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Summary	
 
Surface and ground water availability is variable in space and time and the spatio-temporal 
pattern of this variability often does not match with the distributed use pattern of sectors and 
individual consumers. This mismatch can become controversial when overall water 
availability decreases, e.g., due to climate change, and competition for water increases. It is 
in this context that the so called WEF-nexus between water for human consumption and 
industrial use, water for Energy (hydropower) and water for Food (irrigated agriculture) (WEF) 
has gained increasing attention in research, business and policy spheres, especially in regions 
with more arid climate. An additional dimension of this nexus is the water required for 
sustainable functioning of ecosystems in general and wetlands in particular.  
 
Allocation of scarce water has challenged water managers for decades. The construction and 
operation of reservoirs is the typical solution put forward.  In this research we addressed the 
optimization of the allocation of water available in a river-with-reservoir system towards 
multiple users as a network flow optimization (NFO) problem. There are two classes of 
methods to tackle NFO problems: heuristic models and mathematical models. Heuristic 
models are able to provide a feasible solution within reasonable computation time whereas 
mathematical models are able to come up with the optimal solution but often requiring 
longer computation times. Since for strategic decisions computation times are less crucial, 
the latter, i.e.  linear programming (LP) models and mixed integer linear programming (MILP) 
models were the subject of this research. LP and MILP models were formulated to optimize 
the flow and storage of water through Water Supply Networks (WSN) created from 
geographic information describing the river basin under study. A WSN encompasses a set of 
oriented lines connected in georeferenced nodes whereby the lines represent river segments 
and the nodes represent reservoirs, natural water bodies, inflow points and abstraction 
points. Whereas inflow and abstraction points are characterized by time series of incoming 
and required water volumes, the water volume available in river segments, reservoirs and 
other water bodies, each having predetermined capacities, is updated throughout the 
simulation period.     
 
The LP- and MILP-models were first formulated and evaluated for hypothetical river basins 
characterized by artificial time series. In a next step two real world basins were considered: 
the Machángara River Basin, located in the Andes region of Ecuador and the Omo River Basin, 
located in Ethiopia, Kenya and South Sudan. Since for the latter the required time series of 
water discharge were not operationally available a semi-spatially distributed hydrological 
model (ARCSWAT) was used to generate the time series based on meteorological archives, 
digital elevation models and soil and landcover maps.   
 
The resulting NFO-LP model is meant to optimize water allocation to the different demand 
nodes assuming that water takes one time step to flow from one node to the next one and 
that water losses, temporal delays in water availability and water lost during a flood are 
represented by fixed fractions. The objective function –to be minimized– expressed the sum 
of monetary penalties related to not meeting or to exceeding the demands, to not meeting 
the minimum amount of water required to be available in reservoirs and river segments and 
to the flooding of reservoirs and segments. 
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The LP model was the basis for an NFO-MILP to find the optimal location of reservoirs in the 
WSN.  To this end, all nodes present in the WSN are considered to be candidate reservoirs of 
a predefined capacity. With the MILP model every candidate reservoir is evaluated 
individually and in combination with other reservoirs in terms of its contribution to the 
objective function, i.c. the minimization of the considered penalties. Four scenarios were 
considered: Adding additional reservoirs to the network with the pre-existing reservoirs 
whereby the reservoirs are either pre-filled or initially empty, and evaluating all nodes for the 
construction of a reservoir, including those where a reservoir is already present, again 
prefilled or initially empty.   
 
The NFO-LP model was found to allow for a quick evaluation of a given water supply network 
(WSN). With the NFO-MILP it could be verified whether existing reservoirs are located at the 
most optimal location and whether their capacity is sufficient. Also, the potential location of 
new reservoirs can be screened. Herewith the huge building and maintenance costs of 
reservoirs dominate the penalty costs related to the (non-)adequate allocation of water.   
 
Both the LP and MILP-models can be extended with additional constraints to enhance their 
real-world application potential. The huge spatio-temporal data requirements remain a 
hurdle though. 
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Samenvatting	
 
De beschikbaarheid van oppervlakte- en grondwater is variabel in ruimte en tijd en deze 
beschikbaarheidspatronen komen in vele gevallen niet overeen met de noden van 
maatschappelijke sectoren en individuele consumenten. Dit gebrek aan overeenkomst wordt 
problematisch wanneer de waterbeschikbaarheid daalt, bv. t.g.v. veranderend klimaat, en/of 
de competitie voor het beschikbare water tussen de gebruikers toeneemt. Het is in deze 
context dat de interesse in het concept WEF-nexus is gegroeid in onderzoek, bij 
maatschappelijke actoren en in het beleid. ‘WEF-nexus’ verwijst naar de situatie waarbij 
onvoldoende water beschikbaar is om ten allen tijde de vraag naar water voor 
energieproductie enerzijds en voor voedselproductie anderzijds te voldoen, en is vooral van 
toepassing in regio’s met meer aride klimaatcondities of met uitgesproken afwisseling van 
droge en natte seizoenen. In de nexus worden bovendien de vraag naar water door industrie, 
huishoudens en voor het duurzaam functioneren van ecosystemen meegenomen.  
 
Het toewijzen van het schaarse beschikbare water doorheen ruimte en tijd aan diverse 
gebruikers is een uitdaging van formaat voor waterbeheerders. De typische 
ingenieurtechnische oplossing bestaat in het bouwen en beheren van reservoirs. In dit 
doctoraatsonderzoek behandelden we de toewijzing van water beschikbaar doorheen de tijd 
in een systeem van rivieren met reservoirs, aan concurrentiële gebruikers, als een 
optimalisatieprobleem van stroming in netwerken (NFO). De literatuur beschrijft twee 
groepen van methodes om dergelijk NFO-probleem aan te pakken. De eerste groep omvat de 
heuristische modellen terwijl de tweede gebaseerd is op wiskundige modellen. Heuristische 
modellen beogen het leveren van haalbare en aanvaardbare oplossingen binnen redelijke 
rekentijden. Wiskundige modellen kunnen optimale oplossingen leveren maar vergen dikwijls 
aanzienlijke rekentijden. Aangezien de rekentijd voor strategische beslissingen minder 
cruciaal is werd in dit onderzoek geopteerd voor de ontwikkeling van wiskundige modellen 
van het type ‘Lineaire Programmering (LP)’ en ‘Gemengde Geheeltallige Lineaire 
Programmering (MILP)’. 
 
LP en MILP-modellen werden geformuleerd om de stroming en opslag van water in open 
waterdistributienetwerken (WSN) te optimaliseren waarbij de WSN beschreven werden 
o.b.v. geografische informatie over het bestudeerde stroombekken. Een WSN is 
geconcipiëerd als een verzameling van vectoren geconnecteerd in knooppunten waarbij de 
vectoren riviersegmenten voorstellen en de knooppunten reservoirs, natuurlijke 
waterlichamen als meren en inlaatpunten en uitvoerpunten. De inlaat- en uitvoerpunten 
worden gekarakteriseerd door tijdseries van inkomend en gevraagde watervolumes. De 
volumes water aanwezig in de riviersegmenten, reservoirs en de andere waterlichamen, die 
elk vooraf vastgestelde opslagcapaciteiten hebben, worden geactualiseerd doorheen de 
modellering. 
 
De LP- en MILP-modellen werden eerst geformuleerd, geparameteriseerd en geëvalueerd 
voor hypothetische stroombekkens gekarakteriseerd door artificiële tijdseries. Vervolgens 
werden echte bekken beschouwd: het Machangarabekken gelegen in de Andes regio in 
Ecuador en het grotere Omo-bekken gelegen op het grondgebied van Ethiopië, Kenya en Zuid-
Soedan. Omdat voor beide bekkens tijdseries van inkomende watervolumes niet beschikbaar 
zijn werden deze gesimuleerd via het semi-ruimtelijke gedistribueerde neerslag-afvoermodel 
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ArcSWAT met tijdseries van geobserveerde meteorologische variabelen, een digitaal 
hoogtemodel en bodem- en landgebruik-geodatasets als input. 
 
Het resulterende NFO-LP-model is bedoeld om de toewijzing van water aan de vraag-
knooppunten te optimaliseren veronderstellend dat water van het ene naar het volgende 
knooppunt stroomt in één tijdstap en dat watervolumes die verloren gaan door evaporatie 
en infiltratie, overstroming van riviersegmenten en van reservoirs en door vertraging in de 
waterstroming, als vaste fracties beschreven kunnen worden. De –te minimaliseren- 
doelfunctie van het NFO-LP-model kwantificeert de som van de boetes die verband houden 
met het niet voldoen of overmatig voldoen aan de vraag van de vraagknooppunten, het niet 
voldoen van het minimum volume water dat geacht wordt in reservoirs en riviersegmenten 
aanwezig te zijn en met de volumes water die betrokken zijn bij overstromingen van 
segmenten en reservoirs. 
 
Het LP-model werd vervolgens uitgebreid tot een NFO-MILP-model om de optimale locatie te 
vinden van reservoirs in de WSN. Hiertoe worden alle knooppunten aanwezig in de WSN 
beschouwd als kandidaat-reservoirs met een voorafbepaalde capaciteit. Met het MILP-model 
wordt elk kandidaat-reservoir geëvalueerd zowel apart als in combinatie met andere 
reservoirs wat betreft zijn bijdrage aan de doelfunctie, i.c. het minimaliseren van de som van 
de boetes. Vier scenario’s werden bestudeerd: Het toevoegen van reservoirs, hetzij leeg hetzij 
gevuld, aan de WSN met de bestaande reservoirs en het evalueren van alle knooppunten in 
de WSN m.i.v. deze waar een reservoir reeds aanwezig is, opnieuw veronderstellend dat de 
reservoirs leeg of reeds gevuld zijn. 
 
Met het NFO-LP-model kan een snelle evaluatie gemaakt worden van elke WSN terwijl het 
met het NFO-MILP-model  mogelijk was te evalueren of bestaande reservoirs zich op de 
optimale locatie bevinden en of hun capaciteit voldoende groot is. Ook kunnen de potentiële 
locaties van nieuwe reservoirs gescreend worden. Hierbij domineren de zeer grote bouw- en 
onderhoudskosten de boetes die het gevolg zijn van de sub-adequate toewijzing van water. 
Zowel het LP- als het MILP-model kunnen uitgebreid worden met bijkomende beperkingen 
om hun gehalte aan realisme en toepassingsbereik te vergroten. De zeer grote spatio-
temporele datavereisten blijven een obstakel voor toepassing.  
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1.1. WEF (Water Energy Food) – Nexus  

According to the Cambridge dictionary (Cambridge Dictionary, 2019) the meaning of the word 
“Nexus” is “An important connection between the parts of a system or a group of things”. 
The “nexus” between water, energy and food (WEF) has gained increasing attention in 
research, business and policy spheres (Leck et al., 2015).  Water, energy and food are closely 
linked. A correct access to and effective management of these resources underpins 
development progress (FAO, 2014; Kurian, 2017; Pittock et al., 2013).  

In recent years, profiling the interlinkages between availability of water, energy and food as 
a nexus has been strongly promoted on the global research agenda and has influenced the 
emerging development paradigm. At the core of nexus debates are natural resource scarcities 
and the recognition that water, energy, food and other resources are interlinked in a web of 
complex relations where resource use and availability are interdependent (Dupar & Oates, 
2012; Hoff, 2011). Furthermore, as a result of those dependencies, decision makers from all 
sectors try to establish synergies and potential trade-offs between food, energy, water and 
environment at multiple spatial and temporal scales (Howells & Rogner, 2014). 
 
The World Economic forum was the first organization that invested in research regarding the 
WEF-nexus and at the same time to make people aware of the implications of an 
inappropriate management as well as of the processes to tackle development challenges. At 
the 2008 World Economic Forum’s annual meeting in Greece, water security was addressed 
together with energy, food and other sectors (Smajgl et al., 2016).  There was certain criticism 
about the idea of establishing water as a main component, since it contradicts a cross-
sectorial approach that should substitute the traditional sectorial approaches (Smajgl et al., 
2016). Additionally, there are other external impacts (physical, social, chronic and acute) that 
can complicate the performance of the nexus system (C. Zhang et al., 2018). Among physical 
impacts we can mention climate change, which might affect the water, energy and food 
supply. Among social impacts we count the political aspect, which might affect resources 
management. External impacts can be related to the occurrence time (acute) where the nexus 
can be affected in a short period of time (natural hazards), whereas other external impacts 
(chronic) might take more time to be notorious (population growth) (C. Zhang et al., 2018). 
All these external impacts are shown in Figure 1.1 along two axes: physical-social and chronic-
acute. 
 
Accounting for the external impacts there is an opportunity to connect the nexus with 
broader development planning (Entholzner & Reeve, 2016). Additionally, the United Nations 
Development Programme (UNDP) considered the WEF-nexus as one of the main rationales to 
set the Sustainable Development Goals (SDGs), which incorporate the sustainable use of 
natural resources (Benson et al., 2015; Brouwer et al., 2018). The main WEF-nexus-related 
SDGs identified by (Brouwer et al., 2018) are the following: 
 

• SDG-2: End hunger and promote sustainable food production systems as well as 
agricultural systems; 

• SDG-6: Ensure access to clean water and sanitation for all; 
• SDG-7: Everyone should have access to modern energy services that are reliable, 
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affordable and produced in a sustainable manner; 
• SDG-13: Alleviate climate change and its impacts by taking urgent action. 

 

 
Figure 1.1. Classification of external factors that have an impact on the WEF nexus (C. Zhang et al., 2018) 

The nexus approach takes into account multiple, often contradictory, dimensions of a 
problem. In this context, (Smajgl et al., 2016) established a dynamic nexus approach to 
identify the interactions between the components (water, energy and food) as well as the 
interaction between the components and the nexus core. There are three possible classes of 
policy interventions that can be envisaged: a) sector specific; b) intersectorial links and c) 
change of the nexus core drivers. The first one is the most typical and results into a high risk 
of unintended side effects and adverse sectorial trade-offs. In Figure 1.2, a diagram of the 
cross-sectorial connections is presented.  
 
From Figure 1.2, we can infer that for a decision about whether or not to increase hydropower 
production, decision makers should not look only at fossil fuels and meeting energy demands; 
they must also include in the decision process the neighboring ecosystems, effects on water 
availability and possible effects that may increase food prices (Bird & Dodds, 2014; Smajgl et 
al., 2016). 
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Figure 1.2. Water-energy-food nexus (WEF-nexus) (Smajgl et al., 2016) 

Ringler et al., (2013), stated that not only water, energy and food are related. There is also a 
relationship with land. Therefore, in their research, they stablished the term WELF (Water, 
Energy, Land and Food) to identify the relationship among the actors. For instance, higher 
food prices are a signal of the natural resources scarcities; if the oil and food prices change 
this could affect land prices. It is clear the relationship between:  water and energy; water 
and food; energy and food. However, the land-energy-food relationship is present when 
people used wood as their primary fuel to cook food. 
 
Besides, Ringler et al., (2013), created a nexus framework (Figure 1.3). This chart includes all 
possible relationships among the actors as well as direct and indirect drivers of change 
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Figure 1.3. Extended water, land, energy and food nexus framework (Ringler et al., 2013) 

 
1.2. Problem Statement and general objectives 
 
Several regions and countries across the globe face a difficult challenge in meeting the 
growing demands for food, water, and energy (Smajgl et al., 2016). This challenge is 
additionally complicated due to climate change. Effective adaptation to this change requires 
the efficient use of land, water, energy and other vital resources, and coordinated efforts to 
acknowledge trade-offs and maximize synergies. Whereas the concept of a water–energy–
food nexus is gaining attention, and adaptation to climate change has become an urgent 
need, better knowledge is required about the linkages between them (Rasul & Sharma, 2016). 
 
An option to approach the WEF-nexus problem is by establishing a nexus thinking, which 
encompasses several components where governments and industries determine policies in 
one sector and thereby take into account the implications for other sectors (Bird & Dodds, 
2014). This means e.g. that water, food and energy security must be integrated with climate 
concerns (Benson et al., 2015). This approach offers opportunities to connect water resource 
planning with broader development planning including food and energy provision (Entholzner 
& Reeve, 2016). From the nexus approach it is clear that policy interventions about food, 
water and energy cannot be made in a sector specific and independent manner. The nexus 
approach thus aims for cross-sectoral coordination to exploit synergies and avoid negative 
and unintended side-effects (Smajgl et al., 2016).  

The WEF-nexus approach, which holistically considers the dynamic interlinkages between 
water, energy, and food resources, has become the main concept within scientific and 
practice communities in this area of knowledge. Supporters of this approach state that 
sustainable solutions can be revealed through the use of this approach, rather than with 
conventional approaches that often overlook the interlinkages (Kulat et al., 2019). With the 
confluence of population growth, climate dynamics, urbanization, and environmental 
deterioration, various water issues are emerging into the global arena and becoming the 
central component within the nexus to consider (Bird & Dodds, 2014). Conventional 
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engineering systems and management decision making processes for water resources tend 
to primarily consider cost and quantity criteria. However, long term, optimal, sustainable 
water allocation, and management decisions require a more holistic approach that considers 
all stakeholders and the associated, interdependent systems, such as energy costs, footprints 
of water production and distribution, and tradeoffs of water allocation between sectors 
(agriculture, energy production, and ecosystems) (Kulat et al., 2019).  

Obviously, water is not only required for hydropower production and irrigated agriculture, it 
is also needed for domestic and industrial use and for ecosystem functioning. The availability 
of water, both surface and ground water, is variable in space and time and this variability 
often does not match with the spatially and temporally distributed use pattern of consumers. 
For instance, agriculture requires irrigation water when precipitation is low and power needs 
to be generated throughout the year, also when river flow is low. 
 
To overcome the temporal discrepancy between water availability and consumption, 
reservoirs are built. Monitoring the water available in the reservoirs, and predicting the needs 
of the consumers and the losses throughout the water system is crucial for fair allocation. 
Gathering and processing these data are tedious issues, not only because of the spatially and 
temporally distributed nature of them, but also due to the complexity of the measurements 
and communication devices which are needed (Hanasaki et al., 2006).  
 
Water allocation problems have challenged water managers for decades (Yeomans & 
Gunalay, 2009). Allocation can become controversial when competition for water increases 
among sectors and individual users. Increased population shifts and decreasing water 
supplies magnify this type of  competition in many regions across the globe. Moreover, this 
competition is aggravated if natural conditions become more unpredictable and concerns for 
water quantity and quality grow. Hence, a poorly-planned system for allocating water can be 
at the origin of serious societal problems. It is now recognized that the efficiency, equity and 
environmental soundness of water allocation and management must be improved and 
integrated into environmental policy preparation and implementation (Ahmad et al., 2014; 
Yeomans & Gunalay, 2008). All this has called for computational tools as a requirement for 
optimising water allocation. 
 
There are several considerations to take when making decisions about the construction of 
reservoirs, not only about the reservoir itself but also about options for water allocation and 
energy production development and, therefore, about a range of social, environmental and 
political choices (World Commission on Dams, 2001). One of the biggest challenges is to 
reconsider the management of fresh water. During the 20th century, large reservoirs proved 
to be one of the most important tools to help communities to extract, store and manage the 
water resource. The World Commission on Dams, (2001), states that between 30 and 40% of 
the irrigated lands rely on reservoirs. Aditionally, this commission estimated that 19% of the 
electricity around the world is generated by hydropower plants that rely on reservoirs. On 
the other hand, there is a high variability in large reservoirs in terms of delivering the 
predicted levels of water and electricity. While some reservoirs are not able to meet the 
targets, others continue to generate benefits during several decades (World Commission on 
Dams, 2001). 
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In Figure 1.1, the construction of reservoirs is on the chronic part of the acute-chronic axis 
and this process might be affected for several external factors that cannot be identified at 
first sight (C. Zhang et al., 2018). Regarding the environmental impacts of reservoirs, (Kondolf 
et al., 2014) state that they are related with transient and long-term impacts. The first class 
of impacts is related to the building and filling phase of the reservoir while the second class is 
related to the hydrological and ecological changes they inflict. These ecological changes 
include the conversion from flowing to still water, which might lead to quality problems 
resulting from the interaction of nutrients, and changes in sediment load and channel form. 
Moreover, there are several ecological problems, e.g., fish are not able to migrate and this 
might result in extinction (Galizia Tundisi, 2018; Kondolf et al., 2014). Both authors state that 
there is a big difference on managing a single reservoir and a reservoir system in cascade.  
 
Several researchers have worked on planning and managing reservoirs systems (Ahmad et al., 
2014; Cheng & Chau, 2004; Galelli et al., 2014). However,  there is a lack of scientifically valid 
tools to support strategic and operational decisions regarding the allocation of water from a 
“river-with-reservoirs system” to spatially distributed and temporally variable demands.   

To address this lack of tools, the main objectives of this research are to develop and test 
methods to: 

(1) Determine the optimal allocation of water available through space and time in a 
surface water system without or with one or more reservoirs to spatially and 
temporally variable demands and; 

(2) Determine the optimal location of new reservoirs in such surface water system. 

Both objectives are addressed from the strategic perspective. For (1) the aim is to come up 
with methods that are capable of evaluating past allocation practices as a basis for future 
improvements while the decision to construct new reservoirs at a to-be-selected location is 
for sure a strategic decision.   

1.3. State of the art in modelling water allocation and in optimization of reservoir 
location 
  
1.3.1. Optimization of surface water allocation 
 
1.3.1.1. Supply Chain Optimization (SCO) 
 
According to Beamon, (1998) and Serdarasan, (2013), a supply chain can be considered as an 
integration of several actors (producers, suppliers, distributors, retailers and clients) which 
aim at producing and delivering to consumers a specific product. Lu, (2011) defines a supply 
chain (SC) as a group of independent components connected together through the products 
and services that they provide to the different consumers. Bowersox et al., (2002) state that, 
in order to identify all the components in a supply chain, a generalized supply chain model 
must be created.  
 
Commonly, this kind of models is network-based, i.e., all actors should be connected in order 
to identify their interaction. Important issues to consider are transportation and its cost. 



CHAPTER 1 
 

 8 

Transportation is considered as the key element that joins two or more separate components 
(Fallis, 2013; Stadtler, 2015; Tseng, 2005). Kilger, (2015b) states that, in order to optimize a 
process, all components and their relationships must be identified and then used to create a 
supply chain.  
 
Different techniques for supply chain optimization have been proposed and applied in 
different areas. Table 1.1 presents a non-exhaustive overview. 
 

Table 1.1. Fields where SCO has been implemented 

Field Authors Title Technique 
Bio-
Engineering 

De Meyer et al., 
(2014) 

Methods to optimize the design and 
management of biomass-for-
bioenergy supply chains: A review. 

Linear Programming (LP), 
Integer Programming (IP), 
Mixed Integer Linear 
Programming (MILP), Non 
Linear Programming (NLP), 
Heuristics, and multicriteria 
decision analysis.  

Mathematical 
programming 
models 

Mula et al., (2010) Mathematical programming 
models for supply chain production 
and transport planning. 

Linear Programming, Non 
Linear Programming, Multi-
objective Programming, 
Fuzzy Programming, 
Stochastic Programming, 
Heuristics, Metaheuristics 
and Hybrid models. 

Bio-
Engineering 

Srivastava, (2007) Green supply-chain management: 
A state-of-the-art literature review. 

Linear Programming, Non-
Linear Programming, 
Markov Chains, Mixed 
Integer Linear 
Programming. 

Chemical-
Engineering 

Häberle & Kilger, 
(2015) 

Strategic Network Design in the 
Chemical Industry  
 

Linear Programming 

Demands Wagner & Kilger, 
(2015) 

Demand Planning Mathematical models and 
Heuristic models. 

Food Wagner & Meyr, 
(2015) 

Food and Beverages 
 

Linear Programming  

Computer 
Assembly 

(Kilger, 2015a) Computer Assembly Mathematical models 

Oil Industry Meyr & Roitsch, 
(2015) 

Oil Industry Mathematical models and 
Heuristic models. 

Logistics (Lautenschläger, 
2015) 

Event-Based Planning for Standard 
Polymer Products 

Mixed Integer Linear 
Programming 

 
Holweg et al., (2005) conducted an extensive literature review in order to identify how 
different authors have modelled their supply chain (SC) when there are several external 
components. An analogy was implemented in order to explain how water allocation is related 
with SCO. Thus, water stored represented an inventory and the flow of water represented 
products sales. They concluded that the effectiveness of supply chain collaboration relies on 
two factors:  a) the level on how the SC can integrate external and internal operations, and b) 
the level of effort on how the SC must include the different settings related with geographical 
dispersions, demand pattern and the product itself.  
 
1.3.2. Water flow discretization 
 
As water flows within a river bed in a continuous manner, it is necessary for a proper 
algorithm to discretize the water flow (Vaghefi et al., 2018). Thus, Pasumarthy et al., (2012), 
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states that the process of discretization the behavior of an open channel water flow it is 
complex due to the fact that water is not constant or steady; it is required to know the 
geometry of the river and some parameter such as: depth and shape of the river bed, 
evaporation, infiltration, water flow velocity, etc. In contrast, Shimizu et al., (2019), states the 
piped water systems are steadier, the cross section of pipes is typically rounded, water 
velocity is constant and can be regulated with pumps and valves.  
 
Lagacherie et al., (2010) created an approach to discretize the spatial landscape in order to 
develop a computational tool (Geo-MHYDAS) to model hydrological processes. The main 
objective is to process geographical objects whose limits are considered as hydrological 
discontinuities. Those limits can be natural or artificial (man-made). Moreover, several 
authors such as Dongquan et al., (2009), Kneis et al., (2009) and Rathjens & Oppelt, (2012) 
have conducted research in order to obtain a spatial discretization.  
 
1.3.3. Hydrological modelling and scenario analysis  
 
The spatio-temporal availability of water in a surface water network is conditioned by the 
hydrological cycle. Hence a water allocation model needs observed or modelled data of the 
water inputs in the network. Models that are capable of generating these inputs and 
describing the propagation of water through the network are rainfall-runoff models and 
integrated hydrological-hydraulic models. 
 
Devi et al., (2015) stated that the most known and used hydrological/hydraulic modelling 
tools are MIKE SHE (Système Hydrologique Européen) (Abbott et al., 1986), HBV model 
(Hydrologiska Byrans Vattenavdelning model) (Bergstrom S., 1995), TOPMODEL (TOPography 
based hydrological MODEL) (Beven et al., 1984), VIC model (Variable Infiltration Capacity 
model) (Liang et al., 1994) and SWAT (Soil and Water Assessment Tool) (Neitsch et al., 2009). 
We elaborate here upon SWAT since we make use of that model in chapters 3 and 5. 
 
The Soil and Water Assessment Tool (SWAT) is a hydrological modelling tool that predicts the 
impact of land management practices on water quantity and quality in large watersheds over 
long periods of time. This model integrates information on weather, soil properties and 
vegetation to simulate physical processes associated with water (e.g., sediment transport) 
(Arnold & Fohrer, 2005; Neitsch et al., 2005, 2009). 
 
Watersheds might be divided into a number of subbasins when one or several areas are 
dominated by a specific climate, land use or soil type. An example of subbasin delineation is 
shown in Figure 1.4. Within each subbasin the input data is grouped into hydrological 
response units (HRU). These HRUs are lumped land areas within the subbasin that are 
comprised of unique land cover type, soil type, and management combinations (Arnold & 
Fohrer, 2005; Neitsch et al., 2005, 2009). 
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Figure 1.4. Subbasin delineation for a watershed (Neitsch et al., 2009) 

The SWAT model simulates the water flow within a watershed. This simulation process 
consists of two phases: the land phase and the routing phase of the hydrological cycle. The 
land phase is based on Equation ( 1.1). In this equation, the final soil water content is 
represented by 𝑆𝑊!, which corresponds to the summation of the initial soil water content 
(𝑆𝑊") on day i and the total amount of the precipitation (𝑅#$%) on day i minus the surface 
runoff (𝑄&'()) on day i, the amount of water lost by evapotranspiration (𝐸$) on day i, water 
lost through seepage (𝑤&**+) on day i and the amount of return flow (𝑄,-) on day i.  

 
With the delineation of HRUs within the watershed, the accuracy of the water balance 
simulations will be increased since the total runoff can be predicted for each HRU in a 
separate way and different evapotranspiration values can be obtained for various crops and 
fields (Arnold & Fohrer, 2005; Neitsch et al., 2005, 2009). 
 
