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Abstract: Electronic chip detection is widely used in electronic industries. However, most existing
detection methods cannot handle chip images with multiple classes of chips or complex backgrounds,
which are common in real applications. To address these problems, a novel chip detection method
that combines attentional feature fusion (AFF) and cosine nonlocal attention (CNLA), is proposed,
and it consists of three parts: a feature extraction module, a region proposal module, and a detection
module. The feature extraction module combines an AFF-embedded CNLA module and a pyramid
feature module to extract features from chip images. The detection module enhances feature maps
with a region intermediate feature map by spatial attentional block, fuses multiple feature maps with
a multiscale region of the fusion block of interest, and classifies and regresses objects in images with
two branches of fully connected layers. Experimental results on a medium-scale dataset comprising
367 images show that our proposed method achieved mAP0.5 = 0.98745 and outperformed the
benchmark method.

Keywords: electronic chip detection; deep learning; feature pyramid network

1. Introduction

Electronic chip assembly is a key link of electronic manufacturing, and its task is to
place and solder chips onto printed circuit boards (PCBs). After electronic chip assembly,
the chip and PCB are combined for electronic production. In this process, placement error is
the distance between the real and ideal positions that causes functional defects in electronic
products. With chip detection methods, electronic products with large placement errors
can be found as early as possible. Machine vision techniques can also be used to detect chip
position without damaging electronic products. Therefore, chip detection methods based
on machine vision play an important role in electronic industries.

Our electronic chip detection method was designed to estimate the class and location
of chips in a PCB. This is implemented by a electronic chip detection system that integrates
various electronic parts. As shown in Figure 1, the detection system consists of four parts:
PCB conveyer, image capture module (including camera, lens, and lighter), x−−y moving
module (not shown in Figure 1 for simplicity), and an industrial PC. The PCB to be detected
is first transferred to the center of the chip detection system by the conveyor; the image
capture module is moved to several predefined positions and takes pictures of the PCB;
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lastly, these pictures are processed by an industrial PC to classify and locate chips. Three
examples of PCB images are illustrated in Figure 2, and their characteristics are given
as follows:

(1) there are multiple chips in one picture;
(2) the background of PCB image is complex, including pins, pads, flame retardant layer,

and silk screen;
(3) the size, color, and other characteristics of chips vary greatly.

Figure 1. Electronic chip detection system.

Figure 2. PCB images.

2. Related Work

To classify and locate chips from images, there are many research achievements on
electronic chip detections methods based on machine vision. Crispin [1] incorporated a
normalized cross-correlation (NCC) template-matching approach that could reduce compu-
tational cost by constraining the search space, and optimize the search strategy of template
positions using a genetic algorithm. A tree step algorithm for light-emitting diode (LED)
chip localization was proposed by Zhong [2]. First, the positions of potential chips were ex-
tracted by applying a image segmentation and blob analyzation method; then, orientations
of potential chips were predicted on the basis of dominant orientations; lastly, chips were
precisely located using gradient orientation features according to the predicted positions
and orientations. Gao [3] proposed a novel algorithm to inspect ball grid array (BGA)
component defects: first, a grayscale image of solder balls was extracted with an adaptive
thresholding algorithm with modified (ε, δ)-component segmentation; then, the ball ar-
ray was generated with a line-based-clustering method; lastly, the precise position and
orientation of BGA were estimated from the recognition results. The main cause of errors
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in chip detection was analyzed by applying a two-step calibration algorithm in Wang [4].
Zhong [5] proposed a three-step algorithm to exclude polycrystalline and fragmentary
LED chips. First, blobs were obtained from an image with a simple but efficient image
segmentation algorithm; second, abnormal blobs were excluded, and the position and
orientation of a potential object were predicted on the basis of the pose of the minimal en-
closing rectangle of each candidate blob; lastly, precise LED chips in the originally captured
image were located on the basis of gradient orientation features. Bai [6] studied an online
component positioning problem based on corner points that incorporated preprocessing,
coarse positioning, and fine positioning stages. The preprocessing stage applied Harris
corners and subpixel corner points that were extracted from images of real components.
The coarse positioning step used distance and shape feature matching methods to compute
correct correspondences between key points and Harris corner points. Lastly, the coarse
and fine positioning problems were formulated as least-squares error problems.

