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Abstract—Electromyographic (EMG) signals processing allows
to perform the detection of the intention of movement of the
limbs of the human body in order to further use this decision
to control wearable devices. For instance, robotic exoskeletons
main objective consist of a human-robot interface capable of
understanding the user’s intention and reacting appropriately
to provide the required assistance in an opportune way. In this
paper, we study the performance of superficial EMG intended
to design a intent pattern recognition based on Artificial Neural
Networks (ANN) trained by the Levenberg-Marquardt method.
Experiments consisting in 231 EMG records corresponding to 13
lower limbs muscles from 21 healthy subjects were considered.
The EMG signals were randomly divided into the following sets:
70 % for training, 15 % for validation and 15 % for evaluation.
The ANN-based pattern recognition was evaluated sample per
sample with the movement intention annotations (target) and
after the traininig operation end, the performance was evaluated
in relation to the events (number of steps). The results show
an accuracy of 90,96% sample per sample and 94,88% for
an based on events evaluation. These findings motivates the
use of this methodology for the classification of the motion
intention detection in subjects with pathologies in the lower limbs.

Index Terms—EMG, ANN, Intended Motion, Lower limbs.

I. INTRODUCTION

The Electromyogram (EMG) is used to evaluate muscle
activity in cases where abnormal results or aberrant patterns
of muscle activation occur [1], [2]. Another clear example
of the use of EMG signals is in the patient’s rehabilitation,
since such EMG signals in combination with rehabilitation
devices are widely used to help people suffering from a lack
of muscle contractions [3]. And perhaps one of the most
remarkable applications is in exoskeletons [4], [5]. Currently
there is a large number of exoskeletons developed for the lower
extremities, because they are more vulnerable to injuries of
different types [5].

A very important issue, using EMG signals in exoskeletons
is their classification and characterization. From the EMG
it is possible to perform the detection of the intention of
movement as part of the control of the exoskeleton. The
ultimate goal of the skeletons is the design of a human-robot
interface capable of understanding the user’s intention and
reacting appropriately to provide the required assistance in an
opportune way.

There are several methods for detecting the motion intention
from EMG. Among them are those based on thresholds, such
as the simple threshold, which is the most intuitive and com-
mon, consisting in the comparison of the EMG rectified signals
with a threshold [6]; there is the double threshold method that
requires a preprocessing step to filter the EMG signal and
is more time processing consuming [7]; also there are other
proposed models, such as Lanyi and Adler method, which is
based on the double threshold, increasing their sensitivity and
decreasing computational cost [8].

Other algorithms based on Pattern Recognition through
Artificial Neural Networks (ANN) have shown better
performance. ANN can learn to map a series of inputs
into a set of outputs, they represent a quick alternative for
personalizing the system to the patient and a better patient-
system adaptation. ANN could detect patterns which are not
easily detected by other methods, this approach could improve
device users satisfaction, providing effective movement
assistance to patients. Veer and Sharma obtained a 92.5 %
performance for a classification of upper arm movements
performed on EMG signals using Backpropagation ANN
[9]. With the same approach Backpropagation ANN, another
research team [10] developed an EMG-angle model to be
used for pattern recognition and so that the exoskeleton was
adaptable to each subject. In this work it was concluded that
the exoskeleton could be controlled by the intention user’s
motion in real time.

A different work, using pattern recognition [11], a system
that allows to discriminate up to 19 different patterns of
manual grip and individual movements of the fingers was
reported, with an accuracy of 96% for subjects without
amputations and 85% for patients with partial amputations
in the hands. In fact, there are many approaches in which
ANN are applied for the classification of EMG signals.
Ahsan and collaborators [12] used ANN to classify EMG
signals according to their characteristics using the Levenberg-
Marquardt training algorithm. Those pattern recognition
algorithm with ANN is one of the most used techniques to
classify the EMG movements.
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Within the framework of a research project devoted to the
development of a lower limb exoskeleton, which is aimed to
assist the movement of the subject’s leg ain a coordinated
way, we propose a pattern recognition system for processing
EMG signals that allow sending control/activation signals
to the motors. In a previous work using this Exoskeleton
prototype, the EMG intended movement were analyzed
using threshold-based methods, a sensitivity higher than 85%
was obtained using the static double threshold detector. In
this paper, we study the performance of an EMG intended
movement detector based on ANN using an architecture
of Pattern Recognition trained by the Levenberg-Marquardt
method on the lower limbs EMG database previously
collected [13].

