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Abstract: Worldwide, machine learning (ML) is increasingly being used for developing flood early
warning systems (FEWSs). However, previous studies have not focused on establishing a method-
ology for determining the most efficient ML technique. We assessed FEWSs with three river states,
No-alert, Pre-alert and Alert for flooding, for lead times between 1 to 12 h using the most common
ML techniques, such as multi-layer perceptron (MLP), logistic regression (LR), K-nearest neighbors
(KNN), naive Bayes (NB), and random forest (RF). The Tomebamba catchment in the tropical An-
des of Ecuador was selected as a case study. For all lead times, MLP models achieve the highest
performance followed by LR, with f 1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the
1 h and 12 h cases, respectively. The ranking was highly variable for the remaining ML techniques.
According to the g-mean, LR models correctly forecast and show more stability at all states, while the
MLP models perform better in the Pre-alert and Alert states. The proposed methodology for selecting
the optimal ML technique for a FEWS can be extrapolated to other case studies. Future efforts are
recommended to enhance the input data representation and develop communication applications to
boost the awareness of society of floods.

Keywords: flood early warning; forecasting; hydrological extremes; machine learning; Andes

1. Introduction

Flooding is the most common natural hazard and results worldwide in the most dam-
aging disasters [1–4]. Recent studies associate the increasing frequency and severity of flood
events with a change in land use (e.g., deforestation and urbanization) and climate [2,5–7].
This particularly holds for the tropical Andes region, where complex hydro-meteorological
conditions result in the occurrence of intense and patchy rainfall events [8–10].

According to the flood generation mechanism, floods can be classified into long- and
short-rain floods [11,12]. A key for building resilience to short-rain floods is to anticipate
in a timely way the event, in order to gain time for better preparedness. The response
time between a rainfall event and its associated flood depends on the catchment properties
and might vary from minutes to hours [13]. In this study special attention is given to
flash-floods, which are floods that develop less than 6 h after a heavy rainfall with little or
no forecast lead time [14].

Flood anticipation can be achieved through the development of a flood early warning
system (FEWS). FEWSs have proved to be cost-efficient solutions for life preservation,
damage mitigation, and resilience enhancement [15–18]. However, although crucial, flood
forecasting remains a major challenge in mountainous regions due to the difficulty to
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effectively record the aerial distribution of precipitation due to the sparse density of the
monitoring network and the absence of high-tech equipment by budget constraints [8,9].

To date, there has been no report of any operational FEWS in the Andean region for
scales other than continental [17,19,20]. An alternative attempt in Peru aimed to derive
daily maps of potential floods based on the spatial cumulated precipitation in past days [21].
Other endeavors in Ecuador and Bolivia focused on the monitoring of the runoff in the
upper parts of the catchment to predict the likelihood of flood events in the downstream
basin area [19,22]. However, such attempts are unsatisfactory as countermeasures against
floods and especially flash-floods, where it is required to have reliable and accurate forecasts
with lead times shorter than the response time between the farthest precipitation station
and runoff control point.

There are two paradigms that drive the modeling of the precipitation-runoff response.
First, the physically-based paradigm includes knowledge of the physical processes by
using physical process equations [23]. This approach requires extensive ground data and,
in consequence, intensive computation that hinders the temporal forecast window [24].
Moreover, it is argued that physically based models are inappropriate for real-time or
short-term flood forecasting due to the inherent uncertainty of river-catchment dynamics
and over-parametrization of this type of model [25]. The second data-driven paradigm
assumes floods as stochastic processes with an occurrence distribution probability derived
from historical data. Here, the idea is to exploit relevant input information (e.g., precipi-
tation, past runoff) to find relations to the target variable (i.e., runoff) without requiring
knowledge about the underlying physical processes. Among the traditional data-driven
approaches, statistical modeling has proven to be unsuitable for short-term prediction
due to lack of accuracy, complexity, model robustness, and even computational costs [24].
Previous encouraged the use of advanced data-driven models, e.g., machine learning (ML),
to overcome the aforementioned shortcomings [7,24,26,27]. Particularly during the last
decade, ML approaches have gained increasing popularity among hydrologists [24].

Different ML strategies for flood forecasting are implemented, generating either
quantitative or qualitative runoff forecasts [18,28–38]. Qualitative forecasting consists
of classifying floods into distinct categories or river states according to their severity
(i.e., runoff magnitude), and use this as a base for flood class prediction [30,37,39]. The
advantage of developing a FEWS is the possibility to generate a semaphore-like warning
system that is easy to understand by decision-makers and the public (non-hydrologists).
The challenge of FEWSs is the selection of the most optimal ML technique to obtain reliable
and accurate forecasts with sufficient lead time for decision making. To date, the problem
has received scant attention in the research literature, and as far as our knowledge extends
no previous work examined and compared the potential and efficacy of different ML
techniques for flood forecasting.

The present study compares the performance of five ML classification techniques
for short-rain flood forecasting with special attention to flash floods. ML models were
developed for a medium-size mountain catchment, the Tomebamba basin located in the
tropical Andes of Ecuador. The ML models were tested with respect to their capacity to
forecast three flood warning stages (No-alert, Pre-alert and Alert) for varying forecast lead
times of 1, 4, and 6 h (flash-floods), but also 8 and 12 h to further test whether the lead time
can be satisfactorily extended without losing the models’ operational value.