With the development of deep-learning theory, object detection methods have recently
achieved great success [7–9]. Object detection methods based on deep learning can generally
be divided into two categories: one- and two-stage methods. One-stage object detection
methods directly embed location and classification subnetworks into the font of a main
backbone network. Typical one-stage object detection methods include YOLO [10–12],
SSD [13], and DSSD [14]. Two-stage object detection methods introduce region proposal
networks to predict candidate bounding boxes, and estimate class and location with
multilayer fully connected networks from these bounding boxes. Typical two-stage object
detection methods include R-CNN [15–17] and ThunderNet [18]. One-stage object detection
methods are faster than two-stage object detection methods, and two-stage object detection
methods are more precise than one-stage object detection methods.

Deep-learning-based detection methods come from training a multilayer convolutional
neural network from training data; thus, neural network architectures learning features
from training data is a research hotspot. Lin [19] designed a two-pathway architecture that
contained a top–down and a down–top pathway to extract multiscale hierarchical feature
maps. Qin [18] proposed a lightweight architecture to realize real-time object detection. To
enrich feature representation, several blocks were introduced in that network, such as the
context enhancement module (CEM) and spatial attention module (SAM). Liu [20] proposed
a context embedding object detection network to detect concealed objects from millimeter
wave images. In context embedding object detect networks, backbone features are attached
to tree parallel branches with dilation sizes of 3, 6 and 12 to form the context embedding
module and to incorporate surrounding information. Fang [21] fused the semantic object
feature extraction module (Conv2dNet), the spatiotemporal feature extraction module
(Conv3DNet) and the saliency feature-sharing module to generate the final saliency map
for real-time video processing. Wang [22] combined dual-branch feature extraction and
gradually refined the cross-fusion module in the network for camouflaged object detection.
Gu [23] assembled an X-ray proposal network that applies data augmentation to enlarge
input image datasets, and an X-ray discriminative network that fuses region of interest
(ROI) feature maps from several levels for baggage inspection. A bidirectional attention
feature pyramid network with cosine similarity was proposed for photovoltaic cell defect
detection [24].

Table 1 shows the advantages of existing methods, which have two disadvantages:
(1) they cannot detect multiple chips at the same time, and (2) cannot process chip images
with a complex background. These drawbacks render them unsuitable for real applications.
To solve these problems, we propose a novel chip detection method motivated by [18,23,25].
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Table 1. Advantages of existing methods.

Method Reference Advantages

Computer-
vision-
based

methods

FTM [2] Fast template-matching method applied to LED chip
localization.

LBC [3] Line-based clustering approach applied to BGA
component localization.

VF [4] Main cause of errors in chip detection was analyzed.

BATM [5] Blob-analysis-based template matching method
introduced into LED chip detection.

CPCF [6] Corner-point-based coarse fine method introduced into
chip localization.

Deep-
learning-

based
method

FPN Feature-pyramid-based feature extraction introduced into
object detection.

Thunder Context-enhancement and spatial-attention modules
Net [18] introduced into object detection.

COB [20] Context-embedding module introduced into concealed
object detection form millimeter wave image.

Semantic object feature extraction module (Conv2dNet),

SOD [21] spatiotemporal feature extraction module (Conv3DNet),
and saliency feature-sharing module fused for real-time
video object detection.

D2C-Net [22] Dual-branch feature extraction and gradually refined cross-fusion
module fused for camouflaged object detection.

XRBI [23] X-ray proposal and X-ray discriminative
networks assembled for baggage inspection.