To model the land phase, different inputs are required. Weather data such as daily 
precipitation, minimum and maximum temperature, relative humidity, solar radiation and 
wind speed are essential. As rain falls, it might be intercepted by vegetation canopy or fall on 
the surface and water that reaches the surface can either infiltrate into the soil or flow 
overland as runoff. Figure 1.5, gives a more detailed overview of which pathways are taken 
into account by SWAT (Arnold & Fohrer, 2005; Neitsch et al., 2005, 2009). 
 

𝑆𝑊! = 𝑆𝑊" +) *𝑅#$%(/) − 𝑄&'()(/) − 𝐸$(/) −𝑤&**+(/) − 𝑄,-(/),
!

/12
 ( 1.1 ) 
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Figure 1.5. Schematic of pathways available for water movements in SWAT (Neitsch et al., 2009) 

Evapotranspiration is a key factor in hydrology calculations. The evapotranspiration value 
corresponds to the total summation of the water evaporated directly from the water surface 
or from the soil (evaporation) and water lost through vegetation (transpiration). Since the 
evapotranspiration rate is strongly affected by micro-climatic processes, potential 
evapotranspiration is calculated in a first stage (Arnold & Fohrer, 2005; Neitsch et al., 2005, 
2009). 
 
Potential evapotranspiration can be defined as the rate at which evapotranspiration would 
occur in an area that is completely and uniformly covered with a short green grass crop and 
with an unlimited supply of soil water. In SWAT, three methods are incorporated to estimate 
the potential evapotranspiration, namely the Penman-Monteith (Monteith, 1965) method, 
the Priestley-Taylor method (Priestley & Taylor, 1972) and the Hargreaves method 
(Hargreaves et al., 1985). The most frequently used method is Penman-Monteith (Equation 
Error! Reference source not found.)) and requires information about solar radiation, air 
temperature, relative humidity and wind speed (Arnold & Fohrer, 2005; Neitsch et al., 2005, 
2009). 
 

Where,  
 

𝜆𝐸 = 	
𝛥 ∙ (𝐻3*! − 𝐺) + 𝜌$/( ∙ 𝑐+ ∙ 7

𝑒4" − 𝑒4	
𝑟$

:

𝛥 + 𝛾 ∙ <1 + 𝑟6
𝑟$
>
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𝜆𝐸 [MJ m-2 d-1]: latent heat flux density 
𝐸 [mm d-1]: depth rate evaporation 
Δ [kPa °C-1]: slope of the saturation vapor pressure-temperature curve 
𝐻3*! [MJ m-2 d-1]: net radiation 
𝐺 [MJ m-2 d-1]: soil heat flux 
𝜌$/(  [kg m-3]: air density 
𝑐+ [MJ kg-1 °C-1]: specific heat at constant pressure 
𝑒4" [kPa]: saturation vapor pressure of air at height z 
𝑒4 [kPa]: water vapour pressure of air at height z 
𝛾 [kPa °C-1]: psychometric constant  
𝑟6  [s m-1]: plant canopy resistance 
𝑟$ [s m-1]: aerodynamic resistance 
 
The final evapotranspiration is calculated immediately after the calculation of the potential 
evapotranspiration. In a first step, SWAT considers the evaporation of the rain that is 
intercepted by vegetation. If the potential evapotranspiration is less than the amount of free 
water that can be held by the canopy, the actual evapotranspiration is equal to the potential 
evapotranspiration and a certain amount of water may remain in the canopy. On the other 
hand, if the potential evapotranspiration is greater than the amount of free water held in the 
canopy, there is no water left on the canopy and additional water needs to be lost by 
evapotranspiration. In a second step, the maximum amount of transpiration is calculated, 
based on the potential evapotranspiration and the leaf area index. In a next step, water is 
evaporated from the soil and snow through sublimation. Water will be first removed from the 
snow pack and if an evaporation demand still exists afterwards, this demand must be divided 
between the different soil layers. SWAT assumes that 50% of the evaporative demand is 
extracted from the first 10 mm of soil and 95% is extracted from the first 100 mm of soil 
(Arnold & Fohrer, 2005; Neitsch et al., 2005, 2009). 
 

 

Figure 1.6. Schema of the water routing process from SWAT (Neitsch et al., 2009) 
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The second phase in SWAT’s simulation approach is to model the water routing through the 
watershed. Water flows directly over the land or through channels. Four flow components 
can be considered during the process, namely: water, sediment, nutrients and organic 
chemicals (Figure 1.6).  
 

 

Figure 1.7. Schema of the trapezoidal shape in a channel (Neitsch et al., 2005, 2009) 

In order to model water routing, channel characteristics must be determined. An important 
factor in this regard is the shape of the main channel; SWAT assumes a trapezoidal shape and 
characteristics such as depth and top width (𝑊) that must be provided by the user as inputs 
(Figure 1.7). The next step is to calculate the remaining channel characteristics including the 
cross-sectional area of flow within the channel (𝐴67), the hydraulic radius for a given depth 
of flow (𝑅63) and the slope along the channel length (𝑠𝑙𝑝67). These parameters are needed to 
calculate the flow rate and the velocity in each segment of the water channel. Equation (1.2) 
is used to calculate the volumetric flow qch whereas Equation (1.3) is used to calculate the 
velocity vc. Equation (1.2) and (1.3) are known as the Manning equations. The constant 𝑛 
represents the Manning’s coefficient for the water channel segment. In the SWAT model, 
temporary losses such as transmission losses and bank storage are taken into account (Arnold 
& Fohrer, 2005; Neitsch et al., 2005, 2009). 
 

𝑞67 =
𝐴67 ∗ 𝑅67

8/: ∗ 𝑠𝑙𝑝67
2/8

𝑛  (1.2) 

𝑣6 =
𝑅67
8/: ∗ 𝑠𝑙𝑝67

2/8

𝑛  (1.3) 

Impoundments, e.g., reservoirs, ponds, wetlands and depressions, located within the 
subbasins play an important role in water supply and flood control. Equation (1.4) allows to 
calculate the total volume of water stored in a reservoir. The water balance in this case is 
defined as the sum of the total volume of water volume stored initially (𝑉&!;(*#) plus the 
volume that is entering (𝑉)<;-/3) plus the volume of precipitation that is falling on the 
reservoir (𝑉+*+) minus the volume that is flowing out of the water body (𝑉)<;-;'!) minus the 
volume that is removed by evaporation (𝑉*=$+) minus the volume lost through seepage (𝑉&**+) 
(Arnold & Fohrer, 2005; Neitsch et al., 2005, 2009). 
 

𝑉 = 𝑉&!;(*# + 𝑉)<;-/3 + 𝑉+*+ − 𝑉)<;-;'! − 𝑉*=$+ − 𝑉&**+ (1.4) 
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SWAT cannot account for the hydraulic effects along the river and/or canal network, such as 
backwater effects, the effect of hydraulic regulation, etc. Hydraulic models as well as full 
hydrodynamic models have been replaced by simplified, conceptual or grey-box models. 
Grey-box models usually combines some real-world data with data from machine learning 
models such as artificial neural networks (Acuña et al., 1999). 
 
1.3.4. Other approaches in water allocation 
 
The aim of getting a balanced allocation of water has been under debate for many years. To 
this end, several researchers have created models based on different conditions and 
requirements. This kind of research has been widely applied in countries that are suffering 
from droughts and floods. This topic becomes even more important in regions where water 
availability is too low to satisfy the population needs. In the past, many methods have been 
proposed to tackle this problem. These methods have been traditionally based on differential 
equations including iterative processes (Arnold & Fohrer, 2005). For instance, MIKE SHE (DHI, 
2019).  Along this research line, (Tinoco et al., 2016) and (Tinoco et al., 2014) report on studies 
in the Macul basin, located in northern Ecuador. The objective of those studies was to create 
a mathematical model to achieve an optimal distribution of water from rivers to the different 
irrigation projects. This optimization approach consists of a trial-and-error process following 
these steps: 1) River/reservoir system modelling, in order to simulate and optimize water 
availability for a period of historical data; 2) Post-statistical analyses of each of the resulting 
reservoir outflows and reservoir water levels; and, 3) Extreme value analysis of the minimum 
reservoir water levels. 
 
Table 1.2 shows a non-exhaustive list of the most commonly used approaches to model water 
allocation processes. 

Table 1.2. Approaches for water allocation 

Authors Title Approach 
Yan et al., (2017) Many-objective robust decision making for 

water allocation under climate change 
Multi-objective evolutionary 
algorithms 

Ghosh et al., (2017) Water allocation and management along the 
Santa Cruz border region 
Sanchari 

Mathematical and Linear 
programming 

Jafarzadegan et al., (2014) A stochastic model for optimal operation of 
inter-basin water allocation systems: a case 
study 

Stochastic model. 

Condon & Maxwell, (2013) Linear optimization fully integrated with 
physical hydrology model. 

Linear optimization allocation 
with an integrated physical 
hydrology model. 

Ashraf Vaghefi et al., (2013) Integration of hydrologic and water allocation 
models in basin-scale water resources 
management considering crop pattern and 
climate change: Karkheh River Basin in Iran 

Linking SWAT and MODSIM 
(Labadie, 2006) 

Thevs et al., (2015) Water allocation and water consumption of 
irrigated agriculture and natural vegetation in 
the Aksu-Tarim river basin, Xinjiang, China 

Evapotranspiration mapping 
and water balance calculations 

 
Water allocation problems are typically tackled with computational models, for instance: 
WEAP (Yates et al., 2005), WaterWare (Environmental Software and Services, 1995), MODSIM 
(Labadie, 2006), RiverWare (Zagona, 2001), REALM (Perera et al., 2005), MIKE Hydro Basin 
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(DHI, 2019), MULINO-DSS (Giupponi et al., 2004), etc. These tools must be provided together 
with a set of constraints, priorities, and water demands. To carry out optimization tasks, 
several other conditions must be provided, for instance, operating policies, decision steps, 
etc. Typically, allocation tools require limited inputs and computational resources, allowing 
users to carry out calibration and tuning procedures in a reasonable time frame (Refsgaard & 
Storm, 1996). 
 
1.3.5. Water Resource Management (WRM) 
 
The World Bank, (2017), defines WRM as the process related with the process of planning, 
developing and managing of water resources and ecosystems in quality and quantity across 
water demands. It also includes institutions, infrastructures and ICT system. The main aim of 
WRM is to ensure that sufficient water will be delivered to the users (drinking, sanitation, 
food production, irrigation, energy production, etc.) 
 
The WRM paradigm has been recognized widely as the current feasible way to ensure a 
sustainable planning and management of water systems (Calizaya et al., 2010). Applying an 
optimization process to the water resource management problem may help to store water 
during the wet periods and deliver it during the dry ones. Thus, water resource might be 
assured (Shahid, 2010).  
 
Nowadays, seasons are becoming more extreme due to global warming (Trenberth et al., 
2014) and, therefore, reservoirs are becoming a key point in water resource management, 
since they allow for storing water during the rainy season and supply it during the dry season 
(Das et al., 2015). Grigg, (2016) states that WRM is the process on how to distribute water in 
an efficient and equitable manner among different consumers and users. This process takes 
into account suppliers and several factors such as: climate, poverty, pollution, infrastructures, 
geology, etc. that may influence water availability.   
 
Several authors also state that, currently, there are many issues within the water allocation 
process such as: deficit in irrigation systems (Reca et al., 2001), unfair allocation of water for 
human consumption (Syme et al., 1999), power generation (Kadigi et al., 2008) and WEF-
nexus (Namany et al., 2019; Türkeş et al., 2020). 
 
For instance, Akram & Mendelsohn, (2017) could verify from a use case in Pakistan that the 
allocation process within an irrigation system is not completely balanced: users at the 
beginning of the irrigation network received more water compared with the users at the end.  
 
1.3.6. Optimization approaches for managing reservoirs   
 
Several researchers are trying to create and apply different approaches. Labadie, (2004) 
provides a comprehensive review on the optimization of reservoir system management and 
operation. That review reports on methods like 1) Implicit stochastic optimization, 2) Linear 
programming models, 3) Network flow optimization models, 4) Nonlinear programming 
models, 5) Discrete dynamic programming models, 6) Explicit stochastic optimization, 7) Real-
time control with forecasting, and 8) Heuristic programming models.  
 



CHAPTER 1 
 

 16 

According to Md. Azamathulla et al., (2008), there is an increasing awareness among irrigation 
planners and engineers to operate reservoir systems in a more efficient way. In their research, 
they developed and made a comparison between genetic algorithms (GA) and linear 
programming (LP) models that were applied to an existing reservoir system in Madhya 
Pradesh, India. They found that GA was superior in performance compared to LP. Another 
approach is the one from Chou & Wu, (2014) presented a method to establish the objective 
function of a network flow programming model for simulating river–reservoir system 
operations and the associated water allocation. This research also included the development 
of an optimization model based on a linear programming approach to minimize water surplus 
assigning priorities to the different water usages.  
 
In this regard, Abdulbaki et al., (2017) report on the development of a model to optimally 
allocate water resources in reservoir systems by applying an Integer Linear Programming (ILP) 
approach. The goal of this model is to minimize total water cost considering treatment and 
distribution costs. 
 
Several researches have been performed in order to optimize water reservoir systems. Mao 
et al., (2016), state that an optimization process applied to systems of reservoirs might help 
in flood control, drought mitigation and biodiversity conservation. In their research, they 
developed an optimization model based on genetic algorithms (GA).  
 
Another way of applying water optimization was addressed by Moridi & Yazdi, (2017). They 
focused on the minimization of damage caused by flood in downstream sites and the 
simultaneous minimization of the reduction on hydro-power generation. Their model was 
based on MILP as the main optimization technique. 
 
In addition to the previously mentioned techniques, Table 1.3 presents a non-exhaustive list 
of research articles regarding the optimization of water allocation. 
 
Table 1.3 reveals that the applied methods for optimizing water allocation belong to two main 
categories: exact and heuristic models. Exact models provide an optimal result from a set of 
feasible solutions. The exact approaches applied in this context are typically based on linear, 
integer and mixed integer linear programming (Horne et al., 2016). On the other hand, 
heuristic models provide an acceptable close-to-optimal solution that might not be the best 
(Winston & Goldberg, 1994). 
 
There some methods which are related with Machine Learning which try to perform 
optimization. In this matter, Gambella et al., (2021), states that this kind of methods are based 
on the experience and with this solve complex problems under condition which are varying 
from past information. Moreover, Sun et al., (2020) , stated that there is an additional 
category which is related with optimization called “Machine Learning models”; in their 
research they stated that once a machine learning method is formulated, the problem can be 
solved as the optimization problems. Besides, one of the most used methods is based in 
neural networks (deep learning) such as: Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN). 
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Table 1.3. Approaches in water optimization allocation 

Authors Optimization technique Approach 
Ha & Gao, (2017) Mixed Integer Linear Programming Water allocation under climate change 
T. Wang et al., 
(2017) 

Genetic Algorithms, Support 
Vector Machines, Artificial Neural 
Networks and Multiple loop 
iterations 

Multi-Dimensional equilibrium allocation model of 
water resources. 

Li et al., (2017) Dynamic Programming Multiple water resources allocation  
Jamshid Mousavi 
et al., (2017) 

Mixed Integer Non-linear 
Programming (MINLP) 

Multi-Objective optimization-simulation in water 
allocation. 

Kermani et al., 
(2017) 

Mixed Integer Linear Programming Optimization of water allocation and energy 
production. 

Singh, (2017) Linear Programming Optimal allocation of water and land resources to 
maximize farm income and to minimize irrigation-
induced environmental problems. 

(Liu et al., 2017) Least Squares Support Vector 
Machines and Artificial Neural 
Networks 

Rank solutions of multi-objective water resources 
allocation models. 

Olofintoye et al., 
(2016) 

Artificial Neural Networks and 
Pareto multi-objective differential 
evolution 

Real-time optimal water allocation from 
hydropower generation. 

Al-Zahrani et al., 
(2016) 

Goal Programming Multi-objective optimization for water resources 
management. 

Nguyen et al., 
(2016) 

Ant Colony Optimization Crop and water allocation optimization. 

Hu et al., (2016) Compromise Programming Optimal allocation of regional water resources. 

Z. Wang et al., 
(2015) 

Linear Programming Optimal water resources allocation under the land 
use constraint. 

F. Chang et al., 
(2014) 

Genetic Algorithms Optimal reservoir operation and water allocation. 

Horne et al., (2017) Mixed Integer Programming Design of an environmental flow regime, in the 
context of optimization. 

Freire-González et 
al., (2018) 

Linear Programming Water allocation during droughts in the United 
Kingdom. 

 
1.3.7. Optimization of reservoir location 
 
The optimization of a reservoir location, requires a complete evaluation of the possible 
combinations of the decision variables such as reservoir properties (minimum and maximum 
capacities), locations and water production scheduling parameters. The exploration of all 
possibilities may be impractical due to the computation time (Bittencourt & Horne, 1997). 
With this regard, this research project is focused on the optimization of the (water) locations 
with a reservoir or system of reservoirs.  
 
Chhuon et al., (2016), proposed a method to optimize water allocation to the different 
demand users along the Prek Te River basin in Cambodia. In their research, they used SWAT 
to simulate the behaviour within the basin with a set of possible locations for new reservoirs. 
Afterwards, they have used MODSIM for planning and management of the reservoir systems. 
The output provided a decision support system to optimize the water allocation process 
based on the water demands.  
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A different approach was developed by Walsh et al., (2015). They created a tool called “NC-
RES”. This application is a web-based geographic information system to help non-scientific 
and non-specialist users to assess possible locations for reservoirs. Besides, the tool uses 
terrain data from North California's LiDAR-derived, high-resolution digital terrain model. 
Among the features of the proposed tool there is the possibility of analyzing possible 
inundation and drainage areas.  
 
1.4.  Specific Objectives and Selected Approaches 
 
A rather original approach emerging from the literature is to address the water allocation 
problem as an instance of the supply chain approach (chapter 2, section 2.2.1) by considering 
the allocation as a “Network Flow Optimization Problem (NFO-P)” (Winston & Goldberg, 
1994). There are two approaches to address this problem Lalehzari et al., (2016) and Sechi & 
Zucca, (2015). The first approach is based on trial-and-error mechanisms, establishing an 
objective function to minimize with the correspondent thresholds and priorities. This process 
involves several iterations in which the total cost is being reduced. The second approach 
makes use of mathematical models. In particular linear programming (LP) and mixed integer 
linear programming models (MILP) have been applied to allocate water to the different 
demand users and is mainly based on priority setting among the demands to be fulfilled 
(Heydari et al., 2015). Besides, a penalization in monetary units is associated to the amount 
of water not delivered. Thus, those models are oriented to the minimization of these costs 
(Jamshid Mousavi et al., 2017; Moridi & Yazdi, 2017; Morsi et al., 2012; Singh, 2017). Several 
studies are available about the application of such mathematical models for operational 
optimization (Galelli et al., 2014; Lalehzari et al., 2016; Mao et al., 2016; Z. Wang et al., 2015). 
However, there is a lack of research to address the NFO-P taking the distribution in space and 
the temporal variability of water availability and water demand into account.    
 
For this PhD-project, we selected linear programming (LP) as the approach for optimizing the 
allocation of water supplied by a system of multiple rivers with one or more reservoirs, 
towards multiple downstream uses such as irrigation, hydropower generation, human 
consumption, ecosystem functioning, industrial use, etc. with a view to satisfy the needs as 
good as possible from a WEF-nexus perspective. In order to tackle this problem, the flow of 
water in a river with a reservoir system is considered from a discrete point of view. 
Conceptually, batches of water are transported between or stored in nodes, just like this 
would happen in a freight transportation network, considering losses and transport capacity 
constraints.  

For the reservoir location problem we opted for extending the LP-model towards a MILP-
model in which binary variables express whether a reservoir at one or more candidate 
location leads to an optimised allocation. 

To formulate  and test the LP and MILP models, an artificial surface water system is used. Next 
the models are used in real world case studies, i.c. the Machángara River Basin in southern 
Ecuador, the Omo River Basin in Ethiopia, Kenya and Southern Congo.  

As a consequence of these choices we reformulated our general research objectives into two 
more specific research questions:  
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• RQ1: What are the strengths and weaknesses of LP and MILP-approaches for the ex-
post evaluation of the performance of a given water supply network (WSN) given 
historic supply and demand?  

• RQ2: What are the strengths and weaknesses of LP and MILP-approaches to optimize 
the WSN in terms of the location of new reservoirs of a predefined capacity? 

Figure 1.8, shows the work flow to tackle the research questions (objectives). This figure, 
considers the scenario where there are no long-term time-series of observed data available. 
In this case, data simulated with the SWAT model were used as input data for the LP and MILP 
models. Finally, the model  is considered as a DSS (Decision Support System) to determine the 
allocation of water to the different users. 
 

 
Figure 1.8. General work flow of the research project 
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1.5.  Outline of this dissertation 
 
The outline of this manuscript is shown in Figure 1.9. In the present chapter 1 the problem is 
stated together with the general objectives and research questions. Besides, chapter 1 
includes a review of the scientific literature of the modelling of water allocation and the 
optimization of reservoir location.  
 
In chapter 2, a Network Flow Optimization - linear programming model (NFO-LP) for the 
allocation of surface water to spatially distributed and temporally variable demands is 
proposed.   
 
In chapter 3, the NFO-LP model is calibrated, validated and applied to real world data (the 
Machángara River Basin in southern Ecuador). In order to obtain the required input data, 
ARCSWAT (Texas A&M University, 2009) was used. As a result, we managed to obtain 
georeferenced time series of water availability in the river network.  
 
In chapter 4, an extension of the NFO-LP model is presented. With this extension, the model 
can simultaneously allocate water and recommend the potential location of new reservoirs. 
To achieve these goals, the NFO-LP model was upgraded to a Mixed Integer Linear 
Programming model (NFO-MILP). This involved adding several binary variables associated to 
each possible reservoir plus the inclusion of a building and management cost. Dummy input 
data is used to illustrate the model. 
 
In chapter 5 a different region was studied: the Omo River Basin. As a result of the application 
of the extended NFO-MILP model, a recommendation for the potential location of new 
reservoirs was obtained as well as an optimal allocation scheme of water resources. New 
reservoirs were selected from a set of “possible reservoirs”. 
 
chapter 6 summarizes all findings, discusses them and presents the conclusions of the 
complete research project and proposes future work.  
 
Finally, a complete list of the cited references is given.  
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Figure 1.9. Outline of this dissertation. 
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Chapter	2	
Network	Flow	

Optimization	-	Linear	
Programming	model	(NFO-
LP)	for	optimizing	water	

allocation	
 
 
The core of this chapter has been published as: 
 
Veintimilla-Reyes, J.; Cattrysse, D.; De Meyer, A.  Van Orshoven, J. Mixed Integer Linear 
Programming (MILP) approach to deal with spatio-temporal water allocation. Procedia Eng. 
2016, 162, 221–229. 
 
Veintimilla-Reyes, J., De Meyer, A., Cattrysse, D., Van Orshoven, J., 2018. A linear programming 
approach to optimize the management of water in dammed river systems for meeting 
demands and preventing floods. Water Sci. Technol. Water Supply 18, 713–722. 
https://doi.org/10.2166/ws.2017.144. 
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2.1. Introduction 
 
Exacerbated by climate change, access to sufficient quantity of water of sufficient quality is 
becoming one of the biggest problems around the world (Turral et al., 2011). This problem is 
more evident in countries with pronounced and long dry seasons (Bangash et al., 2012). To 
support the allocation of water as a scarce resource, water allocation models have been 
developed using heuristics, trial-and-error and mathematical approaches (Labadie, 2004, 
2006; Tinoco et al., 2016; Yeomans & Gunalay, 2009). 
 
The present chapter proposes a new linear programming (LP) model for optimizing the 
allocation of the water available in a river-with-reservoirs-system to different downstream 
uses. To address the spatial heterogeneity and temporal variability of the water availability, 
the proposed model departs from a spatially explicit Water Supply Network (WSN) (Qiao et 
al., 2007; Sarkis, 2012) which allows to tackle the water allocation problem as a Network Flow 
Optimization Problem (NFO-P). The WSN-approach allows for the comprehensive 
representation of all components of the surface water system so that a generic optimization 
model can be created that is applicable to different river basins. Whereas for the design of 
the model and its testing in a case study fictitious data were used, in follow-on chapters, the 
model is calibrated for and applied to real world cases.    
 
2.2. Materials and methods 
 
2.2.1. Approach  
 
The WSN and the water allocation problem to be modelled have the following characteristics: 
(1) the quantity of water available in river segments and reservoirs is variable in time; (2) 
multiple  water users are distributed in space but connected to the river-with-reservoirs-
system and have water demands which vary in time; (3) unmet demands must be minimized, 
floods of river segments and reservoirs  must be avoided to the extent possible and presence 
at all times of a minimal amount of water in river segments and reservoirs must be guaranteed 
for ecological reasons. 
 
A conceptual representation of the problem was presented in chapter 1 section 3. This 
abstraction encompasses three main components: 1) inputs (water availability generated by 
the SWAT-model from geographical and climate information of the study area); 2) 
optimization model (NFO-LP) and 3) outputs (water allocated to the different demands in the 
study area). 
 
The WSN (Coulthard & Van De Wiel, 2012; Merkuryeva et al., 2015; Qiao et al., 2007; Sarkis, 
2012; Shafroth et al., 2010) is a general abstraction of all components of the river-with-
reservoirs-system needed to model and optimize the water allocation. The WSN has a 
topological arc-node data structure in which nodes are characterized by time series of water 
availability or flow at a sufficient temporal resolution.  The time series may be acquired by 
sensors (real time and/or historical archives) or derived from forecasted time series (e.g., 
using machine learning methods). The ecological role of the river is taken into account by 
integrating in the WSN a downstream demand node and by continuity constraints so that at 
each time step, a minimum amount of water remains present in the river segments.Since the 
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goal of the optimization is to manage the water levels in the reservoirs and river segments 
and to allocate the available water resources so that spatially and temporally distributed 
demands are optimally met with no floods, the Network Flow Optimization problem is 
considered to be an instance of the Minimum Cost Flow Problem (MCFP) (Chou & Wu, 2014), 
which can be solved with an LP model (Chou & Wu, 2014; Frizzone et al., 1997; Kolb et al., 
2012; Labadie, 2004; Winston & Goldberg, 1994). In this kind of problems, the aim is to 
determine the most efficient way to send a specific amount of flow through a network.  
 
The described MCF-problem was modelled using the optimization solver Gurobi (Gurobi, 
2015). This solver was preferred above other solver software packages (CPLEX from IBM (IBM, 
2020), LINGO from LINDO (Lingo, 2006), etc.) due to its support for the Python programming 
language and because of the adequate availability of documentation. 
 
2.2.2. Generic model 
 
First the generic WSN was conceived, as shown in Figure 2.1. A distinction is made between 
three types of nodes: R (reservoir), T (transfer node) and D (demand node). River segments 
(X) have a start node and an end node which can be of any of the three types. For instance: 
river segment Xn,d, starts at  transfer node (nÎT) and ends in  demand node (dÎD) whereas 
Xn,r, is a segment between a transfer node (nÎT) and a reservoir node (rÎR). Apart from river 
segments that have a start and an end node, also input segments (I) are considered. Input 
segments have no defined start node but are used to model the inflow of water running off 
from the land in the river-with-reservoirs-system. A node may be the end node of several 
input segments and at the same time receive water from regular river segments (Figure 2.1). 

 
Figure 2.1. Graphical representation of the generic WSN: water flows through segments which are 
connected by transfer nodes, reservoir nodes and demand nodes (left); Flow generalization in one 

transfer node (right) 
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In line with the characteristics of the problem (Section 2.1) and the generic representation of 
the WSN (Figure 2.1), the objective function of the LP-model is formulated in Equation (2.1). 
It expresses the objective as optimally meeting water demands while simultaneously avoiding 
floods, respecting the maximum and minimum capacities in rivers, demand segments and 
reservoirs. It is complemented by the available water and by a set of penalties related to not 
meeting the mentioned demands or to not reaching or exceeding the set limitations. The logic 
of the penalty values is that they are established in a way that the largest values are assigned 
to the demands with the highest priority. If it turns out to be impossible to meet all demands 
the model minimizes the sum of the penalties.   
 

Minimize		∑ ∑ ∑ *P> ∗ S?,>AB ,A>? +∑ ∑ ∑ *E# ∗A>?

S?,>AC ,+∑ ∑ (UD ∗ SHDAB)A +D ∑ ∑ (AD ∗ OFDAC)AD + ∑ ∑ (W? ∗A?

T?,?C2AC ) + ∑ ∑ (B? ∗ Q?,?C2AB )A? + ∑ ∑ ∑ (F# ∗ MinXD?,>AB )A>? +
	∑ ∑ ∑ 	*G# ∗ MaxXD?,>AC ,A>? 	