This paper has been organized into four sections. The first section establishes the
methodological framework for developing a FEWSs using ML techniques. It will then
go on to describe the performance metrics used for a proper efficiency assessment. The
second section presents the findings of the research following the same structure as the
methodological section. Finally, the third and fourth sections presents the discussion and a
summary of the main conclusions of the study, respectively.
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2. Materials and Methods
2.1. Study Area and Dataset

The study area comprises the Tomebamba catchment delineated upstream of the
Matadero-Sayausí hydrological station of the Tomebamba river (Figure 1), where the river
enters the city. The Tomebamba is a tropical mountain catchment located in the southeastern
flank of the Western Andean Cordillera, draining to the Amazon River. The drainage area
of the catchment is approximately 300 km2, spanning from 2800 to 4100 m above sea level
(m a.s.l.). Like many other mountain catchments of the region, it is primarily covered by a
páramo ecosystem, which is known for its important water regulation function [8].
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Figure 1. The Tomebamba catchment located at the Tropical Andean Cordillera of Ecuador,
South America (UTM coordinates).

The Tomebamba river plays a crucial role as a drinking water source for the city of
Cuenca (between 25% to 30% of the demand). Other important water users are agricultural
and industrial activities. Cuenca, which is the third-largest city of Ecuador (around 0.6 mil-
lion inhabitants), is crossed by four rivers that annually flood parts of the city, causing
human and significant economic losses.

The local water utility, the Municipal Public Company of Telecommunications, Water,
Sewerage and Sanitation of Cuenca (ETAPA-EP), defined three flood alert levels associated
with the Matadero-Sayausí station for floods originating in the Tomebamba catchment:
(i) No-alert of flood occurs when the measured runoff is less than 30 m3/s, (ii) Pre-alert
when runoff is between 30 and 50 m3/s, and (iii) the flood Alert is triggered when discharge
exceeds 50 m3/s. With these definitions, and as shown in Figure 2, the discharge label for
the No-alert class represents the majority of the data, whereas the Pre-alert and Alert classes
comprise the minority yet the most dangerous classes.

To develop and operate forecasting models, we use data of two variables: precipitation
in the catchment area and river discharge at a river gauge. For both variables, the available
dataset comprises 4 years of concurrent hourly time series, from Jan/2015 to Jan/2019
(Figure 2). Precipitation information was derived from three tipping-bucket rain gauges:
Toreadora (3955 m a.s.l.), Virgen (3626 m a.s.l.), and Chirimachay (3298 m a.s.l.) installed
within the catchment and along its altitudinal gradient. Whereas for discharge, we used
data of the Matadero-Sayausí station (2693 m a.s.l., Figure 1). To develop the ML modes,
we split the dataset into training and test subsets. The training period ran from 2015 to
2017, whereas 2018 was used as the model testing phase.
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2.2. Machine Learning (ML) Methods for Classification of Flood Alert Levels

ML classification algorithms can be grouped in terms of their functionality. According
to Mosavi et al. (2018), five of the worldwide most-popular statistical method groups are
commonly used for short-term flood prediction (extreme runoff), and include:

i. Regression algorithms modeling the relationships between variables (e.g., logistic
regression, linear regression, multivariate adaptive regression splines, etc.) [18,40].

ii. Instance-based algorithms that rely on memory-based learning, representing a de-
cision problem fed with data for training (e.g., K-nearest neighbor, learning vector
quantification, locally weighted learning, etc.) [30].

iii. Decision tree algorithms, which progressively divide the whole data set into subsets
based on certain feature values, until all target variables are grouped into one category
(e.g., classification and regression tree, M5, random forest, etc.) [18,28,30,31,37].

iv. Bayesian algorithms based on Bayes’ theorem on conditional probability (e.g., naive
Bayes, Bayesian network, Gaussian naïve Bayes, etc.) [18,31,35].

v. Neural Network algorithms inspired by biological neural networks convert input(s)
to output(s) through specified transient states that enable the model to learn in a
sophisticated way (e.g., perceptron, multi-layer perceptron, radial basis function
network, etc.) [18,31,36].

For this study, we selected five ML algorithms, one from each group, respectively, a logis-
tic regression, K-nearest neighbor, random forest, naive Bayes, and a multi-layer perceptron.

2.2.1. Logistic Regression

Logistic Regression (LR) is a discriminative model, modeling the decision boundary
between classes. In a first instance, linear regressions are applied to find existent relation-
ships between model features. Thereafter, the probability (conditional) of belonging to a
class is identified using a logistic (sigmoid) function that effectively deals with outliers
(binary classification). From these probabilities, the LR classifies, with regularization, the
dependent variables into any of the created classes. However, for multiclass classification
problems are all binary classification possibilities considered, it is No-alert vs. Pre-alert,
No-alert vs. Alert, and Pre-alert vs. Alert. Finally, the solution is the classification with the
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maximum probability (multinomial LR) using the softmax function Equation (1). With this
function is the predicted probability of each class defined [41]. The calculated probability
for each class is positive with the logistic function and normalized across all classes.

so f tmax(z)i =
ezi

∑k
l=1 ezl

(1)

where zi is the ith input of the softmax function, corresponding to class i from the k number
of classes.