PCDD [24] Bidirectional attention feature pyramid network
introduced for photovoltaic-cell defect detection.

3. Proposed Methodology

In the electronic industry, the main aim of the proposed electronic chip detection
method is to classify and locate chips in images. To overcome these challenges, a novel chip
detection method is proposed in this work. Its methodology is composed of three steps:
(1) AFF-embedded CNLA and pyramid-feature modules are combined to extract multiscale
pyramid feature maps from chip images; (2) candidate bounding boxes are proposed in
the region proposal module (RPM); (3) region intermediate feature maps are fused into
enhanced feature maps from the spatial attentional block, and chip class and location are
estimated by two branches of fully connected layers. The overall structure of the novel chip
detection method is demonstrated in Figure 3.

3.1. Feature Extraction Module

In traditional deep-learning-based object detection methods, a multilayer framework
that contains a series of convolutional layers is utilized to extract high-level features from
images. In the feature extraction framework, each layer takes the output of the lower
layer as input and output features to the higher layer as input. The input of the lowest
layer is the raw image, and the output of highest layer is used as the final feature of the
detection module. To drop memory usage, convolutional layers in the feature extraction
framework apply stride to reduce the feature map. This multilayer structure is able to learn
feature extraction methods from large-scale training datasets, and its performance exceeds
that of handcrafted feature extraction methods. Several research works [23,26] revealed
that multilayer feature extraction cannot extract semantic and location information at the
same time: semantic information exists in the upper layers but not in the lower layers,
and the opposite for location information. As demonstrated in Figure 3, an improved
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feature pyramid framework was applied to extract image features in our work. Similar to
feature pyramid networks (FPNs) [19], the feature extraction module (FEM) consists of two
pathways: the bottom–up and up–bottom pathways.

Figure 3. Overall structure of our chip-detection neural network.

In the proposed improved feature pyramid framework, the bottom–up pathway was
designed to extract hierarchical features; hence, traditional multiple convolutional layer
structure ResNet was employed, which is composed of 5 stages, and every layer of the same
stage had the same output size. To save memory, the output of the first stage was ignored,
and the output of remaining stages {C2, C3, C4, C5} was chosen to form the reference set.

Both semantic and location information is essential for object detection, but it is
distributed in different layers in the bottom–up pathway. To combine this information, it is
necessary to fuse features from different layers in the up–bottom pathway. In the highest
layer of up–bottom pathway p5, the highest layer of bottom–up pathway c5 was attached
to a 1× 1 convolutional layer. In other layers of up–bottom pathway {pi, i = 1, ..., 4}, a
building block was applied. The building block is illustrated in Figure 4: the feature from
the same layer of down–up pathway ci was attached to a 1× 1 convolutional layer, the
feature from the higher layer of up–down pathway pi+1 was attached to a 2× up layer, and
these two features were then fused into feature pi with the AFF-embedded CNLA block.

Figure 4. Building block to combine features from down–up and up–down pathways.

AFF-embedded CNLA block in Figure 4 demonstrated as in Figure 5, consisting of
two parts: (top) AFF block; (bottom) CNLA block.
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Figure 5. AFF-embedded CNLA block.

The AFF block [25] was designed to combine two input featuresF1 andF2. To improve
detection performance, global feature context (GFC) and local channel context (LCC) were
both taken into account in the AFF block.