	 (2.1) 

 
 
Equation (2.1) is composed of eight terms:  

• The first term refers to the unmet demands (S?,>AB ) and their corresponding penalties 
(P?); 

• The second term (S?,>AC ) is related to the penalties when more water than required is 
allocated to a demand node;  

• The third (SHDAB)  and the fourth (OFDAC) terms are related to a penalization for not 
reaching the minimum volume in and for exceeding the maximum capacity of the 
reservoirs respectively;  

• The fifth term (T?,?C2AC ) is related to the penalty for a flood of a river segment;  
• The sixth term (Q?,?C2AB ) refers to the penalty associated to the case when there is not 

enough water in a river segment;  
• The seventh (MinXD?,>AB ) and the eighth (MaxXD?,>AC ) terms are related to penalization 

of not reaching the minimum volume and exceeding the capacity of a demand 
segment respectively.   

The driver for water flow in the conceived WSN is the demand. In the absence of any demand, 
water would not be displaced from one node to the next. Hence to model the continuous 
nature of water flow in the WSN and regulate the flow, constraints are introduced. These 
constraints can be grouped according to six different types: (a) Constraints preserving the 
mass balance of the water flowing from one node to the next; (b) Constraints considering the 
physical and regulatory limitations such as capacity restrictions of reservoirs and river 
segments; (c) Constraints to model the continuity of water flow; (d) Constraints for modelling 
temporal delays  in the water transportation process, due e.g. to return flow of flooded water; 
(e) Constraints related to water loss; and (f) Constraints to model water excess (floods).  
 
The temporal dimension of the modelling process is discretized in time steps that correspond 
to the assumed time required for the water to flow from one node to another.  
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a) Mass balance constraints  
 
1. Transport (n) 
 

𝑋3B2,3! + ∑ 𝑋/,3!/ +∑ 𝑋(,3!( + 𝑉3!B2 + 𝑇𝐷3B8,3B2!B8 + 𝑇𝐷𝐹𝑊3B8,3B2
!B8 +

	𝑅𝑊3B2,3
! + 𝑂𝐹(!C + ∑ 𝑅𝐷>B8,#B2!B8

# =	𝑉3! + 𝐿𝑃3! + 𝑋3,3C2! +
∑ 𝑋3,(!( +∑ 𝑋3,#!# + 𝑇𝐷3,3C2! + 𝐿3B2,3! + 𝐿(,3! + 𝐿3,#!   

𝑛 ∈ 𝑁	
𝑛 > 1	
∀!∈ 𝑇 
∀/∈ 𝐼 

(2.2) 

 
2. Reservoir (r) 

∑ 𝑋3,(!3 +∑ 𝑋/,(!/ + 𝑉(!B2 =	∑ 𝑋(,3!3 + 𝑉(! +∑ 𝑋(,>!3    ∀(∈ 𝑅	
∀3∈ 𝑁	

(2.3) 

   
b) Network limitations and capacity constraints 
 
1. Network limitations 
 
Inputs (i) 

∑ 𝑋/,3!/ =	𝑋3,3C2!   𝑛 ∈ 𝑁	
𝑛 > 1	
∀/∈ 𝐼 

(2.4) 

Sources (i) 
∑ 𝑋/,3!3 =	 𝐼/!  𝑛 ∈ 𝑁	

∀/∈ 𝐼 
(2.5) 

Demands (d) 
∑ 𝑋3,#!3 + 𝑆#!B − 𝑆#!C =	𝐷#!   𝑛 ∈ 𝑁	

𝑛 > 1	
∀#∈ 𝐷 

(2.6) 

2. Capacity constraints 
 
River Segment (n) 

𝑋3,3C2! + 𝑇3,3C2!B − 𝑇3,3C2!C =	𝐶𝑚𝑎𝑥3,3C2!  𝑛 ∈ 𝑁	
𝑛 > 1	
∀!∈ 𝑇 
	

(2.7) 

𝑋3,3C2! + 𝑄3,3C2!B − 𝑄3,3C2!C =	𝐶𝑚𝑖𝑛3,3C2!  𝑛 ∈ 𝑁	
𝑛 > 1	

 
(2.8) 

Reservoir (r) 
𝑉(! − 𝐿𝑃(! − 𝑂𝐹(!C+𝑂𝐹(!B =	𝑅𝑚𝑎𝑥(! ∀(∈ 𝑅	

 (2.9) 

𝑉(! − 𝐿𝑃(! + 𝑆𝐻(!B − 𝑆𝐻(!C = 𝑅𝑚𝑖𝑛(!  ∀(∈ 𝑅	
 (2.10) 

Demand segment (d) 
𝑋3,#! +𝑀𝑖𝑛𝑋𝐷3,#!B−𝑀𝑖𝑛𝑋𝐷3,#!C =	𝐶𝑚𝑖𝑛3,#!   𝑛 ∈ 𝑁	

𝑛 > 1	
∀#∈ 𝐷	

	

(2.11) 
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𝑋3,#! +𝑀𝑎𝑥𝑋𝐷3,#!B−𝑀𝑎𝑥𝑋𝐷3,#!C =	𝐶𝑚𝑎𝑥3,#!   𝑛 ∈ 𝑁	
𝑛 > 1	
∀#∈ 𝐷 

(2.12) 

 
c) Continuity constraints 
 

𝑉3! ≤	𝛽3! ∗ *∑ 𝑋/,3!B2/ + ∑ 𝑋(,3!B2( + 𝑉3!B2 + 𝑋3B2,3! + 𝑅𝑊3B2,3
! +

+𝑇𝐷𝐹𝑊3B8,3B2
!B8 ,		  

𝑛 ∈ 𝑁	
𝑛 > 1	
∀/∈ 𝐼 
∀(∈ 𝑅 

 
 

(2.13) 

𝑉3! ≥	𝛾3! ∗ *∑ 𝑋/,3!B2/ + ∑ 𝑋(,3!B2( + 𝑉3!B2 + 𝑋3B2,3! + 𝑅𝑊3B2,3
! +

+𝑇𝐷𝐹𝑊3B8,3B2
!B8 ,  

𝑛 ∈ 𝑁	
𝑛 > 1	
∀/∈ 𝐼 
∀(∈ 𝑅 

(2.14) 

 
d) Time delay constraints  
 
Transfer nodes  

𝑇𝐷3! =	𝛿3! ∗ *𝑋3,3C2! ,	    
 

𝑛 ∈ 𝑁	
𝑛 > 1	

 

(2.15) 

Flooded Water (n) 
𝑇𝐷𝐹𝑊3,3C2

! =	𝜇3! ∗ *𝑇3,3C2!C , 
 

∀3∈ 𝑁	
𝑛 > 1	

 

(2.16) 

 
e) Losses 
 
In river segment (n) 

𝐿3B2,3! =	∝3B2,3! ∗ *𝑋3B2,3! , 
 

𝑛 ∈ 𝑁	
𝑛 > 1	

 

(2.17) 

In segment between reservoir and transfer node (r) 
𝐿(,3! =	∝(,3! ∗ *𝑋(,3! , 

 
𝑛 ∈ 𝑁	
𝑛 > 1	
∀(∈ 𝑅 

 

(2.18) 

In segment between transfer and demand node (d) 
𝐿3,#! =	∝3,#! ∗ *𝑋3,#! , 

 
𝑛 ∈ 𝑁	
𝑛 > 1	
∀#∈ 𝐷 

 

(2.19) 

In Reservoir (r) 
𝐿𝑃(! =	𝜃(! ∗ (𝑉(!) 

 
∀(∈ 𝑅 

 
(2.20) 

Of flooded water (n) 
𝐿𝐹𝑊3,3C2

! =	∆3,3C2! ∗ *𝑇3,3C2!C , 
𝑛 ∈ 𝑁	
𝑛 > 1	 (2.21) 
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f) Floods 
 
Flood water returning to river segment (n) 
 

𝑅𝑊3,3C2
! =	𝑇3,3C2!C −	𝐿𝐹𝑊3,3C2

! − 𝑇𝐷𝐹𝑊3,3C2
!  

 
 

𝑛 ∈ 𝑁	
𝑛 > 1	

 

(2.22) 

Water returning from a demand node to a reservoir node 
 

𝑅𝐷(,#! =		 (1−∝(,#! ) ∗ *𝑋(,#! , 

 
 

∀#∈ 𝐷 
∀(∈ 𝑅 

 

(2.23) 

 
The indices, parameters, variables and slack variables used in the LP model are given in Table 
2.1. 
 

Table 2.1. Notation and units of model indices, parameters and variables  

Type Notation Description Unit 

In
di

ce
s 

i input node ∈ 𝐼 - 
r reservoir node ∈ 𝑅 - 
d demand node ∈ 𝐷 - 
n transfer node ∈ 𝑁 - 
t time step ∈ T - 

Pa
ra

m
et

er
s 

𝑃! Penalty for not meeting the demand with one unit Monetary units 
(mu)/volume (uv) 

𝐸! Penalty for exceeding the demand with one unit mu/uv 

𝐹! Penalty for not meeting the minimum capacity in a demand 
segment with one unit mu/uv 

𝐺! Penalty for exceeding the maximum capacity in a demand 
segment with one unit mu/uv 

𝑊" Penalty for having a one unit flood in segment (n, n+1) mu/uv 

𝐵" Penalty for not meeting the minimum capacity in segment (n, 
n+1) with one unit mu/uv 

𝑈" Penalty for not meeting the minimum capacity of a reservoir 
with one unit mu/uv 

𝐴" Penalty for exceeding the maximum capacity of a reservoir 
with one unit mu/uv 

∝","$%&  Loss factor associated with the river segment (n, n+1) at time 
step (t), to be calibrated - 

∝',!&  Loss factor associated with the reservoir node and a demand 
node (r, d) at time step (t), to be calibrated - 

∝",!&  Loss factor associated with the transfer node and a demand 
node (n, d) at time step (t), to be calibrated - 

θ() : 
Loss factor associated to a reservoir at time step (t), to be 
calibrated - 

𝜇","$%&  Time delay factor associated with the water excess in a river 
segment (n, n+1) at time step (t), to be calibrated - 

∆","$%& : Loss factor associated with the water excess in a river 
segment (n, n+1) at time step (t), to be calibrated - 

𝛽"& : 
Percentage of water that must flow from the nth node to the 
next one at step time (t), to be calibrated - 

𝛾",& : Percentage of water that must remain in the nth node until the 
next time step (t), to be calibrated - 

𝛿","$%& : Percentage of water that flows to the next node with a time 
delay in time step (t), to be calibrated - 

𝐶𝑚𝑖𝑛","$%&  Minimum capacity of the river segment (n, n+1) at time step (t) uv 
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𝐶𝑚𝑎𝑥","$%&  Maximum capacity of the river segment (n, n+1) at time step 
step (t).  uv 

𝐶𝑚𝑖𝑛",!&  Minimum capacity of a demand segment (n,d) at time step (t) uv 
𝐶𝑚𝑎𝑥",!&  Maximum capacity of a demand segment (n,d) at time step (t) uv 

𝐼*& Amount of water arriving at the input node (i) at time step (t) uv 
𝑅𝑚𝑎𝑥'& Maximum capacity of a reservoir at time step (t) uv 
𝑅𝑚𝑖𝑛'&  Minimum capacity of a reservoir at time step (t) uv 

Va
ria

bl
es

 

𝑉"& Amount of water in a node (n) at time step (t) uv 
D+)  Amount of water needed to meet demand (d) at time step (t) uv 
𝑉'& Amount of water in the reservoir (r) at time step (t) uv 

𝑋","$%&  Flow between the nodes (n) and (n+1) at time step (t). uv / time step 

𝑋',"&  Flow between a reservoir node (r) and a transfer node (n) at 
time step (t) uv / time step 

𝑋",'&  Flow between a transfer node (n) and a reservoir node (r) at 
time step (t) uv / time step 

𝑋*,"&  Flow between an input node (i) and a transfer node (n) at time 
step (t) uv / time step 

𝑋*,'&  Flow between an input node (i) and a reservoir node (r) at time 
step (t). uv / time step 

𝑋",!&  Flow between a transfer node (n) and a demand node (d) at 
time step (t) uv / time step 

𝑋',+&  Flow between a reservoir node (r) and a demand node (d) at 
time step (t) uv / time step 

𝑇𝐷"&  
Delayed flow from upstream nodes and coming into node (n) 
at time step (t) uv / time step 

𝐿","$%&  Amount of water lost during the flow from transfer node (n) to 
transfer node (n+1) in time step t uv 

𝐿',"&  Amount of water lost during the flow from reservoir node (r) to 
a transfer node (n) in time step t uv 

𝐿",+&  Amount of water lost during the flow from transfer node (n) to 
demand node (d) in time step t uv 

𝐿𝑃'& Amount of water lost in a reservoir node (r) during time step t uv 

𝐿𝐹𝑊","$%
&  Amount of water lost from the water flooded while flowing from 

node (n) to node (n+1) in time step t uv 

𝑅𝑊","$%
&  Amount of flooded water flowing back to a node (n+1) from 

node (n) during time step t  uv 

𝑅𝐷',!&  Amount of water flowing back to a reservoir node (r) from a 
demand node (d) in time step t uv 

𝑇𝐷𝐹𝑊","$%
&  Amount of water flowing from node (n) to node (n+1) with a 

delay due to flooding in time step t uv 

Sl
ac

k 
Va

ria
bl

es
 

𝑆",!&,  Amount of water that cannot be allocated to demand (d) at 
time step (t) 

uv 

𝑆",!&$  Amount of water that exceeds the demand (d) at time step (t) uv 

T-,-$%)$  Amount of water above the maximum capacity of segment (n, 
n+1) at time step (t) 

uv 

T-,-$%),  Amount of water under the maximum capacity of segment (n, 
n+1) at time step (t) 

uv 

𝑄","$%),  Amount of water under the minimum capacity of segment (n, 
n+1) at time (t) 

uv 

𝑄","$%&$  Amount of water above the minimum capacity of segment (n, 
n+1) at time step (t) 

uv 

𝑂𝐹'&$ Amount of water above the maximum capacity of reservoir (r) 
at time step (t) 

uv 

𝑂𝐹'&, Amount of water under the maximum capacity of reservoir (r) 
at time step (t) 

uv 

𝑆𝐻'	&, Amount of water under the minimum capacity of reservoir (r) at 
time step (t) 

uv 

𝑆𝐻'	&$ Amount of water above the minimum capacity of reservoir (r) 
at time step (t) 

uv 

𝑀𝑖𝑛𝑋𝐷",!	&,  Amount of water under the minimum capacity of demand 
segment (n, d) at time step (t) 

uv 
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𝑀𝑖𝑛𝑋𝐷",!	&$  Amount of water above the minimum capacity of demand 
segment (n, d) at time step (t) 

uv 

𝑀𝑎𝑥𝑋𝐷",!	&,  Amount of water under the maximum capacity of demand 
segment (n, d) at time step (t) 

uv 

𝑀𝑎𝑥𝑋𝐷",!	&$  Amount of water above the maximum capacity of demand 
segment (n, d) at time step (t) 

uv 

 
Equation (2.2) represents the mass balance constraint, i.e., the amount of water that comes 
into a node minus the leaving amount of water; this represents the change in water content 
of that node. This equation applies to all nodes except reservoir nodes for which Equation 
(2.3) applies.   
 
Equations (2.4), (2.5) and (2.6) represent the limitations and capacity of the 
nodes/segments. Equation (2.4) considers inputs from different sources and the delivery to 
the corresponding node in the network. Equation (2.5) considers water coming directly from 
a river or any other water source (𝐼/!) to a specific node. Equation (2.6) is related to the 
amount of water required by a specific demand node (𝐷#! ). This equation also represents the 
amount of water that cannot be allocated (𝑆#!B) to a demand node. Thus, this value is used to 
penalize this mismatch. Besides, the term 𝑆#!Crepresents the amount of water exceeding the 
demand. This water is flowing back to the next river segment  
 
Equations (2.7) and (2.8) define the capacity of and the required minimum amount of water 
in a river segment. In each of these equations, two slack variables 𝑇3,3C2!B  and 𝑇3,3C2	!C  
respectively. 𝑄3,3C2!B  and 𝑄3,3C2!C  are introduced. 𝑇3,3C2	!C  takes a positive value when the 
capacity of the river segment is exceeded, i.e. when a flood occurs. This situation incurs a 
penalization. Equation (2.8) is related to the minimum amount of water required for the river 
segment and works in the opposite way as Equation (2.7). If the slack variable 𝑄3,3C2!B  takes a 
positive value, a penalization is applied. 
 
Equation (2.9) and (2.10) define the capacity and the minimum required amount of water in 
a reservoir (r) at a certain time (t). Both equations, in the same way as for a river segment, 
Equations (2.7) and (2.8) introduce slack variables to store the amount above (𝑂𝐹(!C,	𝑆𝐻(!C) 
the capacity or below (𝑂𝐹(!B, 𝑆𝐻(!B)  the minimum requirement. In this case, the excess is 
penalized. A similar approach is taken through Equations (2.11) and (2.12) in which slack 
variables are introduced to avoid floods (𝑀𝑎𝑥𝑋𝐷3,#!C ) and shortages (𝑀𝑖𝑛𝑋𝐷3,#!B ) in the 
demand segments. 
 
The purpose of Equations (2.13) and (2.14) is to guarantee continuous water flow, also in the 
absence of any demand. In order to keep the water move, the fraction of the water that can 
remain in a node must be at least  𝛾3! percent and less than 𝛽3!  percent. Therefore, the 
remaining 1-𝛽3!  percent will flow through the segment to the next node. 
 
Equations (2.15) and (2.16) express the time delays for a part of the water flowing between 
nodes.   Equation (2.15) refers to water delayed from one transfer node to the next. Equation 
(2.16) determines the amount of water flowing over land to the next node after a flood. 
Parameters 𝜇3,3C2!  and δ?,?C2A   represent the delay percentage in equations (2.15) and (2.16) 
respectively. These parameters are associated to the geographical characteristics of the 
nodes.   
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Equations (2.17) to (2.21) are introduced to model the water loss that occurs during the 
water transportation process. Equations (2.17), (2.18) and (2.19) are each related to one 
type of node (transfer, reservoir and demand): A percentage of the flow is lost. Equation 
(2.20) models the loss of water that is stored in a reservoir during time step t, typically 
through evaporation or seepage. Furthermore, equation (2.21) models the amount of water 
leaving the river system during a flood. 
 
Excess water allocated to different uses might return to the main river (segment). Therefore, 
Equation (2.22) models the amount of water returning to a segment resulting from a flood 
upstream in the river network. It considers the amount of flooded water, a loss percentage 
as well as a delay in the return to the river system. Finally, Equation (2.23) models the amount 
of excess water returning from a demand node after reduction with a loss percentage.  For 
instance, when a flood occurs in a river segment, part of water infiltrates to the ground and 
later returns to the river. 
 
2.3. Case-study 
 
2.3.1. Description 
 
The network configuration used to test the allocation model is shown in Figure 2.2. In this 
network, the three types of nodes are present: two reservoir nodes (R1, R11), ten transfer 
nodes (T2, T3, T4, T5, T6, T8, T9, T12, T14, T15 and T17) and six demand nodes: D1(4), D2(7), 
D3(10), D4(13), D5(16), D6(18). The latter demand node D6(18) represents the downstream 
ecosystem that requires a permanent availability of a minimum amount of water.  
 
The reservoirs are alimented with water coming from several rivers or overland flow (inputs 
I1, I2, I3, I10 and I11). Both reservoirs have a maximum capacity and must remain filled with 
a minimum volume of water. The latter is set to facilitate the appropriate functioning of the 
aquatic ecosystem of the reservoir. 
 
The demand nodes obtain water either directly from a reservoir or via a transfer node 
downstream of the reservoir.  
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Figure 2.2. River-with reservoir-network configuration for case study 

 
A river segment is defined by two nodes. As such segment X23 is represented as a connection 
between node T2 and node T3. Each river segment (𝑋/E!C2) has a maximum discharge capacity. 
Floods occur in case this capacity is exceeded. Moreover, a minimum required volume of 
water is set for each river segment. 
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Figure 2.3. Scheme of how water flows through the network (from left to right) through time (from 
top to bottom; the second digit of the node-code refers to the time step) 

Each node, segment and reservoir losses water through evaporation and seepage.  To take 
these losses into account, loss factors have been included. The case study is limited to 15-
time steps of which Figure 2.3 only shows the first 8 ones. The number of time steps depends 
on the network configuration. It is assumed that the network is configured such that water 
needs one time step to move to the next node, except when the return flow of flooded water 
to the river system is at stake. To make clear that water flows from node 1 (R1 - reservoir 
node) to node 2 (T2 - transfer node) the link between node R1 and T2 is tagged 𝑋28!1". Water 
stored previously in a transfer node, is represented as an additional input (P). For instace, 
water remaining in node 2 (T2) at t=1 is denoted by P21. Hence, each node keeps a specific 
amount of water already stored in the node from the previous time step. On the other hand, 
two links start in node 3 (T3) at t=2: one is connected to node 4 (D1) (demand node) and the 
other to node 5 (transfer node). In this specific case, the total amount of water leaving node 
3 (T3) is divided in two parts: one is allocated to node 4 (D1) and the other part flows directly 
through segment X35 to node 5 (T5) from which it is further distributed to the other nodes 
downstream. 
 
Figure 2.3 shows how the water flows over the different time steps from the initial node 
(reservoir) to the final node (the ecosystem demand node in this use case). For the sake of 
simplification, only the first 8 of 15 time steps are considered. Each node has at least two 
inputs: water remaining in the node after the previous time step (𝑉/!B2) and water coming 
directly from the upstream river segment (𝑋/E!B2). In case the current node is a reservoir, extra 
inputs can be present. All nodes in this configuration have at least two outputs. The first 
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output is the water flowing to the next node in time (𝑉/!C2) and the second output 
corresponds to the water lost	(∝3,3C2! )L. Furthermore, a third output can be present when a 
demand node is directly connected to a specific transfer node.    
 
For this case study, the water demands are set constant (100 units of water) through time as: 
100 (D1), 100 (D2), 100 (D3), 100 (D4), 100 (D5) and 100 (D6). The initial value in reservoirs 1 
and 11 are 10000 units at time step t = 0. Extra inputs (units of water) are limited to t=0: 40 
(I1), 10 (I2), 20 (I3), 40 (I5), 50 (I6), 60 (I8), 30 (I9), 40 (I11), 20 (I12), 30 (I14), 40 (I15) and 50 
(I17). Inputs are no constant in time (arbitrary values are assigned). The loss factors 
(∝3,3C2! , 	∝(,#! , ∝(,3! and		θDA) are set to 10%. This implies that the demanded amount plus this 
loss must be supplied considering a limitation in the capacity of 2000 units of water in each 
river segment. In order to avoid floods, a penalty value of 2 monetary units per unit excess 
water is considered. Moreover, a penalty (2 monetary units) is applied if a unit demand is not 
met. The initial value/ water content of river segments (X) is 0.01 units of water. 
 
2.3.2. Results and discussion 
 
The results of the model execution (penalties generated along the complete 15 time step 
period) are summarized in Figure 2.4 It is evident that, in the initialization stage (i.e. the first 
time step), only in node D6 (X1718) the demand was partially met; water received as an input 
is used directly to meet the first demand. Figure 2.4 also shows that from time step 5 onwards, 
penalties are decreasing due to a direct contribution from the first reservoir (node 1). In 
addition, we can see that from time step 11 onwards, all demands are met. 
 
The orange line in Figure 2.4 indicates that the penalties amount to 1072 monetary units in 
time step 1, while in later time steps the penalties are reduced drastically. This behavior is 
explained by the optimal use of the water available in the reservoirs. 
 

 
Figure 2.4. Evolution of the penalties incurred over the time steps 
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Figure 2.4 illustrates how water is flowing through the river segments. This value is the 
cumulative amount of water that entered the reservoir in the previous time period directly 
from the rivers (inputs). Each of the nodes along the network is receiving an additional 
amount of water in the initialization process. In time step 1, the amount of water flowing 
directly from node 1 (T1) to node 2 (T2) through segment 1 (X12_0) is 600 uv (Figure 2.5); this 
means that 9400 uv of water will remain in the reservoir for the next time step. In the same 
way, water passing from node 2 (T2) to node 3 (T3) at t = 1 is 600 uv; water flowing from node 
3 (T3) to node 5 (T5) at t = 2 is 500; eventually node 18 (D6) is reached at time step t= 12 with 
100 uv to meet demand node 18 (D6).  

 

 
Figure 2.5. First 12 times steps for water flowing from node 1 (reservoir) to node 18 (ecosystem 

demand) 

Figure 2.5 also shows that the amount of water flowing through the complete system is 
decreased when there is a demand node associated. For instance, there is a demand (D1) 
node (X34_3) which requires exactly 100 wu per time step. This pattern becomes constant 
until the end of the river segment at node 18 (D6). In this node, there is also a demand of 100 
wu per time step. 
 
Figure 2.6 shows the water available at each time step in the first reservoir (node 1 – R1). In 
this specific use case, maximum and minimum capacity constraints were set, i.e., reservoir 
levels started in 10000 units and stayed above 500 units. Additionally, no extreme 
rainfalls/inputs were considered during this period. Therefore, floods did not occur and the 
corresponding penalties were avoided. 
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Figure 2.6. Evolution of the amount of water present in the first reservoir 

2.4. Conclusions 
 
In this chapter, we approached the spatio-temporal allocation of water available in a river-
with-reservoirs system to multiple users as a network flow optimization problem. A generic 
linear programming model was formulated considering spatially and temporally distributed 
inputs to and demands for water from the system and specifying reservoir and transportation 
capacity constraints. The model was tested by means of a hypothetical use case and revealed 
a satisfactory behavior since water can be allocated to the different demands while 
constraints are being satisfied. Encouraged by these results, we plan to introduce more 
complexity into the model in order to make it applicable to real world cases (chapter 3 and 
5).  Thus, constraints related with: a) water availability which is variable with time and space; 
b) water demands which are variable with time and space; c) capacities of reservoirs reduces 
due to the sedimentation process; d) building and management cost when a new reservoir is 
required. 
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Chapter	3	
Application	of	the	NFO-LP	

model	for	optimizing	
surface	water	allocation	in	

the	Machángara	River	
Basin,	Ecuador	

 
 
The core of this chapter was published as: 
 
Veintimilla-Reyes, J., De Meyer, A., Cattrysse, D., Tacuri, E., Vanegas, P., Cisneros, Felipe, & Van 
Orshoven, J. (2019). MILP for Optimizing Water Allocation and Reservoir Location: A Case Study 
for the Machángara River Basin, Ecuador. Water, 11(5), 1011. 
https://doi.org/10.3390/w11051011 
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3.1. Introduction 
 
In this chapter, the Network Flow Optimization Linear Programming model (NFO-LP) 
proposed in chapter 2 (Veintimilla-Reyes et al., 2017) is applied to the Machángara river-with-
reservoir basin in Ecuador.   
 
Whereas in chapter 2, the NFO-LP-model parameters requiring calibration were identified, a 
default value was assigned to them so that the model principles could be demonstrated for a 
hypothetical river-with-reservoir system. Apart from applying and evaluating the model for a 
real-world system, a main objective of this chapter is to come up with and illustrate a 
procedure for calibration of these model parameters.  
 
The data used for setting up and evaluating this model was provided by the (PROMAS, 2019). 
This data encompassed a digital elevation model, geodatasets of soil and land cover/land use 
types and of river segments, locations and characteristics of reservoirs, locations and time 
series of water demand and georeferenced time series of daily meteorological data. By means 
of the ArcSWAT-extension of the ArcGIS-software (Texas A&M University, 2009) the geometry 
of the WSN was generated and time series of water inputs in the various nodes of the WSN 
computed. The period for which data were available was split in three sub-periods, one for 
calibration of the parameters of the NFO-LP-model, one for validation and one for application.   
 
In a first step, default values were assigned to all model parameters. The calibration phase 
was then executed in order to tune the model parameters according to reality. This was done 
in an iterative trial-and-error process. The validation phase was then carried out to verify the 
correctness of the parameter values obtained during the previous phase. During the 
validation, parameters were allowed to be adjusted again. Finally, during the application 
phase, the model was executed to allocate water among the different demands so that 
penalties were minimized. 
 
