Sf)/U2 (4.1) 

PRP = n = [(f R1/3)/(8 g)]0.5 (4.2) 

4.2.3 Numerical scheme 
The hydrodynamic model chosen in this research was the 1-D component of HEC-RAS, developed by the 

Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers. In this study, all 

simulations were performed assuming steady-state conditions. The energy equation (Eq. (4.3)) is solved between 

two adjacent XSs, while, in the case of not obtaining an equilibrium, the numerical algorithm uses the critical 

depth response given the specific condition. In cases of rapidly varying flow, HEC-RAS solves the momentum 

equation. 

z2 + y2 + α2 U2
2/(2 g) = z1 + y1 + α1 U1

2/(2 g) + he (4.3) 

where z is the elevation of the main channel (m), y is the water depth (m), U is the velocity (m s−1), g is the 

gravity acceleration (m s−2), and he is the energy head loss (m) (Eq. (4.33)). The subscript in XS, 2 and 1, refers 

to upstream and downstream, respectively. 

The energy head loss (Eq. (4.4)) comprises the loss due to resistance and contraction/expansion losses. Different 

methodologies are available to estimate the representative friction slope between two cross-sections (RFSM): 

the average conveyance equation (Eq.(4.5) ACE, the default methodology in HEC-RAS), the average friction 
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slope equation (Eq. (4.6) AFSE), the geometric mean friction slope equation (Eq. (4.7) GMFSE), and the 

harmonic friction slope equation (Eq. (4.8) HMFSE). 

he = L RFSM + CC |α2 U2
2/(2 g) -α1 U1

2/(2 g)| (4.4) 

where L is the reach length (m), RFSM is the friction slope between two XSs, and CC is a contraction expansion 

coefficient. RFSM is calculated using Eq. (4.5). 

RFSM = [(Q1 + Q2)/(K1 + K2)]2 (4.5) 

where Q is the flow rate (m3 s−1) and K is the conveyance (m3 s−1). RFSM can also be calculated using Eqs. (4.6), 

(4.7), or (4.8), respectively: 

RFSM = (SF1 + SF2)/2 (4.6) 

where SF1 is the friction slope at the upstream XS and SF2 is the friction slope at the down-stream XS. 

RFSM = (SF1 SF2)0.5 (4.7) 

RFSM = (2 SF1 SF2)/(SF1 + SF2) (4.8) 

As the velocity distribution of the water flow in a channel presents three-dimensional characteristics, it is 

necessary to correct it with the coefficients α and β to maintain the energy and momentum flux when the mean 

cross-section velocity is used (Knight et al., 2009). α is obtained with a flow-weighted average in the main 

channel and overbanks (Eq. (4.9)). Given that the experiments developed in the current research are inbank flow 

and the water surface is considered as horizontal (Pappenberger et al., 2005), α will be equal to one. 

α = [At
2 (Klob

3/Alob
3 + Kmc

3/Amc
3 + Krob

3/Arob
3)]/Kt

3 (4.9) 

where Klob, Kmc, and Krob are the conveyance at the left overbank, main channel, and right overbank (m3 s−1), 

respectively; Kt is the total conveyance (m3 s−1); Alob, Amc, and Arob are the flow areas at the left overbank, main 

channel, and right overbank (m2), respectively; and At is the total flow area (m2). 

For each study reach, the effect of the geometric description was analyzed. The topographic information (Figure 

4.3) was used as a base to include additional XSs interpolated at equidistant distances (one meter, fifty 

centimeters, and twenty-five centimeters). At each run, the errors and warnings were checked and documented. 

The final geometric model for each reach was the one without any warning. This test used the physical resistance 

as the effective resistance for each case. The validation data to verify the performance of each model were the 

water levels in the staff gauges. These water levels were transformed into water levels relative to the deepest 

cross-section point. The water depth resulting from the model was transformed in the same way to be compared 

with the measurements. Ultimately, the HEC-RAS model was run under a steady-state condition with a mixed 

flow regime (i.e., subcritical and supercritical flow). The boundary conditions in the cross-sections labeled as 

BC in Figure 4.2 were normal depth. The validation data consisted of water levels taken from staff gauges labeled 

with a number in Figure 4.2. 

4.2.4 The GLUE methodology 
Two GLUE experiments with variable resistance values were performed for three different flows at each reach. 

Experiment 1 consisted of 5000 runs for each RFSM: ACE (Eq. (4.5)), AFSE (Eq. (4.6)), GMFSE (Eq. (4.7)), 

and HMFSE (Eq. (4.8)), while in Experiment 2, HEC-RAS internally selected the RFSM (8000 runs) based on 

profile type and flow regime. The GLUE process was implemented using the HEC-RAS Controller in Visual 

Basic Excel ® (Microsoft Corporation manufacturer, Redmond, Washington, United States city, country) 

(Goodell, 2014).  The range of resistance coefficients (Manning values) was selected to cover all the possible 

variations (Aronica et al., 1998) and considering a uniform distribution (Pappenberger et al., 2005). The range 

0.03–0.5 was imposed using as a criterion for the minimum value recommended in  Brunner (2021)  for mountain 

streams and for the maximum value measured in the field campaigns. However, the step-pool resistance range 

needed to be extended up to 0.7 for low flows as the previous resistance range was not wide enough to capture 

a peak in the likelihood curve. In Experiment 1, each RFSM was identified with a number (1: Eq. (4.5), 2: Eq. 

(4.6), 3: Eq. (4.7), 4: Eq. (4.8)) and was selected considering a uniform distribution. 
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There is no universal likelihood function for GLUE experiments (Blasone et al., 2008); indeed, Jung & Merwade 

(2012) found that different likelihood functions produced different uncertainty bounds (5–95%) that did not 

produce important changes in the overall uncertainty quantification of an inundation map. In this research, the 

likelihood function included the sum of root-mean-square error (RMSE), mean average error (MAE), and the 

standard deviation of residuals (SDR). These metrics were normalized by applying Eq. (4.10). RMSE and MAE 

represent the residuals’ mean having different weights in the average procedure, while SDR is a dispersion of 

the residuals measure. The likelihood value is one when the measurements exactly coincide with the modeling 

result. 

Likelihood = 1-RMSE/Om-MAE/Om-MSDR/Om (4.10) 

where Om is the observations’ mean. 

The range of PRP consisted on resistance parameters with a likelihood value having a difference less than 0.01 

with the peak likelihood value.  

4.2.5 Uncertainty measurement analysis PRP 
The uncertainty of direct measurements such as wet width (w) and water level (η) were determined by repeating 

measurements. Resolution and random errors were combined in the measurements (Eq. (4.11)). 

Relative Uncertainty (%) = δX/ δXO (4.11) 

where δX is the absolute uncertainty of X and XO  is the central value of the variable. 

The uncertainty of indirect measurements (W in Eq. (4.12)), which was estimated based on direct measurements 

of X, Y, and Z, is given by Eq. (4.12) (Fornasini, 2008). The result of Eq. (4.12) was used to obtain the range of 

variations in W with Eq. (4.13). 

δW = | ∂Q/∂X |O δX+| ∂Q/∂Y |O δY +| ∂Q/∂Z |O δZ (4.12) 

W = WO +/− δW (4.13) 

where δW is the absolute uncertainty of W, WO   is the central value of the variable, and W is the range of 

possible values of this variable. 

4.3 Results 

4.3.1 Likelihood curves 
The results of the first GLUE experiment in which the resistance coefficient in the three morphologies was varied 

according to each RFSM method are presented in Figure 4.4. 
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 Figure 4.4: GLUE likelihood curves in Experiment 1: Cascade (a, b, c), Plane-bed (d, e, f), and Step-pool (g, h, i). 
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For practical purposes, only the points with a probability threshold greater than 0.25 are shown as lower values 

are considered as nonbehavioral by not providing relevant information. 

Figure 4.4 reveals that the resulting likelihood curves are concave downward with one or two peaks depending 

on the flow magnitude and morphology. Cascade has two slightly different likelihood peaks for low flow, but 

for mid and high flows, there is only one performance peak. Plane-bed has two performance peaks for all flow 

magnitudes. Step-pool at low flow has two peaks, while at high flow, there is one peak in a concave downward 

curve in the left and one maximum in a linear pattern in the right. For mid flow, there is a single likelihood peak. 

Figure 4.4a presents the formation of two likelihood curves; the higher performance curve has points from AFSE 

exclusively, while the lower performance curve is composed of points from all RFSMs. Figures 4.4d–f show the 

formation of two likelihood curves composed from all RFSM points. In the cases under study, the one in Figure 

4.4g presents the formation of two likelihood curves, where it can be observed that the one with the best 

performance is composed only of the GMFSE points. Special attention should be given to the likelihood curves 

in Figure 4.4i, where the formation of a curve without concavity can be observed on the right side of the figure. 

Those results are further discussed in the Discussion section in the subsection Likelihood Curves. Cascade peaks 

have the lowest performance values (⁓0.6) in all cases under analysis (Figures 4.4a–c). Plane-bed has peak 

performance values greater than 0.89 (Figure 4.4d–f), while step-pool peak performance values decrease with 

flow magnitude, ranging from 0.91 to 0.61 (Figures 4.4 g–i). 

The results of the second GLUE experiment (8000 runs) in which HEC-RAS selects RFSM are depicted in 

Figure 4.5. Step-pool and cascade show a linear horizontal likelihood trend (constant) with low-performance 

values. Plane-bed likelihood curves are presented in Figures 4.5d–f. The shapes of the curves present concavity 

downward with peak performance values greater than 0.89. 
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Figure 4.5: GLUE likelihood curves in Experiment 2: Cascade (a, b, c), Plane-bed (d, e, f), and Step-pool (g, h, i). 
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4.3.2 Field measurements uncertainty 
Uncertainties in the direct measurement used to estimate the resistance parameter are the wetted width, water 

level, velocity, and flow. The wetted width uncertainty is less than 0.14% of the standard uncertainty, while 

water level (η) has a 1.5% of standard uncertainty; these values are comparable to those found by Lee & Ferguson 

(2002). The uncertainties for velocity and flow measurement were taken from Lee & Ferguson (2002) as 5% as 

tracers were used for the flow and the centroid method for the velocity calculation. The indirect measurement 

uncertainties are 10% for the water depth, comparable with the 12% obtained by Lee & Ferguson (2002), 10% 

for the hydraulic radius, 17% for the energy slope, and 19% for (8/f)1/2. The former value is comparable with the 

value found by Lee & Ferguson (2002). Based on the above information, the Manning resistance parameter (n) 

uncertainty was estimated at 22% of the standard deviation. 