Considering feature F ∈ RC×H×W of C channels whose width and height were W and
H, the GFC is defined as follows:

GFC(F ) = BN(W2 · ReLU(BN(W1 · gap(F )))), (1)

where W1 and W2 are two learnable parameters. BN in Equation (1) means batch normal-
ization (BN) [27] that is proposed to address the internal covariate shift phenomenon in
deep-learning networks. The internal covariate shift phenomenon is caused by the change
in the input of each layer, increasing training epochs. In the BN layer, two parameters are
introduced to scale and shift normalized values; then, normalization transformation can
represent the identified transform. For input {x1...m} over a minibatch, the output of BN
layer yi = BN(xi) is defined as follows:

µB =
1
m

m

∑
i=1

xi, (2)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2, (3)

x̂i =
xi − µB√

σ2
B + ε

, (4)

yi = BN(xi) = γx̂i + β, (5)

where γ and β are two learnable parameters, and ε is the smallest positive value. ReLU
in Equation (1) denotes rectified linear unit (ReLU) [28], and is an activation function for
convolutional networks. The activation function can activate neural layers when the output
reaches a predefined threshold, so it transforms input into the required output. ReLU is
a nonlinear function that directly outputs the input value if it is positive; otherwise, it
outputs zero. Mathematically, the ReLU is defined as follows:

y(x) = ReLU(x) = max(0, x). (6)
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gap(F ) in Equation (1) is global average pooling of feature F :

gap(F ) = 1
H ×W

H

∑
h=1

W

∑
w=1
F[:,h,w]. (7)

LCC of F is defined as below:

LCC(F ) = BN(PWConv2(ReLU(BN(PWConv1(F))))), (8)

where PWConv is pointwise convolution that uses a 1× 1 kernel to aggregate channel
context for each spatial position.

With GFC(F ) and LCC(F ) in Equations (1) and (8), the attentional weight (AW) of
feature F in Figure 5 is defined as:

AW(F ) = GFC(F )⊕ LCC(F ), (9)

where ⊕ is the broadcasting addition that adds scalars to higher-dimensional tensors.
Lastly, as shown in the upper part of Figure 5, AFF is defined as:

F f used = AFF(F1,F2) = AW(F1 ⊕F2)⊗F1 + (1−AW(F1 ⊕F2))⊗F2, (10)

where⊕ is the same broadcasting addition as that in Equation (9), and⊗ is the element-wise
multiplication that adds corresponding elements between tensors.

The second part of the AFF-embedded CNLA block is the CNLA block that is calcu-
lated from the output of the AFF block F f used. The CNLA block is based on an improved
nonlocal (NL) block [29]. In [29], the NL operation was defined as:

yi =
1
C(x) ∑

∀j
f (xi, xj)g(xj), (11)

where i is the position index of the output, and j enumerates all possible positions. x and y
are input and output signals, respectively, with the same size. The f (xi, xj) function gener-
ates a scalar value between i and all j, and it is discussed in the next section. Function g(xj)
generates a value for position i, and it can be considered in the form of linear embedding:
g(xj) = Wgxj, where Wg is a learnable parameter. C(x) is the normalization coefficient.
With the NL operation that is defined in Equation (11), the nonlocal block is defined as:

zi = Wzyi + xi (12)

where yi is defined in Equation (11), +xi denotes a residual connection, and Wz is a learnable
parameter.

The function of f (xi, xj) in Equation (11) has multiple potential options. In [24], cosine
similarity was introduced as the f (xi, xj) function into the CNLA block:

f (xi, xj) =
xT

i xj

‖xi‖‖xj‖
. (13)

Lastly, output yj of CNLA is defined as:

yj = ∑
∀j

si,jg(xj) + xj, (14)

where si,j is the so f tmax operation performed on a row of the similarity map:

si,j =
exp f (xi, xj)

∑∀j exp f (xi, xj)
. (15)
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3.2. Region Proposal Module

Following FEM described in Section 3.1, the region proposal module (RPM) [17] is
applied to estimate the rough location of objects. As shown in Figure 6, in the RPM, a
feature map is attached to a 3× 3 convolutional layer to generate the intermediate feature
map (IFM) FIFM, and it was designed to collect information from neighboring regions of
the feature map. Referring to [17], k reference boxes, namely, anchors, were predefined
with different aspect ratios in every location of the intermediate feature map. To obtain the
rough position of chips, FIFM is input into two 1× 1 convolutional layers to obtain the
scoring and regression layers. The scoring layer had k channels, and the regression layer
had 4k channels. For each location in the feature map, anchors with a higher score than
the predefined thresholding were chosen as candidate ROIs, and accuracy could be further
improved with the regression layer.