3.2. Materials and Methods 
 
3.2.1. Study Area 
 
3.2.1.1. The Machángara River Basin 
 
The Machángara River Basin is an Andean basin located in the Azuay and Cañar provinces in 
the south of the republic of Ecuador (Figure 3.1). The total area of the basin is 323.55 km2. 
The Machángara river is an affluent of the Cuenca River which in turn belongs to the 
hydrographic demarcation of the Santiago River, which is one of the tributaries of the Amazon 
River (Jerves-Cobo et al., 2017). 
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Figure 3.1. Machángara River Basin in the south of Ecuador (based on data provided by Programa 
para el Manejo del Agua y el Suelo, Universidad de Cuenca, Ecuador (PROMAS, 2019)) 

The length of the main branch of the Machángara river is about 37 km. It crosses the capital 
of the Azuay province, Cuenca  (INEC, 2010). The altitude in the basin ranges between 2424 
masl and 4436 masl with an average of 3420 masl. According to PROMAS, (2019a), land use 
types in the basin are spatially distributed as follows: 6.4% is populated area, 11.3% cropland, 
0.5% infrastructures, 59.1% paramo (a treeless vegetation type occurring at higher altitudes), 
9.3% pasture, 1.2% native forest, 4.2% forest plantation, 6% shrub vegetation, 1% other 
herbaceous vegetation, and 1% water bodies (Figure 3.2). Land cover map was generated 
based on RapidEye classification (2010). 
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Figure 3.2. Land use distribution in the Machángara basin (based on data provided by Programa 
para el Manejo del Agua y el Suelo, Universidad de Cuenca, Ecuador (PROMAS, 2019) 
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The average annual rainfall depth is 3090 mm of which 2900 mm pertains to the wet season 
(October–May) and 190 mm to the dry season (June-September). In the 2006-2013 period, 
rainfall events surpassing 60 mm were not exceptional during the wet season (Figure 3). In 
the years 2011, 2012 and 2013, total annual rainfall was significantly lower than the average 
while extreme rainfall events were less frequent or even absent (2013)  (Jacobsen & Encalada, 
2016). Information data was extracted from the Climate Forecast System Reanalysis (CFSR) 
global weather dataset of the National Centers for Environmental Prediction (NCEP) (Texas 
A&M University, 2018). This dataset contains only one weather station, called “P-27-791” 
located in the Machángara basin. This station can be considered as a “virtual station” since 
the weather data was the result of a modelling by the Global Weather Data for SWAT project 
(Texas A&M University, 2018). 
 

 

Figure 3.3. Modelled daily rainfall for the period 2006–2014 in station P-27-791 (rainfall) located in 
the Machángara Basin. Source: Climate Forecast System Reanalysis (CFSR) (Texas A&M University, 

2018). 

Figure 3.4 (left panel) shows a temperature chart and in the right panel a climatogram for the 
city of Cuenca (Ecuador). Cuenca is located near the outlet of the Machángara river at an 
altitude of 2550 masl. The average monthly temperature ranges throughout the year from 12 
°C to 14 °C. The warmest month is November, with an average of 13.5 °C and the lowest 
temperatures are observed in July, with an average of 10.9 °C. The climatogram in the right 
panel of Figure 4 indicates that the driest month is August with an average of 63 mm of rainfall 
and the wettest month is March, with an average of 190 mm. annual rainfall is around 1612 
mm. 

 



CHAPTER 3 
 

 44 

 
Figure 3.4. Temperature chart (left) and a climatogram (right) of the city of Cuenca, Ecuador for the 

period 2006 – 2014 (Climate-Data.org, 2019) 

3.2.1.2. Reservoirs, hydropower production and other water uses 
 
The water of the Machángara river is used mainly for domestic and industrial purposes, 
irrigated agriculture, and hydropower generation. Two reservoirs (Chanlud and Labrado) and 
two hydropower plants with reservoirs (Saucay and Saymirin) are located along the 
Machángara river. 
 
The Labrado reservoir is located 40 km north of the city of Cuenca at 3500 masl. Its storage 
capacity is 6.15 hm3 (1hm3 = 1E+06 m3)(Elecaustro, 2011, 2014; Matute, 2014). The regulated 
discharge is 2.4 m3/s (Elecaustro, 2014; Herrera & Carrera, 2017; Matute, 2014).  
 
The Chanlud reservoir is located 45 km to the north-east of Cuenca. Its storage capacity is 17 
hm3; the maximum discharge is 4.18 m3/s. The outflow of this reservoir enters the two 
reservoirs of two hydropower plants (Saucay and Saymirin) as well as the Tixán drinking water 
treatment plant. The Chanlud reservoir also provides water to several irrigation systems and 
integrates flood control mechanisms (Matute, 2014). 
 
The Saymirin reservoir is located 15 km to the north of Cuenca. The maximum discharge is 
4.10 m3/s It serves several hydropower units with a cumulated installed capacity of 7.5 MW 
(Elecaustro, 2014; Matute, 2014). 
 
The Saucay reservoir is located 24 km to the north of Cuenca. Its associated hydropower plant 
has an installed capacity of 24 MW. Its turbines require a maximum discharge of 7.2 m3/s 
(Elecaustro, 2011, 2014; Matute, 2014). 
 
The hydroelectricity generated by the Saucay and Saymirin plants is used to cover the 
requirements of the provinces of Azuay, Cañar and Morona Santiago, which amounted to a 
total population of 1,313,334 inhabitants in 2018 (Elecaustro, 2014; SENPLADES, 2019). 
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In the Machángara basin, there is approximately 1300 hectares of irrigated cropland and 133 
industrial estates are registered as water users. The Tixán drinking water plant processes 0.6 
m3/s to supply water to 140,000 inhabitants of Cuenca city (Matute, 2014). 
 
3.2.2. Linear Programming model for optimizing water allocation 
 
3.2.2.1. Introduction 
 
The NFO-LP model introduced in chapter 2 is meant for an optimal spatio-temporal allocation 
of the water available in a river system to several spatially distributed and temporally variable 
demands. The model requires a network schematization of the river system in which reservoir 
nodes and transfer nodes are connected by river segments while demand nodes are 
connected to a reservoir or a transfer node by a demand segment. Reservoir and transfer 
nodes are characterized by a time series of incoming water while demand nodes are 
characterized by a time series of water demand. Moreover, reservoirs and segments have 
minimum and maximum capacities. Exceeding the maximum capacity leads to flooding and a 
delayed return flow of part of the flooded water to the river. Not reaching the minimum 
capacity leads to flow discontinuity and pressure on biodiversity. The objective function of 
the model (Equation (2.1) in chapter 2) is formulated as to allocate water from the reservoirs 
to the demand nodes in order to meet the demands optimally, minimize floods of reservoirs 
and segments, and minimize the non-fulfilment of the minimum capacities. 
 
3.2.2.2. Preliminary River Network Configuration and Water Availability  
 
The configuration of the Machángara river network used in this chapter, was derived from a 
Digital Elevation Model (DEM) with a resolution of 3 meters using the ArcSWAT-extension of 
the ArcGIS-software (2012.10.21, University A&M Texas, College Station, TX, USA) (Texas 
A&M University, 2009). ArcSWAT makes use of the hydrology toolbox of the ArcGIS-software. 
It extracts the boundaries of a basin and its sub-basins and the flow paths using the flow 
accumulation algorithm. Transfer nodes are created at the outlet of each sub-basin while 
reservoir nodes must be added by the user. To obtain a time series of water inflow in the 
network through the transfer nodes, in the absence of discharge measurements, a rainfall-
runoff simulation was performed, using the same ArcGIS-extension. To this end, each sub-
basin is discretized into so-called Hydrological Response Units (HRUs), which are assumed to 
be homogeneous in terms of slope class, soil type and land cover type. For each HRU the 
rainfall-runoff relationship is modeled by assessing the soil water balance in which the runoff 
is estimated using the curve number method (Texas A&M University, 2009). All water running 
off from an HRU is assumed to end up in the river system after a time delay. Finally, the 
inflowing water is propagated through the river segments to eventually reach the outlet. 
ArcSWAT can quantify major hydrological processes by using water balance equations 
(chapter 2, section 2.2). The ArcSWAT model generates hydrographs at all nodes. The core of 
ArcSWAT is the Soil and Water Assessment Tool (SWAT) (Texas A&M University, 2009). SWAT 
is a semi-distributed model of the land and river phase of the hydrological cycle that has been 
developed to quantify the impact of land management practices on water, sediment, and 
agricultural chemical yields. SWAT also models physical processes related to water 
movement, sediment movement, crop growth, etc. Figure 3.5 displays the DEM-derived slope 
map and the soil map, the scale if soil map is 1:200000 and this map is the result of the 
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research project fund by PRONAREG (Dirección de Regionalización Agraria, Ecuador) – 
ORSTOM (Office de la Recherche Scientifique et Technique d’Outre-Mer, France) from 
January 1984. Regarding the DEM, the resolution is 20 m and the scale is: 1:2500, this map 
was produced by Hidropaute (2000). Land cover map was generated based on RapidEye 
classification (2010). 
 
Daily weather data (rainfall, solar radiation, temperature, relative humidity, and wind 
direction) were retrieved through the Global Weather Data tool which is accessible from the 
SWAT-website (Texas A&M University, 2018) (section 3.2.1). For this study area, only one 
weather station (Figure 3.2)  was available, with modelled data for the period 1979–2014. In 
this study, only data for 2006 –2013 were effectively used. 

 
Figure 3.5. Digital slope model (degrees) and soil map of the Machángara basin (PROMAS, 2019). 

Figure 3.6 shows the basin subdivision and network configuration generated by ArcSWAT 
encompassing a) the outlets or transfer nodes (red or blue points), b) the river segments (blue 
lines), and c) the reservoirs (pink points). A transfer node is a location through which water 
flows from a previous segment to the connected segment. Similarly, a river segment is the 
portion of the river that connects two nodes. A reservoir node represents a location where a 
reservoir is present. Additionally, demand nodes represent locations where water is 
abstracted for various uses.  
 
In Figure 3.6, each transfer node is identified by a code “Tx”, while the code “Rx” is used for 
reservoir nodes: R1 is Chanlud, R2 is Labrado, R3 is Saucay and R4 is Saymirin. The map in 
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Figure 3.6 also includes the location of the virtual weather station “p-27-791” (Texas A&M 
University, 2018). 

 
Figure 3.6. River network configuration for the Machángara basin. 

Figure 3.7 shows the inflow (m3/s), simulated using ArcSWAT, for transfer node T1 over the 
period 2006–2013. The rainfall pattern from Figure 3.3 is clearly reflected: intensive rains in 
the beginning of the year and a drastic reduction starting in the middle of the year.   
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Figure 3.7. Simulated water inflow in the Machángara river system at transfer node T1 (the total 

sum of the outputs of all subbasins). 

3.2.2.3. Water Demand and Final River Network Configuration 
 
The network configuration resulting from the preprocessing consists of 16 transfer nodes (T), 
4 reservoir (R) nodes and 19 river segments. The length and width of each segment were 
derived from Google Earth, assuming a depth of 3m to compute the cross section (FAO, 2017; 
Google, 2007). 
 
This preliminary network is yet to be extended with demand nodes (D) and related demand 
segments so that it can be used as a basis for the NFO-LP linear programming model (Figure 
3.8).  
 
In order to incorporate the water abstraction in the configuration, 6 demand nodes were 
added. The first demand node (D1) is associated with reservoir node R3 and corresponds to 
the amount of water required daily by R3 (Saucay) to generate hydroelectricity. Water used 
to generate electricity is assumed to flow back to the river through the next node with a delay 
of one-time step. The second demand node (D2) is associated with the irrigation system 
Machángara. The third demand node (D3) is associated with reservoir R4 (Saymirín) and 
represents the amount of water required by this hydropower plant. The fourth demand node 
(D4) is associated with the drinking water treatment plant Tixán and is connected directly 
with transfer node T7. The fifth demand node (D5) encompasses the amount of water needed 
by the irrigation system Ricaurte and it is connected to node T10. The last demand node (D6) 
represents the minimum amount of water that needs to flow out of the system in order to 
preserve its ecological functioning. For the present exercise, the water demands of all six 
nodes are assumed to be constant through time, this assumption is not realistic water 
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requirements may change throught time and space. Although the model is able to work in 
this way, data is not completely available in the area. These demand values were calculated 
based as a daily average of the water requirements from the operation of the power plants 
as well as the irrigation requirements in the area. The corresponding amounts are listed in 
Table 3.1. 

Table 3.1. Daily water required by the demand nodes (PROMAS, 2019). 

Node Use Value (hm3/day) 
D1 Saucay powerplant 0.6208 
D2 Machángara irrigation system 0.0432 
D3 Saymirín powerplant 0.6912 
D4 Tixán drinking water system 0.12096 
D5 Ricaurte irrigation system 0.02592 
D6 Ecosystem function 0.01728 

Note: 1 hm3 = 1E+06 m3 
 
Figure 3.8 shows the final network configuration with the main river (Machángara) and the 
three tributaries (Chulco, Chachayacu and Patamarca). The Chulco river is connected to the 
Machángara river through reservoirs R2 and R3. The Chachayacu river provides input to 
transfer node T15 and the corresponding segment is connected to the Machángara river 
through transfer node T7. Finally, the Patamarca river provides input to node T16 and is 
connected through node T10 with the Machángara river. It is assumed that water needs one-
time step (one-time step corresponds to one day in this case study) to flow from one node to 
the next.  
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Figure 3.8. The final network configuration of the Machángara river system. 
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3.2.2.4. Objective Function and Constraints 
 

The objective function of the linear programming model is the one presented in  Equation 
(2.1) of chapter 2 (Veintimilla-Reyes et al., 2016a, 2016b; Veintimilla-Reyes, De Meyer, et al., 
2018; Veintimilla-Reyes, Meyer, et al., 2018) , while the applicable constraints are expressed 
in Equations (2.1)–(2.23) in chapter 2. Furthermore, indices, parameters, variables and slack 
variables appearing in the objective function and in the constraint, equations are explained 
as well in chapter 2.  
 
The objective function of the LP model minimizes the total penalty resulting from water 
allocation through time to the spatially distributed demand nodes in the network. The total 
penalty is the result of penalization of the water excess in river segments (floods, T), shortage 
in river segments (Q), shortages in allocation to demand nodes (St−), excess allocation to 
demand nodes or water flooding (St+), shortage in reservoirs (SH), overflow of reservoirs (OF), 
shortage in demand segments (MinXD), and overflow of demand segments (MaxXD).  
 
Whereas the list and meaning of the indices, parameters, variables and slack variables used 
in the LP-model are given in Table 2.1 of chapter 2, in Table 3.2 only the penalty parameters 
and their value are given and also the parameters to be calibrated, with their initial value.   

 

Table 3.2. Penalties and parameters with their assigned value for this case study. The parameter 
values will be further calibrated. 

Type Notation Description Unit 
Value Use 

Case 

Pe
na

lti
es

 

𝑃! Penalty for not meeting the demand with one unit euro/hm3 1.0 
𝐸! Penalty for exceeding the demand with one unit euro/hm3 20.0 
𝐹" Penalty for not meeting the minimum river segment capacity with one unit euro/hm3 5.0 
𝐺" Penalty for exceeding the maximum capacity in a demand segment with one unit euro/hm3 20.0 
𝑊" Penalty for having a one unit flood in segment (n, n+1) euro/hm3 4.0 

𝐵" 
Penalty not meeting the minimum capacity in a demand segment (n, n+1) with one 

unit euro/hm3 2.0 

𝑈" Penalty for not meeting the minimum capacity of a reservoir with one unit euro/hm3 8.0 
𝐴" Penalty for exceeding the maximum capacity of a reservoir with one unit euro/hm3 7.0 

Pa
ra

m
et

er
s 

∝","$%& : Loss factor associated with the river segment (n, n+1) at time (t)—to be calibrated - 0.1% 

𝜇","$%& : Time delay factor associated with the water excess in a river segment (n, n+1) at time 
(t) to be calibrated - 0.1% 

∆","$%& : Loss factor associated with the water excess in a river segment (n ,n+1) at time (t) to 
be calibrated 

- 20% 

𝛽"& : 
Percentage of water that must flow from the nth node to the next one at time (t), to 

be calibrated - 10% 

𝛾",& : Percentage of water that must remain in the nth node until the next time step (t), to 
be calibrated 

- 1% 

𝛿","$%& : Percentage of water that comes to the next node with a time delay in time step (t) to 
be calibrated - 0.1% 

θ'( : Loss factor associated to a reservoir to be calibrated - 0.1% 
Note: Penalty values are assigned in order to establish priorities over constraints 

 
Reservoirs 
 
In Table 3.3, the characteristics of the four reservoirs present in the study region are given: 
the initial volume of stored water and the maximum and minimum volume of water allowed.   
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Table 3.3. Reservoir characteristics considered in the LP-model. 

Node Reservoir Initial Value 
(hm3) 

Maximum 
Capacity (hm3) 

Minimum 
Capacity (hm3) 

17 R1 5 6.15 1.23 
18 R2 15 16.3 3.26 
19 R3 0.7 1 0.2 
20 R4 0.7 1 0.2 

 
To run this use case, parameters and configurations from ArcSWAT were set to the default 
values except the information related to the reservoirs. Reservoirs used the information 
included in Table 3.3.  Regarding water in river segments, it was assumed that flow is reaching 
the minimum capacity in order to keep the ecosystem functioning. The initial value in the 
segment was an arbitrary value. 
 
3.3. Results 
 
3.3.1. Calibration and Evaluation of the LP-Model 
 
Seven parameters of the LP-model listed in Table 3.2 need to be calibrated. Since observed 
data on water availability and flow in the river system were not available, the water flow in 
the nodes of the river configuration computed by the ArcSWAT-tool was taken as the 
reference. The first four years (2006–2009) of data of the studied period (2006–2013) were 
used for calibration. For an appropriate calibration, the LP-model was used in simulation 
rather than in optimization mode just like was done for generating the reference flows by 
means of ArcSWAT. This was configured by setting the water demands to zero.   
 
3.3.1.1. Calibration 
 
The seven parameters in the LP model that require calibration are ∝3,3C2! ; ∆3,3C2! ; 𝜃(!; 𝛿3,3C2! ; 
𝜇3,3C2! ; 𝛽3!  and 𝛾3,!  (Table 3.2). All these parameters represent fractions ranging from 0 to 1.  
 
For this process, all water demands were set to 0 in order to determine the influence of the 
parameters in the water flow. In a first step, a sensitivity analysis was carried out. Each 
parameter was iteratively adjusted by a 0.05 step, covering the range from 0 to 1. For each 
combination of parameter values, the model was executed, and the component penalties and 
total penalty computed. Charts A to F in Figure 3.9 display the results of this univariate 
sensitivity analysis. For two parameters, i.e., the minimum and maximum fractions of the 
amount of water that must remain in the node (𝛽) (𝛾), there is only one chart (F) since beta 
(𝛽) must always be smaller than gamma (𝛾) to avoid that the model becomes infeasible. Thus, 
as more water stays in a node the node is acting like a reservoir. Figure 3.9 shows that 
parameter 𝜃 (loss factor in reservoirs – chart C) is the most sensitive one. 
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Figure 3.9. Results of the sensitivity analysis performed on the LP-model parameters. 

Based on this sensitivity analysis, the calibration consisted of an iterative trial-and-error 
procedure in which the most sensitive parameters were adjusted in order to minimize the 
difference between the total penalty value obtained from the LP model and the reference 
value generated by the ArcSWAT model. The adjustment was not performed for each of the 
19 segments but rather for each of five branches of the river system as depicted in Figure 
3.10. These branches were identified by taking into account the connectivity of their 
segments.  
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Figure 3.10. River network branches used for the calibration of the LP-model parameters. 
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Table 3.4 shows the default values assigned to each branch before the calibration process.   
The first iteration uses values between 0 and 1 (Table 3.4). Once this iteration is finalized, the 
total penalty is calculated and this value is compared with the values from the previous 
iterations. Later, based on the sensitivity analysis, most influent parameters are adapted and 
the model is executed again to obtain new penalty values.  
 

Table 3.4. Default parameter values assigned to the five branches 
 

Parameter Loss (∝) 
Loss (∝) 0.001 

Loss Flooded Water (∆) 0.01 

Time Delays (δ) 1x10-5 
Time Delay Flooded Water 

(𝜇) 0.001 

Minimum Water to Stay (β) 0.01 

Maximum to Stay (γ) 0.1 

Loss in Reservoirs (𝜃) 0.001 

Table 3.5. Initial and calibrated value for the parameters of the LP model. 

 

𝑅𝑀𝑆𝐷 = &∑ (𝑃' − 𝑂')()
'*+

𝑛  
(3.1) 

 
The Root Mean Square Deviation (RMSD) was used to evaluate the performance of the LP-
model. This indicator is calculated based on equation (3.1). Where, Pi is the value calculated 
by the model; Oi is the value obtained from the reference model (ArcSWAT). Thus, this 
indicator determines the deviation of the output of the LP-model (values of water in each 
node) from the reference model (ArcSWAT). From Table 3.4 and Figure 3.11, it is notorious 
that the most suitable parameters are met during the use case 8 with a value of 61.90 hm3.  
 

Use cases Adapted parameter Branch Original value New value Sum of RMSD 
[hm³] 

Use case 1 - - - - 62.81 
Use case 2 Minimum water to stay (𝛽) 1,2,3,4,5 0.01 0.0001 62.22 

 Maximum water to stay (𝛾)  0.1 0.0002  
Use case 3 Loss (∝) 1,2,3 0.001 1x10-5 62.54 
Use case 4 Time delays (𝛿) 1,2,3 0.001 1x10-5 62.49 
Use case 5 Loss in reservoirs (𝜃) 1,2,3 0.001 1x10-5 62.56 
Use case 6 Loss in reservoirs 	(𝜃) 1,2,3 1x10-5 0.01 62.55 
Use case 7 Time Delay Flooded Water (∆) 1,2,3 0.01 0.001 62.49 
Use case 8 Time delays	(𝜹) 1,2,3 1x10-5 0.01 61.90 
Use case 9 Minimum water to stay (𝛽) 1,2,3 0.0001 0.001 62.30 

 Maximum water to stay (	𝛾) 1,2,3 0.0002 0.002  



CHAPTER 3 
 

 56 

 
Figure 3.11. Root Mean Square Deviation [hm³/day] between the simulated water flow in ArcSWAT 

(reference) and the simulated water flow by the LP model using the parameters of use case 8 for the 
2006-2009 time period. 

3.3.1.2. Validation 
 

The evaluation of the parameterized LP-model was performed again with no water demand 
values and by comparing its outputs with the resulting ArcSWAT time series for the period 
2010–2011 (Figure 3.12). The parameter values used are the ones obtained from the 
calibration process (dataset 2006–2009). 
 
The purpose of the evaluation process was to verify whether the parameter values obtained 
from the evaluation process are appropriate when the model is applied for different 
conditions. In this execution the total sum of RSME was 45.13 hm3 which is 25% lower than 
at calibration. Hence the NFO-LP-model was judged to be fit for application for cases with 
non-zero demands. 
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Figure 3.12. Root Mean Square Deviation [hm³/day] between the simulated water flow in ArcSWAT 

(reference) and the simulated water flow by the LP model for the period 2010 - 2011. 

3.3.2. Application of the Calibrated and Validated LP-model 
 

The calibrated and evaluated LP-model was applied to the period 2012–2013 (using the 
outputs for the period 2010–2011 to initialize the model) with the purpose of optimally 
allocating the available water to the demand nodes (Figure 3.8) considering their daily 
demands for water (Table 3.1) and the unit penalty values of not meeting or exceeding these 
demands and the penalties related to the river segments (∝, ∆, 𝛿, 𝜇, 𝛽, and 𝛾), the reservoirs 
(𝜃), and the demand segments (∝, ∆, 𝛿, and 𝜇) (Table 3.2).  
 
Figure 3.13 shows the total volume of water stored in each of the four reservoirs during the 
considered 2012-2013 period whereby the maximum value corresponds to the maximum 
reservoir capacity shown in Table 3.3. In reservoir R1 (Node 17), the seasonal rainfall pattern 
and water levels are always between the maximum and minimum capacities. This reservoir is 
located upstream on the main river “Machángara.” Reservoir R2 (node 18) is also located 
upstream, but in the “Chulco” subbasin. Despite optimal water allocation, this reservoir is 
gradually exhausted. Reservoirs R3 (node 19) and R4 (node 20) are located downstream in 
the river system and receive water directly from tributaries apart from regulated water inputs 
through the upstream reservoirs. This regulation is clearly visible in the fact that the seasonal 
rainfall pattern is no longer present. Besides, from Figure 3.13, it is noticeable that reservoir 
R3 has a non-stable behavior in the first part of the data from 2011, this could be the result 
that reservoirs in the upper part of the study area are full and water is flowing directly to this 
reservoir. 



CHAPTER 3 
 

 58 

 

Figure 3.13. Volume of water stored in reservoirs  

3.3.2.1. Penalties 
 

From Table 3.6 and Figure 3.14 it is clear that the major terms in the total penalty are the 
shortages in the amount of water delivered to the demand nodes (chart A), starting in the 
second half of the 2-year period, and the delivery of an excessive amount of water in the first 
six months of the period. This behavior corresponds to the seasonal pattern of rainfall 
distribution. This means extreme rain during the first half of the years 2011 and 2012 and dry 
periods during the second half the same years. However, for this particular case, the second 
half of 2012 and the first half of 2013 is unusually dry. 
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Figure 3.14. Penalties during the 2-year period; charts C - H have not penalties. 

Table 3.6. Deviation of the aimed volume of water from the volume achieved after optimization 
(hm3) and associated penalties (€). 

Penalty cause Volume [hm3] Values [euros] 
(A) Penalty for not meeting the demands  920.81 920.81 
(B) Penalty for floods the demands 17.17 343.48 
(C) Penalty for floods in river segments 0.00 0.00 
(D) Penalty for not meeting the minimum capacity in the river 
segments 0.00 0.00 

(E) Penalty for floods in reservoirs 0.03 0.18 
(F) Penalty for not meeting the minimum capacity in reservoirs 0.00 0.00 
(G) Penalty for not meeting the minimum capacity in demand 
segments 0.00 0.00 

(H) Penalty for flooding in demand segments 0.00 0.00 
Total (A) + (B) + (C) + (D) + (E) + (F) + (G) + (H) 938.01 1,264.47 

 
3.4. Discussion and conclusions 
 
Although no real-world data are available about how appropriately the demands for water in 
the Machángara River Basin were met in the period 2012–2013, this study shows that the 
optimal allocation scheme (resulting from our LP-model) of the available water to the spatially 
distributed nodes with constant temporal demands is not capable of meeting all demands at 
all times. This means that a nexus between the availability of water and the demands for 
hydropower production, irrigated agriculture, and domestic and industrial use exists, and it 
will remain present because these demands are expected to increase with the growth of the 
population. Building one or more reservoirs will probably mitigate this nexus but remains to 
be further investigated. In this context, would it be recommendable to perform a deep 
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analysis to determine whether reservoirs in the upstream and downstream parts are enough 
or a new reservoir could improve the water allocation process. 
 
Through a trial-and-error calibration procedure, water flow dynamics in the river system were 
modeled with an acceptable accuracy with respect to simulated reference values, although 
peak discharges were underestimated.  
 
As for any model, the quality of the input data and the quantification of the initial situation is 
crucial for our LP-model. In this study, water inputs to the system simulated by the well-
established SWAT-model were used. To obtain these inputs, in the ArcSWAT, the default 
parameter values from the time series of meteorological data provided by NECP Climate 
Forecast System Version 2 were used. These input and reference output data allowed us to 
formulate and assess our LP modeling approach. However, for a more realistic application of 
our model, those datasets should be replaced by observed meteorological time series and 
observed river discharge measurements. This means that, for the calibration and validation 
phase, data about effective water abstraction and the possible return of water to the river 
systems must be taken into account.  

 
From a simulation perspective, the LP-model proposed in this chapter is relatively simple 
compared to physically based models (Ashraf Vaghefi et al., 2013; Labadie, 2006; Shourian et 
al., 2008) that are routinely used to study the impacts of changing meteorological, 
hydrological, infrastructural, and demand conditions on the availability of water in a given 
river system in space and time. This LP-model uses only a few parameters to model the 
temporal dynamics and loss of water coming into the river system, assuming that the time 
needed for water released in one node to flow to the next is always one-time step.  
 