This document is structured as follows: section II describes
the proposed methodology, section III describes the exper-
iments performed, section IV presents the results and their
analysis. Finally, conclusions and future work are outlined.

II. METHODS

A. Database

The EMG Database consists of 231 EMG records corre-
sponding to 11 muscles of 21 subjects without pathologies in
the lower limb [13]. EMG signals correspond to seven muscles
of the left lower limb:

1) rectus femoris (RF)
2) vastus lateralis (VL),
3) vastus medialis (VM),
4) sartorius (S),
5) biceps femoris (BF),
6) semitendinosus (ST)
7) semimembranosus (SM).

and four muscles of the right lower limb:

1) rectus femoris (RF),
2) vastus lateralis (VL),
3) vastus medialis (VM),
4) biceps femoris (BF),.

Each test subject made a coordinated paused walk based on
a sequence of tones that indicated the time intervals in which
to perform each step, in total they were carried out between
10 and 11 steps. The records were made sequentially. The
annotations of contraction episodes, both activation and rest
of the EMG signals, were made visually by two experts [14].

B. EMG Annotations

Although the database contains annotations of the steps
(Section II-A), for this study, it is necessary to limit the start
time of each step. A gap of 30ms was defined at the beginning
of each step as an indicator of the start of the movement [15].

The Figure 1 shows the EMG processing block diagram to
define the 30ms window.

Fig. 1. Block diagram: Database and intention EMG annotation.

C. EMG signal preprocessing

The EMG preprocessing consists of three stages: filtering,
normalization/rectification and envelope detection:

1) Filtering: EMG signals are passed through a
Butterworth bandpass filter (25 − 450Hz) in order to
obtain the filtered version of each EMG signal [16].

2) Normalization/rectifcation: In order to reduce inter-
subjet variability and maintain the EMG signals with the same
amplitude, normalization is performed using Eq. (1), where i,
i = 1, 2, . . . , 13 corresponds to each muscle in the study and
j, j = 1, 2, . . . , 21 is the subject number in correspondence.

EMGNij = ‖
(EMGSijk − ¯EMGSij)

σEMGSij

‖ (1)

where, EMGNij represents the corresponding i EMG
normalized signal to the j subject, EMGSijk corresponds
to the k sample of the i for the j subject, ¯EMGSij

and σEMGSij
correspond to the EMG mean and standard

deviation.

Finally EMGNij is rectificated using a full wave
procedure.

3) Envelope Detection - ANN entries: EMGNij is
smoothed using a sliding RMS (Root mean Square) envelope
with a window W1. This signal is defined as EMGRMS Eq.
(2) .

Then EMGRMS is derivate and smoothed by a moving
average windows W2, this signal was named δEMG Eq. (3).

To provide more information to the ANN, EMGRMS and
δEMG will be the inputs, since the derivative provides an
approximation to the increasing, decreasing or stable behavior
of the signal. This is because a single EMGRMS signal
represents few information to detect the step begining.

EMGRMS =

√
1

W1
ΣW1

1 f2(w) (2)

where, W1 is the window length and f(w) equals the data
whithin W1 .

δEMG =
∆(EMG)

∆(t)
=
fi − fj
i− j

(3)



Fig. 2. Inputs, ANN architecture and Target vs Net Detection.

where, fi and fj are points of EMGRMS .

D. Artificial Neural Network

An ANN consists of three fundamental layers, input layer,
hidden layer and output layer. The artificial neurons are
connected between theirs and this connection represents a
weight [17]. Moreover, the node that performs the learning
or where the processing is performed, adds the value of the
input multiplied by the weight associated with the connection
as seen in Eq. (4), in this sense, a learning network the
weights must be modified so that the output is as close as
possible to the -target- information delivered to the network.

netj = Σjwji ∗ pi (4)

where, netj represents the processing, wji represents the
weight of conection between i input and j neuron, and pi
is the input value for i.

E. ANN Architecture

The pattern recognition method refers to the automatic
discovery of regularities in data using computer algorithms,
in which regularities are used to perform actions such as
categorization or classification [18].

Additionally to training the ANN we have the Levenberg-
Marquardt algoritm, that is a compromise between Newton’s
method, which, in a local or global minimum, presents
rapid convergence, and the Gradient Descent method that
appropriately selects the step size, however, converges slowly
[17].