4.3.3 Effective and measured resistance values 
The value ranges of the effective resistance coefficient (ERC)—calibrated—and physical resistance parameter 

(PRP)—measured—for different flow rates in Experiment 1 (changing resistance and RFSM at the same time) 

are shown in Table 4.1 and Figure 4.6. The range of ERC values was obtained from the analysis of the maximum 

likelihood curves (Figure 4.4), while the range of PRP values was the result of the indirect n measurement and 

the uncertainty analysis. Table 4.1 compares the PRP, velocity, and Froude numbers measured in this study with 

those in the literature (Bathurst, 1985; Yochum et al., 2014). 

The comparison in Table 4.1 shows that the values of the data calculated in the present study are among the 

measured ranges presented in the literature. An important aspect to emphasize is that the Froude number presents 

a value lower than that in all the sections studied despite the steep slopes. Jarrett (1984) stated that extreme 

turbulence, energy loss produced by the channel, cross-sectional variations, and interactions of the water with 

the boulders increase the resistance to flow. Jarrett (1984) noted localized areas of supercritical flow, for 

example, in areas where the flow passes over large clasts. In Figure 4.3, the same pattern can be noticed, in 

which, in certain areas, supercritical flow is presented. 

The difference between the ranges of ERC and PRP decreases with the magnitude of flow (seen from a 

quantitative and qualitative point of view according to Table 4.1 and Figure 4.6, respectively). The range values 

in ERC and PRP overlap for medium and high flows in cascade, while in plane-bed, the range values do not. In 

step-pool, the range values in ERC and PRP intersect only at high flow rates. Table 4.2 illustrates the results of 

Experiment 2 where the RFSM values are selected by HEC-RAS. Cascade and step-pool GLUE experiments 

did not provide a valid response, as for all resistance values tested, there is equifinality with a low likelihood 

(below the threshold value). 

The low flow ERC range for plane-bed, listed in Table 4.1, is higher than the interval stated on Table 4.2. The 

values of both experiments coincide in the lower limit while they differ in the upper limit, in which the value of 

experiment 1 is higher. The values for the remaining flow magnitudes are the same for both experiments. Given 

that the results of cascade and step-pool in Table 4.2 cannot be used, and the results of plane-bed differ between 

both experiments only at low flows without improving the peak likelihood, the comparison of ERC and PRP is 

based on the information in Table 4.1 in Section 4.4: Discussion. 

Figures 4.7, 4.8, and 4.9 depict the field-measured water depths, as well as the water surface profile obtained 

with ERC and PRP (Refer to Table 4.1). Cascade water depth profiles show that the field data at 24.93 m can be 

predicted by neither of the parameters, resulting in a low likelihood value obtained for this morphology. 

Nevertheless, the use of ERC in the model results in a better prediction of points at 18.91 and 24.93 m at low 

flow. Moreover, for mid and high flow, the intersection of ERC and PRP values makes sense as there is no 

marked difference between both water surface profiles. Figure 4.8 shows a notable difference in the water surface 

profile between both resistance parameters in plane-bed. 

ERC considerably increases the predictive capacity of the model, which means that it does not cross with PRP. 

Besides, all the field measurements are closely predicted when using ERC, resulting in the high likelihood values 

previously mentioned. Figure 4.9 illustrates that the use of ERC in step-pool improves the model predictability 

at low and mid flow, but at high flow, both parameters produce a similar water surface profile. This aspect 

justifies the intersection of ERC and PRP only at high flows. The descending likelihood value in step-pool is 

because of the descending prediction capacity to predict the field measurement at 4.2 m. 
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Table 4.1: Range of values for measured and calibrated n value for Experiment 1 

 EFFECTIVE RESISTANCE COEFFICIENT (ERC) PHYSICAL RESISTANCE PARAMETER (PRP) 

Site Flow (m3 s−1) 
GLUE 

range 
Likelihood 

Best 

RFSM 

Value 

Measured 

Measurement 

uncertainty 

range (PRP) 

PRP range 

found in 
literature 

(Bathurst, 

1985; 
Yochum et al., 

2014) 

Measured 

Velocity 

(m s−1) 

Measured 

Depth (m) 

Measured 

Froude 

Number 

Range of 

Velocity in 
literature 

(m/s)(Bathurst

, 1985; 
Yochum et 

al., 2014)  

Range of 
Froude 

Number in 

literature 

(Bathurst, 

1985; 

Yochum et 
al., 2014) 

Cascade  

0.065 
0.286–
0.295 

0.58 
Equation 

(5) 
0.433 0.338–0.528 

0.16–0.44 

0.168 0.146 0.141 

0.12–0.86 0.15–0.51 0.485 
0.173–
0.192 

0.6 All 0.223 0.174–0.272 0.496 0.282 0.298 

0.708 
0.143–
0.180 

0.59 All 0.199 0.155–0.243 0.606 0.337 0.333 

Plane-bed  

0.063 
0.241–

0.333 
0.89 All 0.161 0.126–0.196 

0.027–0.189 

0.184 0.109 0.179 

0.177–3.72 0.15–1.17 0.513 
0.108–

0.115 
0.96 All 0.0594 0.046–0.073 0.699 0.212 0.485 

0.918 
0.076–
0.081 

0.92 All 0.043 0.034–0.053 0.916 0.277 0.556 

Step-pool  

0.035 
0.555–
0.609 

0.91 
Equation 

(6) 
0.414 0.323–0.505 

0.12–0.96 

0.125 0.117 0.117 

0.12–1.61 0.13–0.92 0.443 
0.105–
0.124 

0.72 All 0.193 0.151–0.235 0.464 0.287 0.277 

0.878 
0.092–
0.121 

0.61 All 0.134 0.105–0.163 0.733 0.330 0.407 



  

 

Juan Sebastián Cedillo Galarza 71 

 

 

Table 4.2: Range of values for calibrated n value for Experiment 2 

Site Flow (m3 s−1) GLUE range (ERC) Likelihood 

 0.065 Equifinality for all the resistance range −0.422 

Cascade 0.485 Equifinality for all the resistance range 0.0095 

 0.708 Equifinality for all the resistance range 0.0702 

 0.063 0.241–0.267 0.89 

Plane-bed 0.513 0.108–0.113 0.96 

 0.918 0.076–0.081 0.92 

 0.035 Equifinality for all the resistance range −0.567 

Step-pool 0.443 Equifinality for all the resistance range −0.0345 

 0.878 Equifinality for all the resistance range 0.026 
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Figure 4.6: Comparison of measured and calibrated n values. (a) Cascade (b) Plane bed (c)Step-pool
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Figure 4.7: Water surface profiles using ERC and PRP in Cascade. a) 0.065 m3s-1 b) 0.485 m3s-1 c) 0.708 m3s-1 
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Figure 4.8: Water surface profiles using ERC and PRP in Plane-Bed. a)0.063 m3s-1 b)0.513 m3s-1 c)0.918 m3s-1 
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Figure 4.9: Water surface profiles using ERC and PRP in Step-pool. a)0.035 m3s-1 b) 0.443 m3s-1 c) 0.878 m3s-1 

4.4 Discussion 

4.4.1 Likelihood curves 
Figure 4.4 shows that plane-bed for all flows (Figures 4.4d–f) and step-pool for high flows (Figure 4.4i) have two 

likelihood curves. The right-sided likelihood curve in plane-bed is formed when, in the solution, the HEC-RAS 

numerical model presents the critical depths as a response. This response occurs when, in the iterative process of 

solving the energy equation, a solution is not found under a specified tolerance given a maximum number of 

iterations. Note that a critical depth response is not expected in this morphology. Likewise, the curve on the right 
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side in step-pool is formed by the critical depths as responses from the numerical model. The shape of this likelihood 

curve does not allow a maximum value to be obtained, and it is ignored for analysis. 

4.4.2 Likelihood peak values 
In the 1-D numerical approach, horizontal water levels in the XS are assumed (Brunner, 2021); however, this 

assumption deviates from reality at certain morphologies in the headwater of mountain rivers. 

The bed of cascade has randomly distributed large clasts (Montgomery & Buffington, 1997). The water interaction 

with boulders or cobbles produces both a jet flow and a wake flow around the particles, forming eddy currents 

behind obstacles, whereas the flow above the described particles produces a tumbling flow (Jarrett, 1984; 

Montgomery & Buffington, 1997). The physical process described contrasts with the measured water level at a 

single point near the bank, resulting in low performance in the outputs of the numerical model, and thus in low peak 

likelihood values for all flow magnitudes (⁓0.6 according to Table 4.1). 

Plane-bed flow is closer to the 1-D numerical model assumptions as there are no bedforms, there is no tumbling 

flow, a  (Montgomery & Buffington, 1997), leading to the representative water level measurement of the XS and 

the high peak likelihood values (⁓0.9 according to Table 4.1). 

Step-pool presents a staircase shape (where risers are steps and pools are treads) with a tumbling flow pattern (Chin 

& Wohl, 2005). Water levels are measured in pools. At low flow, the effect of water plunging into pools does not 

produce a significant free-surface variation, while, as the flow increases, there is an appreciable free-surface 

variation. This causes the horizontal water level assumption to be invalid. This is the explanation behind the decline 

in the likelihood peak starting with a value of 0.9 at low flow and decreasing to 0.6 for high flow. 

4.4.3 Friction slope methodology 
Two studies were found in the literature investigating the influence of RFSM on the model performance when the 

energy equation is used. Laurenson (1986) tested different RFSM performances using analytical data. The validation 

data consisted of water levels from a cubic equation. According to this analysis, AFSE is the best and safest 

methodology to predict water levels. Artichowicz & Mikos-Studnicka (2014) tested four theoretical cases in a 

prismatic channel (three tranquil flows and one rapid flow) using the solution of the differential energy equation as 

validation data. In this study, the analyzed RFSM included all the methodologies available in HEC-RAS and some 

additional methods available in the literature. AFSE was the best methodology for tranquil flow; on the other hand, 

HMFSE was the best methodology for rapid flow. There are important differences between previous studies and the 

current study. First, the selection of the RFSM methodology does not influence most of the GLUE results except for 

cascades and step-pools at low flows (see Table 4.1). The cascade reach in this research could be considered similar 

to the rapid flow case in Artichowicz & Mikos-Studnicka (2014). However, in our study, the best RFSM for cascade 

at low flow was AFSE (Eq. (4.6)), unlike the HMFSE (Eq. (4.8)) obtained by Artichowicz & Mikos-Studnicka 

(2014). A possible explanation for this difference might be that the Artichowicz & Mikos-Studnicka (2014) test is 

performed in a prismatic flume without bed material, while cascade has boulders and cobbles interacting with the 

flow. Furthermore, the cascade results agree with Laurenson (1986) who advised AFSE. A case similar to step-pool 

could not be found in the literature. The best-performing RFSM for low flow was GMFSE (Eq. (7)). The authors 

believe that GMFSE is superior due to its resilience to outliers (Dodge, 2008); in this morphology, it is important 

that tumbling flow produces abrupt changes in the friction slope. In addition, neither Artichowicz & Mikos-

Studnicka (2014) nor Laurenson (1986) had, in their study, big particles in the riverbed as in our case. 