2.2.2. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric statistical pattern recognition algo-
rithm, for which no theoretical or analytical background exist but an intuitive statistical
procedure (memory-based learning) for the classification. KNN classifies unseen data based
on a similarity measure such as a distance function (e.g., Euclidean, Manhattan, Chebyshev,
Hamming, etc.). The use of multiple neighbors instead of only one is recommended to
avoid the wrong delineation of class boundaries caused by noisy features. In the end,
the majority vote of the nearest neighbors (see the formulation in [41]) determines the
classification decision. The number of nearest neighbors can be optimized to reach a global
minimum avoiding longer computation times, and the influence of class size. The major
advantage of the KNN is its simplicity. However, the drawback is that KNN is memory
intensive, all training data must be stored and compared when added information is to
be evaluated.

2.2.3. Random Forest

Random Forest (RF) is a supervised ML algorithm that ensembles a multitude of
decorrelated decision trees (DTs) voting for the most popular class (classification). In
practice, a DT (particular model) is a hierarchical analysis based on a set of conditions
consecutively applied to a dataset. To assure decorrelation, the RF algorithm applies a
bagging technique for a growing DT from different randomly resampled training subsets
obtained from the original dataset. Each DT provides an independent output (class)
of the phenomenon of interest (i.e., runoff), contrary to numerical labels for regression
applications. The popularity of RF is due to the possibility to perform random subsampling
and bootstrapping which minimizes biased classification [42]. An extended description of
the RF functioning is available in [43,44].

The predicted class probabilities of an input sample are calculated as the mean pre-
dicted class probabilities of the trees in the forest. For a single tree, the class probability is
computed as the fraction of samples of the same class in a leaf. However, it is well-known
that the calculated training frequencies are not accurate conditional probability estimates
due to the high bias and variance of the frequencies [45]. This deficiency can be resolved
by controlling the minimum number of samples required at a leaf node, with the objective
to induce a smoothing effect, and to obtain statistically reliable probability estimates.

2.2.4. Naïve Bayes

Naïve Bayes (NB) is a classification method based on Bayes’ theorem with the “naive”
assumption that there is no dependence between features in a class, even if there is depen-
dence [46]. Bayes’ theorem can be expressed as:

P(y|X) =
P(X|y) P(y)

P(X)
(2)

where P(A|B) is the probability of y (hypothesis) happening, given the occurrence of X
(features), and X can be defined as X = x1, x2, . . . , xn. Bayes’ theorem can be written as:

P(y|x1, x2, . . . , xn) =
P(x1|y) P(x2|y) . . . P(xn|y) P(y)

P(x1) P(x2) . . . P(xn)
(3)
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There are different NB classifiers depending on the assumption of the distribution
of P(xi |y). In this matter, the study of Zhang [46] proved the optimality of NB under the
Gaussian distribution even when the assumption of conditional independence is violated
(real application cases). Additionally, for multiclass problems, the outcome of the algorithm
is the class with the maximum probability. For the Gaussian NB algorithm no parameters
have to be tuned.

2.2.5. Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a class of feedforward artificial neural networks
(ANN). A perceptron is a linear classifier that separates an input into two categories with a
straight line and produces a single outcome. Input is a feature vector multiplied by specific
weights and added to a bias. Contrary to a single-layer case, the MLP can approximate
non-linear functions using additional so-called hidden layers. Prediction of probabilities
of belonging to any class is calculated through the softmax function. The MLP consists
of multiple neurons in fully connected multiple layers. Determination of the number of
neurons in the layers with a trial-and-error approach remains widely used [47]. Neurons
in the first layer correspond to the input data, whereas all other nodes relate inputs to
outputs by using linear combinations with certain weights and biases together with an
activation function. To measure the performance of the MLP, the logistic loss function is
defined with the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method
as the optimizer for training the network. A detailed and comprehensive description of
ANN can be found in [48].

2.3. Methodology

Figure 3 depicts schematic the methodology followed in this study. The complete
dataset for the study consists, as mentioned before, of precipitation and labeled discharge
time-series (see Figure 2). The dataset was split in two groups, respectively, for training
and testing purposes, and training and test feature spaces were composed for each lead
time for the tasks of model hyperparameterization and model assessment. This procedure
is repeated for each of the ML techniques studied. Finally, the ranking of the performance
quality of all ML methods for every lead time, based on performance metrics and a
statistical significance test, were determined.

2.3.1. Feature Space Composition

For each lead time, we used single training and testing feature spaces for all ML
techniques. A feature space is composed by features (predictors) coming from two variables:
precipitation and discharge. The process of feature space composition starts by defining
a specific number of precipitation and discharge features (present time and past hourly
lags) according to statistical analyses relying on Pearson’s cross-, auto and partial-auto-
correlation functions [49]. The number of lags from each station was selected by setting up
a correlation threshold of 0.2 [28].