The chosen ANN architecture was “Pattern Recognition”
trained by the Levenberg-Marquardt method. The Levenberg-
Marquardt method is distinguished by its efficiency for the
classification of single-channel EMG [19]. Consequently, it is
used for this study.

The Figure 2 shows the block diagram ANN training
and testing, with the inputs ( Erms, δEMG), target and net
detection.

F. Performance Evaluation

Performance were evaluate sample to sample and for events
(step). For each sample or event, we estimate true positives
(TP) and true negatives (TN), corresponding to correct de-
tection and correct rejection, and false positives (FP) and
false negatives (FN), representing false detection and missed
detection, respectively [20]. Sensitivity Eq. (5), specificity Eq.
(6) and the accuraccy Eq. (7) were used to evaluate the ANN
performance.

SEN =
TP

TP + FN
(5)

ESP =
TN

TN + FP
(6)

ACC =
TP + TN

TP + FN + TN + FP
(7)

Additionally, time delay Td, is estimated. Td is defined as
the time elapsed between the annotation of each step, (section
II-B), and the detection time through the ANN.

III. EXPERIMENTS

The experiments we performed to evaluate the ANN are
described as follows:

1) Sliding window width (W1): The width of the sliding
window (W1) was obtained by means of a linear
optimization, W1 was iteratively varied from 50 to 150
ms, with intervals of 10 ms.

2) Derivative Erms window width (W2): The window
width for the derivative of Erms (W2), was also obtained
by linear optimization, varying the width iteratively from
20 ms to 100 ms , with intervals of 10 ms. In addition,
the derivatives that provide more precise information
of the slope changes according to the associated RMS
envelope were visually compared.

3) Number of neurons: The number of neurons was
obtained by linear optimization, varying iteratively the
number of neurons and training the neural network



Fig. 3. Performance of the Artificial Neural Network (ANN) for Vastus Medialis: Envelope of filtered EMG signal (Black), Detection (Red), Annotation
(Blue).

and comparing confusion matrix results. In the training
process, some variants were used in the neural network
architecture, as changing the number of neurons in the
hidden layer. Several tests were performed, from 30 to
120 neurons with intervals of 10 neurons.

4) Intention EMG detection: The EMG signals were
randomly divided into the following sets: 70 % for
training, 15% for validation and 15% for evaluation.

The RMS envelope Erms and its derivative δEMG are the
ANN input data.

For training, the movement intention annotations are given
as ANN Target. The ANN will perform a sample-to-sample
training according to the inputs and the target.
To guarantee that the detection results can be generalized,
these experiments have been repeated 10 times with different
sets of the database for each muscle. The ANN was trained
using MATLAB.

In the experiment 4, for each muscle, the ANN were trained
using the initial characteristics, then the output was compared
sample to sample with the movement intention annotations
(target) and in each realization the accuracy lets to evaluated
the ANN performance. Once the network has been trained, the
performance was evaluated in relation to the events (number
of steps).

IV. RESULTS

For the RMS envelope length, the smallest possible
window width with greater effectiveness was chosen. The
value retained for W1 was 100ms.

For W2 it was found that the window width for the
derivative gives better results with 60 ms. This was verified
both with the training (accuracy values) and by visual
observation on the slope change of the derivative of the
signals.

Fig. 4. Event(number of steps) Confusion Matrix

Finally the best performances were obtained using 80
neurons in the hidden layer.

Table I, show the performance values, sample per sample
(sensitivity, specificity, accuracy and time delay) obtained for
each muscle. Accurracy and specificity are high however the
sensitivity values are modest (mean 66.49± 2.36).

The sensitivity value seems low, however this is because
the evaluation of network performance is calculated sample
per sample and not by events (number of steps).

Figure 4 shows the confusion matrix by events. In this
case, the performance of the network is really higher. The
ratio of events detected for each muscle, indicates that
on average 9 of 10 movement intentions can be correctly
detected. Accuracy was 94.88%. Thus performance is higher
than the one reported using detection methods based on
thresholds on the same database [14]. Their performance
was related to events (SEN = 85, 88 ± 2, 18%;ESP :
86, 11± 3, 55%;Td = 6.24± 2.42ms).