HEC-RAS chose RFSM (Experiment 2) based on both the profile type when it is subcritical or supercritical and the 

magnitude of the friction slope of the previous XS (Brunner, 2021). However, it seems that high slopes, large-scale 

resistance elements, slope breaks, or tumbling flow produce the same water levels for any resistance when this 

option is chosen, thus losing physical realism. Nevertheless, the use of this option in the plane-bed produced the 

same results as using any other of the four available methodologies. This could mean that the automatic selection of 

RFSM could be conditioned to lowland rivers. 

4.4.4 Effective resistance coefficient (ERC) and physical resistance parameter 

(PRP) 
Several GLUE studies on cascade, plane-bed, and step-pool were not found, as indicated by the relatively low 

number of references in the Introduction section; therefore, it is not possible to compare the likelihood curves with 
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other references. Moreover, none of the studies found in the literature made a comparison between effective and 

measured resistance values. 

ERC contains the same energy dissipation process as PRP (Bhola et al., 2019; Wohl, 2013), but 3-D effects and 

geometry errors are not represented in the used 1-D model. Furthermore, in this study, the effect of inaccuracies in 

geometry is minimal due to the high precision of the used measuring equipment (total station and differential GPS), 

and the consideration of strategic points (slope changes, before and after steps) was considered in the studied reaches 

to obtain data. 

The parameter α in the energy equation (Eq. (4.3)) must be considered when comparing ERC and PRP. α assumes 

a value equal to 1 because there is inbank flow only (see Eq. (4.9)), so there is no correction, due to the three-

dimensional characteristic of the flow. 

4.4.4.1 Low flow 
For low flow rates in plane-bed and steep-pool morphologies, the range of ERC values is above the range of PRP 

values (Figures 4.6b,c, respectively), contrary to what is presented in cascade (Figure 4.6a). Through linear 

interpolation of the data in Table 4.3, it was found that, on average, 40% of the bed material in all morphologies 

under study protrudes above the water level at low flow flows, having an important influence on resistance. In 

cascade, the water level shows an alteration due to the interaction of the water with the large clasts (David et al., 

2010). A lower value of ERC with respect to PRP could mean that the numerical model requires the increase in 

velocity to account for the jetting flow effect around boulders and cobbles (Montgomery & Buffington, 1997). Plane-

bed and step-pool depict a similar pattern when comparing ERC with PRP. The water surface variation is 

significantly lower in plane-bed than cascade because there are fewer boulders and cobbles (see Table 4.3), and the 

flow velocity is lower, so the resistance is smaller. At step-pool, there is flow division at steps, so water plunges into 

the pool at multiple points, reducing the water surface variation. The higher ERC relative to PRP in plane-bed and 

step-pool may be due to the need of the model for a lower velocity. 

Table 4.3: Bed material quartiles and mean depth for each morphology and flow magnitudes. 

Site Flow (m3 s−1) dmean (m)1 D50 (m)2 D75 (m)2 D84 (m)2 D95 (m)2 

 0.065 0.145 

0.0959 0.2526 0.3465 0.6529 Cascade 0.485 0.282 

 0.708 0.336 

 0.063 0.108 

0.0795 0.1458 0.2185 0.3285 Plane-bed 0.513 0.211 

 0.918 0.277 

 0.035 0.11 

0.092 0.1721 0.2512 0.4695 Step-pool 0.443 0.29 

 0.878 0.329 
1dmean is a representative water level in the reach considering the XS as rectangular. It is calculated with average 
geometric values for all the XS having a staff gauge and the continuity equation; 2DXX is the xxth percentile of grain 
size distribution. 

4.4.4.2 Mid to high flow 
According to Figure 4.6, the different pattern between ERC and PRP was preserved except for step-pool having the 

same pattern as cascade rather than the previous plane-bed pattern. In step-pool, as the flow increases, both ranges 

approach each other and overlap for the highest flow tested. The changing difference between ERC and PRP in step-

pool may be attributed to a higher water surface deformation during tumbling flow. A higher flow leads to less flow 

division at steps, so there is a concentrated amount of water plunging into the pool. In cascade (Figure 4.6a), the 

bounds of ERC and PRP intersect for mid and high flow, but in plane-bed (Figure 4.6b), both ranges do not overlap. 

The possible reason could be the presence of vegetation near the main channel in plane-bed as can be observed in 

Figure 4.3c. At mid and high flows, the leaves of the vegetation interact with water, increasing flow resistance. This 

phenomenon cannot be represented in the model, so ERC may need to be modified to account for it. 
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4.5 Conclusions 
The difference between the effective (ERC) and physical (PRP) resistance values of three typical morphologies 

found in mountain rivers (cascade, plane-bed, and step-pool) was analyzed. River flow, mean velocity, topographic 

data, water levels, and wetted width were monitored, and the measured resistance was estimated based on the 

average of the cross-sectional data. An effective value of the resistance parameter was derived in two GLUE 

experiments using the HEC-RAS controller to automate the simulations. The comparison between effective and 

physical resistance was limited to three flow magnitudes: low, mid, and high, because of the computational power 

required for the GLUE experiments and the available field data. The likelihood function was a combination of two 

measures of the mean residual and one measure of the standard deviation of residuals. 

The research yielded two important findings. First, the RFSM influence (Experiment 1) on hydrodynamic models 

was limited to low flows. The results of the step-pool model were the most affected when different methodologies 

were used, and as a result, four different likelihood curves were found. When HEC-RAS selected the RFSM 

(Experiment 2) only for plane-bed, acceptable results were found. In cascade and step-pool, equifinal values were 

obtained for all resistance values, losing physical significance. Second, the highest difference between ERC and 

PRP was at low flows. As the flow increased, the difference between ERC and PRP ranges decreased and, in some 

cases, even overlapped. Cascade and plane-bed had opposing patterns when ERC was compared with PRP bounds, 

while step-pool ERC and PRP patterns depended on the flow magnitude. ERC is a key element in a hydrodynamic 

model, so a careful selection of the ERC value must be pursued considering morphologies and flow data. Future 

research could include a wider range of flow magnitudes to compare the different tendencies between effective and 

physical resistance values. 
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Chapter 5 

5 Physics-informed neural network scheme to calibrate 

flow resistance in 1d steady-state open channel cases 
 

 

Redrafted from:  

Cedillo, S., Núñez, A.-G., Sánchez-Cordero, E., Timbe, L., Samaniego E., Alvarado A. (2022) Physics-Informed 

Neural Network water surface predictability for 1D steady-state open channel cases with different flow types and 

complex bed profile shapes. Advanced Modeling and Simulation in Engineering Sciences. [Online] 9 (1), 10. 

Available from: doi:10.1186/S40323-022-00226-8 [Accessed: 30 June 2022]. 

Abstract: The behavior of many physical systems is described by means of differential equations. These equations 

are usually derived from balance principles and certain modelling assumptions. For realistic situations, the solution 

of the associated initial boundary value problems requires the use of some discretization technique, such as finite 

differences or finite volumes. This research tackles the numerical solution of a 1D differential equation to predict 

water surface profiles in a river, as well as to estimate the so-called resistance parameter. A very important concern 

when solving this differential equation is the ability of the numerical model to capture different flow regimes, given 

that hydraulic jumps are likely to be observed. To approximate the solution, Physics-Informed Neural Networks 

(PINN) are used. Benchmark cases with different bed profile shapes, which induce different flows types 

(supercritical, subcritical, and mixed) are tested first. Then a real mountain river morphology, the so-called Step-

pool, is studied. PINN models were implemented in Tensor Flow using two neural networks. Different numbers of 

layers and neurons per hidden layer, as well as different activation functions (AF), were tried. The best performing 

model for each AF (according to the loss function) was compared with the solution of a standard finite difference 

discretization of the steady-state 1D model (HEC-RAS model). PINN models show good predictability of water 

surface profiles for slowly varying flow cases. For a rapid varying flow, the location and length of the hydraulic 

jump is captured, but it is not identical to the HEC-RAS model. The predictability of the tumbling flow in the Step-

pool was good. In addition, the solution of the estimation of the resistance parameter (which is an inverse problem) 

using PINN shows the potential of this methodology to calibrate this parameter with limited cross-sectional data. 

PINN has shown potential for its application in open channel studies with complex bed profiles and different flow 

types, having in mind, however, that emphasis must be given to architecture selection. 

Keywords 

Neural Network, Physic Informed Neural Network, Open Channel, Step-pool, Mountain River, Complex geometry  

5.1 Introduction  
Besides its extensive use for classification problems and for the search of patterns in data, Machine Learning 

techniques (ML) have shown a great capability as surrogate models to approximate the behavior of both artificial 

and natural systems. ML can find non-linear complex spatio-temporal functional relations for the big-data regimes 

(Rao et al., 2020; Tartakovsky et al., 2020). Nevertheless, ML has certain drawbacks affecting its performance. 

Firstly, it does not consider the system physics. Secondly, it depends on the quantity and quality of data to be robust 

and to attain convergence (Raissi et al., 2017b; Rao et al., 2020). In fact, in natural systems, the available data may 

be scarce because of the difficulty of measuring. To address this challenge, machine learning techniques can take 

advantage of the knowledge embedded in the laws of physics (Tartakovsky et al., 2020). This notion leads to the 

approach known as Physics-Informed Machine Learning. In particular, Physics-Informed Neural Networks (PINN) 

have been applied to solve both forward and inverse problems. Forward problems deal with the solution of Initial 

Boundary Value Problems (Mao et al., 2020; Raissi et al., 2017a). An inverse problem tackles the inference of 

quantities of interest such as parameters or hidden states of a system using a limited and potentially noisy set of 

observed data (Mao et al., 2020; Raissi et al., 2017a, 2017b). 

An interesting feature of PINN is that the evaluation of derivatives is performed through automatic differentiation 

(AD) (He & Tartakovsky, 2021). AD consists of a family of techniques in which the evaluation of derivatives is 

exact without resorting to symbolic differentiation (Güneş Baydin et al., 2018). In addition, PINN does not require 

discretization points. In that sense, it can be classified as a meshless method. Collocation points, where the 

differential equations are evaluated, need to be provided (Raissi et al., 2017b). 
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Physics-informed machine learning has been used in many studies related to hydrodynamic (Raissi, Perdikaris, et 

al., 2018; Wang et al., 2020). Mao et al. (2020) solved 1- D and 2- D Euler equations for high-speed aerodynamic 

flow with Physics-Informed Neural Network (PINN). The results were not superior to traditional techniques for 

forward problems, but PINN results were superior in inverse problems. Guo et al. (2020) tested PIDL prediction 

capacity to solve different partial differential equations (PDE): 1- D wave equation, kdV Burger's equation, and 

Two-soliton solution of the korteweg-De Vries Equation. In all cases, PIDL provides good predictability. However, 

the authors have not been able to find any application of PINN for mountain rivers. The modeling of a mountain 

river reach is a challenging task (Papanicolaou et al., 2004). A mountain river model must be able to deal 

simultaneously with Gradually Varied Flows (GVF, either only subcritical or only supercritical) and Rapid Varying 

Flows (RVF, transcritical: both subcritical and subcritical regimes are observed) (Sart et al., 2010). GVF present a 

slow variation of the flow depth profile with parallel streamlines. RVF have a fast change of water depth with 

streamlines having a pronounced curvature producing discontinuities in the solution (hydraulic jumps). RVF can 

produce spurious oscillations around discontinuities in a numerical model (Berger & Stockstill, 1995; Papanicolaou 

et al., 2004). To explore the ability of PINN to deal with these problems, different open channel cases with increasing 

complexity have been tested in this study.  