Similarly, for discharge, we used several features coming from past time slots of
discharge selected for the analysis. It is worth noting that the number of discharge features
triples since we replace each discharge feature with three features (one per flood warning
class) in a process known as one-hot-encoding or binary encoding. Therefore, each created
feature denotes 0 or 1 when the correspondent alarm stage is false or true, respectively.
Finally, we performed a feature standardization process before the computation stage of
the KNN, LR, NB, and NN algorithms. Standardization was achieved by subtracting the
mean and scaling it to unit variance, resulting in a distribution with a standard deviation
equal to 1 and a mean equal to 0.
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2.3.2. Model Hyperparameterization

After the composition of the feature space the optimal architectures for each ML
forecasting model, and for each lead time was set up. The optimal architectures were
defined by the combination of hyperparameters under the concept of balance between
accuracy, and computational cost, and speed. However, finding optimal architectures
requires an exhaustive search of all combinations of hyperparameters. To overcome this
issue, we relied on the randomized grid search (RGS) with a 10-fold cross-validation
scheme. The RGS procedure randomly explores the search space for discretized continuous
hyperparameters based on a cross-validation evaluation. Moreover, we selected the f1-
macro score (see Section 2.3.4) as objective function.

2.3.3. Principal Component Analysis

ML applications require in general the analysis of high-dimension and complex data,
involving substantial amounts of memory and computational costs. Reduction of the
dimensionality was realized through the application of principal component analysis
(PCA) enabling exclusion of correlating features that do not add information to the model.
PCA was applied after feature scaling and normalization.
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This method enables finding the dimension of maximum variance and the reduction
of the feature space to that dimension so that the model performance remains as intact as
possible when compared to performance with the full feature space. But considering that
each ML technique assimilates data differently, we did not define the number of principal
components to keep a fixed threshold of variance explanation (e.g., 80–90%), but performed
an exploratory analysis to evaluate its influence on each model. As such, the number
of PCAs was treated as an additional hyperparameter, and we optimized the number
of principal components for each specific model (lead time and ML technique) with the
objective to find the best possible model for each case.

All ML techniques and the RGS procedure were implemented through the scikit-learn
package for ML in Python® [50]. Table 1 presents the relevant hyperparameters for each
ML technique and their search space for tuning [38]. We employed default values for the
hyperparameters which are depicted in Table 1.

Table 1. Model hyperparameters and their ranges/possibilities for tuning.

ML Technique Hyperparameters

LR
C penalty

0.001–1000 {‘l1’, ‘l2’}

KNN

neighbor’s weights metric algorithm

3–75 {‘uniform’,
‘distance’}

{‘euclidean’,
‘manhattan’,
‘minkowski’}

{‘auto’,‘ball_tree’,
‘kd_tree’,‘brute’}

RF
estimator’s max_features hadeeth min_samples_leaf min_samples_split

50–1000 {‘auto’, ‘sqrt’,
‘log2’} 50–1000 1–500 1–500

MLP
solver max_iter alpha hidden_layers

{‘lbfgs’} 10–5000 1 × 10−9–0.1 1–16

2.3.4. Model Performance Evaluation

Forecasting hydrological extremes such as floods turns into an imbalanced classifi-
cation problem, and becomes even more complex when the interest lies in the minority
class of the data (flood alert). This is because most ML classification algorithms focus on
the minimization of the overall error rate, it is the incorrect classification of the majority
class [51]. Resampling the class distribution of the data for obtaining an equal number
of samples per class is one solution. In this study, we used another approach that relies
on training ML models with the assumption of imbalanced data. The approach we used
penalizes mistakes in samples belonging to the minority classes rather than under-sampling
or over-sampling data. In practice, this implies that for a given metric efficiency, the overall
score is the result of averaging each performance metric (for each class) multiplied by its
corresponding weight factor. According to the class frequencies the weight factors for each
class were calculated (inversely proportional), using Equation (4).

wi =
N

C nj
(4)

where wi is the weight of class i, N is the total number of observations, C is the number of
classes, and nj the number of observations in class i. This implies that higher weights will
be obtained for minority classes.

Performance Metrics

The metrics for the performance assessment were derived from the well-known
confusion matrix, especially suitable for imbalanced datasets and multiclass problems,
and are respectively the f1 score, the geometric mean, and the logistic regression loss
score [51–56]. Since neither of the metrics is adequate it is suggested to use a compendium



Hydrology 2021, 8, 183 9 of 20

of metrics to properly explain the performance of the model. In addition, those metrics
complement each other.

f1 Score

The f score is a metric that relies on precision and recall, which is an effective metric
for imbalanced problems. When the f score as a weighted harmonic mean, we name this
score f1. The latter score can be calculated with Equation (5).

f1 score =
2× Precision × Recall
(Precision + Recall )

(5)

where precision and recall are defined with the following equations:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP stands for true positives, FP for false positives, and FN for false negatives.
The f1 score ranges from 0 to 1, indicating perfect precision and recall. The advantage

of using the f1 score compared to the arithmetic or geometric mean is that it penalizes
models most when either the precision or recall is low. However, classifying a No-Alert
flood warning as Alert might have a different impact on the decision-making than when the
opposite occurs. This limitation scales up when there is an additional state, e.g., Pre-alert.
Thus, the interpretation of the f1 score must be taken with care. For multiclass problems,
the f1 score is commonly averaged across all classes, and is called the f1-macro score to
indicate the overall model performance.