The effectivity of the LP-model does not depend on how sophisticated the simulation of water 
retention and flow is, but on its capability to optimize the allocation of the available water to 
spatially distributed demand nodes, in addition to considering temporal variability of the 
demand (which was not taken into account in this study). Few other models have been 
reported in the literature that were developed for this purpose. (Hu et al., 2016; Labadie, 
2004) state that optimization of the water allocation process is possible. There are several 
hydrological models based on differential equations that model the behavior of a river basin 
(Devia et al., 2015) and even produce a water allocation scheme (Ashraf Vaghefi et al., 2013; 
Labadie, 2006; Shourian et al., 2008). However, those models are not capable of optimizing 
water allocation. Therefore, optimization of water allocation is a fundamental functionality 
provided by the LP-model described in this chapter. Furthermore, Water Supply Networks 
(WSN), such as the one used in this study, and the associated generic LP-model can be easily 
extended to include additional components (more nodes, water demand users, etc.) to create 
a network that represents reality closer.   
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Chapter	4	
Mixed	Integer	Linear	
Programming	Model	

 
 
The core of this chapter was published as: 
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4.1. Introduction 
 
The availability of surface water is the foundation of socio-economic development in river 
basins worldwide. Often the current water requirements of the different stakeholders (for 
hydropower, agriculture, livestock, fisheries, mining, industrial and domestic use and for 
nature conservation) cannot be satisfied at all locations nor at all times (Bertoni et al., 2017; 
Nyabe et al., 2017). It is expected that water shortages will increase in the coming decades 
due to increased demand related to socio-economic and demographic growth and to 
changing weather patterns. In regions like those mentioned above, there is an urgent need 
for tools that support the optimal allocation of the limited water resources through space and 
time in a transparent, fair and cost-efficient way. Whereas process-based combined 
hydrological and hydraulic modelling is the established approach to study this extended 
Water-Energy-Food nexus and assess the impact of human interventions and changing 
boundary conditions, such approach does not fulfil the requirement of producing optimal 
allocation schemes. 
 
A river system can be modeled as a topological network of nodes and segments. Based on 
this, the management of the water flowing through this system can be formulated as a 
Network Flow Optimization Problem (NFOP). In chapter 2, a generic Linear Programming 
model (LP) for optimizing the allocation of water available in the reservoir nodes and in the 
network reaches (segments) was introduced. This model allocates water to a set of spatially 
distributed users whose water requirements can change through time. The objective function 
in the model consists of eight cost terms that penalize the following undesired situations: not 
meeting / exceeding the demands in a node, not enough flow / excess flow (hence floods) in 
the network segments, not reaching the minimal allowed volume / overflows in reservoirs, 
and exceeding / not reaching maximum and minimum capacities, in demand nodes. One 
question not addressed in this model is where one or more new reservoirs should be located 
to further minimize the objective function. To deal with reservoir location optimization, Z. 
Zhang et al., (2014) created a model based on particle swarm optimization of which the main 
objective was to determine reservoir location to optimize the power generation. The model 
was verified by applying it to two different use cases: 1) Three Gorges Project (TGP) in China 
and 2) XiLuoDu Project also in China. Researchers considered the results obtained to be valid. 
Roozbahani et al., (2021) developed a model based on a stochastic modelling approach which 
includes several constraints related with water demand in the basin (Sefidrud Basin, Iran); 
this model is able to determine the location of the new reservoirs.  
 
Roozbahani et al., (2017), constructed a mixed-integer linear programming model to 
determine the location of new dams based on the water requirements of a basin as first step. 
The second step includes a sensitivity analysis which determines the correct number of dams; 
this model was developed by using data from the Sefidrud Basin in Iran. 
 
We decided to extend the LP-model from chapter 3 into a Mixed Integer Linear Programming 
Model (MILP) that is capable of selecting the nodes in the network where the construction of 
additional reservoirs of a predefined capacity would further improve the allocation of water. 
The aim of this extension is to determine whether the current performance of the WSN can 
be improved by including a new reservoir on one or more of candidate locations.   
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4.2. Materials and methods 
 
4.2.1. From river system to network configuration 

 
As a first step in the LP-approach proposed in chapter 2, the river system under study must 
be modeled as a network configuration. The specific network configuration studied in this 
chapter corresponds to the Machángara River Basin, which was also used in chapter 3. This 
network contains 4 reservoir nodes, 16 transfer nodes and 6 demand nodes. Nodes are 
connected by segments that allow water transfer among them. The left panel in Figure 4.1 
represents the network configuration used with the LP model (chapter 3), while the right 
panel shows the configuration to which the MILP model will be applied. Within the MILP 
network configuration, all of the existing reservoir nodes and the transfer nodes are 
considered as “candidate reservoir locations”. 
 

 
Figure 4.1. Graphical representation of the studied network configuration. (Left) LP network 

configuration also used in chapter 3. (Right) MILP network configuration (all nodes as transfer of 
candidate nodes). 
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The parameters, variables and slack variables for the network configurations in Figure 4.1A 
(LP) and Figure 4.1B (MILP) are the same as those used in chapter 3 section 2.2.2. This also 
applies to the rainfall data. 
 
4.2.2. Generic optimization model  
 
4.2.2.1. Linear programming model 

 
The generic LP model explained in chapter 2 addresses a river system as a network 
configuration for optimizing the allocation of the water available in the reservoir nodes and 
river segments to a set of spatially distributed water users of which the demand for water can 
vary in time.  
 
The objective function of the LP-model consists of eight terms as represented in equation (2.1 
and explained in chapter 2 section 2.2.2.  
 
4.2.2.2. Mixed Integer Linear Programming model 

 
In the MILP-model, transfer nodes in the network configuration (Figure 4.1B) are considered 
as “candidate reservoirs”, that is, potential locations for building reservoirs with a predefined 
capacity. The model is formulated with the purpose to determine the locations for reservoirs 
of predefined capacity that minimize the sum of penalties associated to water allocation. As 
explained above, these penalties are related to not meeting and exceeding demands, to water 
shortage in and overflow of the reservoirs, not meeting the minimum flow in and flooding of 
a river segment, not meeting the minimum flow or exceeding the maximum capacity in 
demand river segments and, in addition, the building and management costs of reservoirs. 
Therefore, the objective function of the LP model, explained in chapter 2 section 2.2.2 is 
extended to include an approximation of the building and management cost term (BC?) for 
every possible reservoir (Y?) (Equation (4.1). Y? is a binary variable indicating whether 
location n is or is not selected to build a reservoir. With the incorporation of the binary 
variable Y? , the LP-model becomes a MILP-model. 
 
Objective function 
 

minimize∑ ∑ (W? ∗ T?,?C2AC )A + ∑ ∑ ∑ *P? ∗ S?,>AB ,A>?? +
∑ ∑ (UD ∗ SHDAB)A +D ∑ ∑ (AD ∗ OFDAC)A +D ∑ ∑ (B? ∗ Q?,?C2AB )A? +

∑ ∑ ∑ *E? ∗ S?,>AC , + ∑ ∑ ∑ (F? ∗ MinXD?,>AB )A>? +A>?

	∑ ∑ ∑ 	*G? ∗ MaxXD?,>AC ,A>? 	+ ∑ (𝑩𝑪𝒏 ∗ 𝒀𝒏)𝒏   

 (4.1) 

 
Two major characteristics of candidate reservoirs must be taken into account, i.c. the storage 
capacity and the minimum volume of water which needs to be maintained at alle times to 
guarantee ecological functioning. To consider these characteristics, the reservoir capacity 
constraints in the LP-model, expressed in Equations (2.9) and (2.10) are adjusted as in 
equations (4.2), (4.3) and (4.4). Equation (4.5) is added to specify the minimum number of 
reservoirs requested. This constraint allows to stablish a fixed number of reservoirs from a 
situation where there are no reservoirs to the situation where all nodes are becoming 
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reservoirs. No changes are required of the flow balance, capacity, limitation, continuation or 
time delay constraints that were already included in the LP-model of chapter 2. 
 
Capacity constraints 
 
Reservoir(s) 

VDA − OFDAC − RD	GHIA <=	MD ∗ (1 − YD) 
∀4∈ 𝑇	
∀5∈ 𝑅 (4.2) 

−VDA ≤ −RD	GJ?A + *MD ∗ (1 − YD), 
∀4∈ 𝑇 
∀5∈ 𝑅 (4.3) 

OFDAC ≤	MD ∗ (1 − YD) 
∀4∈ 𝑇 
∀5∈ 𝑅 (4.4) 

Number of reservoirs 

∑ YJJ ≥ 0   𝑌' = 0	𝑜𝑟	1 (4.5) 

 
In Equations (4.2), (4.3) and (4.4), the parameter M is a number with a value sufficiently large 
as to ensure that these equations are satisfied for all values within the constraints. Thus, this 
M-parameter allows to implement either-or-constraints. Then the model is able to choose 
which of the nodes might be transformed into a new "candidate reservoir" (Winston & 
Goldberg, 1994). For all other variables see Table 2.1 in chapter 2 section 2.2.2. 
 
Water input, reservoir characteristics and water demand 
 
The time series of water inflow simulated by means of ArcSWAT (chapter 3) for four years 
(2006-2009) (Figure 3.3) were used for calibration; two years (2010-2011) for validation and 
the two subsequent years (2012-2013) for application. To cope with the limited information 
about the river network segments, capacities (maximum and minimum) of the river segments 
were estimated by means of length, width and depth of each segment derived from (FAO, 
2017; Google, 2007). 
 

Table 4.1. Characteristics of the existing and potential new reservoirs included in the LP model 

Node Reservoir Initial Value 
[hm3] 

Maximum 
capacity [hm3] 

Minimum 
capacity [hm3] 

Building + 
management cost 

[euros per two years] 
1, 2, 3  Candidates 2.6 13 1.3 195,000 
4 … 16 Candidates 2.6 13 2 195,000 

17 R1 5 6.15 1.23 150,000 
18 R2 15 16.3 3.26 215,000 
19 R3 0.7 1 0.2 100,000 
20 R4 0.7 1 0.2 100,000 

 
In Table 4.1, the characteristics of the “candidate reservoirs” and the four existing reservoirs 
present in the river system are given: the volume of water initially present, the maximum 
capacity and minimum volume of water that must be maintained and a bi-annual cost 
associated with the building and management of the reservoir. Therefore, a maximum (𝑅K$L) 
and a minimum capacity (𝑅K/3) had to be established. In this case, data is not available and 
it must be estimated. The estimation procedure started with a standard capacity and it was 
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multiplied by a factor. This factor is based on the steepness of a valley. It is assumed that the 
capacity in a narrow valley is lower than in a plain. Factors were adapted in order to obtain 
similar values as the ones for the existing reservoirs. Likewise, a building and management 
cost had to be estimated. Then, a standard cost was selected and it was multiplied by a geo-
factor. The base cost was estimated by taking the mean of the building costs of the existing 
reservoirs. The calculation of this geo-factor is based on two components: a) the shape of the 
valley (derived from the DEM) and b) the distance to the nearest road. It is assumed that the 
construction of a reservoir is more expensive in a plain valley than in a narrow valley. In the 
same way, the costs are assumed to be higher when a reservoir is located far from a road. It 
should be noted that in the model it is assumed that the only the fraction of the total building 
cost that is paid off over the two considered years are taken into account for simplification 
reasons (a lifespan of a reservoir could be more than 30 years). 
 
Table 4.2 shows the water requirements of the 6 demand nodes as well as the penalty values 
for not meeting these requirements. For this test case demands are constant through time 
and all demand nodes have the same penalty value (1 euro per day). The constraints try to 
keep water within minimum and maximum capacities in reservoirs, river and demand 
segments and to avoid floods (Table 2.1 in chapter 2 section 2.2.2) 
 

Table 4.2. Water requirement and penalty for not meeting demand per node, in the LP and MILP 
models (Extension of table Table 2.1) 

Label Demand node Value [hm3 per day] Penalty [euros x 
hm3 per day] 

D1 Sucay powerplant 0.62208 1.0 
D2 Machángara irrigation project 0.0432 1.0 
D3 Saymirín powerplant 0.6912 1.0 
D4 Tixán 0.12096 1.0 
D5 “Sociedad de Riego Ricaurte” - irrigation 0.02592 1.0 
D6 Ecosystem 0.01728 1.0 

 
4.3. Results  
 
4.3.1. Linear Programming model  
 
Results from the execution of the LP-model in the Machángara River Basin are included in 
chapter 3 section 3.3. 
 
4.3.2. Mixed Integer Linear Programming model  

 
In this MILP-exercise, the main objective is to determine which of the node(s) 
(reservoir/transfer) must be turned into a reservoir given their predefined characteristics (i.e. 
location, initial water level, minimum volume and maximum capacity) in order to minimize 
the sum of penalties for not meeting demands, for occurrence of floods, for not reaching the 
minimum required water volume in the reservoirs and the building and management costs 
for the considered period.  
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The output of the LP model encompassing the 4 existing reservoirs (nodes 17, 18, 19 and 20 
in Table 3.6) are considered as the reference results. It shows a total penalty of 1,264.47 euros 
for the application period. The MILP model was executed iterating over the number of the 
candidate reservoirs included in the solution. For this execution all nodes are considered 
“candidates” except the existing reservoirs (nodes 17 to 20). In Table 4.3, red numbers point 
to the node-ID’s which are selected for reservoir construction in the iteration and the green 
ones represent the existing reservoirs. Table 4.3 also shows that, as more reservoirs are 
included, the total water not allocated to meet demands is reduced. Moreover, from the 
execution of iteration 6, the total water not allocated is reduced by using 5 reservoirs: nodes 
10, 12, 17, 19 and 20. Furthermore, as more reservoirs are included in the solution, the 
amount of water that is not allocated to the demand nodes becomes smaller. It is also clear 
that, from the existing reservoirs in the original river system, only in use case 21, reservoir 18 
is included in the solution.  
 

Table 4.3. Nodes selected by the MILP-model for reservoir and corresponding volume of water not 
allocated and costs   

Use 
Case 

Number of 
Reservoirs Reservoirs included in the solution 

Water Not 
Allocated 

[hm3] 
Penalties 
[euros] 

Building + 
management 

[euros] 
Total 

1 0  894,77 1091,39 0 1091,39 

2 1 19 895,78 1092,40 100000 101092,40 

3 2 19,20 896,96 1095,49 200000 201095,49 

4 3 17,19,20 903,71 1175,51 350000 351175,51 

5 4 12,17,19,20 896,32 963,20 545000 545963,20 

6 5 10,12,17,19,20 889,88 889,88 740000 740889,88 

7 6 12,15,16,17,19,20 890,38 890,38 935000 935890,38 

8 7 8,9,10,12,17,19,20 881,19 881,19 1130000 1130881,19 

9 8 12,13,14,15,16,17,19,20 889,81 889,81 1325000 1325889,81 

10 9 11,12,13,14,15,16,17,19,20 888,99 888,99 1520000 1520888,99 

11 10 10,11,12,13,14,15,16,17,19,20 885,65 885,65 1715000 1715885,65 

12 11 9,10,11,12,13,14,15,16,17,19,20 881,49 881,49 1910000 1910881,4 

13 12 8,9,10,11,12,13,14,15,16,17,19,20 879,17 879,17 2105000 2105879,17 

14 13 7,8,9,10,11,12,13,14,15,16,17,19,20 878,47 878,47 2300000 2300878,47 

15 14 6,7,8,9,10,11,12,13,14,15,16,17,19,20 878,05 878,05 2495000 2495878,05 

16 15 5,6,7,8,9,10,11,12,13,14,15,16,17,19,20 877,64 877,64 2690000 2690877,64 

17 16 4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20 877,26 877,26 2885000 2885877,26 

18 17 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20 876,86 876,86 3080000 3080876,86 

19 18 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20 876,49 876,49 3275000 3275876,49 

20 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,19,20 876,11 876,11 3470000 3470876,11 

21 20 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 880,66 880,66 3685000 3685880,66 

 
4.4. Discussion and Conclusions 

 
In this chapter, an extension of the conceptual LP-approach introduced in chapters 2 and 3 is 
presented. This elaborated version of the model considers (a subset of) transfer nodes in the 
river network as candidate locations for building a reservoir with predefined storage 
characteristics. This extension was implemented by adding a term with a binary variable in 
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the objective function of the original LP-model, generating a MILP-model that is able to select 
the most appropriate locations for new reservoirs with a view to optimize water allocation 
while taking investment and management costs into account. 
 
The selection of a new “candidate” reservoir is made taking into account the water demand 
requirements in the closest nodes, penalties associated to the minimum and maximum 
capacities in river segments, reservoirs and demand nodes. Variable geographical conditions 
are also considered mainly during the creation of the WSN. Therefore, the order whereby 
candidate nodes are selected is not known in advance.  
 
From the results summarized in Table 4.3, it is clear that only one existing reservoir is 
necessary to reduce the total penalty. Besides, only the four existing reservoirs are included 
in the solution at the last iteration. This situation might introduce the criterion that the 
current configuration of the basin is not the optimal. Special attention must be given to the 
fact that in the first iteration, the total penalty is less than the total value obtained with the 
four existing reservoirs. For this particular case, it is assumed that more water is flowing 
withing the river network since only one reservoir is being used. This, the minimum capacity 
constraint is only keeping water in one reservoir. Another situation to consider is that the 
capacities and the building and management costs of the new reservoirs have been 
estimated. Thus, results of the execution of the MILP-model with real values might be totally 
different. 
 
Moreover, from Table 4.3 it is also noticeable that with the inclusion of a new reservoir, the 
allocated water to water demands node is not drastically reduced; only a reduction of 2% 
(894.77 to 880.66). Besides, for this exercise, all new reservoirs are established with a 
predefined initial water level for simplification reasons. Therefore, the process of building a 
new reservoir includes a filling phase which may reduce de water flowing within the river 
network resulting in the increment of the total penalty values. 
 
In Table 4.3 it is clear to see that the most influent parameter is the building and management 
cost. This value in real world depends on several conditions such as: location of the new 
reservoir, access roads to transport building materials, weather conditions, geographical 
conditions of the area, etc. Therefore, it is recommendable to perform a complete analysis of 
this cost.  In this way, in chapter 5, apart of the execution of the LP and MILP models in a new 
study area (Omo River Basin in Africa), four scenarios will be tested in order to clarify the 
process of selecting a new reservoir as solution in the MILP model. 
 
One of the benefits of using the MILP model is mainly the capacity to obtain a basic idea of 
the location of the new reservoirs and its influence in the water availability within the river 
network. 
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5.1.Introduction 
 
One of the most important benefits of a balanced distribution of surface water is the increase 
in the availability of energy, considering that global energy consumption has doubled levels 
observed in 1990 and 2019 and is becoming higher in less developed countries (Ritchie & 
Roser, 2019). In 2009, less than 20% of the population from Ethiopia and Kenya had access to 
electricity. This percentage had increased to 42.9% and 56.0%, respectively, in 2016 (Tesfa, 
2013; World Bank, 2016). It is a fact that energy access is closely related to well-being and 
prosperity; according to (Chen & Swain, 2014), this fact is also applicable to the social and 
economic development of those regions.  On the other hand, having access to enough 
amounts of water makes it possible to use this resource in large scale irrigation; to reach this 
purpose, reservoirs are built (Hanasaki et al., 2006). As a result, agricultural production might 
be boosted, and therefore, economy will grow and availability of workplaces will increase 
(Kamski, 2016; Sugar Corporation, 2019). Eventually, if the availability of water is ensured, 
well-being is also ensured.  
 
Tesfa, (2013) states that building reservoirs is a very appealing solution to mitigate extreme 
hydrological events, improve water conservation and produce electricity by means of 
hydropower generation plants. However, there are some associated disadvantages related to 
the environmental impacts of building a reservoir (McEntee, 2019). In the past, there were 
no proper methods to assess the social and environmental impact of building a reservoir. For 
instance, the effect of the construction of the GIBE III reservoir were not carefully considered 
on the Kenyan part of the ORB, resulting in the wrong assumption the reservoir would 
contribute to a positive water balance for Lake Turkana. An appropriate assessment was 
carried out only after three years the construction works had started (Avery, 2017).  
 
In chapter 2, a Linear Programming model (LP) was introduced meant to optimally allocate 
water available in a river-with-reservoir system. Both, water availability and demand are 
spatially distributed and variable in time. In chapter 4, the LP-model in chapter 2 was 
extended towards a Mixed Integer Linear Programming model (MILP) to determine locations 
of new reservoirs from a set of candidate locations, still with the aim to optimally allocate the 
available water in order to satisfy demands. The MILP-modelling approach was illustrated by 
an application to the Machángara River Basin.  
 
This chapter, describes the application of both, the LP and MILP models to the Omo River 
Basin (ORB) and discusses their strengths and weaknesses.   
 
5.2. Materials and methods 
 
5.2.1. Study Area 
 
5.2.1.1. The Omo River Basin 
 
The Omo River Basin is located in central-east Africa between 8.97 - 4.60 degrees latitude 
north and 35.40 - 38.50 degrees longitude east. This basin comprises part of the territories of 
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three countries: Ethiopia (90.7% of the basin area), Kenya (2.4%) and South Sudan (7.0%) 
(Figure 5.1). The area of the full basin is about 71,000 km² (Dondeyne et al., 2021).  
 

 
Figure 5.1. The Omo River Basin in central east Africa (Dondeyne et al., 2018) 

The climate in the ORB is characterized by a strong spatial and within-year variability mainly 
determined by the basin’s topographic heterogeneity and equatorial position. The variability 
in rainfall, which is mainly driven by the migration of the Intertropical Convergence Zone 
(ITCZ) and upper-tropospheric easterlies, is represented in Figure 5.2 by climatograms from 
four different locations in the basin (Berhanu et al., 2014). Figure 5.3 shows the location of 
the corresponding climate stations (dataset collected between 1999 and 2019) as well as the 
Digital Elevation Model (DEM) of the ORB. 
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Figure 5.2. Climatograms of four locations in the ORB: A) Welkite (latitude: 8.2833°N, longitude: 37.7833°E;  B) 

Chida  (latitude: 7.167642°N, longitude: 36.79108°E); C) Omorate  (latitude: 4.803135°N, longitude: 
36.054172°E) and D) Kaaling (latitude: 4.372622°N, longitude: 35.550738°E); (Climate-Data.org, 2019) 

 
The Ethiopian part in the north of the basin (charts A and B of Figure 5.2) has two 
climatological seasons. The wet season is called “Keremt” or summer season. This season 
goes from June until September. During this period, the Inter Tropical Convergence Zone 
(ITCZ) (Royal Meteorological Societ, 2019) is at the northernmost position. The light rain 
season occurs from October to May. During this season the amount of precipitation is limited. 
In the south of the Ethiopian part of ORB (chart C of Figure 5.2) and in the north and middle 
of the Kenyan part (chart D  of Figure 5.2) there are two separate wet seasons, caused by the 
passage of the ITCZ  (Berhanu et al., 2014). The rainy season in spring is called “long rains” 
while in autumn it is called “short rains” (Hastenrath et al., 2011).  

 
Figure 5.2 shows that the Ethiopian Highlands (northern ORB), is the most humid part of the 
basin. For instance, in Welkite and Chida the mean annual rainfall is 1244 mm and 1583 mm, 
respectively. Moreover, the average daily temperature is almost constant around 20 ºC all 
year round. Around Lake Turkana and in the lower part of the Omo valley, precipitation rates 
are much lower (e.g. 360 mm in Kaaling) and average daily air temperatures range between 
27 and 29°C.  
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Figure 5.3. Location of climatograms listed in Figure 5.2 (DAFNE, 2018) 

The ORB is an endoreic basin, which means that runoff water does not reach a sea or ocean. 
Indeed, water flows end up in Lake Turkana, which is the world largest desert lake. The 
Turkana Lake stores approximately 200 km3 of water. Apart from the Omo river, four rivers 
are feeding the lake from Ethiopia: Shebe, Abelti, Gojeb and Wolkite. The Omo is the most 
important river in the basin since its contribution corresponds to about 90% of the incoming 
water to the Turkana Lake. This river is highly suitable for hydropower generation due to the 
difference in altitude between its highest and lowest point (1800 m) (Merrick, 2018; 
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Yewhalaw et al., 2009). There are several tributaries to the Omo river, such as Gilgel Gibe. 
The Gilgel Gibe River, located in the south-western part of Ethiopia, is the largest tributary of 
the Omo river (Merrick, 2018; Yewhalaw et al., 2009). The Turkwel and Kerio rivers, located 
in the Kenyan part of the basin, contribute a small part to the incoming volume to the lake. 
The contribution of these rivers depends largely on the season (Avery, 2010, 2012; Dondeyne 
et al., 2018, 2021).   
 
The construction of several dams (Figure 5.1) caused the interruption of the natural course of 
the Omo river and its tributaries.  
 

 
Figure 5.4. Location of runoff gauges in the Omo basin (Dondeyne et al., 2018) 

In Figure 5.4, the location of the runoff gauges is provided. These gauges are important since 
they provide the input data for the modelling of water inputs in the WSN of ORB and hence 
in the LP- and MILP-models, by means of the ArcSWAT model.    
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Figure 5.5. Land use distribution in the ORB (DAFNE, 2018; ESA, 2015) 

Figure 5.5 shows the spatial distribution of the different land cover types found in the ORB 
(DAFNE, 2018; ESA, 2015) according to the European Space Agency (ESA) land cover dataset 
with a resolution of 20 m and with 9 legend units (forest deciduous, range brush, range 
grasses, agricultural land, wetlands, barren, urban areas and water bodies). The northern 
humid part of the basin is mainly covered by cropland. Overall, the study area is covered by 
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a) 32.0% of Forest – deciduous; b) 12.0% of Rangeland – Grasses; c) 21.9% of Rangeland – 
Brush; d) 33.0% of Agricultural land – generic; e) 0.2% of Barren land; f) 0.1% of Urban areas; 
g) 0.2% of wetlands and h) 0.5% of water bodies. The Turkana Lake, which comprises almost 
the totality of water bodies with 0.5% of the basin area (outlet of the basin) (Figure 5.5), is a 
source of drinking water and a resource for fishing for several hundreds of thousands of 
people (Michigan State University, 2019).  
 
There are two national parks located in the ORB. The Mago National Park, located in the lower 
part of the ORB, and the Omo National Park, located in the west part. Tribal communities 
reside within these national parks and also a wide range of plant species and wildlife can be 
found (Vreugdenhil, 2018).  
 
Thus, based on the land cover present in the study area, water requirements are estimated. 
Therefore, in the ORB several water demands have been identified such as: agriculture, 
private households, hydropower plants, wetlands and, in a small scale, industry (DAFNE, 
2018; ESA, 2015).  
 
5.2.1.2. Reservoirs, Hydropower Production and Other Water Uses 
 
Currently, three reservoirs are present along of the Omo river: Gilgel Gibe I, II and III. The 
construction of four other reservoirs is envisaged, all in Ethiopia: a) Koysha, b) Gojeb, c) 
Halelie & Werabessa, and d) Omo Kuraz. The characteristics of these reservoirs are 
summarized in Table 5.1 and Figure 5.6.  
 

Table 5.1. Characteristics of the reservoirs in the ORB (already built and planned) (Bertoni et al., 
2017; DAFNE, 2018) 

Reservoir River 
Reservoir 
capacity  

[hm³] 
Maximum height 

[m] 
Installed 
capacity  

[MW] 
Operational 

since Built / Planned 

Gilgel Gibe I Gilgel Gibe 920 40 180 2004 Built 
Gilgel Gibe II Omo 920 50 420 2010 Built 
Gilgel Gibe III Omo 14700 243 1870 2015 Built 

Gojeb Omo 1000 Unknown Unknown Not Available Planned 
Halelie & 

Werabessa Omo 5700 Unknown Unknown Not Available Planned 

Koysha Omo 6000 179 2200 Not Available Planned 
Omo Kuraz Omo 4410 Unknown Unknown Not Available Planned 
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Figure 5.6. Location of existing (red) and planned (green) reservoirs on the river network of the 

Omo-Turkana basin. 
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5.2.2. Linear Programming model for optimizing water allocation 
 
5.2.2.1. General 
 
The Linear Programming model, introduced in chapter 2, Section 2.2, and applied in chapter 
3 to the Machángara River Basin, has been used in this chapter as a basis for further 
evaluation on a different study area.   
 
5.2.2.2. Preliminary River Network Configuration and Water Availability  
 
The configuration of the ORB river network was obtained from a DEM with a resolution of 
200 m (Figure 5.1 and Figure 5.3). As for the Machangára case study (chapter 3), the river 
network configuration was generated by using the ArcSWAT-extension of the ArcGIS software 
(2012.10.21, University A&M Texas, College Station, TX, USA) (Texas A&M University, 2009). 
 

 
Figure 5.7. Slope [%] (left) and soil maps (right) of the ORB. 