The first two benchmark cases present GVF, where the solution is smooth. Thus, these cases were helpful to ensure 

that the developed PINN method provide correct answers. The next two benchmark cases deal with RVF. These 

cases were used to test the solution stability in case of discontinuities, which is crucial for the real cases. For RVF, 

two transitions were tested: supercritical to subcritical and subcritical to supercritical. All the previous cases give a 

clear picture of the PINN predictability performance. Then, it was tested in a more complex application: A mountain 

river reach. The natural system under analysis was a morphology called Step-pool, which is frequently found in 

mountain streams when bed slope varies from 0,04-0,2 (Maxwell & Papanicolaou, 2001). Step-pools are an 

alternation of step-pool units having a stair-case shape (Maxwell & Papanicolaou, 2001). A step-pool unit has a step 

commonly formed by boulders and cobbles but other materials such as large wood debris or bedrock are also found 

(MacFarlane & Wohl, 2003), and a pool having finer material (Maxwell & Papanicolaou, 2001). This morphology 

regulates flow resistance through a tumbling flow (MacFarlane & Wohl, 2003). A tumbling water flow, over or 

through steps, is supercritical until it falls into a pool and changes to a subcritical flow after a hydraulic jump (Chin 

& Wohl, 2005). Below steps is the place with the higher turbulence producing energy dissipation due to roller eddies, 

hydraulic jumps and velocity fluctuations (Chin & Wohl, 2005; MacFarlane & Wohl, 2003). 

In this study, the steady case is considered, so the Energy Differential Equation (EDG) is used. The same equation 

is solved for this case by a widely used hydrodynamic model HEC-RAS (Brunner, 2021).  EDG is expected to work 

well for GVF. However; EDG is not valid in RVF (Brunner, 2021), so spurious oscillations are expected. Indeed, 

the well-known software HEC-RAS uses a steady version of the momentum equation under some RVF conditions.     

The goals of this Chapter can be listed as follows:  

• To correctly solve the conservation equation using PINN for Rapidly and Gradually Varying 

Flows (RVF, GVF) in open channels with complex profiles in benchmark and real cases 

• To use the previous experience to calibrate the resistance parameter using PINN with limited field 

data measurements 

The remaining of this article is organized as follows. Section 2 provides the materials and methods applied in this 

article, including a description of the five studied cases, the PINN architectures implemented, a description of the 

HEC-RAS model and the metrics to compare PINN and HEC-RAS results. Section 3 compares the results of 

different PINN architectures, taking the HEC-RAS model as a baseline. An analysis of the performance of activation 

functions, neural network dimension, and PINN predictability is done in the Section 4 (Discussion). Section 5 

highlights the main findings in the current research.  

5.2 Materials and methods 

5.2.1 Cases under study 

5.2.1.1 Benchmark cases 
PINN predictability was tested for four benchmark open channel cases with prismatic cross sections for the forward 

problem. Each case has different bed shapes producing different water surface profiles. The main idea is to test the 

ability of the method to approximate the solution of the differential equation for different flow regimes. Case 1 is 
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intended to represent the longitudinal profile of a river with a changing bed slope (Artichowicz & Mikos-Studnicka, 

2014). Figure 5.1a depicts the bed profile having different inflection points. The cross-section is rectangular with a 

width (B) of 10 meters, a Manning’s resistance value (n) of 0.03, and a flow (Q) of 15 m3 s-1. In this case there is 

GVF in the whole channel; moreover, the flow regime is known to be subcritical.  

Case 2 represents a case of rapid flow in a spillway where the slope increases downstream (Refer Figure 

5.1b)(Artichowicz & Mikos-Studnicka, 2014). The flow regime in this case is also GVF, but now it is supercritical. 

The cross-section and Manning’s resistance values are the same as in Case 1, but the flow is 22 m3 s-1.  

Figure 5.1c shows the profile for Case 3, which consists of two parts separated by an inflection point. The first part 

is 200 meters long with a slope of 0.025. The second part is 600 meters long, having a slope of 0.0002. The sudden 

change in bed slope results in the presence of a hydraulic jump (a transition from supercritical to subcritical flow), 

i.e., a RVF. The cross-section in this reach is trapezoidal with a base of 2.5 meters, a lateral slope of 0.8, n is 0.012, 

and the flow is 25 m3 s-1.  

Figure 5.1d depicts Case 4. It is composed of two reaches. The first reach is 1000 meters long with a slope of 0.0006, 

and the second one is 200 meters long with a slope of 0.015. The sudden slope increase produces the flow depth 

profile to suddenly decrease, passing from subcritical to supercritical flow, a RVF as in the previous case. As in 

Case 3, Case 4 has a trapezoidal cross-section with a width of 1 meter, a lateral slope of 1, an n value of 0.018 and 

a discharge of 6 m3 s-1. 
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Figure 5.1: . Bed profile for different cases. Benchmark cases: (a) Case 1, (b) Case 2, (c) Case 3,  (d) Case 4, Real 

Case: (e) Step-pool 

5.2.1.2 Real case 
Figure 5.1e depicts the profile of the step-pool under study having two step-pool units. The chosen morphology to 

be studied is Step-pool 1 in Figure 5.2. This is part of a hydraulic observatory where different morphologies are 

studied in the headwaters of the mountain Quinuas river, in Southern Ecuador. This reach is 12.22 meters long and 

has a mean slope of 6.1%. Moreover, this Step-pool has been used in previous studies by the authors (Cedillo et al., 

2021a, 2021b). The available data consist of mean velocity and water depth for different flow magnitudes so that 

different flow resistance conditions can be studied. Moreover, topography and bed composition are available as 

well. This kind of morphology has been selected for its flow characteristics, as mentioned in the Introduction, given 

that its prediction poses a challenge to any numerical model.  

Three flow magnitudes have been chosen for the current research based on the data available in Cedillo et al. 

(2021b): 0.035 m3s-1, 0.443 m3s-1 , and 0.878 m3s-1 with the respective effective resistance coefficients: 0.414, 0.193, 

and 0.134. 
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Figure 5.2: Plan view of the studied 1500 km river reach showing the sequence of the sub-reaches and the location 

of the meteorological station. 

5.2.2 Physics-informed neural network (PINN) 

5.2.2.1 PINN: an alternative for the calibration of the resistance parameter  
In this chapter, we look for an alternative methodology to calibrate the resistance parameter with limited field data 

for one dimensional steady state flow. As a first step to attain this goal, we search for a way to solve the 

corresponding differential equation with a methodology that can be easily adapted for calibration. Physical informed 

neural networks (PINN) emerge as a very interesting possibility. The idea is to approximate the solution of the 

differential equation taking advantage of neural networks as universal function approximators (Raissi et al., 2017b). 

Then, in a second step, we use PINN to consider the inverse problem of optimizing parameters using observations, 

i.e., calibration. These two steps are explained further below. 

Step 1. We verify that the conservation equation used in one dimensional steady state flows (a Differential Equation 

(DE) of first order) is solved correctly with PINN. This is called the “forward problem” in the seminal work of Raissi 

et al. (2017b). Deep neural networks are used to approximate the solution of the DE. It is important to notice that, 

in this context, neural networks are regarded as solution approximators instead of their usual role as a tool to perform 

some kind of regression based on a set of given data. Furthermore, Cuomo et al. (2022) show that the generalization 

error is bounded by the training error, so overfitting is not an issue in PINN. Hence, the training process in PINN 

corresponds to finding a numerical approximation of the solution of the DE. Indeed, the prescription of the 

conservation equation in PINN is attained by one of the terms of the loss function. The other terms take care of the 

geometry and the boundary conditions. During the process of verification, the deep neural network approximation 

of the Differential Equation solution is compared with the one found by the software HEC-RAS®. This widely used 

program solves the conservation equation using finite differences and is regarded as a base-line for comparison.   

Step 2. Based on step 1, PINN is used to calibrate the resistance factor using limited measured data. This constitutes 

an inverse problem, as mentioned by Raissi et al. (2017a).  In this step, one can realize the potential of PINN to go 

from solving the equation (the forward problem) to calibration (the inverse problem): only a change in the loss 

function is needed. Instead of a boundary condition term, a term that includes the measured data is considered. Thus, 

the PINN training process approximates the solution of the DE while providing the resistance parameter that fits the 

observed data at the same time.  The verificationconsists in the comparison of the resistance parameter calibrated 

with PINN with the one obtained with the GLUE method.  It is important to notice that the fact that the physics of 
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the phenomenon is included for the training of the neural network is likely to compensate for the limited availability 

of field data. 

5.2.2.2 PINN schemes   
The schemes shown in Figure 5.3 schematizes the PINN architecture used for our study in multiple cases. The PINN 

models were implemented in TensorFlow ® (Abadi et al., 2016). The code is based on the one shared by Raissi, 

Perdikaris & Karniadakis (2017a). Following the procedure of Kissas et al. (2020), two fully-connected neural 

networks sharing hyper parameters were used. The first one deals with the complex geometry present in each case, 

the second one is for the prediction of water depth. Each described case was run with different PINN models varying 

the number of hidden layers (3,5,7, 9, and 11), the number of neurons per hidden layer (10, 20, 40, and 60) (the 

number of input and output neurons specified for each case is shown in Figure 5.3), and the activation functions: 

Hyperbolic Tangent (Tanh), ReLU, Sigmoid, and Sin. Tanh is a zero-centered AF whose output varies between -1 

and 1 (Ding et al., 2018). 

According to Nwankpa et al. (2018), this aids in backpropagation. Tanh suffers saturation when the input tends to 

+/- ∞, resulting in a vanishing gradient where the weights are not updated during backpropagation (Ding et al., 

2018). ReLU output is always positive (Sharma et al., 2020), producing bias in the next layer (Ding et al., 2018). 

Moreover, it is left-hand saturated, and only a certain number of neurons are active (Nwankpa et al., 2018). Sigmoid 

values range between 0 to 1 (Sharma et al., 2020), which has the same bias problem as ReLU. The Sin AF has been 

selected based on Goodfellow et al. (2016), who advise not to limit the considered AF`s to popular ones. 