Figure 6. Region proposal module.

3.3. Detection Module

The detection module was designed to estimate the precise location and class of chips.
Feature maps from FEM F f eature could be used in these tasks, but they could not provide
feature distribution for the detection module. To solve this problem, the spatial attention
block (SAB) [18] was applied to reweight F f eature with spatial dimensions from RPM. As
shown in Figure 7, the intermediate feature map of FPM FIFM was attached to a 1× 1
convolutional layer, followed by a BN layer and a sigmoid layer; then, it was multiplied by
feature map F f eature to generate final result FSAM. The SAB is define as:

FSAB = F f eature · sigmoid(BN(FPRM)), (16)

where BN denotes the BN layer described in Equation (5), and sigmoid is defined as:

sigmoid(x) =
ex

ex + 1
. (17)

As shown in Figure 3, all of four outputs of the feature maps from FEM were attached
to SAM to generate spatial attentional feature maps {si, i ∈ [2 · · · 4]}. Although several
measures were used in previous section, different information is contained in different
feature maps. To combine these feature maps, as shown in Figure 8, the multiscale ROI
fusion block [23] was introduced in our work. In the RPM section, ROIs were estimated in
every feature map. Then, ROI information is input into the ROI align pooling (ROIAlign)
layer [30] to extract ROI features that had the same size. In ROIAlign, ROIs are subdivided
into spatial bins; the exact values of these bins are computed with bilinear interpolation
and generate feature of ROI with aggregates. To obtain multiscale ROI features, these ROI
features are fused with element-wise max operation.
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Figure 7. Spatial attention block.

Figure 8. Multiscale ROI fusion block.

Lastly, in order to detect the class and precise location of electronic chips, a fused
feature is attached to a sequence of fully connected layers, followed by two branches of
fully connect layers: one produces scores about k object classes, and the other generates
four values for each K class that encodes refined bounding-box information.

3.4. Multitask Loss

Our detection network was assigned two tasks: classify and regress the bounding
box that corresponded to two branches in the detection module. The loss function of our
network is defined as follows [17]:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ), (18)

where i is the index of anchors, and pi is the probability of the object in anchor i. The two
terms are normalized by Ncls, Nreg, which are the minibatch size and the number of anchor
locations, respectively, and they are weighted by a balancing parameter λ. Lcls(pi, p∗i ) and
Lreg(ti, t∗i ) in Equation (18) are described as follows.

In Equation (18), p∗i is the ground truth of pi, defined as:

p∗i =

{
1 object is in the anchor i,
0 otherwise.

(19)

Classification loss Lcls is log loss over two classes (object versus not object).

Lcls(pi, p∗i ) = − log[pi p∗i + (1− pi)(1− p∗i )]. (20)
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ti is the reg vector with 4 elements that represents the predicted bounding box:{
tx = x−xa

wa
, ty = y−ya

ha
,

tw = w
wa

, th = h
ha

.
(21)

t∗i is the ground truth of ti:{
t∗x = x∗−xa

wa
, t∗y = y∗−ya

ha
,

t∗w = w∗
wa

, t∗h = h∗
ha

,
(22)

where x, y, w, and h denote the central coordinates, width, and height of the predicted
bounding box. To improve robustness, notation Lreg with L1 smooth is defined as:

Lreg(ti, t∗i ) =
{

0.5(ti − t∗i )
2 i f |ti − t∗i | < 1,

|ti − t∗i | − 0.5 otherwise.
(23)

With loss function L defined in Equation (18), learnable parameters can be trained
with the stochastic gradient descent method:

θ(t+1) = θ(t) − γ
∂L
∂θ

, (24)

where θ is one of learnable parameters, and γ is the learning rate.