The procedure to generate the river network comprised the following steps: 
 

i) Using the DEM (Figure 5.1 and Figure 5.3), the basin was delineated and 
subdivided into sub-basins for which outlet nodes were created. Additional outlet 
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nodes were added manually to represent reservoirs and other important points 
and to reduce the length of a river segment; 

ii) A soil map (Figure 5.7, left) and a land cover map (Figure 5.5) were uploaded; 
iii) Slope ranges were derived from the DEM (90 m resolution). 
iv) The geo-datasets with reference soil groups, land cover types and slope classes 

were overlaid to generate Hydrologic Response Units (HRUs, groups of pixels 
belonging to the same soil type, land cover type and slope class); 

v) Finally, weather information was entered from the Global Weather Data for SWAT 
database (Texas A&M University, 2018). This weather data was extracted for 72 grid 
points (Figure 5.8) from the Climate Forecast System Reanalysis (CFSR) global 
weather dataset of the National Centers for Environmental Prediction (NCEP). At 
the time of this research (2020) the CFSR-weather time series available through 
the ArcSWAT website contains data from 1979 to 2014, that is, 35 years of 
forecasted information. 

 

Figure 5.8. The 72 grid points (grey) extracted from the Global Weather Data for SWAT database (Texas A&M 
University, 2018). The location of the four grid points of which data is used to create the climatograms of 
Figure 5.9 are indicated in red and the location of the climatograms of Figure 5.2 are indicated in green. 
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In order to evaluate the quality of the rainfall and temperature data, the climatograms of 
different locations of the study area, described in section 5.2.1.1, are compared with data 
from the corresponding grid points in the CFSR dataset. The four grid points closest to the 
locations of the climatograms were selected. From these grid points, new climatograms were 
created by making use of eight years time series (2006-2013) (Figure 5.9). Figure 5.8 shows 
the selected grid points (red) together with the location of the climatograms described in 
section 5.2.1.1. (green) and all grid points with data used in ArcSWAT (grey). 
 

 

Figure 5.9. Climatograms constructed for four grid points selected from the CFSR dataset. Data from 2006 to 
2013 were used. The location of the selected grid points are indicated in Figure 5.8 and they are the nearest 

grid points with respect to the four climatograms of Figure 5.2. A) Welkite, B) Chida, C) Omorate and D) 
Kaaling, (Texas A&M University, 2018) 

From Figure 5.2 (reference climatograms from the study area) and Figure 5.9 (climatograms 
from the CFSR dataset) a similar distribution is observable. Regarding temperature, the 
existing climatograms and the ones from the CFSR dataset are almost identical. There is only 
a difference of 2.3 °C (18.6 °C in Figure 5.2 and 20.9 °C in Figure 5.9) in the average 
temperature per year in Figure 5.9 A (Welkite). Notorious differences can be observed in 
precipitation data. For instance, in Welkite the annual precipitation average is 1244 mm 
(Figure 5.2) and the one from CFSR dataset is 751 mm (Figure 5.9); almost two times the 
original one. However, the distribution is closely similar. For Chida, both charts are different. 



APPLICATION OF THE NFO-MILP-MODEL TO THE OMO RIVER BASIN 
 

 81 

In the original a big peak of precipitation is noticeable whereas in the second one, two small 
peaks are present. Regarding the annual precipitation, in this chart, there is a variation from 
1583 mm (existing) mm to 2309 mm (CFSR dataset). In contrast, in Omorate the annual 
precipitation is closely similar in both charts. However, the total amount of rain is doubled in 
the CFSR datasets. For example: in Kaaling, the existing climatogram indicates a total of 360 
mm of precipitation whereas the one from CFSR indicates a value of 663 mm. In Kainuk, charts 
(existing and from CFSR) are also different. The annual precipitation in the existing one is 534 
mm and in the CFSR dataset is 734 mm. However, several authors stated that in mountainous 
regions, temperature, precipitation and other meteorological parameters might be variable. 
Moreover, data from the CFSR dataset is the result of an interpolation from a specific number 
of measuring stations. Thus, one pro of using this data is that covers the entire study area.  
 
 

 
Figure 5.10. Flowchart of a HRUs definition by ArcSWAT (Her et al., 2015) 
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As a result of this process HRUs (Hydrological Response Units) are identified. HRUs are 
physically homogenous and non-contiguous areas that can respond in a similar way to the 
inputs. In ArcSWAT, HRUs are defined by a combination of land cover, soil, slope classes and 
elevation (DEM) information and a single HRU might be found in different location within the 
entire watershed (Figure 5.10) (Her et al., 2015).  
 
Applying ArcSWAT tools and making use of the time series of water flow at inlets and outlets 
of the river network, a model is defined to establish the rainfall-runoff relationship for each 
HRUs.  In order to define the river network, each outlet is considered as a node of the WSN 
with inputs (inflow) and outputs (outflow). 

 
Figure 5.11. Spatial river network configuration of the ORB as derived from the DEM by means of the 
ArcSWAT-tools. The displayed nodes are either transfer (T) or reservoir nodes (R). 
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The configuration of the river network for ORB obtained with ArcSWAT is shown in Figure 
5.11. There are 16 nodes (T1, T2, …, T16) in total. Each one corresponds to the outlet of a sub-
basin and T1 is the inlet of the all ORB. Figure 5.11 also shows the seven reservoirs in this 
basin, all of them included within the river network: R1 (Halelie and Werabessa), R2 (Gigel 
Gibe I), R3 (Gigel Gibe II), R4 (Gojeb), R5 (Gigel Gibe III), R6 (Koysha) and R7 (Omo Kuraz). Lake 
Turkana (the basin outlet – T12) might be considered as a special type of reservoir, however 
for this research no specific information about the volume was available. The final step to 
define the river network scheme configuration is to specify the features of each reservoir 
(maximum capacity, minimum volume, height, etc.).  
 
Whereas weather data are available from 01/01/1979 to 31/07/2014, only data from 
01/01/2003 to 31/12/2013 was used. The first 3 years (2003-2005) were considered as a 
model warm up period which simulation results are not further analyzed. This first period is 
applied to initialize water availability in the river network, starting from a dry situation on 
01/01/2003.  Subsequent 4 years (2006-2009) were used for calibration, data from 2010 to 
2011 for validation and finally data from 2012 to 2013 for application of both models (LP and 
MILP).   
  

 
Figure 5.12. Simulated water inflow from sub-basin 10 through node T4 
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Figure 5.13. Simulated water inflow into Gilgel Gibe II (reservoir node R3). 

ArcSWAT simulations generate time series of water discharge into each transfer or reservoir 
node. The example given in Figure 5.12 shows water discharging out of sub-basin 1 and 
accumulating in the Gilgel Gibe II (node R3).  In the northern part of the basin there is only 
one rainy season, so that it is reasonable to observe a single discharge peak each year. Figure 
5.13 shows the time series of simulated water inflow into Gilgel Gibe II (reservoir 3).  
  
5.2.2.3. Water Demands and Final River Network Configuration 
 
Five types of water use were identified: a) industrial, b) hydropower production, c) wetlands 
conservation, d) households use, and e) irrigated agriculture. The procedure applied to 
calculate water demands is explained below: 
 

a) Water demand for industrial use: only water required for the Kuraz sugar industry 
(Sugar Corporation, 2019) was taken into account (2 factories). As a reference, a 
factory that processes 140000 kg of sugarcane per day requires, approximately, a daily 
volume of 2000 m³ of water (Cortes et al., 2011); 
 

b) The volume of water required by the hydropower plants was calculated with the 
equation from (Renewables First, 2018) which takes into account the installed capacity 
and the height of the reservoir. The four hydropower plants, each one with a reservoir, 
located in the basin are Gilgel Gibe I, II, and II (ACSA, 2017; Bertoni et al., 2017). 
Hydropower is, in contrast with the other demands, a delaying demand, which means 
that water is not consumed but flows back into the system; 
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c) Water demand for wetlands and Lake Turkana: according to (Kuo & Shih, 2015), the 
annual water depth required to conserve wetlands ranges from 15 to 60 mm. This 
demand was calculated by multiplying the total wetland area by the required mean 
water depth and the number of months of water shortage. Just like with the 
reservoirs, evapotranspiration losses must be compensated. Based on calculations for 
the Awash basin, an Ethiopian basin northeast of the Omo basin, an annual average 
evapotranspiration loss of 1 m was selected for all wetlands (Karimi et al., 2015). In 
Lake Turkana annually up to 2.2 to 2.4 m of water is lost due to evaporation (Pearce, 
2014b; UNEP, 2013); 

 
d) Water needed by households (human consumption, hygiene, laundry, etc.) 

corresponds to 100 to 200 of liters per person per day (WHO, 2015); 
 

e) Water demand for irrigation: according to Van Orshoven et al., (2018), maize is the 
main crop within the ORB. In order to calculate this demand, an assumption was made 
stating that irrigation schemes (Figure 5.14) produce maize. Water demand was 
estimated by subtracting the annual rainfall from the annual crop water need. It was 
assumed that maize has a growing period of 153 days and needs 650 mm during this 
period, which results in an average crop water demand of 4.25 mm per day. Then, this 
value (net irrigation demand), was converted into gross irrigation demand by taking 
into account an irrigation efficiency of 70%, which resulted in an average crop water 
demand of 6.07 mm per day in the growing period (Van Orshoven et al., 2018). 
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Figure 5.14. Operational irrigation schemes in the Omo-Turkana River Basin (Van Orshoven et al., 2018). 

Table 5.2 lists a summary of the water demands in the ORB as compiled by DAFNE (2018). 
Each demand node is associated to a node (T or R) in Figure 5.11. There are five types of 
demands spread over 19 demand nodes each with an assumed constant daily water 
requirement. 
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Table 5.2. Daily water demands in the ORB (DAFNE, 2018) 

Node Demand for 
Industrial use 

[hm³/day] 

Demand for 
Hydropower 

[hm³/day] 

Demand for 
household 

consumption 
[hm³/day] 

Demand for 
wetland 

conservation 
[hm³/day] 

Demand for 
irrigated 

agriculture 
[hm³/day] 

Sum of all 
demands 
[hm³/day] 

D1 - - 1.16E-02 - 1.28E-04 1.17E-02 
D2 - - 1.61E-02 8.97E-04 - 1.70E-02 
D3 - - 7.18E-03 - 7.93E-05 7.26E-03 
D4 3.68E-05 6.30E-03 3.39E-02 - 5.17E-03 4.54E-02 
D5 - - 3.57E-03 - 2.29E-06 3.58E-03 
D6 - 4.91E-03 2.17E-02 - 6.67E-04 2.73E-02 
D7 - - 2.15E-02 - - 2.15E-02 
D8 - 6.60E-03 2.92E-02 - 8.98E-04 3.67E-02 
D9 - - 3.35E-02 3.83E-04 1.43E-03 3.53E-02 

D10 - 1.05E-02 4.45E-02 - 1.44E-02 6.94E-02 
D11 - 3.10E-04 1.15E-03 - 1.94E-04 1.65E-03 
D12 - 2.90E-03 1.07E-02 - 1.81E-03 1.54E-02 
D13 - 6.99E-03 2.59E-02 - 4.36E-03 3.72E-02 
D14 - - 9.26E-03 - - 9.26E-03 
D15 1.99E-03 - 1.88E-04 - - 2.18E-03 
D16 - - 6.47E-03 - - 6.47E-03 
D17 - - 2.79E-03 1.03E-02 6.94E-02 8.25E-02 
D18 - - 1.52E-03 5.60E-03 3.78E-02 4.49E-02 
D19 - - 9.96E-04 1.34E-01 1.65E-01 2.95E-02 

 
Figure 5.11 nodes labeled R (reservoir) and T (transfer node). Besides, in this figure associated 
to each node there is a demand node (D). Reservoir nodes are characterized by a maximum 
capacity and a minimum volume to be kept. At transfer nodes, water flows from an upstream 
segment draining the corresponding sub-basin, into the connected downstream segment 
which might be a regular river segment or a segment leading to a demand node. Thus, transfer 
nodes which correspond to the outlet of a sub-basin receive runoff water from the HRUs 
present in the sub-basin as modelled by ArcSWAT and also water from the upstream segment. 
Demand nodes are associated to the time series of water volumes required for a specific 
purpose. A regular “river segment” is bounded by two T-nodes or one T- and one R-node. 
Segments that end up in a D-node are termed “demand segments”.    
 
The geographic configuration shown in Figure 5.11 can be transformed into the schematic 
network displayed in Figure 5.15. It encompasses 3097 HRUs, 18 river segments, 12 transfer 
nodes, 7 reservoir nodes and 19 demand nodes (hydro-power generation, irrigation or human 
consumption). Through the ArcSWAT-approach five rivers are maintained in the network: 
Gibe, Wave, Gilgel Gibe, Omo and Gojeb. In order to clarify the configuration, transfer nodes 
T6, T7 and T12 would have associated demand nodes D11, D12 and D19 which represent the 
water demand for Lake Turkana. 
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Figure 5.15. Final network configuration used in the ORB. 
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5.2.2.4. Objective Function and Constraints for the NFO-LP- and NFO-MILP-models 
 
The Linear Programming model for network flow optimization, introduced in chapter 2, and 
its extension towards the Mixed Integer Linear Programming model, presented in chapter 4 
are applied to the ORB. Hence the objective function is the one of equation 1 in section 4.2.2.2 
of chapter 4. The penalty values associated to the components of the objective function are 
listed in Table 5.3 and the constraints are the ones listed in section 2.2.2 of chapter 2. They 
encompass flow balance constraints, network limitations and capacity constraints, continuity 
constraints, time delay constraints, constraints related to losses and floods. The default values 
for the parameters in the constraint equations are given in Table 5.4.  
 

Table 5.3. Penalties associated to the boundaries of the LP model. 

 
Table 5.4 displays and the default values that to be calibrated. 
 

Table 5.4. Parameters associated to the LP and MILP models. 

 
 
 
 
 
 
 
 
 
5.2.2.5. Reservoirs 
 
Table 5.5 lists the characteristics of the existing and envisaged reservoirs (Table 5.1) which 
are used to parameterize them in the (MI)LP-model constraints.  
 
The initial values of the reservoir were calculated based on the simulation during the warm 
up period (2003 - 2005); this simulation process started with empty reservoirs and river 
segments. Regarding water demand requirements, the model included current values. 
 
 
 

Parameter Penalty Unit Value 
𝑃! Penalty for not meeting the demand with one unit euro/hm3 1 
𝐸! Penalty for exceeding the demand with one unit euro/hm3 20 
𝑊" Penalty for having a one unit flood in segment (n, n+1) euro/hm3 4 
𝐵" Penalty not meeting the minimum capacity in segment (n, n+1) with one unit euro/hm3 5 
𝐴# Penalty for exceeding the maximum capacity of a reservoir with one unit euro/hm3 7 
𝑈# Penalty for not meeting the minimum capacity of a reservoir with one unit euro/hm3 8 
𝐹" Penalty for not meeting the minimum demand segment capacity with one unit euro/hm3 2 
𝐺" Penalty for exceeding the maximum capacity in a demand segment with one 

unit euro/hm3 20 

 Note: Penalty values are assigned in order to establish priorities over 
constraints    

Parameter Description Initial Value 

∝","%&' : Loss factor associated with the river segment (n, n+1) at time (t) 10% 

𝜇","%&' : Time delay factor associated with the water excess in a river segment (n, 
n+1) at time (t) 10% 

∆","%&' : Loss factor associated with the water excess in a river segment (n, n+1) at 
time (t) 10% 

𝛽"' : 
Percentage of water that must flow from the nth node to the next one at time 
(t) 5% 

𝛾",' : Percentage of water that must remain in the nth node until the next time step 
(t) 20% 

𝛿","%&' : Percentage of water that comes to the next node with a delay in time step (t) 10% 
θ() : Loss factor associated to a reservoir 10% 
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Table 5.5. Reservoir characteristics used in the LP model. 

No. Reservoir Initial 
Value 
[hm3] 

Maximum capacity 
[hm3] 

Minimum volume 
[hm3] 

Building + 
management cost 

[euro] 
1 R1 - Halelie & Werabessa 1520 5700 1140 1.28E+09 
2 R2 - Gilgel Gibe I 239 920 186 1.66E+09 
3 R3 - Gilgel Gibe II 239 920 186 1.53E+09 
4 R4 - Gojeb 267 1000 200 1.66E+09 
5 R5 - Gilgel Gibe III 3917 14700 2950 1.91E+09 
6 R6 - Koysha 1747 6000 760 2.23E+09 
7 R7 - Omo Kuraz 1176 4410 882 2.68E+09 
 Note: 1 hm3 = 1E+06 m3 

 
5.2.2.6. Calibration and validation of the LP-model  
 
The seven parameters of the LP-model listed in Table 5.4 need to be calibrated. Since 
observed data on water availability and flow in the river system were not available, water 
flow in the nodes of the river configuration computed by the ArcSWAT-tool was taken as a 
proxy for reality. Years from 2003 – 2005 were used as a warm up dataset to obtain initial 
values in reservoirs as well as in nodes. Likewise, data from 2006 to 2009 was used to calibrate 
the models. In order to perform the validation process, data from 2010-2011 were used. 
During calibration, the LP-model was executed in simulation rather than optimization mode. 
Simulation mode is configured by setting the water demands to zero in order to obtain a 
model which is able to transport water. Water demands will be incorporated in further 
phases. 
 
The calibration process tries to adapt model parameters in such a way that the modelled data 
fit as close as possible with the simulated output from ArcSWAT without considering 
demands. The parameters which are tested are: 1) loss in river segment (∝), 2) loss of flooded 
water (∆), 3) loss in reservoirs (𝜃), 4) time delay (𝛿), 5) time delay of the return of flooded 
water (𝜇) and 6) continuity, which contains the minimum (𝛾) and maximum (𝛽) amount of 
water to stay in a node. The main objective of this process is to identify which of the 
parameters have a big impact on the model. Therefore, a sensitivity analysis is performed. 
Thus, in the sensitivity analysis, increasing value parameter in steps of 5% until 100%. For 
instance, first iteration starts in 0%; second starts in 5%; third in 10% and so on to reach 100%. 
 
For each river segment, the modelled flow is compared to the simulated flow in ArcSWAT and 
the root-mean-square deviation (RMSD) is computed. Despite the RMSD being calculated for 
all segments individually, only the sum of the RMSD over all segments per use case is 
considered since the model considers only one value per parameter. Later, the WSN will be 
split in branches with similar characteristics in order to make the calibration and validation 
procedure easier. 
 
5.2.2.7. Application of the LP-model 
 
Whereas model’s calibration and validation are executed without considering demands, the 
latter are used to run the model with the application dataset. Quantification of demands per 
node are presented in Table 5.2. Furthermore, penalties for unsatisfied constraints are shown 
in Table 5.3. 
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Once the LP-model was calibrated and validated, it was executed applying the dataset  
corresponding to the 2012–2013 period (using the outputs of the 2010–2011 simulation 
period to initialize the model) to optimally allocate the available water to demand nodes 
(Figure 5.15) according to their daily water requirements (Table 5.2).  
 
5.2.2.8. Application of the MILP-model  
 
A description of the Mixed Integer Linear Programming model (MILP) can be found in chapter 
4 and in Veintimilla-Reyes, Meyer, et al., (2018). In this section the MILP model is applied to 
ORB data for the years 2012 and 2013.   
 
The MILP model considers each transfer node as a “candidate reservoir”. Maximum and 
minimum capacities, building and management costs were calculated as we already explained 
in chapter 4, section 3. 
 
5.3. Results 
 
5.3.1. Calibration of the LP-model 
 
In Chart A of Figure 5.16, it is clear that, initially, the total penalty decreases when the loss 
factor (∝) is increased. However, for values higher than 70%, total penalty remains almost 
constant. In Chart B - loss on flooded water (∆)-, a slight increment in the total penalty is 
observed for values higher than 40%. Chart C – loss in reservoirs (𝜃) - shows that penalties 
when the minimum flow in rivers is not kept and the maximum capacity is exceeded in 
demand segments do not depend on this parameter; on the other hand, an increment is 
observed in the total penalty in the other components when this parameter value is 
increased. Charts D – time delay (𝛿) and E – time delay on flooded water (𝜇) show that values 
below 80% for the parameters time delay and time delay of flooded water do not affect the 
total penalty values whereas a slight increase in the total penalty value is observed for 
parameter values higher than 80%. Finally, Chart F – Continuity minimum (𝛾) and maximum 
(𝛽) percentage of water to stay in a node as soon as the amount of water becomes higher, 
the total penalty is algo becoming higher. The approach of the calibration of 𝛾 and of 𝛽 is to 
start in the minimum (0 %) until the maximum value (100 %). Thus, in the first iteration 5% is 
added to the minimum and 5% is removed from the maximum. Therefore, an increment in 
the total penalty is observed between 0% and 10%. After, the total penalty is remaining stable 
and only after the 50% both parameters are overlapping. From 60% the model is unfeasible 
due to the situation where the value of the minimum constraint is overlapping the maximum.  
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Figure 5.16. Sensitivity analysis of penalty values for 6 parameters of the LP model. Penalties [euro] 
related to A) Loss, B) Loss in flooded water, C) Loss in reservoirs, D) Time delay: E) Time delay in 
flooded water; F) Continuity 

As conclusion, the most sensitive parameters are losses in reservoirs (𝜃) and the continuity 
parameters (minimum (𝛾) and maximum (𝛽) amount of water that can stay in a node). This 
will be the starting point for the calibration stage. 
 
The objective of the calibration phase is to adapt all parameter values with the aim of getting 
results that are as close as possible to a reference. In the absence of observed data (i.e. in the 
absence of demands), simulated water flow time series at specific nodes obtained with the 
ArcSWAT-model operated in simulation mode, is applied. In other words, the goal of the 
calibration procedure is to adjust the parameter values with the objective to reduce the gap 
between water flow simulated by the LP model and the corresponding values obtained from 
ArcSWAT. 
 
As stated before, information from 01/01/2006 to 31/12/2009 was applied as input to 
calibrate the model. The reference dataset includes time series of flow in river segments and 
flow coming into the reservoirs. Data resulting from the execution of ArcSWAT are assumed 
to be a fair approximation to reality.    
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The calibration is based on a trial-and-error approach in which parameter values are 
iteratively adjusted. In order to reduce the complexity, this procedure was not applied to each 
of the 22 segments of the river network, but only to each of the five branches depicted in 
Figure 5.17. The purpose was to assign the same parameter values to all segments and nodes 
in the same branch.  
 

 
Figure 5.17. Branches of the river network used for calibration of the LP-model parameters. 
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Table 5.6. Default parameter values assigned to the segments and nodes in the five branches 

Parameter Loss (∝) 
Loss (∝) 0.001 

Loss Flooded Water (∆) 0.2 

Time Delays (δ) 1x10-5 
Time Delay Flooded Water 

(𝜇) 0.001 

Minimum Water to Stay (γ) 0.01 

Maximum to Stay (β) 0.1 

Loss in Reservoirs (𝜃) 1x10-5 

 
Ten use cases were executed in order to perform the calibration process, whereby in the first 
use case all parameters were set to the default values in Table 5.6. A few parameters were 
adapted during the execution of use cases (uc) 2 to 6 in all branches: Loss in reservoirs (uc 2); 
continuity (maximum and minimum water to stay in a node) in uc 3; Losses in uc 4; Time delay 
in uc 5; Time delay flooded water in uc 6. In use case 7 only some parameters in some 
branches were adapted exclusively those experiencing a reduction of the total RMSD 
calculated in the previous use case. Thus, the adapted parameters were: “loss in reservoirs” 
parameter for branches 1, 3 and 5, “time delay” parameter in branches 1, 2, and 5 and 
“continuity” parameter in branches 1, 2 and 3. In use case 7, the selected parameters were: 
continuity, and losses in reservoirs. In use case 8, the selected parameters were: the ones 
from uc 7 plus losses in river segments. Besides, uc 9, modified parameters from uc8 plus time 
delay. Finally, uc 10 includes all adaptations from uc 9 plus time delay in flooded water which 
reduces the total value of the RMSD. Computation results for the ten use cases are included 
in Table 5.7.  

Table 5.7. Tested parameters during the calibration of the LP model. 

 
According to Table 5.7 the lowest value for the sum of RMSD can be found for use case 9. 
Figure 5.18, shows a graphical representation of the RMSD for each river segment and for the 
2006-2009 period, using the parameters of use case 9. From this figure, it is clear that the 
highest errors are obtained from river segments which are in the Omo river (right side of the 

Use cases Adapted parameter Original value New value Sum of RMSE 
[hm³] 

Use case 1 - - -   
Use case 2 Loss in reservoirs 1x10-5 0.001 11410 
Use case 3 Minimum water to stay 0.01 0.001 10658 

 Maximum water to stay 0.1 0.001  
Use case 4 Loss 0.001 1x10-5 11553 
Use case 5 Time delay 1x10-5 0.001 11573 
Use case 6 Time delay flooded water 0.001 1x10-5 11523 
Use case 7 Minimum water to stay 0.01 0.001 10580 

 Maximum water to stay 0.1 0.001  
 Loss in reservoirs 1x10-5 0.001  

Use case 8 Loss 0.001 1x10-5 10537 
 Minimum water to stay 0.01 0.001  
 Maximum water to stay 0.1 0.001  
 Loss in reservoirs 1x10-5 0.001  

Use case 9 Time delay 1x10-5 0.001 10499 
 Loss 0.001 1x10-5  
 Minimum water to stay 0.01 0.001  
 Maximum water to stay 0.1 0.001  
 Loss in reservoirs 1x10-5 0.001  

Use case 10 Time delay flooded water 0.001 1x10-5 10586 
 Time delay 1x10-5 0.001  
 Loss 0.001 1x10-5  
 Minimum water to stay 0.01 0.001  
 Maximum water to stay 0.1 0.001  
 Loss in reservoirs 1x10-5 0.001  
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graph) since most water flows through these segments. Besides, it is noticeable that water 
flowing out from a reservoir does not have a regulation; sometimes a big amount of water 
and sometimes a small amount of water is flowing to the next connected river segment 
causing that the error becomes higher downstream the river network. 
 
Figure 5.18 includes all river segments in river network. the nodes labeled as 13, 14, 15, 16, 
17, 18 and 19   are not present in Figure 5.15. This is due to the database notation; those 
numbers correspond to reservoirs R1, R2, R3, R4, R5, R6 and R7 respectively. Thus, river 
segment “X188” represents the segment connecting node 18 (R6) with node 8 (T8).  
 

 
Figure 5.18. Root Mean Square Deviation[hm³/day] between the simulated water flow in ArcSWAT 

(reference) and the simulated water flow by the LP model using the parameters of use case 9 for the 
2006-2009 time period. 

5.3.2. Validation of the LP-model 
 
This section describes the observed LP performance, when executed for the 2010-2011 
dataset, after setting its parameters with values determined as result of the calibration 
procedure, and initializing the model with outputs achieved from the 2006-2009 dataset.  
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Figure 5.19. Root Mean Square Deviation [hm³/day] between the simulated water flow in ArcSWAT 

(reference) and the simulated water flow by the LP model for the period 2010 - 2011. 

The sum of total RMSD for the period 2010 – 2011 is 16168.09 hm3/day. Figure 5.19 is similar 
in shape to the one from the calibration section; the main difference between both charts is 
the amount of water flowing in each segment. Then, for this dataset the total amount of water 
in the WSN is 54% higher than the best from calibration period (use case 9). Thus, the results 
shown in Figure 5.19 allow to assume that parameter values obtained during the calibration 
phase lead to a relatively good performance of the LP model, with positive perspectives to 
apply to different datasets.  
 
5.3.3. Application of the Calibrated and Evaluated LP-model 
 
5.3.3.1. Water in Reservoirs 
 
Figure 5.20 shows water stored in the reservoirs (hm3) of the basin, throughout the 2012 - 
2013 application period. Charts for some of the reservoirs (R1, R3, R4, R5 and R7), show a 
filling process during the wet period, immediately followed by a decreasing process. This 
phenomenon, evidently matches with the seasonal rainfall behavior. By contrast, in reservoirs 
R2 and R6 the filling process is relatively constant through time. This pattern is also present 
for reservoirs R5, R6 and R7. It is evident that R5, R6 and R7 are geographically close 
reservoirs. All this makes that the water availability follows similar patterns in those three 
reservoirs. However, reservoir R2, is located upstream in the basin and it only requires 4.538E-
02 hm3 per day (D4). It is clear that for all reservoirs water volume is always within the 
minimum volume and the maximum capacity so no penalties are incurred. 
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Figure 5.20. Water stored in the reservoirs 

5.3.3.2. Penalties 
 
The main objective of the LP-model is to determine whether water demands can be fulfilled 
with optimized allocation of the available water. Table 5.8 includes the summary of the 
penalties for not meeting demands as well as penalties for not fulfilling constraints. This table 
shows that the current demands for water in the ORB cannot be completely met after 
optimization, given the availability of surface water through space and time and given the 
available reservoirs infrastructure. However, penalties for not meeting demands are 
extremely low in comparison to other penalty types. 
 