In the forward problems Figure 5.3 a) and b), the main information for the loss function comes from the evaluation 

of the governing equation at collocation points. Water depth data is provided only at the boundary conditions (BC). 

The loss function is computed using the mean square error (MSE) metric, including the data at BC:  

Loss function =MSEBC + MSEf + MSEG (5.1) 

where 

MSEBC=1/NBC ∑|h(xBC
i )-hi)|

NBC

i=1

 

(5.2) 

ℎ(𝑥𝐵𝐶
𝑖 ) denotes the training data (water depths) at the boundaries, hi are the predictions of PINN value at BC, and 

NBC the number of training data;  

MSEf=1/Nf ∑|f(xf
i)|

Nf

i=1

 

(5.3) 

xf
i are the collocation points where the Differential Equation is evaluated and Nf is the number of collocation points;  

MSEG=1/NG ∑|z(xG
i )-zi|

NG

i=1

 

(5.4) 

xG
i are points where the bed elevations are available, zi are the predictions of geometric points of PINN, and NG is 

the number of geometric points available. 

The loss function depicted in Eq. (5.1) includes both data and the evaluation of the governing differential equation 

at collocation points. This combination has demonstrated to be exceptionally well suited for the solution of physical 

equations governing a given phenomenon, as well as for the corresponding inverse problem. The Energy Differential 

Equation (EDE) (Eq. (5.5)) was used as the main information for PINN since all the cases are run under steady-

state conditions (Artichowicz & Mikos-Studnicka, 2014).  

Step-pool brings an additional difficulty besides a complex profile: the cross-sections are not prismatic. Our 

proposed solution is to obtain an equivalent cross-section and then adjust cross sectional area (A) and hydraulic 

radius (R) data to an exponential equation which are used for discharge-stage relations. The computation of the 

equivalent cross-sections requires the following steps. First, cross-sections are measured at the studied reach; 

second, the cross-sections coordinates are translated so that the deepest point is located at the origin; third, each 

elevation of the equivalent cross-section is the geometric mean of the corresponding points of the measured cross-

sections. Geometric mean is not sensible towards outliers (Dodge, 2008; Lovric, 2011) being useful in highly varied 

cross sections in natural rivers. 

The scheme of the inverse problem is depicted in Figure 5.3 c) and it was solved for Case 5 only: The Step-pool. In 

this case, instead of having water depths at BC, there are water level measured at three points inside the domain. 
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Those values are used instead BC values in Eq. (5.2) so that this loss function component enforces measured field 

data. In the inverse problem, the water level profile as well as the resistance factor are found. The resistance values 

are compared with the effective resistance coefficients found in Cedillo et al. (2021b) with GLUE methodology. 

The scope of inverse problem is to analyze the predictive capacity of the resistance parameter under different 

resistance conditions and with limited cross-sectional data.    
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a) 

 

b) 

 

c) 

Figure 5.3: Physics-Informed Deep Learning shemes: a)Forward problem: Benchmark cases b) Forward 

Problem:Real Case c) Inverse problem: Real Case 

 

5.2.2.3 Conservation equation   
It is important to mention that the governing equation was written using centimeters as length units for the water 

depth and the bed level. This was necessary because during exploratory tests the resulting water levels of PINN did 
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not approximate correctly the analytical solutions (AS). Take into account that the way the PINN method enforces 

the different physical principles and constraints is by means of a loss function that has to be optimized. Thus, it is 

necessary for convergence that the terms of this loss function are of the same order of magnitude. In the above-

mentioned exploratory studies, it was observed that gradients in the differential equation had a lower order of 

magnitude than other terms of the loss function. After the above-mentioned modification of units, PINN started 

converging to good solutions.  

The Energy Differential Equation (EDE) has the following form: 

𝑑𝑧𝑜

𝑑𝑥𝑜

+
𝑑ℎ

𝑑𝑥
+

𝑑(
𝑄2

2 𝑔 𝐴2)

𝑑𝑥
∗ 100 +

𝑄2 𝑛2

𝑅
4
3 𝐴2

∗ 100 = 0 = 𝑓 (5.5) 

where zo is the bed level (cm), xo is the distance (m), h is the water depth (cm), Q is the flow m3s-1, R hydraulic 

radius (m), and A is the cross-sectional area (m2). The first term in Eq. (5.1) represents the change in bed slope 

elevation (zo) with the distance (xo). The next term is the water depth slope, followed by the change in kinetic 

energy. The last term deals with the friction loss. 

5.2.3 HEC RAS model  
HEC-RAS® is a hydrodynamic model widely used in different studies (Bhola et al., 2019; Horritt & Bates, 2002; 

Papaioannou et al., 2017; Wohl, 1998). Furthermore, these model results have been used as the benchmark for PINN 

results. All the models have been run under steady-state conditions. Case 1 was run under subcritical flow, Case 2 

was run with supercritical flow, and Case 3, Case 4, and Case 5 were run with a mixed flow regime. Under these 

conditions, HEC-RAS solves the energy equation between two consecutive cross-sections (Eq. (5.6)) (Brunner, 

2021):  

z2+h2+α2 U2
2/2 g=z1+h1+α1 U1

2/ 2 g+he (5.6) 

z1, z2 are bed levels; h1, h2 are water depth; U1, U2 are velocities; α1, α2 are velocity weighting coefficients; and he 

is the energy head loss. The parameter he has, in principle, two components: expansion or contraction losses and 

friction losses. All the studied cases have prismatic XS, so there are no expansion-contraction losses.  

5.2.4 Direct step method 
In  Case 3 an additional solution method called “Direct Step Method” is used (Marriott et al., 2016). This method 

consists of the solution of The Energy Differential Equation (EDE) (Eq. (5.1)) by using finite differences. This 

methodology is applied in this case because of the discontinuity (hydraulic jump) location procedure used. The 

hydraulic jump location is determined through an iterative process where the initial depth upstream (y i) and 

subsequent depth downstream (ys) must coincide with the values of equation given by Marriott et al. (2016) which 

relate both values. This entails using and ad hoc strategy once hydraulic jumps are detected. For PINN, we do not 

use any ad hoc procedure.  

5.2.5 Metrics  
Three metrics are used to compare the PINN predictions and the HEC-RAS model results. Each metric analyzes 

different aspects of the difference between both models (residuals). First, Root Mean Square Error (RMSE) is an 

average of the residuals between PINN and HEC-RAS model, giving more weight to higher residuals (Chai & 

Draxler, 2014; Willmott & Matsuura, 2005). Second, MAE is an average of the residuals, where all the residuals 

have the same weight (Willmott & Matsuura, 2005). Third, the Nash-Sutcliffe efficiency index (EF) is a reliable 

and flexible metric used as an indicator of fitness goodness (McCuen et al., 2006; Merz & Blöschl, 2004; Nayak et 

al., 2013). Moreover, Ritter & Muñoz-Carpena (2013) provides a table to interpret the fitting quality based on the 

EF value. Both RMSE and MAE were divided by the mean of the observations and multiplied by 100 to have 

dimensionless metrics.  

5.2.6 Systematic studies 
In order to gain a deeper understanding of PINN as a numerical method for the solution of the differential equation 

treated in this study, we have performed several numerical studies in a systematic way to analyze both the rate of 

convergence and the robustness of the approach. For the latter, we have performed a sensitivity analysis. 

5.2.6.1 Rate of convergence 
The convergence rate in a numerical method can be determined by finding the relation between the log of the error 

norm of the solution (L2-norm (Jacquemin & Bordas, 2021)) and the discretization size (related to the number of 
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grid points). The slope of that relation is called rate of convergence. The rate of convergence indicates the rate at 

which the error decreases as the number of grid points increases (Fish & Belytschko, 2007). 

As stated before, PINN does not have grid points, sensu stricto. Instead, it has the so-called  collocation points, 

where the governing equations are imposed through the loss functions. Hence, we have computed different 

approximations of the solution with different number of collocation points. The L2-norm of the solution error was 

found for each run, allowing for the determination of rates of convergence for the different studied cases. This study 

was performed for each case with the activation function rendering the lowest loss function at convergence. 

5.2.6.2 Sensitivity test 
A sensitivity test has been performed by introducing a “perturbation” at the boundary conditions. That 

“perturbation” consist on a certain modification of the water depth values at the boundary condition: +/- 2%,+/- 4%, 

+/- 6%,+/- 8%, and +/- 10%. The idea is to see the effect of this perturbation on the solution.  

5.3 Results 

5.3.1 Equivalent cross-section  
Figure 5.4 shows three different measured cross-sections of the Step-pool. In addition, that Figure also shows that 

the equivalent cross-section tends to follow a central tendency, where the outliers do not play an important role. 

Furthermore, Figure 5.5a and b shows both the Area and Hydraulic Radius of the equivalent cross-section fit well 

to an exponential equation having R2 values higher than 0.9.  
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Figure 5.4: Cross sections in Step-pool and equivalent cross section 
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Figure 5.5: Area and Hydraulic Radius data of the equivalent cross-section. (a) Area, (b) Hydraulic Radius 

 

5.3.2 Forward PINN: solving the differential equation 
We analyze now the performance of PINN as a discretization method for a Differential Equation that models the 

behavior of a stationary 1D fluid in an open channel. The idea is to study several aspects of the approximation space 

subjacent to the PINN method, which is directly related to the architecture of the Neural Networks used. We start 

by analyzing the performance of several activation functions. 
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5.3.2.1 Activation function performance  
Several PINN models were run with different combinations of number of layers (depth), neurons per layer (width), 

and activation functions (AF). We consider the best model for each AF as the one that has reached the lowest value 

for loss function during the training process.  

The ReLU activation function is the one with the lowest predictive performance in all the cases under study, having 

the highest values of the RMSE and MAE statistics in cases where hydraulic discontinuities are present - RVF flow 

(refer to Table 5.1). Moreover, EF depicts that most of the ReLU models have a “Unsatifactory” predictability 

except for Case 2 where the goodness-of-fit is “Very good” (Ritter & Muñoz-Carpena, 2013). Case 2 has the 

smoothest solution (GVF) with a constant descending pattern downstream (Figure 5.6b).  The remaining cases have 

peaks and minima in the solution. Furthermore; Figure 5.6 and 5.7 display ReLU predicting a completely different 

response pattern than Sigmoid, Sin , Tanh, or HEC-RAS for benchmark as well as for the real case.  

Looking at Table 5.1, the prediction quality of Sigmoid, Sin, and Tanh is almost the same for all the cases according 

to RMSE and MAE. Moreover, EF shows a “Very Good” goodness-of-fit for most studied Cases. However, in Case 

3, these AFs provide “Unsatisfactory” predictions. The “Direct Step Method” provides the best fitting according to 

Table 5.1, with lower RMSE and MAE values than PINN results and an EF value of 0.796 rendering a fitting 

performance deemed as “Acceptable”. Figure 5.6c and d shows the presence of oscillations near discontinuities in 

benchmark cases with RVF when Sigmoid and Sin are used. Sigmoid, Sin, and Tanh have produced promising 

results predicting almost the same water depth profile in the real case (Figure 5.7a-c).  