Geometric Mean

The geometric-mean (g-mean) measures simultaneously the balanced performance of
TP and TN rates. This metric gives equal importance to the classification task of both the
majority (No-alert) and minority (Pre-alert and Alert) classes. The g-mean is an evaluation
measure that can be used to maximize accuracy to balance TP and TN examples at the
same time with a good trade-off [53]. It can be calculated using Equation (8)

G−mean =
√
(TPrate × TNrate) (8)

where TPrate and TNrate are defined by:

TPrate = Recall (9)

TNrate =
TN

TN + FP
(10)

The value of the g-mean metrics ranges from 0 to 1, where low values indicate
deficient performance in the classification of the majority class even if the minority classes
are correctly classified.

Logistic Regression Loss

The metric logistic regression loss (log-loss) measures the performance of a classifi-
cation model when the input is a probability value between 0 and 1. It accounts for the
uncertainty of the forecast based on how much it varies from the actual label. For multiclass
classification, a separate log-loss is calculated for each class label (per observation), and the
results are summed up. The log-loss score for multi-class problems is defined as:
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Log loss = − 1
N

N

∑
i=1

M

∑
j=1

yij log
(

pij
)

(11)

where N is the number of samples, M the number of classes, yij equal to 1 when the
observation belongs to class j; else 0, and pij is the predicted probability that the observation
belongs to class j. Starting from 0 (best score), the log-loss magnitudes increase as the
probability diverges from the actual label. It punishes worse errors more harshly to
promote conservative predictions. For probabilities close to 1, the log-loss slowly decreases.
However, as the predicted probability decreases, the log-loss increases rapidly.

Statistical Significance Test for Comparing Machine-Learning (ML) Algorithms

Although we can directly compare performance metrics of ML alternatives and claim
to have found the best one based on the score, it is not certain whether the difference
in metrics is real or the result of statistical chance. Different statistical frameworks are
available allowing us to compare the performance of classification models (e.g., a difference
of proportions, paired comparison, binomial test, etc.).

Among them, Raschka [57] recommends using the chi-squared test to quantify the
likelihood of the samples of skill scores, being observed under the assumption that they
have the same distributions. The assumption is known as the null hypothesis, and aims
to prove whether there is a statistically significant difference between two models (error
rates). If rejected, it can be concluded that any observed difference in performance metrics
is due to a difference in the models and not due to statistical chance. In our study we used
the chi-squared test to assess whether the difference in the observed proportions of the
contingency tables of a pair of ML algorithms (for a given lead time) is significant.

For the model comparison, we defined the statistical significance of improvements/
degradations for all lead times (training and test subsets) under a value of 0.05 (chi-squared
test). In all cases, the MLP model was used as the base model to which the other models
were compared.

3. Results

This section presents the results of the flood forecasting models developed with the
LR, KNN, RF, NB, and MLP techniques, and for lead times of 1, 4, 6, 8, and 12 h. For each
model, we addressed the forecast of three flood warnings, No-alert, Pre-alert and Alert. First,
we present the results of the feature space composition process, taking the 1 h lead time
case as an example. Then, we show the results of the hyperparameterization for all models,
followed by an evaluation and ranking of the performance of the ML techniques.

3.1. Feature Space Composition

Figures 4 and 5 show the results of the discharge and precipitation lag analyses for the
flood forecasting model 1-h before the flood would occur. Figure 4a depicts the discharge
autocorrelation function (ACF) and the corresponding 95% confidence interval from lag 1
up to 600 (h). We found a significant correlation up to a lag of 280 h (maximum correlation
at the first lag) and, thereafter, the correlation fell within the confidence band. On the other
hand, Figure 4b presents the discharge partial-autocorrelation function (PACF) and its 95%
confidence band from lag 1 to 30 h. We found a significant correlation up to lag 8 h (first
lags outside the confidence band). As a result, based on the interpretation of the ACF and
PACF analyses, and according to Muñoz et al. [28] we decided to include 8 discharge lags
(hours) for the case of 1 h flood forecasting in the Tomebamba catchment.
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Figure 5 plots the Pearson’s cross-correlation between the precipitation at each rainfall
station and the discharge at the Matadero-Sayausí stream gauging station. For all stations,
we found a maximum correlation at lag 4 (maximum 0.32 for Chirimachay). With the fixed
correlation threshold of 0.2, we included 11, 14, and 15 lags for Virgen, Chirimachay, and
Toreadora stations, respectively.

Similarly, the same procedure was applied for the remaining lead times (i.e., 4, 6, 8,
and 12 h). In Table 2, we present the input data composition and the resulting total number
of features obtained from the lag analyses for each forecasting model. For instance, for
the 1 h case, the total number of features in the feature space equals 67, from which 43 are
derived from precipitation (past lags and one feature from present time for each station),
and 24 from discharge (one-hot-encoding).
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Table 2. Input data composition (number of features) for all ML models of the Tomebamba catchment.