Table 5.8. Deviation of the aimed volume of water from the volume achieved after optimization 
(hm3) and associated penalties (€). 

Penalty cause Volume [hm3] Values [euros] 

(A) Penalty for not meeting the demands  6.08 6.08 

(B) Penalty for floods the demands 0.00 0.00 

(C) Penalty for floods in river segments 17.78 71.13 

(D) Penalty for not meeting the minimum capacity in the river 
segments 0.00 0.00 

(E) Penalty for floods in reservoirs 32.95 230.63 

(F) Penalty for not meeting the minimum capacity in reservoirs 0.00 0.00 
(G) Penalty for not meeting the minimum capacity in demand 
segments 0.00 0.00 

(H) Penalty for flooding in demand segments 0.00 0.00 

Total (A) + (B) + (C) + (D) + (E) + (F) + (G) + (H) 56.81 307.84 
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In Figure 5.21 and Table 5.8 it is clear that despite optimization of water allocation penalties 
remain, namely for not meeting demands, flood in river segments and overflows in reservoirs. 
There is a small penalty for floods of reservoirs Gilgel Gibe II (R3), Gilgel Gibe III (R5), Koysha 
(R6) and Omo Kuraz (R7). The monetary value of these penalties is relatively small since 
exceeding the maximum capacity of a reservoir results in sending extra water through the 
segments to connected transfer or demand nodes, which in turn causes floods in the vicinity 
of the reservoirs. Later, a percentage of this water is lost and the remaining is flowing back to 
the river segment with a delay. 

 

 
Figure 5.21. Daily penalty values (euros) observed during the full study period (scale of y-axis is 

variable). 

The largest penalties are assigned to both no meeting demands (Figure 5.21 – Chart A - 
overflow demands) and exceeding the maximum capacity of a reservoir (Figure 5.21 – Chart 
E – overflow in reservoir).  
 
5.3.4. Application of the MILP-Model 
 
The dataset applied to execute the MILP-model corresponds to the period from 2012 to 2013. 
Moreover, to set the initial values for the water network configuration, the resultant water 
values from the validation process (31-december-2011) were used. The complete process to 
execute the MILP model application was explained in section 5.2.2.8. 
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5.3.4.1. Network Configuration 
 
The network configuration used in the LP model (left) and the MILP model (right) is displayed 
in Figure 5.22. In the LP model, 19 nodes were considered, 12 of them were transfer nodes 
and 7 reservoir nodes. For the MILP model, each of the 19 nodes, is assumed as a “candidate 
reservoir”, i.e. treated as transfer nodes.   

 

 
Figure 5.22. Network configuration of the MILP model 
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5.3.4.2. Candidate Reservoirs  
 
Characteristics of the 7 reservoirs already considered in the LP-model are those listed in Table 
5.5. Characteristics of the other candidate reservoirs are listed in Table 5.9 (including 
characteristics from Table 5.5). These characteristics are explained in detail in section 2.2.8. 
  

Table 5.9. Characteristics of the "candidate reservoirs". 

Node Initial volume 
[hm3] 

Maximum capacity 
[hm3] 

Minimum capacity 
[hm3] 

Total Building + 
management cost [euro] 

1 785 1125 78 1.59E+09 
2 785 1125 78 1.72E+09 
3 785 1125 78 2.23E+09 
4 785 1730 120 2.68E+09 
5 785 1730 120 1.91E+09 
6 785 1730 120 2.04E+09 
7 785 1730 120 2.17E+09 
8 785 1730 120 2.30E+09 
9 785 1730 120 2.55E+09 

10 785 1730 120 2.68E+09 
11 785 1730 120 1.91E+09 
12 785 1730 120 2.04E+09 
13 1520 5700 1140 1.28E+09 
14 239 920 186 1.66E+09 
15 239 920 186 1.53E+09 
16 267 1000 200 1.66E+09 
17 3917 14700 2950 1.91E+09 
18 1747 6000 760 2.23E+09 
19 1176 4410 882 2.68E+09 

 
5.3.4.3. Model scenarios 
 
Four scenarios were settled up to execute the MILP model. Two of the scenarios, include 
existing and planned reservoirs. Each time a new candidate reservoir is included as part of the 
model, its penalties are computed. Therefore, it is feasible to determine whether adding a 
given reservoir contributes to reduce penalties. The other two scenarios proceed in a similar 
manner, but start without reservoirs. By executing these scenarios, it is feasible to determine 
whether locations of already existing and planned reservoirs are good quality approximations 
to optimal locations. 
 
Whereas scenarios 2 and 4 initialize reservoirs water volume from zero, condition close to 
reality, scenarios 1 and 3 started with a pre-defined water volume. On the other hand, in 
scenarios 3 and 4, building and management costs are set to zero, in order to focus the study 
on the impact of reservoirs penalty values, regardless of building and construction costs. One 
extra situation is that scenario 1 and scenario 2 are working with 7 existing reservoirs. 
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5.3.4.4. Results of the MILP model 
 
Scenario 1: Adding new reservoirs to the network with existing reservoirs. New reservoirs have 
an initial water volume. 

 Table 5.10. Results generated by the MILP model when new reservoirs are added to the seven existing ones 
(Scenario 1). The newly added reservoir in each iteration is indicated in red and in green the existing reservoirs 

Iteration Model Number of  
reservoirs 

Reservoirs (nodes) Penalties for 
not meeting 

demands 
[euro] 

Total 
Penaltie
s [euro] 

Building 
+ 

managem
ent 

[euro] 

Total 
[euro] 

1 LP 7 13,14,15,16,17,18,19 6.08 307.84 - 307.84 

2 MILP 8 1,13,14,15,16,17,18,19 6.08 77.248 1.45E+10 1.45E+10 

3 MILP 9 1,2,13,14,15,16,17,18,19 6.14 77.317 1.63E+10 1.63E+10 

4 MILP 10 1,2,5,13,14,15,16,17,18,19 6.28 2733.88 1.82E+10 1.82E+10 

5 MILP 11 1,2,5,11,13,14,15,16,17,18,19 6.29 2733.89 2.01E+10 2.01E+10 

6 MILP 12 1,2,5,6,11,13,14,15,16,17,18,19 5.12 2732.71 2.21E+10 2.21E+10 

7 MILP 13 1,2,5,6,11,12,13,14,15,16,17,18,19 5.12 2732.71 2.42E+10 2.42E+10 

8 MILP 14 1,2,5,6,7,11,12,13,14,15,16,17,18,19 5.34 2732.94 2.63E+10 2.63E+10 

9 MILP 15 1,2,3,5,6,7,11,12,13,14,15,16,17,18,19 5.34 5557.51 2.86E+10 2.86E+10 

10 MILP 16 1,2,3,5,6,7,8,11,12,13,14,15,16,17,18,19 1.03 5553.20 3.09E+10 3.09E+10 

11 MILP 17 1,2,3,5,6,7,8,9,11,12,13,14,15,16,17,18,19 0.83 5553.00 3.34E+10 3.34E+10 

12 MILP 18 1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 0.83 5553.00 3.61E+10 3.61E+10 

13 MILP 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 0.83 5553.00 3.88E+10 3.88E+10 

 
Scenario 1 illustrates what will happen if subsequently the best candidate reservoir is added 
to the previous solution. In this particular case, after adding five reservoirs (total = 12), the 
optimal solution is that 5.12 hm3 (5.12 euros) cannot be allocated to fulfill demands during 
the two considered years. Comparing the results of the first two iterations and the results of 
iterations 6 and 7 in table 5.10, penalties for not meeting demands are lower for the latter. 
Table 5.10, also shows, as more reservoirs are added, the total penalty for not meeting 
demands becomes stable. However, the biggest penalty value is associated to flood in river 
segments. Besides, in this execution, the building and management cost is a highly influential 
variable which is notorious in Figure 5.23 chart A.  
 
Scenario 2: Adding new reservoirs to the network with the existing ones. New reservoirs are 
initially empty 
 
From Table 5.11 and Figure 5.23, it is clear that 8 reservoirs are sufficient to minimize 
penalties. The distinguishing feature of this scenario is that all reservoirs included in the 
solution must go through a filling process since the initial volume is set to zero. Therefore, the 
best solution contains 17 reservoirs and produces a volume of 0.13 hm3 of water that cannot 
allocated. One extra feature is that in scenario 1 and scenario 2, the model selects almost the 
same candidate reservoirs in each iteration.  
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Table 5.11. Results generated by the MILP model when new reservoirs are added to the eight existing ones and 
the initial water volume of the added reservoirs is set to zero (Scenario 2). The newly added reservoir in each 
iteration is indicated in red and in green the existing reservoirs. 

Iteration Model Number of 
reservoirs 

Reservoirs (nodes) Penalties for 
not meeting 

demands 
[euro] 

Total 
Penalties 

[euro] 

Building 
+ 

manage
ment 
[euro] 

Total 
[euro] 

1 LP 7 13,14,15,16,17,18,19 6.08 307.84 - 307.84 

2 MILP 8 1,13,14,15,16,17,18,19 6.15 77.32 1.45E+10 1.45E+10 

3 MILP 9 1,2,13,14,15,16,17,18,19 6.29 77.46 1.63E+10 1.63E+10 

4 MILP 10 1,2,5,13,14,15,16,17,18,19 6.43 32.92 1.82E+10 1.82E+10 

5 MILP 11 1,2,5,11,13,14,15,16,17,18,19 6.44 32.93 2.01E+10 2.01E+10 

6 MILP 12 1,2,5,6,11,13,14,15,16,17,18,19 5.27 31.77 2.21E+10 2.21E+10 

7 MILP 13 1,2,5,6,11,12,13,14,15,16,17,18,19 5.27 31.77 2.42E+10 2.42E+10 

8 MILP 14 1,2,5,6,7,11,12,13,14,15,16,17,18,19 5.61 32.10 2.63E+10 2.63E+10 

9 MILP 15 1,2,3,5,6,7,11,12,13,14,15,16,17,18,19 5.61 5.65 2.86E+10 2.86E+10 

10 MILP 16 1,2,3,5,6,7,8,11,12,13,14,15,16,17,18,19 0.36 0.40 3.09E+10 3.09E+10 

11 MILP 17 1,2,3,5,6,7,8,9,11,12,13,14,15,16,17,18,19 0.13 0.17 3.34E+10 3.34E+10 

12 MILP 18 1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 0.13 0.17 3.61E+10 3.61E+10 

13 MILP 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 0.19 0.23 3.88E+10 3.88E+10 

 
From Table 5.11 and Figure 5.23, it is clear that 8 reservoirs are sufficient to minimize 
penalties. The distinguishing feature of this scenario is that all reservoirs included in the 
solution must go through a filling process since the initial volume is set to zero. Therefore, the 
best solution contains 17 reservoirs and produces a volume of 0.13 hm3 of water that cannot 
allocated. One extra feature is that in scenario 1 and scenario 2, the model selects almost the 
same candidate reservoirs in each iteration.  
 
Scenario 3: Starting with zero reservoirs until including all reservoirs without considering 
building cost but with considering initial water volume in the reservoirs 
 
In scenario 3, the best solution minimizing penalties for not meeting the demands consists of 
ten reservoirs: 7,8,9,10,11,12,13, 17, 18 and 19. Among them only four reservoirs are planned 
or existing: nodes 13 (planned), node 17 (existing), node 18 (planned) and node 19 (planned). 
The volume of water that this solution is not able to allocate over 2012 and 2013 is 0.12 hm3. 
Similarly, to the previous use cases, as more reservoirs are added to the solution, the total 
penalty for not meeting demands becomes stable; this is mainly due to the maximum and 
minimum capacity restrictions in reservoirs, Thus, the excess water is flowing to the next 
connected river segment and later to the WSN. It is remarkable that when the model 
establishes the number of 5 reservoirs, almost all existing and planned reservoirs are selected 
except node 14 (R2 – Gigel Gibe I), 15 (R3 – Gigel Gibe II) and 16 (R4 – Gojeb); the selected 
new reservoir in this case is node 12. In this scenario, the total penalty is becoming higher as 
reservoirs are added (Figure 5.23 chart C); this is the result of not fulfilling the minimum 
capacity constraint in a reservoir due to the filling process in the new added reservoirs. 
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Table 5.12. Results generated by the MILP model when all nodes are considered candidate reservoirs and the 
building costs are set to zero (Scenario 3). The newly added reservoir in each use case is indicated in red and in 
green the existing reservoirs. 

Iteration Model Number of 
reservoirs 

Reservoirs (nodes) Penalties 
for not 

meeting 
demands 

[euro] 

Penalties 
[euro] 

Building 
+ 

manage
ment 
[euro] 

Total 
[euro] 

1 LP 7 13,14,15,16,17,18,19 6.08 307.84 - 307.84 

2 MILP 0 - 0.58 71.71 0 71.71 

2 MILP 1 17 10.71 82.11 0.00 82.11 

3 MILP 2 17,18 6.42 77.55 0.00 77.55 

4 MILP 3 13,17,18 7.53 78.70 0.00 78.70 

5 MILP 4 13,17,18,19 1.40 72.57 0.00 72.57 

6 MILP 5 12,13,17,18,19 1.41 72.58 0.00 72.58 

7 MILP 6 11,12,13,17,18,19 1.41 72.58 0.00 72.58 

8 MILP 7 10,11,12,13,17,18,19 1.41 72.58 0.00 72.58 

9 MILP 8 9,10,11,12,13,17,18,19 1.22 72.39 0.00 72.39 

10 MILP 9 8,9,10,11,12,13,17,18,19 1.23 72.40 0.00 72.40 

11 MILP 10 7,8,9,10,11,12,13,17,18,19 0.12 71.29 0.00 71.29 

12 MILP 11 6,7,8,9,10,11,12,13,17,18,19 0.83 72.00 0.00 72.00 

13 MILP 12 5,6,7,8,9,10,11,12,13,17,18,19 0.83 2728.42 0.00 2728.42 

14 MILP 13 4,5,6,7,8,9,10,11,12,13,17,18,19 0.83 2728.42 0.00 2728.42 

15 MILP 14 4,5,6,7,8,9,10,11,12,13,16,17,18,19 0.83 2728.43 0.00 2728.43 

16 MILP 15 4,5,6,7,8,9,10,11,12,13,15,16,17,18,19 0.83 2728.43 0.00 2728.43 

17 MILP 16 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 0.83 2728.43 0.00 2728.43 

18 MILP 17 3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 0.83 5553.00 0.00 5553.00 

19 MILP 18 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 0.83 5553.00 0.00 5553.00 

20 MILP 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 0.83 5553.00 0.00 5553.00 

 
Scenario 4: Starting with zero reservoirs until including all reservoirs with an initial volume of 
zero and without considering building cost 
 In scenario 4 (Table 5.13) the initial amount of water in the reservoirs and building and management 
costs are assumed to be 0. This assumption results in the necessity of a filling process for each included 
reservoir. When meeting demands is the objective, no reservoirs are required to reduce the penalty 
(use case 2 – penalty 0.58 hm3). This behavior is also present in scenario 3. Thus, from Figure 5.23 
chart D, it is clear that the total penalty is growing since the minimum capacity in a reservoir is not 
being satisfied due to the filling process. Moreover, the reduction of penalty related with not meeting 
demand occurs when nine reservoirs are added; among them only three reservoirs are planned or 
existing: 17 (existing), 18 (planned) and 19 (existing), the rest are new reservoirs (6, 8, 9, 10, 11 and 
12).  
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Table 5.13. Results generated by the MILP model when all nodes are considered candidate reservoirs and the 
building costs as well as the initial volumes are set to zero (Scenario 4). The newly added reservoir in each use 
case is indicated in red and in green the existing reservoirs. 

Iteration Model Number 
of 

reservoirs 

Reservoirs (nodes) Penalties 
demands 

[euro] 

Penalties 
[euro] 

Buildin
g + 

manage
ment 
[euro] 

Total 
[euro] 

1 LP 7 13,14,15,16,17,18,19 6.08 307.84 - 307.84 
2 MILP 0 - 0.58 71.71 0.00 71.71 

3 MILP 1 17 10.95 77221.64 0.00 77221.64 

4 MILP 2 17,18 7.62 94341.68 0.00 94341.68 

5 MILP 3 17,18,19 4.54 114584.81 0.00 114584.81 

6 MILP 4 12,17,18,19 4.55 114584.82 0.00 114584.82 

7 MILP 5 11,12,17,18,19 4.55 114584.82 0.00 114584.82 

8 MILP 6 10,11,12,17,18,19 4.37 114584.55 0.00 114584.55 

9 MILP 7 9,10,11,12,17,18,19 4.39 114618.65 0.00 114618.65 

10 MILP 8 8,9,10,11,12,17,18,19 1.04 113461.68 0.00 113461.68 

11 MILP 9 6,8,9,10,11,12,17,18,19 0.97 113256.80 0.00 113256.80 

12 MILP 10 6,7,8,9,10,11,12,17,18,19 0.99 113166.04 0.00 113166.04 

13 MILP 11 5,6,7,8,9,10,11,12,17,18,19 0.99 113120.12 0.00 113120.12 

14 MILP 12 4,5,6,7,8,9,10,11,12,17,18,19 0.99 110346.75 0.00 110346.75 

15 MILP 13 3,4,5,6,7,8,9,10,11,12,17,18,19 0.99 108394.01 0.00 108394.01 

16 MILP 14 2,3,4,5,6,7,8,9,10,11,12,17,18,19 0.99 108113.53 0.00 108113.53 

17 MILP 15 1,2,3,4,5,6,7,8,9,10,11,12,17,18,19 0.99 108113.53 0.00 108113.53 

18 MILP 16 1,2,3,4,5,6,7,8,9,10,11,12,15,17,18,19 1.09 110506.70 0.00 110506.70 

19 MILP 17 1,2,3,4,5,6,7,8,9,10,11,12,14,15,17,18,19 5.27 216908.17 0.00 216908.17 

20 MILP 18 1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19 8.01 372345.45 0.00 372345.45 

21 MILP 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 10.23 1795383.54 0.00 1795383.54 

 
 
After solving the scenarios using the MILP model, adding new reservoirs does not avoid 
penalties for not meeting water demand. However, penalties can be reduced by building extra 
reservoirs. For all scenarios, level of penalties is inversely proportional to the number of 
reservoirs in the solution. In scenarios 3 and 4, reservoirs: Gigel Gibe I (node 14), Gigel Gibe II 
(node 15) and Gojeb (node 16) are appearing later as part of the solution. In Figure 5.23, four 
charts of total penalties and penalties for not meeting water demands are included; it is 
notorious the influence of the building and management cost in charts A and B, while the 
penalty for not meeting demands is decreasing, the total penalty is increasing. Charts C and 
D, show that without building and management costs at some point penalties start increasing 
again. 
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Figure 5.23. Total amount of costs corresponding to the number of selected reservoirs in scenarios. 

5.1. Discussion 
 
5.1.1. Strengths of the NFO-(MI)LP-models 
 
From the model’s execution, it is noticeable that MILP, as an extension of the LP model allows 
to perform a quick evaluation of the location of existing and planned reservoirs. In the same 
way, those models provide a rapid assessment of a reservoir and determine if a shortage or 
a flood could be expected.  
 
LP and MILP models are scalable; a new restriction or constraint might be added without 
introducing a high complexity or without incurring several changes. In the same way and in 
order to test the model under different conditions, several use cases might be addressed and 
the results verified. For instance, climate change scenarios could be analyzed. In this case, a 
reduction of the precipitation could result in a drier basin and therefore more shortages can 
be coped with more reservoirs.  
 
5.1.2. Weakness of the NFO-(MI)LP-models 
 
Based on the results of model’s execution, it is feasible to conclude that the most determining 
parameter in the selection of a new reservoir is the one associated with the building and 
management cost. In this chapter, there was no information available and a geo-factor was 
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applied to estimate the building and management costs. However, this cost might be 
determined by some other factors which are not considered now; besides, the total cost 
should be distributed over the decades or during the life time and not only for the simulation 
period. Therefore, it is necessary to emphasize the need for better data on the reservoir’s 
construction and annual management costs in the region.  
 
As a weakness, a big amount of data is required to run these models. Most of the process to 
obtain this data is not automated yet; e.g. adding or shifting a node within the configuration 
network implies that the river network and datasets need to be completely recreated.  
Therefore, automatizing data preparation is a key issue to run models scenarios. 
 
5.2. Conclusions 
 
Whereas the LP model allows to allocate water to fulfill several demands as good as possible, 
the MILP model determines whether the current river network configuration can satisfy all 
water demands, or whether there are too many reservoirs, or whether the construction of 
new reservoirs is necessary. Therefore, using the results provided by the MILP model, the 
river network configuration might be improved in order to reduce penalties. 
 
Both the LP and MILP models use of data simulated by ArcSWAT. Although ArcSWAT is a 
physically based model taking inputs as land use maps, soil maps, DEMs, the time series 
resulting from its execution are not error free. It is, therefore, recommended to use data 
observed directly by sensors.   
 
For this chapter, Gibe II was assumed to be a reservoir since the LP-model requires that a 
hydropower plant must have a reservoir associated. As future work, this dependence will be 
removed in order to treat hydropower plants in a proper manner.  
 
From results described in this chapter, it can be concluded that, as more reservoirs are 
included as part of the solution, total penalty decreases. However, building and management 
costs will raise total expenses and will also determine which reservoirs would be in the final 
solution. In this particular case, it is recommendable to find a balance point between costs 
and penalties. Besides, in each river segment connect to a reservoir it is noticeable that a 
procedure to regulate the outflow of is required.  
 
For the calibration process, it became evident that a constraint associated to the reservoir 
outflow should be included in order to regulate flow and produce a constant output. This is 
also evident for river segments following a reservoir. Additionally, the model could be 
extended in order to consider sedimentation within reservoirs, since this is a relevant factor 
that influences maximum capacities and minimum volumes. 
 
Reservoir planning and construction must be carried out in a sustainable way, in order to 
minimize negative social and environmental impacts and maximize the benefits (Chen & 
Swain, 2014). Therefore, decisions in this regard cannot be made only based on water 
availability and demand but require an extensive analysis of the WEF nexus together with 
considering climate change, population growth and industrial development.
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6.1. Discussion  
 
Reservoirs play an important role within the water management process due to, among other 
factors, climate change. The link among water, food and energy (water-food-energy nexus) is 
becoming more notorious (Galizia Tundisi, 2018). The optimization of water allocation is one 
of the options to face these challenges (Aljanabi et al., 2018; Dai et al., 2018). 
 
Several authors Hu et al., (2016); Labadie, (2004) state that the optimization of the water 
allocation process is possible. As we have shown throughout this manuscript, mathematical 
optimization models can be applied to regions with heterogeneous characteristics. 
 
A Linear Programming (LP) model was formulated using artificial data in chapter 2. In chapter 
3, the same model was applied to the Machángara basin, located in the southern part of 
Ecuador, to verify the applicability of this model to real-world study regions. Chapter 4 
focused on determining the optimality of the network configuration provided. To this aim, a 
Mixed Integer Linear Programming (MILP) model was formulated. Chapter 5 described a 
verification of the performance of this model by applying it to a different study area: the Omo- 
river basin located in Ethiopia in the central-eastern part of Africa.   
 
The summary above shows that both the LP and the MILP models have been tested under 
several conditions, namely: a) two different study areas, one in Africa and one in South 
America; b) the size of the study areas: big (Omo), and small (Machángara); and, c) starting 
from basic models that were gradually elaborated by including several extensions. 
 
A general abstraction of this research project is shown in Figure 1.8 in chapter 1. In this 
approach discharge time series are required as inputs, which are entered to the LP and MILP 
models. After these models are executed, policy makers and stakeholders can base their 
strategic decisions on the results produced by the models. In this sense, the models proposed 
in this research work can be considered part of a Decision Support System (DSS). 
 
Since in our case studies no discharge time series are available a hydrological model like SWAT 
(Texas A&M University, 2018) based on geographical information can be executed to 
generate the missing information. In order to be executed, SWAT must be provided with 
several input datasets, such as a Digital Elevation Model (DEM), a soil map, a land cover map 
and weather information. This model is able to generate discharge time series, rainfall time 
series, etc. for the locations of interest in the study region. 
6.1.1. WEF-nexus and reservoirs 
 
From the literature review river basins like the Omo are suffering problems due to an unequal 
water distribution. A solution for this problem might be the use of reservoirs/dams.   
 
Environmental impacts are increased as the number of reservoirs in a complex grows. 
Regulated water flow and transformation of national parks into sugar cane plantations are 
destroying local biodiversities. For instance, filling the reservoirs results in a reduction of the 
water level of Lake Turkana. When filling the Gibe III reservoir in 2016, the lake level dropped 
by 2 m and it is predicted that this level will decrease by another 0.9 m when the Koysha 
reservoir is filled (Avery, 2017). 
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Reservoirs have impact on water management and flood control. Tesfa, (2013) states that 
building new reservoirs is a very useful tool to mitigate extreme hydrological events as well 
as promote the water conservation in the lower Omo area.  
 
Nevertheless, associated to advantages, there are also disadvantages of building reservoirs. 
Thus, the process of damming rivers may cause large environmental damage (McEntee, 
2019). Moreover, previous reservoirs built in the Omo River Basin (Gibe III) did not use a 
process to assess the social and environmental impact (Avery, 2017). Then, the impact of 
building new reservoirs will affect the environment and the biodiversity in the area.   
 
Reservoir planning and construction must be carried out in a sustainable way in order to 
minimize negative impacts (both social and environmental) and maximize benefits (Chen & 
Swain, 2014). Therefore, in this process, it is necessary to consider a variety of criteria, such 
as climate change, population growth, industrial development, the WEF-nexus, etc., and not 
only water availability and demand.  
 
6.1.2. ArcSWAT and datasets 
 
There are a variety of models that can be used to simulate hydrological processes, for instance 
SWAT, Mike SHE, HBV, TOPMODEL, etc. (Devia et al., 2015). Due to the fact that no ground 
truth data were available for the study area, we decided to apply the ArcSWAT model to 
obtain the required discharge time series. ArcSWAT requires several input datasets and 
involves a wide number of parameters that can be adjusted in order to improve its 
performance; however, for this project, the default parameter values were used. It is 
reasonable to assume that the calibration of these parameters may improve the results. 
Additionally, for the use cases considered in this research project, the DEMs, soil maps and 
land cover maps should have a high resolution in order to generate a realistic river network 
and meaningful Hydrological Response Units (HRUs). The weather information used in this 
research project was obtained from the Global Weather Database for SWAT (Texas A&M 
University, 2018). This weather information was interpolated based on a few weather stations 
located in the area. Although accurate ground measured precipitation data is the most 
important input for modelling river discharges, it is often not available in remote areas (Roth 
& Lemann, 2016). (Roth & Lemann, 2016) compared the GWD4S dataset with conventional 
weather data for discharge modelling with SWAT in small catchments located in the Ethiopian 
Highlands. They concluded that the GWD4S weather data contain unsatisfactory discharge 
outputs, while for conventional weather data, the quality of the results was high. (Roth & 
Lemann, 2016) also observed that the seasonal pattern is well represented in the dataset. 
However, there is a mismatch with the amount of real rainfall. This statement is clearly 
represented on the results we obtained for the two studied basins (Omo and Machángara). 
 
As it is shown in chapters 3 and 5, the river network resulting from the ArcSWAT model 
provides a realistic representation. By providing the location of the basin outlet, its sub-basins 
can be delineated and their corresponding outlets located.  After the river network was 
generated, reservoirs and additional outlet nodes could be indicated. A limitation of the tools 
used in this research was the lack of an efficient way to transfer the output of ArcSWAT to 
the LP and MILP models. Specifically, every time ArcSWAT was executed, its results had to be 
copied as inputs for the LP and MILP models. In case observed discharge time series for this 
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basin would have been available, this process could have been avoided, allowing for more 
efficient tests of different river network configurations. 
 
The two following sections analyze the validity of the weather datasets retrieved from the 
GWD4S used in this project: the Machángara river basin dataset (chapter 3) and the Omo 
River Basin dataset (chapter 5).  
 