There are some predictability aspects to consider while using PINN. In Case 3 (Figure 5.6c), three of the activation 

functions, Tanh, Sin, and Sigmoid, were able to predict the presence of the discontinuity (hydraulic jump) 

downstream from the place where the HEC-RAS model predicted it. None of them was able to accurately locate the 

position of the discontinuity on the second part of the reach. The “Direct Step Method” was not able to predict the 

position of the hydraulic jump either, but it was the closest to the HEC-RAS result. In the real case (Case 5, Figure 

5.7), the performance of PINN improves as flow increases according to RMSE and MAE values. Furthermore, the 

predictability of PINN in this real case is very good according to EF values (Ritter & Muñoz-Carpena, 2013) except 

for ReLU AF. However, Figure 5.7 presents discrepancies between the results of PINN and HEC-RAS which is not 

the case in benchmark cases.  

Based on the above analysis, Tanh has been the activation function with the highest resilience for all the studied 

cases when an important number of collocation points are used. Thus, the analysis of the neural network's size will 

be based on the models using Tanh. On the other hand, ReLU has been the activation function with the worst 

performance providing acceptable water depth predictions only in Case 2.  
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Table 5.1: Best cases of activation functions based on loss function 

Case 
Activation  

Function 
RMSE % MAE % EF 

Hidden  

Layers 

Neurons 

per hidden  

layer 

Loss  

Function 

Case 1 

Tanh 0.53 0.42 0.999 7 60 4.57E-04 

ReLU 16.04 14.5 -0.138 7 60 1.15E-01 

Sin 0.99 0.77 0.996 5 40 3.77E-03 

Sigmoid 0.58 0.46 0.999 7 60 1.17E-03 

Case 2 

Tanh 2.23 2.07 0.988 5 20 2.25E-03 

ReLU 6.25 4.32 0.903 7 40 5.72E+00 

Sin 2.2 2.04 0.988 5 40 8.07E-03 

Sigmoid 2.24 2.08 0.988 7 60 1.86E-03 

Case 3 

Tanh 26.69 12.08 0.554 5 60 7.42E-04 

ReLU 42.95 39.65 -0.154 3 60 2.85E+00 

Sin 26.11 11.29 0.573 3 20 9.85E-02 

Sigmoid 25.4 12.91 0.596 3 40 5.78E-03 

Direct Step Method 18.05 4.85 0.796 - - - 

Case 4 

Tanh 1.76 0.93 0.997 3 20 2.61E-06 

ReLU 21.13 14.23 0.589 3 40 1.68E-01 

Sin 4.04 1.77 0.985 7 40 2.39E-06 

Sigmoid 4.56 2.67 0.981 7 60 1.56E-05 

Case 5 Low Flow 

Tanh 7.86 6.62 0.932 3 40 8.48E-02 

ReLU 27.49 18.48 0.171 7 60 4.48E+01 

Sin 6.56 5.88 0.953 7 60 9.87E-02 

Sigmoid 7.44 6.45 0.939 7 40 1.07E-01 

Case 5 Mid Flow 

Tanh 6.89 5.06 0.925 3 40 8.48E-02 

ReLU 21.22 14.69 0.291 7 60 4.48E+01 

Sin 5.18 3.89 0.958 7 60 9.87E-02 

Sigmoid 6.32 4.89 0.937 7 40 1.07E-01 

Case 5 High Flow 

Tanh 6.30 4.82 0.933 3 40 8.48E-02 

ReLU 19.90 13.55 0.328 7 60 4.48E+01 

Sin 4.90 3.67 0.959 7 60 9.87E-02 

Sigmoid 5.76 4.56 0.944 7 40 1.07E-01 
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Figure 5.6: PINN results with the best case for each activation function for: (a) Case 1,  (b) Case 2, (c) Case3, and (d) Case 4 
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Figure 5.7: PINN results with the best case for each activation function for Step-pool: (a) Low flow, (b) Mid flow, and (c) High  Flow 
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5.3.2.2 Neural network architecture 
According to the previous section, the neural network architecture analysis is based on the best performing 

models, i.e., those using Tanh as AF. The optimal combination of hidden layers and neurons per hidden layer 

varies with the case under study. According to Table 5.1, a similar number of hidden layers are used in Cases 1, 

2, and 3 having a variation of 5 and 7. However, the number of neurons per hidden layer ranges from 20 to 60. 

Case 4 has the lowest number of layers and neurons: 3 hidden layers with 20 neurons per hidden layer. Case 5 

has 40 neurons per hidden layers being inside the range of Cases 1, 2, and 3, but the number of hidden layers is 3 

which is lower than the previous mentioned cases. Moreover, it is important to notice that the remaining AFs in 

Case 5 are inside the number of hidden layers and neurons per hidden layer given by Cases 1, 2, and 3. 

5.3.3 Inverse PINN  
Figure 5.8 and Table 5.2 provides a comparison of the resistance values found by PINN with different AFs and 

the ones obtained through GLUE experiments (effective resistance) in Cedillo et al. (2021b). Figure 5.8 displays 

that PINN resistance values follow the descending effective resistance pattern as flow increases. For low flow, 

Table 5.2 shows that Tanh, Sin, and Sigmoid provide similar resistance values, but lower than GLUE results. 

Furthermore, ReLU gives a completely different resistance value, lower than the rest of models. For mid and high 

flow, all the AFs seem to provide the same resistance values close to the GLUE ones. Moreover, Table 5.2 depicts 

that ReLU results are not trustful because of the high loss function value being one thousand times higher than 

the rest of AFs.  

Looking at Table 5.2, it is apparent that the hidden layers (ranging from 3 to 9) with the lowest loss function 

covers a wide range of the tested cases; however the number of neurons per hidden layer is rather limited to high 

values such as 40 and 60. Tanh, Sin and Sigmoid provides almost the same values for low and high flow, but at 

mid flow Tanh got a value which is inside the resistance value of GLUE experiment.   

 

Figure 5.8: PINN results with the best case for each activation function for Step-pool, high flow 
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Table 5.2: Inverse PINN comparison between calibrated resistance values from GLUE experiments and the ones 

obtained from different AFs and different flow values 

Flow 

(m3 s-1)  

n GLUE 

(Cedillo et al., 
2021b) 

Activation  

Function  
n Hidden Layers  

Neurons  

per hidden layer 
Loss Function  

0.035 0.555-0.609 

Tanh 0.444 3 60 0.024 

ReLU 0.245 9 60 21.275 

Sin 0.445 5 60 0.020 

Sigmoid 0.459 5 60 0.019 

0.443 0.105-0.124 

Tanh 0.107 7 60 0.025 

ReLU 0.135 7 60 27.487 

Sin 0.130 5 40 0.067 

Sigmoid 0.148 7 60 0.019 

0.878 0.092-0.121 

Tanh 0.135 3 60 0.024 

ReLU 0.122 9 60 28.317 

Sin 0.129 5 40 0.044 

Sigmoid 0.127 9 60 0.018 

5.3.4 Results of the systematic studies  

5.3.4.1 Rate of convergence 
Figure 5.9a-c provides the plot of L2-norm against the number of collocation points used in PINN. The slope of 

each plot provides the rate of convergence. Cases with smooth solution have different rate of convergence 

depending on the flow regime. Case 2 (supercritical flow: shallow and rapid flow; see Figure 5.9b), has the highest 

rate of convergence: 1.4. On the other hand, Case 1(subcritical flow: deep and slow flow; see Figure 5.9a) shows 

a rate of convergence of 0.4. Cases with discontinuities present different rates of convergence depending on the 

type of discontinuity. Case 3 (Figure 5.9c) and Case 5 (Figure 5.9e) discontinuity consist of a sudden water depth 

increase (hydraulic jump) having a rate of convergence of 0.2. In contrast, in Case 4 (Figure 5.9d) the 

discontinuity has a sudden decrease of water depth. This Case has a higher rate of convergence: 0.7.  
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Figure 5.9: Rate of convergence. (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, and (e) Case 5  

5.3.4.2 Sensitivity test 
Figure 5.10a-e presents the L2-norm when a “perturbation” of +/- 10% is introduced in the water depth at the 

boundary condition. The results depict that the addition of the perturbation has effects on the model fitting 

performance, but, more importantly, a different behavior is observed depending on the flow regime. In Case 4 

(sudden water depth decrease), and Case 5 (Step-pool), there are performance oscillations when the boundary 

water depths are increased or decreased. In Case 1 (Subcritical flow), the performance stays constant until reaching 

6% of water depth increase. When the boundary water depth increases more than 6%, the performance decreases 
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rapidly. However, there are performance oscillations when the boundary water depth decreases. In Case 2 the 

decrease of fitting performance when BC is decreased follows a pattern that seems parabolic, but this 

pattern is close to a line when the perturbation is positive. Case 3 (sudden increase of water depth) shows 

no sensitivity for negative variations in the water depth at the boundary; however a positive variation yields the 

highest performance variations.   

 

Figure 5.10: Sensibility test. (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, and (e) Case 5 
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5.4 Discussion 

5.4.1 Activation function performance 
The selection of activation functions (AF) is important for the predictability of a neural network (Glorot & Bengio, 

2010; Nwankpa et al., 2018), so its analysis is an important issue (Sharma et al., 2020). An AF introduces non-

linearity into the network (Nwankpa et al., 2018). Hence, neural networks can learn complex relationships between 

input and output (Sibi et al., 2013). Moreover, selecting a convenient AF depends on the case under analysis, and 

there is no standard procedure (Sharma et al., 2020).  

The current study found that the quality of the results strongly depends on the AF chosen. ReLU was the transfer 

function with the worst modelling predictions for forward as well as inverse problems. Nevertheless, this AF is 

the most widely used according to Ding et al. (2018) for typical machine learning applications. Sigmoid and Sin 

provide good results for GVF, but their performance is not good for RVF. For the inverse problem, both AF 

provide good results, except for mid flow where Tanh gives a resistance value closer to those of GLUE. Sigmoid 

cannot be recommended for RVF.  

The performance of Sin is not surprise according to Goodfellow et al. (2016), who state that unpublished AF can 

have a similar performance to popular AF. Moreover, Hyperbolic Tangent (Tanh) is the transfer function with the 

best predictability for both forward and inverse problem. This AF has been widely adopted in PINN because it is 

infinitely differentiable, which is necessary to approximate the states of second or third-order partial differential 

equations governing different cases (Tartakovsky et al., 2020).  

5.4.2 Neural network architecture 
As in the case of the Activation Function, the number of layers and neurons per hidden layer plays an important 

role in a neural network performance (Guo et al., 2020; Sharma et al., 2020). As stated in Section 3.2 and 3.3, the 

analysis of the number of layers and neurons is based on Tanh results for forward problem and inverse problem.  