Discharge Lags * (h) Precipitation Lags (h)

Lead Time (h) Matadero-Sayausí Toreadora Chirimachay Virgen Number of Features

1 8 15 14 11 67
4 12 18 17 14 88
6 14 20 19 16 100
8 16 22 21 18 112

12 20 26 25 22 136

* Note that each discharge feature triples (three flood warning classes) after a one-hot-encoding process.

3.2. Model Hyperparameterization

The results of the hyperparameterization including the number of PCA components
employed for achieving the best model efficiencies are presented in Table 3. No evident
relation between the number of principal components and the ML technique nor the lead
time was found. In fact, for some models we found differences in the f1-macro score lower
than 0.01 for a low and high number of principal components. See for instance the case of
the KNN models where the optimal number of components significantly decayed for lead
times greater than 4 h. For the 1 h lead time, 96% of the components were used, whereas
for the rest of the lead times only less than 8%.

Table 3. Model hyperparameters and number of principal components used for each specific model (ML technique and
lead time).

ML Technique Hyperparameter
Lead Time

1 h 4 h 6 h 8 h 12 h

LR
C 0.01 0.00001 0.0001 0.0001 0.001

penalty ‘l2’ ‘l2’ ‘l2’ ‘l2’ ‘l2’
PCA_components * 58 62 78 75 51

KNN

n_neighbors 15 15 23 33 55
weights ‘uniform’ ‘uniform’ ‘uniform’ ‘uniform’ ‘uniform’
metric ‘minkowski’ ‘minkowski’ ‘minkowski’ ‘minkowski’ ‘minkowski’

Algorithm ‘auto’ ‘auto’ ‘auto’ ‘auto’ ‘auto’
PCA_components * 64 6 6 6 4

RF

n_estimators 700 700 700 700 800
max_features ‘sqrt’ ‘auto’ auto ‘log2’ ‘auto’
max_depth 350 350 350 350 300

min_samples_leaf 450 450 480 480 450
min_samples_split 10 5 5 2 4
PCA_components * 66 79 90 45 78

NB PCA_components * 63 64 87 89 15

MLP

solver ‘lbfgs’ ‘lbfgs’ ‘lbfgs’ ‘lbfgs’ ‘lbfgs’
max_iter 2000 2000 2000 2000 2000

alpha 0.0001 0.0001 0.0001 0.0001 0.0001
hidden_layers 2 3 2 2 4

PCA_components * 63 51 64 76 4

* From the total number of features: 1 h = 67, 4 h = 88, 6 h = 100, 8 h = 112, 12 h = 136 features.

If we turn to the evolution of models’ complexity with lead time (Table 3) more
complex ML architectures are needed to forecast greater lead times. This is underpinned
by the fact that the corresponding optimal models require for greater lead times a stronger
regularization (lower values of C) for LR, a greater number of neighbors (n_neighbors) for
KNN, more specific trees (lower values of min_samples_split) for RF and more hidden
layers (hidden_layers) for MLP.
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3.3. Model Performance Evaluation

As mentioned before, model performances calculated with the f1-score, g-mean, and
log-loss score were weighted according to class frequencies. Table 4 presents the frequency
distribution for the complete dataset, respectively, for the training and test subsets. Here,
the dominance of the No-alert flood class is evident, with more than 95% of the samples
in both subsets. With this information, the class weights for the training period were
calculated as wNo−alert = 0.01, wPre−alert = 0.55 and wAlert = 0.51.

Table 4. The number of samples and relative percentage for the entire dataset and the training and
test subsets.

Warning Complete Training Test

No-alert 32,596 (96.1%) 24,890 (96.2%) 7706 (95.7%)
Pre-alert 720 (2.1%) 473 (1.8%) 247 (3.1%)

Alert 609 (1.8%) (2.0%) 100 (1.2%)

The results of the model performance evaluation for all ML models and lead times
(test subset) are summarized in Table 5. We proved for all models that the differences in
performance metrics for a given lead time were due to the difference in the ML techniques
rather than to the statistical chance. As expected, ML models’ ability to forecast floods
decreased for a longer lead time. For instance, for the case of 1 h forecasting, we found a
maximum f1-macro score of 0.88 (MLP) for the training and 0.82 (LR) for the test subset.
Whereas, for the 12 h case, the maximum f1-macro score was 0.71 (MLP) for the training
and 0.46 (MLP) for the test subset.

Table 5. Models’ performance evaluation on the test subset. Bold fonts indicate the best performance
for a given lead time.

Lead Time (h) RF KNN LR NB MLP

F1-macro score

1 0.59 0.73 0.82 0.57 0.78
4 0.47 0.57 0.59 0.46 0.62
6 0.47 0.45 0.50 0.41 0.51
8 0.44 0.41 0.44 0.45 0.51

12 0.42 0.36 0.44 0.43 0.46

G-mean

1 0.86 0.77 0.88 0.81 0.83
4 0.75 0.63 0.76 0.73 0.71
6 0.70 0.56 0.72 0.68 0.62
8 0.73 0.53 0.67 0.62 0.62

12 0.69 0.50 0.69 0.64 0.56

Log-loss score

1 0.28 0.38 1.09 3.14 0.09
4 0.38 0.46 0.74 4.10 0.11
6 0.45 0.58 0.47 4.71 0.14
8 0.50 0.65 0.53 0.59 0.16

12 0.59 0.70 0.57 2.17 0.20
Note: All improvements and degradations are statistically significant.