4. Experimental Results
4.1. Dataset

In this section, the proposed chip detection method is evaluated on our chip image
dataset. In the electronic industry, the appearance of PCBs and chips largely varies. So, it is
impossible to generate a unified dataset that meets the requirements of all chip detection
applications. To this end, chip detection application generally relies on small-scale datasets.
This image dataset had 367 images, and was divided into two subsets: the training dataset
contained 330 images, and the evaluation dataset contained 37 images. Images of the
dataset were captured by the electronic chip detection system that is illustrated in Figure 1.
On the basis of the image capture strategy, chip images were randomly cropped, and their
width was between 300 and 700 pixels. Each image contained at least five chips belonging
to at least two classes. Distribution of instances of the chip dataset is shown in Table 2.

Table 2. Distribution of instances.

Dataset Resistor Capacitors Transistor IC Inductor Total

Training 665 670 307 183 54 1879
Evaluation 70 62 32 16 8 188

4.2. Implement Details

The proposed chip detection method was evaluated on a workstation with an Intel
Xeon (R) Gold 6278C CPU and a Nvidia Tesla V100 GPU. The network was implemented
with Python programming language based on PyTorch [31] and its expansion pack Detec-
tron2 [32]. The pretrained checkpoint of ResNet from Detectron2 was used to initialize the
backbone of our method.

As discussed in Section 4.1, electronic chip detection methods are always trained with
small-scale datasets and are prone to overfitting. To solve this problem, data augmentation
was applied to our method. Through expanding the training dataset, data augmentation
technology is able to improve generalization and robustness against changes in the input
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image, such as regarding image density, object position, and object orientation. In this
paper, three augmentations are used:

(1) random crop augmentation: cropping a region with random size from raw images;
(2) random flip augmentation: randomly flipping the image;
(3) small object augmentation [33]: copying small objects from the original position and

pasting them to different positions.

To learn parameters for our method, a back-propagation-based optimization method
is applied to minimize the loss defined in Equation (18), which is a function of weight
parameters. First, the derivative of the loss function to each weight was calculated; then,
a stochastic gradient descent method with momentum was applied to update weights
in the direction of the fastest gradient decent until the maximal iteration. The previous
momentum was used to accelerate the current gradient: update direction was defined by
the previous update direction and the gradient of the current batch. In other words, if
current and previous gradient directions are the same, update speed is higher; otherwise,
update speed is lower. In our work, the learning rate was set to 0.0001, momentum was set
to 0.9, and the maximal iteration was to 40,000.

In the RPM, the area of anchors for every pyramid feature maps was assigned to
{322, 642, 1282, 2562, 5122}, and the aspect ratio of all anchors was [ 1

3 , 1
2 , 1, 2, 3]. The maxi-

mal iteration was set to 8000, and the loss curve in training our method is shown in Figure 9.
Experimental results of our method are demonstrated in Figure 10.

Figure 9. Loss curve in training our method.

4.3. Evaluation Metrics

The performance of our method was established with the PASCAL criteria [34]. First,
detection results were sorted by their confidence scores; then, the IoU was calculated for
these results:

IoU =
DetectionResult ∪ GroundTruth
DetectionResult ∩ GroundTruth

, (25)

where DetectionResult is the bounding box of the detection result, and GroundTruth is the
annotation box. Then, lt

i is defined as:

lt
i =

{
1 ai > t
0 otherwise

(26)

where ai is the IoU of i-th detection result, and t is the threshold. Precision p and recall r
are defined as follows:

pt
i =

tpt
i

tpt
i+ f pt

i

rt
i =

tpt
i

nt
p

(27)
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where nt
p is number of positive samples, and tpt

i and f pt
i are true positive and false positive,

respectively:
tpt

i = tpt
i−1 + lt

i
f pt

i = tpt
i−1 + 1− lt

i
(28)

Figure 10. Experimental results of our method. (left) Raw image; (center) ground truth; (right) result
of our method.