Tartakovsky et al. (2020) explained that the number of layers and neurons depends on the smoothness of the 

output function. Moreover, the size of a neural network should be big enough to learn the mapping between inputs 

and outputs and small enough to be trained with the limited data available.  

5.4.2.1 Forward problem: solving the differential equation 
Case 1 and Case 3 (see Figures 5.6a and c) have the most complicated water depth profile of the benchmark cases. 

Case 1 water profile is characterized by two peaks with two inflection points, and Case 3 presents a discontinuity 

due to a hydraulic jump. Both Cases have the neural networks with the biggest size. Furthermore, Case 2 has the 

smoothest water depth profile of all the cases (see Figure 5.6b), having the second smallest neural network. The 

neural network dimensions of Cases 1, 2, and 3 agree with the information given above. Case 4 water depth profile 

(refer to Figure 5.6d) has a smooth solution, so it is not surprise the size of its neural network being the smallest.. 

Step-pool (Case 5), as expected, has a flow depth profile more complex than the benchmark cases due to the 

tumbling flow. The dimension of the neural network, when Tanh is used, is smaller than the previous most 

complex benchmark cases: Case 1 and Case 3.  

The literature on PINN has shown that the number of hidden layers ranges from 7 to 9, while the number of 

neurons per hidden layer lies in the range of 20 to 120 neurons per hidden layer. The studied cases include the 

solution of forwarding problems using Burger’s equation (Raissi et al., 2017b), the solution of the Euler equation 

for high-speed flows (Mao et al., 2020), the use of KdV-Burger’s equation (Guo et al., 2020), and the fluid of 

blood in arteries applying a reduced form of Navier-Stokes equation (Kissas et al., 2020). Thus, the literature 

cases are representative of several phenomena in fluid flows. As mentioned in Section 3.2.2, the same pattern was 

obtained in this study, agreeing with the previously mentioned results except for Case 5. For Step-pool cases the 

resulting number of hidden layers is lower than the presented range, but the number of neurons per hidden layers 

is inside the range when Tanh is used. Nonetheless, if Sin or Sigmoid are used then the neural network dimension 

agrees with the found range of number of hidden layers and neurons per hidden layer.   

5.4.2.2 Inverse problem   
The available found literature for inverse problems is based on data from reference models or solvers: Raissi et 

al. (2017b) successfully found parameters of Burger’s equation and Navier Stokes equations in continuous time 

models and, Mao et al. (2020)was able to find states of interest and parameters in high-speed aerodynamic flows. 
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In this study, real staff gauges measurements for three flow magnitudes (low, mid, and high flow (Cedillo et al., 

2021b)) were used to obtain the resistance parameter.  

The range of neural network architecture found in literature for inverse problem is highly variable: 3 to 9 hidden 

layers with 20 to 120 neurons per hidden layer (Mao et al., 2020; Raissi et al., 2017a). The architecture found in 

this research is inside the mentioned range. Furthermore, the number of hidden layers of the neural network varies 

depending on the flow magnitude while the number of neurons per hidden layer keeps constant. It has not been 

possible to find any reference with the application of PINN in Step-pool for inverse problem to compare the 

results. In that sense, this a first step in that direction. 

5.4.3 PINN predictability 
Case 1 and Case 2 show a GVF, meaning that the water depth never crosses the critical depth. Under these 

conditions the use of energy equation is allowed (Brunner, 2021). Case 1 and Case 2 has different flow types: 

Case 1 has subcritical flow, so there is low velocity and the flow is considered as tranquil. Case 2 has supercritical 

flow having high velocity and considered as rapid flow (Chow, 1959).  Under subcritical flow, all AF have a good 

performance to predict water depth profile except for ReLU. On the other hand, the prediction of supercritical 

flow was performed efficiently by all the AF.  

Case 3 and Case 4 represent RVF where the energy equation cannot be applied. According to Brunner (2021) in 

the case of rapidly varied flow, HEC-RAS uses the momentum equation for some instances such as hydraulic 

jump, low flow hydraulics at bridges, and stream junctions. In Case 4, PINN got a good answer when Tanh was 

used as an activation function, and the remaining activation functions got spurious discontinuities or non-physical 

answers. Indeed, PINN and HEC-RAS get the same answer because both solve the same equation. On the other 

hand, PINN was not able to predict the water depth profile in Case 3, producing a model with unsatisfactory 

performance. Even though HEC-RAS solves the momentum equation and PINN solves energy equation, PINN 

was able to predict the discontinuity in the water depth profile. 

Case 5 represents a real system called Step-pool. For this system, besides having a complex profile, the cross 

sections are variable. Moreover, there is RVF at pools below the steps. Even through EF in Table 5.1 depicts a 

good fitting performance; Figures 5.7a, b, and c clearly shows small discrepancies in the water depth between 

PINN and HEC-RAS at some points, attributable to the different description of the cross-sectional geometry since 

in the proposed PINN all the cross sections geometry is contained in an equivalent cross section. In case of highly 

variable cross sections, it will be necessary to divide the reach into sub reaches each with a equivalent cross section 

and to implement continuity equations such as the ones used in Kissas et al. (2020).    

Case 3 and 5 contain hydraulic jumps in the water depth profiles. Case 3 has a sudden decrease of the slope, and 

Case 5 has tumbling flow. Despite being a more complex case, Case 5 PINN prediction are much better than Case 

3. There are some reasons why this may happen. These are, first, the difference between yi and ys in Case 3 is 1.56 

m while in Case 5 the difference ranges from 0.24 to 0.39 cm. The hydraulic jump in Case 3 is four times bigger 

than those in Case 5. Second, the resistance value in Case 3 is ten times smaller than in Case 5. Thus, the resistance 

to flow in Case 5 is bigger than in Case 3 meaning a higher energy dissipation besides the one in the hydraulic 

jump. It seems possible that as hydraulic jump gets higher due to a low flow resistance, the prediction of PINN 

get worse.   

5.4.4 Systematic studies 

5.4.4.1 Rate of convergence 
Case 2 (Supercritical flow) has the highest rate of convergence. A possible reason of the different pattern may be 

produced by the smoothness of the solution. Indeed, as can be seen in Figure 5.6b, the water depth in this Case do 

not have peaks, follow a descending pattern, and have small slopes. This may be the cause of the different 

convergence answers of PINN. Even though Case 4 has a sudden decrease of water depth (discontinuity), this 

case has a smooth solution. Thus, its high convergence rate is no surprise. Furthermore, the difference between 

both cases with discontinuities Case 4 and Case 3 (sudden increase of water depth) is the way in which HEC-RAS 

deals with the discontinuity. For a discontinuity like Case 3 HEC-RAS uses an alternative form of the momentum 

equation. However, for a Case 4 type of discontinuity HEC-RAS uses the same equation as ours: the equation of 

the energy (Eq. (5.1)). 
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The cases with a sudden increase in water depth (hydraulic jump) like Case 3 and Case 5 has the same rate of 

convergence 0.2. On the other hand, Case 1 (Subcritical flow) having a smooth solution with multiple peaks has 

a rate of convergence of 0.4. Thus, the effect of a discontinuity like a sudden increase of water depth affects the 

convergence by 50%.  

5.4.4.2 Sensitivity test 
Case 3 has the highest changes in the PINN model performance when boundary conditions are increased. The 

increasing of boundary depth could change the flow conditions in this case. Indeed, the boundary condition with 

supercritical flow could change to subcritical flow. In that case, there is no discontinuity (hydraulic jump), which 

explains the significant change in the performance of the method. On the other hand, the reduction of the value in 

the boundary condition might preserve the flow type, so the lack of sensitivity showed in Figure 5.10c is justified. 

Case 2 has the slowest change in the model fitting performance. Case 2 profile has an increasing slope, so the 

flow is going to be supercritical. The supercritical profile is smooth so any change in the BC is not going to affect 

the water depth in an important way.  

Case 1 fitting performance is affected only when the BC change reaches the highest values. When BC water depth 

is increased the subcritical flow is preserved. However, it seems that when the increase in the BC reaches a certain 

value the prediction quality decreases. The reduction in the boundary could lead to a change in the flow conditions, 

so the oscillation present in -4% in Figure 5.10a could be justified.  

The oscillations in performance when BC water depths are increased or decreased are to be expected in the real 

case. This case has the most complex geometry and water depth pattern. Thus, any change at the BC could have 

different effect in the predicted water depth.   

5.5 Conclusions 
In this research, the predictive performance of the Physical Informed Neural Network (PINN) has been tested for 

a forward and an inverse problem. Moreover, PINN is a tool where the physics of a system is used. Four open 

channels cases with different bed shapes and prismatic cross-sections have been proposed to test the 

approximation ability of PINN under different flow types: subcritical, supercritical, and mixed for forward 

problem. Moreover, a fifth case based on a Step-pool in the Quinuas river was also included to solve a forward 

and an inverse problem with PINN. In addition, PINN results for the forward problem were compared to HEC-

RAS, while the inverse problem results were compared with the results of a previous study based on the GLUE 

methodology.  

This study has provided several interesting results for forward and inverse problems. For forward problems, PINN 

has shown good approximation characteristics, when a high number of collocation points are used. The 

predictability of Step-pool water depth profile was considered good; however a close look to the profiles shows a 

slight difference between PINN and HEC-RAS probably as a result of the simplified cross-sectional information.  

The activation function (AF) played an important role in the approximation performance on forward problems. 

The hyperbolic tangent (Tanh) ended up being the activation function with the best performance for forward and 

inverse problem, when there are a sufficiently large number of collocation points. Furthermore, Sin and Sigmoid 

did not provide adequate results for rapid flow cases in the forward problem, but these AFs provide good results 

in the inverse problem. ReLU had the worst results in all the studied cases.  

The rate of convergence was higher in cases with smooth solutions, and poorer in cases with a sudden increase of 

water depth. The introduction of a perturbation at the boundary condition has different effects depending on the 

flow type at each Case. 
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Chapter 6 

6 Conclusions  
The resistance factor has an important impact on the results of one-dimensional hydrodynamic models. Thus, the 

correct determination of that parameter is crucial for multiple applications where the model output will be used. 

Additionally, the resistance parameter estimated through field measurements is not always the same as the one 

used in a certain hydrodynamic model. Hence, in this thesis the focus was the different values that the resistance 

parameter could have for different applications. First, a so-called resistance factor field values were estimated 

through field measurements at different flow magnitudes and different morphologies of a mountain river. Then, 

different empirical equations to predict the resistance parameter were tested to find the best option for the 

mountain river study. Furthermore, knowing the vast options available in literature for resistance coefficients and 

their parameters, an alternative methodology was developed to improve the parameters of the best empirical 

equation found. Second, GLUE tests were employed to find an optimal resistance parameter range for the widely 

used one-dimensional HEC-RAS model. All the runs were executed under steady-state conditions. The found 

resistance parameter range was compared to the values found with field measurements. Third, the field values 

were used to construct “Physics-Informed Neural Network” (PINN) models to solve two kinds of models. The 

first ones to test the predictability of PINN models when using only boundary conditions as input data under 

different flow conditions. The second ones to test the PINN predictability of resistance values when compared to 

GLUE results. The research, therefore, has covered several important aspects of the resistance parameter and has 

proposed novel methodologies including the use of a recent development in deep learning which is PINN. 