The extensive hyperparameterization (RGS scheme) powered by 10-fold cross-validation
served to assure robustness in all ML models and reduced overfitting. We found only a
small difference between the performance values by using the training and the test subsets.
For all models, maximum differences in performances were lower than 0.27 for the f1-macro
score and 0.19 for the g-mean.
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In general, for all lead times, the MLP technique obtained the highest f1-macro score,
followed by the LR algorithm. This performance dominance was confirmed by the ranking
of the models according to the log-loss score. The ranking of the remaining models was
highly variable and, therefore, not conclusive. For instance, the results of the KNN models
obtained the second-highest score for the training subset, but the lowest for the test subset,
especially for longer lead times. This is because the KNN is a memory-based algorithm
and therefore more sensitive to the inclusion of information different to the training subset
in comparison to the remaining ML techniques. This can be noted in Table 4, where the
training and test frequency distributions are different for the Pre-alert and Alert classes.

On the other hand, for the g-mean score, we obtained a different ranking of the
methods. We found the highest scores for the LR algorithm, followed by the RF and the
MLP models. Despite this behavior, the values of the g-mean were superior to the f1-macro
scores for all lead times and subsets. This is because the f1 score relies on the harmonic
mean. Therefore, the f1 score penalizes more a low precision or recall in comparison
with a metric based on a geometric or arithmetic mean. Results of the g-mean served to
identify that the LR is the most stable method in terms of correctly classifying both the
majority (No-alert) and the minority (Pre-alert and Alert) flood warning classes, while the
MLP technique could be used to focus on the minority (flood alert) classes.

To extend the last idea, we analyzed the individual f1 scores of each flood warning
class. This unveils the ability of the model to forecast the main classes of interest, i.e.,
Pre-alert and Alert. Figure 6 presents the evolution of the f1-score of each ML algorithm at
the corresponding lead time. We found that for all ML techniques, the Alert class is clearly
the most difficult to forecast when the f1-macro score was selected as the metric for the
hyperparameterization task. An additional exercise consisted in choosing the individual
f1-score for the Alert class as the target for hyperparameterization of all models. However,
although we obtained comparable results for the Alert class, the scores of the Pre-alert class
had significantly deteriorated, even reaching scores near zero. The most interesting aspect
in Figure 6 is that the most efficient and stable models across lead times (test subset) were
the models based on MLP and LR techniques. It is also evident that for all forecasting
models, a lack of robustness for the Pre-alert warning class was found, and there were
major differences between the f1-scores for the training and test subsets. An explanation
for this might be that the Alert class implies a Pre-alert warning class, but not the opposite.
Consequently, this might mislead the learning process causing overfitting during training
leading to poor performances when assessing unseen data during the test phase.
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Moreover, although we added a notion of class frequency distribution (weights) to
the performance evaluation task, it can be noted that for all models, the majority class
is most perfectly classified. This is because the No-alert class arises from low-to-medium
discharge magnitudes. This eases and simplifies the learning process of the ML techniques
since these magnitudes can be related to normal conditions (present time and past lags) of
precipitation and discharge.

4. Discussion

In this study, we developed and evaluated five different FEWSs relying on the most
common ML techniques for flood forecasting, and for short-term lead times of 1, 4, and 6 h
for flash-floods, and 8 and 12 h to assess models’ operational value for longer lead times.
Historical runoff data were used to define and label the three flood warning scenarios to be
forecasted (No-alert, Pre-alert and Alert). We constructed the feature space for the models
according to the statistical analyses of precipitation and discharge data followed by a PCA
analysis embedded in the hyperparameterization.

This was aimed to better exploit the learning algorithm of each ML technique. In
terms of model assessment, we proposed an integral scheme based on the f1-score, the
geometric mean, and the log-loss score to deal with data imbalance and multiclass charac-
teristics. Finally, the assessment was complemented with a statistical analysis to provide
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a performance ranking between ML techniques. For all lead times, we obtained the best
forecasts for both, the majority and minority classes from the models based on the LR, RF,
and MLP techniques (g-mean). The two most suitable models for the dangerous warning
classes (Pre-Alert and Alert) were the MLP and LR (f1 and log-loss scores). This finding has
important implications for developing FEWSs since real-time applications must be capable
of dealing with both the majority and minority classes. Therefore, it can be suggested that
the most appropriate forecasting models are based on the MLP technique.