On the basis of the area under precision recall curve, the AP was calculated as follows:

APt =
np

∑
i

pi∆r. (29)

The final mAP was calculated with the average value of AP for N classes:

mAPt =
1
N

N

∑
j=1

APt
i . (30)

On the basis of mAP defined above, alternative criteria mAPcoco were calculated by
the average value of AP with t = 0.05:0.05:0.95 [35,36].
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4.4. Evaluation Results

Table 3 shows the accuracy gap between our method and the faster R-CNN method,
and Table 4 shows the difference between these two methods by category. As shown
in Table 3, our method achieved promising results, outperformomg benchmark method
R-CNN.

As shown in Table 3, the results of mAP0.5 and mAP0.75 in our method were 0.98745
and 0.95142, respectively, while mAPCOCO was only 0.81130. According to the definitions,
mAP0.5 evaluates detection results with the IoU threshold between bounding boxes of the
detection results and ground truth, and this was equal to 50%. mAP0.75 evaluates detection
results with a threshold equal to 75%; and mAPCOCO combines the IoU threshold from 50%
to 95% in intervals of 5%, that is, the requirement for IoU is higher. Therefore, our method
could roughly detect electronic chips from the image, but, as shown in Figure 10, there
was a certain error in the central coordinates and the size area. Hence, the accuracy of the
bounding box could be further improved.

As shown in Table 4, the mAPCOCO the results of our method in detecting capacitors,
transistors, ICs, and inductors were 0.80324, 0.77550, 0.88759 and 0.86782, respectively,
which ertr lower in detection resistors than those in the faster R-CNN method. According
to our analysis, this result was because the surface of the resistors had text indicating the
resistance value, so their surface texture was relatively complex. Compared with the faster
R-CNN method, due to the extraction of more object features, our method was prone to
overfitting when the amount of data was not large enough. Therefore, it is necessary to
improve the accuracy of our method in detecting complex objects with a small amount of
training data.

Table 3. mAP0.5, mAP0.75, and mAPcoco on testing dataset.

mAP0.5 mAP0.75 mAPCOCO

Faster R-CNN 0.96570 0.91685 0.76109
Our method 0.98745 0.95142 0.81130

Table 4. mAPcoco on testing dataset and per category of bounding box mAPcoco.

mAPCOCO Resistor Capacitors Transistor IC Inductor

Faster R-CNN 0.76109 0.73493 0.77381 0.75677 0.81387 0.72608
Our method 0.81130 0.72234 0.80324 0.77550 0.88759 0.86782

5. Conclusions

This paper proposed a novel electronic chip detection method that was trained with a
small-scale chip dataset. Three aspects distinguish our work from previous works: first,
our method was designed to detection chips that belong to different classes in complex
backgrounds; second, AFF-embedded CNLA module and pyramid feature module were
combined to extract features from chip images; third, pyramid feature maps were enhanced
with the region intermediate feature map to classify and locate chips. The experiment
showed that our work outperformed a landmark method. There are two challenges for our
work: (1) the accuracy of the bounding box needs to be further improved; (2) the detection
accuracy of objects with complex textures needs to be further improved. We will focus on
improving the precision of the bounding boxes of electronic chips and the performance of
the few-shot electronic chip detection method.
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Abbreviations
The following abbreviations are used in this manuscript:

BGA Ball Grid Array
ROI Region of Interest
PCB Printed Circuit Board
NCC Normalized Cross Correlation
LED Light-Emitting Diode
CEM Context Enhancement Module
SAM Spatial Attention Module
RPM Region Proposal Module
FPN Feature Pyramid Network
FEM Feature Extraction Module
AFF Attentional Feature Fusion
CNLA Cosine Non-Local Attention
ReLU Rectified Linear Unit
SAB Spatial Attention Block
IoU Intersection over Union
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