As explained, different topics were treated in different Chapters. In Chapter 3, all the field measurements required 

to estimate a physical resistance parameter are explained. There was a single type of equation which shows a 

better fitting performance, so a new methodology to estimate its parameters was proposed.  Chapter 4 deals with 

GLUE test. Besides the resistance factor, the Representative Friction Slope Method was tested. Different 

conclusions with direct application to modelling were drawn. Chapter 5 depicts a first application of “Physics-

Informed Neural Network” for mountain rivers. One of those experiments deals with the estimation of resistance 

parameter where the partial differential equation is the same as the one solved by HEC-RAS. In the following 

subsections, specific conclusions of the topics covered are presented. 

6.1 Physical resistance parameter (PRP) 
The field measurement campaign to estimate the Physical Resistance Parameter in mountain rivers is a challenge. 

The water depth measurement is much more than install flow gauges at calm zones. The presence of turbulence 

at high flows makes the level reading difficult being a source of uncertainty. The measurement of wetted width 

was also a challenge task. During low flow, the estimation of wetted width requires the measurement of the width 

of any exposed particle to be subtracted from the total width. Indeed; at some morphologies such as Step-pool or 

Cascade, the number of exposed particles becomes critical. The flow and mean velocity were the easiest variables 

to be measured because the corresponding sensor automatically register the water conductivity. However, the salt 

transportation was difficult due to high slopes. The measurement of bed material composition was one of the most 

tough tasks during this research. A pebble box was built specifically for this research. When big particles appear, 

a measuring tape was used instead. The mountain river cross-sections are highly variable so data from multiple 

cross-sections need to be taken to represent the whole reach. The field work at mountain rivers is complex and 

needs to be taken carefully to get valid results.   

The estimation of the Physical Resistance Parameter was done in the Quinuas environment observatory. In this 

observatory there are three of the most common morphologies found in mountain rivers in just 1500 meters: three 

Cascades, two Step-pools, and one plane bed. Moreover, this research involved field measurements for different 

flow magnitudes. Thus, the analysis of different in-site and between-site resistance phenomena was possible. 

Different equations to predict resistance parameter as well as velocity has been tested and contrasted with the field 

data resulting Nondimensional hydraulic geometry equations the best performed predictive equation. Those 

equations relate a non-dimensional velocity (U* or U**) with a non-dimensional unitary flow parameter (q* or q**). 

Furthermore, a new methodology to estimate parameters for Nondimensional hydraulic geometry equations was 

proposed. The methodology uses U** and q** because they were found through dimensional analysis in a 

publication. The developed new methodology requires at least three data of U** and q** to calibrate two parameters. 
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However, some findings in this research points toward that those parameters could be related to some 

characteristics of the reaches such as slope. Nevertheless, more field data is needed to go further and explore those 

relations. A research aiming to find a relation to those coefficients could extend the applicability of the proposed 

methodology to ungauged reaches.   

6.2 Effective resistance coefficient (ERC) 
The GLUE implementation allowed us to research the impact of two aspects of a HEC-RAS hydrodynamic model: 

The effect of the Representative Friction Slope Method and the resistance parameter range which best fits the 

available data.  

The Representative Friction Slope Method is a parameter which acts during the solution of the energy equation in 

HEC-RAS. There were two experiments: The Representative Friction Slope Method was randomly selected in 

GLUE Experiment 1, while HEC-RAS automatically chose the Representative Friction Slope Method 

methodology in GLUE Experiment 2. The experiments taught us that an automatic selection of this parameter 

should be done only when the reach has a low slope, which is not most of  the cases in mountain rivers. Moreover, 

the manual selection of the Representative Friction Slope Method has shown a limited effect.  

The resistance parameters calibrated with GLUE were compared with those found through field measurements. 

Both values are similar for mid and high flows but differ at low flows. The difference pattern depends on the 

morphology and flow magnitude. Even though the comparison of both parameters were done under different 

morphologies and flow magnitudes (different resistance conditions), further analysis are required to extend the 

range of comparison between the effective parameters and the parameters determined with field data. More flow 

cases need to be tested to set up this comparison.   

6.3 PINN application to mountain rivers  
In this research, a methodology to use PINN for open channel with complex longitudinal profile and complex 

cross sections has been proposed and being tested with two experiment types: first; forward problems where some 

benchmark cases with different flow types and profiles were solved. A Step-pool case was also solved. Second, 

PINN model was used in inverse problem where a resistance parameter was found and compared to resistance 

parameters found in GLUE experiments.  

The solution of PINN for forward problems was compared with the results of HEC-RAS model where PINN 

showed a great capability to predict the water level profile for benchmark cases as well as for a Step-pool cases 

despite tumbling flow. At Step-pool cases, a closer look to the water depth predictions showed slightly differences 

between PINN and HEC RAS model attributed to simplifications done in PINN architecture. 

PINN and GLUE provide a promising similar resistance values for most flow magnitudes. At low flows, there are 

still differences between both predictions which is attributed to the simplifications of the transversal geometry. 

PINN have demonstrated a huge potential to model the typical flows of mountain rivers. Further improvements 

in the PINN model architecture will certainly increase its predictability; however, the physics of the flow will be 

always there to remind us the challenge hidden in turbulent flows.  

6.4 Research limitations and further research 
Even though the conclusions presented above are limited to one-dimensional flow under steady-state conditions, 

they are valuable and have important applications because one dimensional models are still widely used and 

require a small amount of data. Indeed, the PINN scheme proposed in this thesis could be extended to include 

additional phenomena and to make important predictions e.g. pollution transport. Furthermore, the expansion of 

this study to 2D or 3D will require an important field measurement effort, and where 2D or 3D flows are important.  

The applicability of the previous obtained results in a big catchment such as Paute river depends on the chapter. 

First, the proposed methodology to predict velocity in Chapter 3 can be used at any mountain river reach. That 

methodology has been validated with data from literature consisted in a wide range of reaches. However, the 

comparisons of calibrated and measured based resistance parameter in Chapter 4 and the PINN methodology 

proposed in Chapter 5 has been develop for a certain mathematical description. In those chapters the flow is 

considered as one-dimensional steady state. Thus, additional research is needed to apply the proposed 

methodology in common cases such as main channel-flood plain interactions or curves.  
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Symbology and abbreviations  
A: Cross sectional area [L2] 

AD: Automatic Differentiation 

Alob, Amc, and Arob: Flow areas at the left overbank, main channel, and right overbank (L2) 

At: Total flow area (m2) 

a,b,c,d1,e: Parameters [-] 

ΔBi: Width discretization [L] 

C: Chezy resistance coefficient [] 

Ct: Concentration at time t [ML-3] 

C(x,t): Concentration at certain time and space [ML-3] 

d: Mean water depth [L] 

dstep: Height of a step-pool bed form [L] 

di: Depth at n·ΔBi [L] 

Dxx: Characteristic bed material diameter [L] 

ECt: Total conductivity [L-1M-2T-3I-1] 

EF: Nash–Sutcliffe efficiency index 

ERC: Effective Resistance Coefficient 

ERE: Empirical Resistance Equations 

Fr: Froude Number [-] 

f: Darcy-Weisbach resistance Eq. [-]  

fform: Form resistance component of resistance [-] 

fgrain: Skin resistance component of resistance [-] 

fspill: Spill resistance component of resistance [-] 

ftotal: Total resistance which comprises all the resistance components [-] 

g: Gravity acceleration [L T-2] 

GLUE: Generalized Likelihood Uncertainty Estimation 

H: Step height [L] 

HM: Hydrodynamic Model  

h: Water surface elevation above a common datum [L] 

he: Energy head loss [L] 

hv: Velocity head [L] 

K: Conveyance [L T-3] 

Klob, Kmc, and Krob: Conveyance at the left overbank, main channel, and right overbank [L T-3] 

k: Contraction and expansion factor [] 
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ks: Resistance height [L] 

L: Unit of distance /space between step peaks/reach lengath [L] 

Lr: Reach length [L]  

Li,j: Distance from point i to j [L] 

LWD: Large Woody Debris 

M: Unit of mass or tracer mass [M] 

m: Coefficient [-] 

MAE: Mean average error 

N: Number of data [-] 

NDGH: Nondimensional hydraulic geometry equations 

n: Manning resistance coefficient [-]  

n0: Base resistance [-] 

n1: Cross-section irregularities [-] 

n2: Channel variation [-] 

n3: Obstructions [-] 

n4: Channel vegetation [-] 

m: Degree of meandering [-] 

m*: Average of measurements 

PE: Prediction errors 

PEE: Predictive empirical equations 

PIDL: Physics-Informed deep learning 

PL: Pool length [L] 

PRP: Physical Resistance Parameter 

Q: Flow [L T-3] 

q: Unit discharge (Q w-1) [L2T-1] 

q*: Non-dimensional unitary flow [-] 

q**: Non-dimensional unitary flow [-] 

R: Hydraulic Radio [L] 

RFSM: Representative Friction Slope Method 

RMSE: Root mean square error 

SO: Bed slope [-] 

Sf: Friction slope [-] 

Sf-form: Friction slope due to bed forms [-] 

Sf-grain: Friction slope due to the grain resistance [-] 
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SX: Average standard error of estimation 

T: Unit of time [T] 

TSI: Tracer Slug Injection 

tH: Harmonic travel time [T] 

tin: time interval [T] 

𝒕𝒊̅: Mean time of passage of the tracer cloud at point i [T] 

tc: First momentum of the curve concentration-time [T]  

U: Mean cross sectional velocity [L T-1] 

U*: Non-dimensional velocity [-] 

U**: Non-dimensional velocity [-] 

Umeas: Measure value 

Upred: Predicted values 

Ures: Residual values 

VPE: Variable Power Equation 

w: Wetted width [L] 

XO: Central value of the resolution of an instrument 

x: Distance or streamwise coordinate [L] 

xi: Measured value 

y: Coordinate across the cross section [L]  

yi: Water depth [L] 

ΔX: Resolution of an instrument  

z: Bed level [L] 

α: Velocity weighting coefficients [-] 

Γ: Concentration of boulders [-] 

δUmeas: Uncertainty associated with prediction of a variable 

δUres: Cumulative error 

δUmean-bias: Difference between the mean of predicted and measured variable. 

δX: Uncertianty associated with the measure of a quantity “X” 

δXcas: Random error 

δXres: Resolution error 

δXsys: Systematic error 

δXtot: Total uncertainty 

τb: Shear stress [MT-2L-1] 

 