6.1.2.1. Machángara River Basin (Chapter 3) 
 
As stated in chapter 3, the Machángara river basin is located in the southern provinces of 
Azuay and Cañar, in Ecuador. The data generated for the virtual station p-27-791 of the 
GWD4S were used as the input for SWAT to obtain the required discharge time series in each 
of the nodes (outlets) of the WSN. To validate the dataset, we used the information from a 
physical weather station labeled as El Labrado. The monitoring data are dispersed in several 
databases ruled by different institutions: Instituto Nacional de Meteorología e Hidrología 
(INAMHI), Instituto Ecuatoriano de Recursos Hídricos (INERHI), and Instituto Ecuatoriano de 
Electrificación (INECEL). In 1987, the “Plan Nacional de Riego” project INERHI ORSTOM  
developed a complete assessment of the existing data bases, including the revision on the 
quality of the data and merged the different databases in one database called BIDRIE (Le 
Goulven et al., 1987). 
 
El Labrado stations has 30 years of data (1960 – 1990) and is located: latitude: -2.732°S; 
longitude: -79.073°O. GWD4S includes 35 years of data (1979 – 2014). 
 

 
Figure 6.1. Comparison of average monthly precipitation values from GWD4S and El Labrado stations 

Figure 6.1, monthly average values are compared, this figure also shows that the precipitation 
values from the two stations are inconsistent. In the dataset from GWD4S the magnitude is 
three or four times higher than El Labrado during the rainy periods (January – May and 
October - December) and lower during the dry period (June - September). These differences 
resulted in a RMSD value of 202.56 mm/month. 
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Figure 6.2. Climatograms from GWD4S (left) and WorldClim dataset (CRU-TS 4.03) (right) 

In Figure 6.2, the climatogram at the left corresponds to the GWD4S dataset. It shows a mean 
temperature of 11.93 °C and 2915.84 mm of rainfall. The climatogram at the right 
corresponds to the WorldClim dataset  (Harris et al., 2014). It presents a mean temperature 
of 7.27 °C and a rainfall of 1283.48 mm, which is consistent with the information in Mora et 
al., (2014). Furthermore, there are some values in the GWD4S dataset that are not plausible 
for the Machángara basin. For instance, in the period between 2011 – 2014, the maximum 
temperature reaches 30 °C, which is not reasonable, considering that the study area is located 
close to the Andean highlands. 
 
As a conclusion and based on the value of the RMSD and Figure 6.2, the GWD4S dataset 
clearly overestimates the precipitation and temperature values. 
 
Global Weather Data for SWAT Scaled 
 
In order to use GWD4S, the temperature and precipitation values must be rescaled. This 
process should include observed data to determine the proportion of change in each 
measure. Several mesuarement in the period of 2011 – 2014 have extreme values of 
temperature between 28 and 30 degrees which is not possible in the area. Therefore, in order 
to keep “normal” data from temperature and rainfall, a subset (2011 – 2014) was removed 
from the GWD4S. Thus, the available period goes from 1979 – 2010 (31 years). The rescaled 
process for rainfall was done by Prof. Guido Wyseure and the rescaled process for 
temperature was done by Prof. Diego Mora. The resulting values of precipitation are plotted 
in Figure 6.3. The RMSD for El Labrado and Scaled GWD4S is 9.30 mm/month, which is lower 
compared with the RSMD from the datasets in Figure 6.1. 
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Figure 6.3. Comparison of average monthly precipitation values from Scaled GWD4S and El Labrado 

stations  

The values of precipitation (1310.95 mm) and temperature (8.64 °C) shown in Figure 6.4 are 
closest to the ones stated in Mora et al., (2014). 
 

 
Figure 6.4. Climatogram from GWD4S scaled. 

Linear Programming model (LP) applied to the scaled GWD4S dataset 
   
Using the rescaled GWD4S-rainfall time series we redid the calibration, validation and 
application of the LP-model.  
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Figure 6.5. Annual rainfall in the rescaled GWD4S  

In Figure 6.5, the annual rainfall in the scaled GWD4S is shown for 1979 to 2010. It can be 
observed that from 1979 to 2007 the value of annual rainfall is between 1000 and 1500 mm, 
as stated in Mora et al., (2014). However, in 2008, 2009, and 2010 the rainfall values are 
significantly higher than the previous years. Therefore, this period was excluded from the 
dataset, assuming that those values are outliers. Thus, the period   used to run the LP model 
goes from 01/01/1998 until 31/12/2005. The period 1998 – 2001 was used for calibration, 
2002 – 2003 for validation, and 2004 – 2005 for application. 
 
Calibration  

Table 6.1. Initial and calibrated value for the parameters of the LP model. 

 
Similarly to chapter 3, the calibration process included two phases: sensitivity analysis and 
the selection of the most suitable parameter values per branch (Table 6.1). For the sensitivity 
analysis, the results show that parameter 𝜃 (loss factor in reservoirs) is the most sensitive, 
which is in agreement with chapter 3, section 3.3.1.1. 
 
To determine the values of the parameters, the WSN was split into five branches as in chapter 
3 and nine use cases were executed. The original and the new values, as well as the RMSD are 
summarized in Table 6.1. The lowest RMSD occurred for use case 8 with a value of 45.77 hm3. 
Therefore, values obtained in use case 8 were used for the next phases. 
 

Use cases Adapted parameter Branch Original value New value Sum of RMSD 
[hm³] 

Use case 1 - - - - 48.34 
Use case 2 Minimum water to stay (𝛽) 1,2,3,4,5 0.01 0.0001 47.33 

 Maximum water to stay (𝛾)  0.1 0.0002  
Use case 3 Loss (∝) 1,2,3 0.001 1x10-5 47.73 
Use case 4 Time delays (𝛿) 1,2,3 0.001 1x10-5 47.32 
Use case 5 Loss in reservoirs (𝜃) 1,2,3 0.001 1x10-5 46.34 
Use case 6 Loss in reservoirs 	(𝜃) 1,2,3 1x10-5 0.01 45.88 
Use case 7 Time Delay Flooded Water (∆) 1,2,3 0.01 0.001 45.78 
Use case 8 Time delays	(𝜹) 1,2,3 1x10-5 0.01 45.77 
Use case 9 Minimum water to stay (𝛽) 1,2,3 0.0001 0.001 46.59 

 Maximum water to stay (	𝛾) 1,2,3 0.0002 0.002  
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Validation  
 
The dataset including years 2002 – 2003 was used for validation. The parameters were 
assigned the same values as for the calibration process. The resulting RMSD was 54.04 hm3. 
 
Application 
 
For the application phase, the scaled weather dataset from 2004 – 2005 was used. Figure 6.6 
shows the behaviour of the reservoirs. In R1 (chart A) and R2 (chart B) the filling and the 
emptying processes are evident. These two reservoirs are bigger than reservoirs R3 (chart C) 
and R4 (chart D). Reservoirs R3 (Saucay) and R4 (Saymirin) have a maximum capacity of 1 hm3 
and, due to this, the filling and the emptying are very prominent. Besides, both reservoirs are 
associated to a hydropower plant.  

 
Figure 6.6. Volume of water stored in reservoirs 
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Penalties 
 
The LP-model mainly produced penalties related to not meeting demands and not meeting 
the minimum capacity in reservoir R3 (0.20 hm3). The results are visualized in Figure 6.7 and 
in Table 6.2. 
 

Table 6.2. Deviation of the aimed volume of water from the volume achieved after optimization 
(hm3) and associated penalties (€). 

Penalty cause Volume [hm3] Values [euros] 
(A) Penalty for not meeting the demands  50.96 50.96 
(B) Penalty for floods the demands 0.00 0.00 
(C) Penalty for floods in river segments 0.00 0.00 
(D) Penalty for not meeting the minimum capacity in the river 
segments 0.00 0.00 

(E) Penalty for floods in reservoirs 0.00 0.00 
(F) Penalty for not meeting the minimum capacity in reservoirs 0.20 1.60 
(G) Penalty for not meeting the minimum capacity in demand 
segments 0.00 0.00 

(H) Penalty for flooding in demand segments 0.00 0.00 
Total (A) + (B) + (C) + (D) + (E) + (F) + (G) + (H) 51.16 52.56 

 
Based on the rescaled dataset, there is more water available to allocate than in the original 
GWD4S (chapter 3). Results from the original dataset are in Chapter 3, section 3.3.2.1. 
Besides, in the original GWD4S there was a mismatch between the annual average reported 
by Mora et al., (2014) (1392 mm) and the average for the period 2011 – 2013 (782 mm). 
 

 
Figure 6.7. Penalties during the 2-year period (2004 - 2005). 
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6.1.2.2. The Omo River Basin (Chapter 5) 
 
In the same way as for the Machángara river basin, an analysis of the GWD4S was performed 
for each virtual station (grid point) from Figure 5.8. data from the WorldClim dataset (WC) 
(Fick & Hijmans, 2017; Harris et al., 2014) were used as a reference. 
 
Welkite 
 
This station is located in the northern area of the Omo River Basin. In Figure 6.8 it is apparent 
that the GWD4S overestimates the precipitation, with an average annual value of 1524.49 
mm (chart B) over the period 1979 – 2014, in contrast to the WC dataset that indicates 
1225.50 mm (chart C) over the period 1979 - 2000. Moreover, chart A makes clear that the 
difference is situated mainly in the rainy period (June - September). In July and August there 
is an excess of about 150 mm. This behavior was also observed for the Machangara river 
basin, but for that basin the differences are higher. The RMSD between the two time series is 
80.64 mm/month. 
 
Regarding temperature, the average value in the GWD4S is 18.77 °C, whereas for the WC 
dataset is 19.19 °C. 
 

 

  
Figure 6.8. (A) rainfall comparison between GWD4S and Welkite (WC); (B) climatogram from 

GWD4S and (C) climatogram from WC 

A 

B C 
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Chida 
 
This station is located in the central area of the Omo River Basin. Figure 6.9 shows a 
comparison between the GWD4S and WC datasets. For this location, the GWD4S have lower 
rainfall values than the WC dataset (chart A). Similarly, to Welkite, the differences for Chita 
are more notorious during the rainy period (June - September), with a general RMSD of 50.66 
mm/month. The annual rainfall is 1038.67 mm for the GWD4S (chart B) and 1560.00 mm for 
the WC dataset (chart C). 

 

  
Figure 6.9. (A) rainfall comparison between GWD4S and Chida (WC); (B) climatograms from GWD4S 

and (C) climatogram from WC. 

The average daily temperature is similar for both datasets: 20.54 °C (chart B) and 20.23 °C 
(chart C). 
 
Omorate 
 
This station is located in the southern area of the Omo River Basin. For this location the 
GWD4S and WC datasets show almost the same pattern. The amount of rainfall is clearly 
lower than in the locations analyzed before. The RMSD is 22.07 mm/month. Figure 6.10 shows 
that the annual rainfall in the WC dataset (386.00 mm) is higher than in the GWD4S (152.54 
mm). Charts B and C in Figure 6.10 also present the average temperature: 27.99 °C for GWD4S 
and 28.67 °C for the WC dataset. 

B C 

A 
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Figure 6.10. (A) rainfall comparison between GWD4S and Omorate (WC); (B) climatogram from 

GWD4S and (C) climatogram from WC  

Kaaling 
 
The Kaaling station is located in the southern part of the Omo River Basin. This region presents 
a small amount of rainfall compared to Welkite and Chida. Chart A of Figure 6.11 indicates 
that both datasets show the same pattern with a significant difference in April where the WC 
dataset indicates a rainfall 40 mm/month higher than GWD4S. The RMSD between the two 
time series is 22.20 mm/month, with an annual rainfall of 281.37 mm in the GWD4S and 
369.90 mm in the WC dataset. Additionally, charts B and C of Figure 11 show that the 
temperature in the GWD4S is 27.65 °C and in the WC dataset is 27.74 °C. 
 

B C 

A 
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Figure 6.11. (A) rainfall comparison between GWD4S and Kaaling (WC); (B) climatogram from 

GWD4S and (C) climatogram from WC 

6.1.2.3. Conclusions  
 
6.1.2.3.1. Machángara River Basin 
 
After analyzing the GWD4S, it was clear that the values for precipitation and temperature do 
not correspond with reality, especially for the period 2011 - 2014. Therefore, the original 
dataset was scaled using real data from El Labrado station. The LP model was executed using 
the rescaled weather data. From the results it is clear that by using the scaled GWD4S, better 
results were achieved with the original dataset the total penalty was 1264.47 euros and with 
the scaled one 52.56 euros. RMSD was also improved passing from 61.90 hm3 to 45.77 hm3. 
 
6.1.2.3.2. Omo River Basin 
 
Four stations located within the Omo River Basin were analyzed: Welkite, Chida, Omorate and 
Kaaling. The WC data were considered as the reference dataset in order to make a 
comparison with the GWD4S. It was clear that both datasets have differences but in Omo 
River Basin there are far less extreme than for the Machángara river basin. As a result, we did 
not re-run the LP and MILP models but consider the chapter 5 results sufficiently reliable 
where it regards the weather data inputs. 

B C 

A 
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6.1.3. Water demands 
 
In this research, we grouped several different demand types in categories. These demand 
categories are considered the most important water uses within the study areas, also taking 
into account the availability of data. This implies that not all real demands were considered 
in full detail. Demands were also assumed to be constant through time, which is not in 
agreement to reality. For instance, the amount of water required for irrigation is not constant, 
while the amount of water needed for human consumption per capita may be more constant. 
Additionally, water demands also depend on the season, e.g., households requirements will 
be higher during the dry period (Shahid, 2011).  
 
Several demand types were considered. The most common types are consumptive demands, 
such as irrigation. There are also delaying demands, for which water returns to the river 
network after passing through the demand node. An example of the latter is water that is 
used to produce energy through hydropower plants. These delayed and return flow elements 
are taken into account in the proposed models. 
 
6.1.4. Linear Programming model 
 
Several models based on differential equations to simulate the hydrological behavior of a 
river basin (Devia et al., 2015; Martin et al., 2012) and even to allocate water (Ashraf Vaghefi 
et al., 2013; Labadie, 2006; Shourian et al., 2008) are described in the literature. However, 
these models are not capable to optimize water allocation through time. This lack of 
optimization capabilities can be fulfilled using a mathematical programming approach (linear 
and mixed integer linear programming). 
 
Water networks can consist of a large number of system elements. Specific structures, such 
as reservoirs, make it even harder to describe these systems in a mathematical way. In order 
to make them computable and tractable, these systems must be simplified and assumptions 
have to be made (Martin et al., 2012). Moreover, river network discretization used in this 
research project assumed that water takes exactly one time step to flow from one node to 
the next one.  
 
With the aim of including most of the geographical particularities in the study area, several 
parameters were added to the LP model, such as: losses in river segments, reservoirs and loss 
of flooded water, time delays, time delays in flooded water, and continuity (minimum and 
maximum amount of water to stay in a node). The LP-model must go through a 
calibration/validation process, during which the values for each parameter are selected by 
means of a trial-and-error procedure. 
 
Reservoirs are fundamental elements in the water allocation process. In this work, reservoir 
outflow is not assumed to be regulated. Future research works may include this factor as a 
constraint in both proposed models. Furthermore, exceptional events might be considered 
within the model. For instance, the Ethiopian government announced that they will release a 
1000 m3/s during ten days in September to produce an ecological flood and prevent Lake 
Turkana from drying out (Pearce, 2014a).  
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The definition of the model’s boundaries can be improved, e.g., in penalties associated to 
maximum and minimum capacities in reservoirs, river segments and demand river segments. 
Therefore, a sensitivity analysis should be performed to obtain more realistic values of the 
fractional parameters as well as a stakeholder consultation to find out which of them must 
have the largest weight. Furthermore, The LP and MILP models allocate water based on 
penalties/priorities. However, not all demand nodes have the same priority (all assumed to 
be 1 in this research). Finding penalty values that are more realistic for the study area will 
certainly improve the water allocation schemes produced by the models. 
 
In section 6.1.2 a complete analysis of the time series from GWD4S, INAHMI and WorldClim 
were performed in order to verify whether they are reflecting the behaviour of the studied 
areas. Some corrections were made to the GWD4S in order to remove extreme values and to 
keep rainfall and temperature between the maximum and minimum boundaries. These 
corrections allow us to obtain a new scaled dataset which was used to run the LP model in 
the Machángara River Basin. Dataset used in chapter 3 had several issues mainly in the period 
from 2011 to 2014 where the amount of rainfall was underestimated. Then, results obtained 
in the new execution indicated that the total penalty were reduced from 1264.47 euros to 
52.56 euros. Therefore, the robustness of the LP model was validated. Thus, the LP model can 
accept data from any source. Even if a pre-process of the data is required.  
 
Regarding computational requirements of the LP model, the execution of the LP Model for 
Machángara River Basin was made in macbook pro with 2.6 GHz processor with 8 cores and 
16 GB of memory. Total time and the number of iterations are:  
 

• Calibration (2006 – 2009): Solved in 106093 iterations and 5.71 seconds  
• Validation (2010 – 2011): Solved in 115894 iterations and 6.62 seconds 
• Application (2012 - 2013): Solved in 18455 iterations and 4.60 seconds 

 
6.1.5. Mixed Integer Linear Programming model 
 
In this research project, a MILP model was formulated to select locations for building 
reservoirs from a set of candidate locations considering the water flow in a river network 
configuration. Values used in this model as building and management costs are estimates and 
might be more realistic. In particular, a geo-factor was used to estimate the building and 
management cost, while it would be more convenient to use a geo-factor that takes into 
account the real shape of the river as well as the distance to the nearest roads. It was assumed 
that the costs of building a reservoir in a V-shaped valley are lower than building them in a 
plain. It was also assumed that costs are higher when workers and construction materials 
have to travel long distances.  
 
One of the advantages of the MILP model is that the building and management cost can be 
removed from the objective function. In this way, several scenarios can be executed taking 
into account only the water allocation component. Thus, decision makers are provided with 
several solutions to analyze.  
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Regarding robustness, MILP models can accept different sources of data as we stated in 
section 6.1.4. Furthermore, to have an idea of the computational requirement of the MILP 
model, results from the execution of the MILP Model (2012 - 2013) for Machángara River 
Basin is in Table 6.3, which shows the computation time and the number of iterations to 
obtain the best optimal solution when a number of reservoirs is required. For instance, when 
1 reservoir is required, total computation time is 14.25 seconds and 50171 iterations are 
needed, but when 5 reservoirs are required the computation time is 101.07 seconds and 
135936 iterations are required; it represents three times the values obtained in the first 
execution. 
 

Table 6.3. Results of the execution of the MILP-model for Machángara River Basin 

Use Case Number Of Reservoirs Computation Time [s] Iterations 

1 0 7,98 37360 

2 1 14,25 50171 

3 2 8,51 50575 

4 3 7,33 49633 

5 4 58,34 100955 

6 5 101,07 135936 

7 6 96,99 147235 

8 7 115,13 162985 

9 8 140,03 182418 

10 9 144,27 183674 

11 10 145,13 176685 

12 11 164,74 209357 

13 12 181,56 209779 

14 13 147,85 164677 

15 14 98,36 142455 

16 15 109,64 145392 

17 16 142,78 137284 

18 17 112,81 164627 

19 18 4,91 22146 

20 19 5,11 21466 

21 20 4,41 62195 

 
6.1.6. Applicability, limitations and further research 
 
The models proposed in this research project allow for an assessment of when and where 
water shortages may occur. To do so, decision makers can easily interpret the outputs of both 
models. However, one of the disadvantages is that both models require a large amount of 
input information, which in some cases, may not be available. This fact is further complicated 
when the river network needs to be modified, since, in that case, the whole input datasets 
must be completely re-generated. As it may be obvious, decisions about building reservoirs 
cannot be made only based on the results of these models. An extensive analysis of the WEF-
nexus must be performed, in order to consider all parameters to obtain costs which will 
represents real situations. 
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Regarding limitations, a complete analysis must be performed in order to determine the most 
suitable values for penalties. For now, arbitrary vales were assigned in order to prioritize 
water allocation and avoid floods.  
 
The main objective of this research project was to formulate models to optimize water 
allocation in order to meet all kinds of demands in a river basin. However, during this process, 
we found that there are several other scenarios or variables that can and should be integrated 
to make the models approximate   the reality of the basin. For instance, climate change factors 
should be considered in the LP-model. As an example, the decrease in precipitation may be 
taken into account, since several regions will become drier in the near future. Furthermore, 
continued population growth and industrial development in the basin are other factors that 
should be included. The increase in population and industrial activities affect the required 
amount of water, energy and food. Water demands should also be tuned to get a more 
realistic representation of the WEF nexus.  
 
6.2. Strengths and Weaknesses of the NFO-LP-model 
 
6.2.1. Strengths of the NFO-LP-model: 
 
Several authors have conducted research using linear programming principals to tackle water 
allocation problem. Besides, there are several computer tools (solvers) which include 
modules to solve this type of mathematical models. Moreover, mathematical models are 
scalable which allows to add more constraints without including extra complexity. 
 
Regarding the schematization of the Water Supply Network (WSN), this research project 
introduces a relatively simple manner. Thus, nodes and segments are considered as the basis; 
nodes can represent input, transfer, reservoir or demands and segments can represent rivers. 
In the same way, segments, reservoirs and demand nodes have fixed capacities which allows 
to establish boundaries in the water allocation process. Additionally, input and demand nodes 
must be characterized by time series of water availability and water demand. 
 
The LP (chapter 2, section 2.2) and MILP (chapter 4, section 4.2) models consider several 
penalties which are used to prioritize a demand during the water allocation process. The 
objective function in both models is the sum of those penalty terms to be minimized. 
Therefore, the objective function can be considered relatively simple. Additionally, the 
complete system includes constraints which express the continuity of water flow, network 
limitations, capacities, losses and delays due to floods or any other situation. The LP-model 
have parameters, and those parameters should be calibrated in order to represent real world 
situations. MILP uses the same parameter values as the LP model. In LP and MILP models, the 
number of parameters to be calibrated is limited and straightforward to interpret. 
 
Another consideration is that by feeding the model with past time-series as water inputs in 
the network and setting the penalties in line with the past or current water management 
practices and priorities conducted by the basin’s stakeholders, the potential performance of 
past management can be assessed and compared with effective performance (not done in 
this manuscript). In the same way, by feeding the model with expected or hypothetic water 
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inputs and setting the penalties in line with desired water management practices and 
priorities, assessments can be made of how the available water can be most optimally used. 
 
The configuration of the WSN depends directly on data availability. Thus, if data about 
effective performance of the WSN is available a performance gap analysis between potential 
and effective performance can be conducted. Likewise, if time series of water inputs are 
available in near real time, e.g., via web-based sensor networks, it is possible to turn the 
strategic model into an operational one.  
 
Several degrees of freedom are available to decision makers. For instance, can control the 
water allocation by setting / differentiating penalty values, change the minimum and 
maximum amounts of water to be kept in reservoirs and river segments, change the minimum 
and maximum amounts of water that can be present in a node, change the percentage of 
losses, change the percentage of the water which comes to a node with a delay. 
 
6.2.2. Weaknesses 
 
The LP and MILP models require several types of datasets. Measured time series of water 
inputs at specific location in the network must be available or such time series must be 
simulated by other models. In this research project, ArcSWAT has been used to fulfil this 
requirement.  
 
Regarding the river network, it must be spatially segmented in such a way that can be 
assumed that water flows from one node to the next in just one-time step. It is not obvious 
to make this segmentation dynamic to take into account the variable discharge/speed of 
water.  
 
LP and MILP models are including several assumptions and those assumptions try to stablish 
a simplification of reality. A list of assumptions is included below: 
 

• Water demands are constant throught time. 
• Water flows from one node to next in one time step (1 day for both cases). 
• A percentage of water is lost in nodes (transfer and deamands), reservoirs and river segments.  
• A percentage of water can stay in node. 
• Capacities (maximum and minimum) of nodes and river segments 
• A percentage of water flows with a time delay.  
• Objective function and constraints are linear.  

Besides, as future work it is necessary to determine how these assumptions are going to be 
addressed in order improve the results of the optimization models. An option is the inclusion 
of real time or forecasted information in order to reduce the dependence of simulated data. 
 
As the network configuration is derived from available data, introducing a change in the 
network configuration (e.g. new demand node, new reservoir) can be quite a complex task 
since the complete process must be re-done from the beginning. Another issue with this 
matter, is that the data preparation (inputs and outputs) requires several manual handlings 
or editing. 
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Although there are a limited number of parameters, the calibration process associated to the 
different parameters used in the model to represent the river as it is, can take up quite some 
time to converge. For instance, the sensitivity analysis for the 7 parameters in the 
Machángara River Basin took: 1178.03 seconds and 4075099 iterations. 
 
6.3. Strengths and weaknesses of the NFO-(MI)LP-modelling approach for 
optimizing the location of new reservoirs in a given WSN 
 
6.3.1. Strengths of the NFO-MILP-model 
 
As we stated in previous chapters and sections, the NFO-MILP-model is a relatively a simple 
extension of the NFO-LP-model. Then, all strengths of the LP-model also apply to the MILP-
model. However, we have to consider that add new integer variables will increase the running 
time in the MILP-model. 
 
The NFO-MILP model allows to perform a quick evaluation of a given water supply network 
(WSN). This evaluation is focused on reservoirs and its capacity to meet all the associated 
water demands. Moreover, this model is able to recommend the location of new possible 
reservoirs as well as assess the location of the existing and planned reservoirs. 
 
6.3.2. Weaknesses of the NFO-MILP-model 
 
Given that the NFO-MILP-model is a relatively simple extension of the NFO-LP-model all 
weaknesses of the LP-model also apply to the MILP-model.  
 
The NFO-MILP-model recommends the location of a candidate reservoir. However, the model 
only accommodates candidate reservoirs with a predefined capacity (maximum and 
minimum). However, it is planned to adapt both models to be able to recommend a capacity.  
Due the inclusion of binary variables (0 or 1 values), time required to obtain a solution might 
grow based on the number of reservoirs available. 
 
This model requires to associate a building and management cost to a reservoir. Currently 
this value is determined by using a geo-factor. However, this factor might not represent the 
reality of the area or any other factors might be included.  
 
6.4. Outlook 
 
Several issues have been identified after the execution of both models (NFO-LP and NFO-
MILP). Addressing those issues will allow to improve strengths of the models. For instance: 
comparison of the potential performance (after optimization, as generated by NFO-LP) with 
data about real performance (real data).  
 
From the execution of the models in chapters 3 and 5; it was notorious that river segments 
directly connected to reservoirs are receiving water in a non-regular way (sometimes nothing 
and sometimes producing floods). Therefore, it is recommendable to add a new constraint to 
the model. This constraint is oriented to regulate the outflow from reservoirs and with this 
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reach the minimum water level in the segment to ensure the ecological water requirements 
within the study areas. 
 
Regarding the NFO-MILP models, it would be recommendable to implement a mechanism of 
determining the building and management cost of a candidate reservoirs based on the study 
area. Similarly, both models have several assumptions would it be recommendable to avoid 
this kind of assumptions by analyzing real data to determine correctly these values. 
 
The water supply network as conceived in this manuscript, assumes that water flows from 
one node to another in one time step (typically 24 hours). However, a process to discretize 
water flow should be included; this process should also consider the water velocity as well as 
the geographical location. 
 
6.5. General conclusions 
 
Mathematical models and, more specifically Linear Programming models proved to be a valid 
option to solve water allocation problems. However, these types of models require large 
amounts of input data when the problem conditions vary in time and space. Thus, this 
research project had to generate several time series from the three study areas by using a 
hydrological model (ArcSWAT). 
 
One of the requirements found during this research project was a complete description of the 
Water Supply Network. These components had to be expressed as constraints, variables, 
parameters and objective functions in mathematical models. The parameters included in the 
optimization model required to go through calibration and validation procedures to be set to 
suitable values in order to approximate the model’s behavior to the real world. Furthermore, 
a prior sensitivity analysis proved useful to determine the order in which parameters should 
be adjusted during the calibration.  
 
Linear Programming models applied to problems that are variable in time and space typically 
have high demands of computational time and resources. The inclusion of integer or, more 
specifically, binary variables to obtain a Mixed Integer Linear Programming model, might 
require long execution times to generate a solution. Execution times can become even longer 
when a more fine-grained temporal scale is considered in the model.  
 
On the other hand, heuristics, optimization model which provides a feasible solution for a 
problem could be an approach to tackle this allocation problem. The main difference with 
mathematical models is that this kind of models provides one feasible solution and the other 
kind provides the optimal solution. The first types of models require less data and one initial 
solution. In this context, several authors who applied these kinds of models (Banihabib et al., 
2020; Y. Chang & Zhu, 2019; HassanzadehFard & Jalilian, 2016) state that this is applicable.
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