The results on the evolution of model performances across lead times suggest that the
models are acceptable for lead times up to 6 h, i.e., the models are suitable for flash-flood
applications in the Tomebamba catchment. For lead times greater than 6 h, we found a
strong decay in model performance. In other words, the utility of the 8 and 12 h forecasting
models is limited by the models’ operational value. This is because, in the absence of rainfall
forecasts, the assumption of future rain is solely based on runoff measurements at past and
present times. This generates forecasts that are not accurate enough for horizons greater
than the concentration-time of the catchment. The concentration-time of the Tomebamba
catchment was estimated between 2 and 6 h according to the equations of Kirpich, Giandotti,
Ven Te Chow, and Temez, respectively. A summary of the equations can be found in
Almeida et al. [58]. This results in an additional performance decay for the 8 and 12 h cases
in addition to the error in modeling.

The study of Furquim et al. [31] is comparable. These authors analyzed the perfor-
mance of different ML classification algorithms for flash-flood nowcasting (3 h) in a river
located in an urban area of Brazil. They found that models based on neural networks and
decision trees outperformed those based on the NB technique. In addition, the study of
Razali et al. [30] proved that decision tree-based algorithms perform better than KNN mod-
els, which agrees with our findings. However, such studies only evaluated the percentage
of correctly classified instances which is a simplistic evaluation. Thus, we recommend a
more integral assessment of model performances, like the one in the current study, which
allows for better support in decision making.

Other studies related to quantitative forecasting revealed that neural network-based
models usually outperform the remaining techniques proposed in our study [32–34]. Sim-
ilarly, the study of Khalaf et al. [37] proved the superiority of the RF algorithm when
compared to the bagging decision trees and HyperPipes classification algorithms. Thus,
in certain cases, the use of less expensive techniques regarding the computational costs
produces comparable results as in [36]; this is also the case in our short-rain and flash-flood
flood classification problem.

As a further step, we propose the development of ensemble models for improving
the performance results of individual models. This can be accomplished by combining the
outcomes of the ML models with weights obtained, for instance, from the log-log scores.
Another alternative that is becoming popular is the construction of hybrid models as a
combination of ML algorithms for more accurate and efficient models [24,35,36]. Moreover,
as stated by Solomatine and Xue [36], inaccuracies in forecasting floods are mainly due to
data-related problems. In this regard, Muñoz et al. [9] reported a deficiency in precipitation-
driven models due to rainfall heterogeneity in mountainous areas, where orographic
rainfall formation occurs. In most cases, rainfall events are only partially captured by
punctual measurement, and even the entire storm coverage can be missing.

In general precipitation-runoff models will reach at a certain point an effectiveness
threshold that cannot be exceeded without incorporating new types of data such as soil
moisture [59,60]. In humid areas, the rainfall–runoff relationship also depends on other
variables such as evapotranspiration, soil moisture, and land use, which leads to significant
spatial variations of water storage. However, these variables are difficult to measure
or estimate.
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5. Conclusions

• The current study set out to propose a methodology and integral evaluation frame-
work for developing optimal short-rain flood warning forecasting models using ML
classification techniques. The proposed analyses were applied to forecast three flood
warnings, No-alert, Pre-alert and Alert for the Tomebamba catchment in the tropical
Andes of Ecuador. For this, the five most common ML classification techniques for
short-term flood forecasting were used. From the results, the following conclusion
can be drawn: results related to model comparison are statistically significant. This is
important because this is not usually performed in other studies and it validates the
performance comparison and ranking hereby presented.

• For all lead times, the most suitable models for flood forecasting are based on the MLP
followed by the LR techniques. From the integral evaluation (i.e., several performance
metrics), we suggest LR models as the most efficient and stable option for classifying
both the majority (No-alert) and the minority (Pre-alert and Alert) classes whereas we
recommend MLP when the interest lies in the minority classes.

• The forecasting models we developed are robust. Differences in the averaged f1, g-
mean and log-loss scores between training and test are consistent to all models. How-
ever, we limit the utility of the models for flash-flood applications (lead times up to 6
h). For longer lead times, we encourage improvement in precipitation representation,
and even forecasting this variable for lead times longer than the concentration-time of
the catchment.

A more detailed model assessment (individual f1 scores) demonstrated the difficul-
ties of forecasting the Pre-alert and Alert flood warnings. This was evidenced when the
hyperparameterization was driven for the optimization of the forecast for the alert class
and this, however, did not improve the model performance of this specific class. This
study can be extended with a deep exploration of the effect of input data composition,
precipitation forecasting, and the feature engineering strategies for both the MLP and LR
techniques. Feature engineering pursues the use of data representation strategies that
could, for example, provide spatial and temporal information of the precipitation in the
study area. This can be done by spatially discretizing precipitation in the catchments with
the use of remotely sensed imagery. With this additional knowledge, it would be possible
to improve the performance of the models hereby developed at longer lead times.

We recommend that future efforts should be put into applying the methodology
and assessment framework proposed here in other tropical Andean catchments, and/or
benchmarking the results obtained in this study with the outputs of physically based
forecasting models. This was not possible for this study due to lack of data.

Finally, for FEWSs, the effectiveness of the models is strongly linked to the speed of
communication to the public after a flood warning is triggered. Therefore, future efforts
should focus on the development of a web portal and/or mobile application as a tool
to boost the preparedness of society against floods that currently threaten people’s lives,
possessions, and environment in Cuenca and other comparable tropical Andean cities.
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