In both performance evaluations sample-to sample and by
events, the best accuracy results were observed in the vastus
medialis, which may indicate that this is an important muscle



TABLE I
ANN PERFORMACE, SENSITIVITY, SPECIFICITY, ACCURACY AND TIME DELAY

Muscle Leg Specificity[%] Sensitivity[%] Accuracy[%] Td [ms]

Rectus Femoris Left 91.9±0.1 65.5±1.5 90.69±0.08 -5.88

Vastus Lateralis Left 92.9±0.15 64.9±1.4 91,37±0.1 -19.9

Vastus Medialis Left 94.56±0.26 68.66±0.75 92,5±0.1 -2.34

Sartorius Left 92,41±0.15 64.12±1.8 90,83±0.22 -37.31

Tensor Fasciae Latae Left 93,22±0.2 65.56±1.62 90,91±0.18 -4.25

Biceps Femoris Left 93,35±0.22 66.97±5.43 91,46±0.21 -20.31

Semitendinosus Left 93.31±0.15 62.81±0.94 90,8±0.18 -15.56

Semimembranosus Left 93,42±0.17 66.7±3.38 91,49±0.21 -4

Popliteus Left 92,03±0.13 67.46±1.41 91,13±0.29 1.125

Rectus Femoris Right 90,51±0.08 71.7±0.95 89,8±0.06 -30.33

Vastus Lateralis Right 91,79±0.13 63.45±1.83 90,31±0.1 -4.66

Vastus Medialis Right 91,92±0.2 67.8±3.22 90,53±0.25 -14.5

Biceps Femoris Right 91,57±0.1 68.7±1.12 90,61±0.08 -4.16

Average: 92.53±1.01 66.49±2.36 90.96±0.63 -12.6±10

TABLE II
EVENT DETECTION

Muscle Leg # Steps % Detection

Rectus Femoris Left 229 90.39

Vastus Lateralis Left 229 89.95

Vastus Medialis Left 229 93.44

Sartorius Left 231 93.07

Tensor Fasciae Latae Left 231 92.64

Biceps Femoris Left 230 89.13

Semitendinosus Left 231 90.04

Semimembranosus Left 231 91.34

Popliteus Left 231 91.341

Rectus Femoris Right 231 90.90

Vastus Lateralis Right 230 90.43

Vastus Medialis Right 231 90.04

Biceps Femoris Right 231 87.87

Total: 2995 90.81

for the control of the exoskeleton.
The performance by events of our work is also higher

than that reported using : Backpropagation ANN [9] for
the classification of arm movements with EMG signals
(SEN = 88.87%;ESP = 92.5%), and Levenberg-Marquardt
algorithm [19] to detection of hand movements (SEN =
88.87%;ESP = 92.5%).

In other work using pattern recognition algorithms, four
patients with transfemoral amputation and four subjects with-
out pathologies in the lower limbs were evaluated. EMG
signals were recorded and evaluated with the subjects seated

by surface electrodes in 9 muscles (semitendinosus, sartorius,
tensor fasciae latae, adductor magnus, gracilis, vastus medialis,
rectus femoris, vastus lateralis, and long head of the biceps
femoris). Results shows high accuracy values, (91.8 % for
amputees and 98.6 % for subjects without pathologies). These
results are encouraging to use this methodology in subjects
with pathologies in the lower extremities [21]. The pattern
recognition in this case consists of classify combined EMG
signals with a computer during performance of different
movement. Moreover the classifier were used to decipher wich
motion was being perfomed [22].

Figure 3 shows cases of early (Step 1) and later detection.
Step 1, early detection occurs before the step has already
begun. For steps 2 and 3, detection occurs after the annotation.

Although the time delay is decisive for real-time appli-
cations, and despite having a greater time delay than the
one presented by Farfán and Rojas [14], this delay is still
minor compared to the 250ms established for a system to be
considered in real time.

V. CONCLUSION

We have considered the EMG intended movement detector
based on ANN using an architecture trained by the Levenberg-
Marquardt, for lower limbs EMG signals, the results give an
accuracy of 90,96% sample to sample and 94,88% for step
event with respect to manual annotations of the signals. In
addition, the time delay obtained, allows its implementation
in real time, in an exoskeleton.

These findings allow us to contemplate the use of the
presented methodology for the classification of the intention
of movement in subjects with pathologies in the lower limbs.



It should be considered that each EMG presents high
morphologies variability from muscles and between subjects,
without counting the noise problems during acquisition. It
would be convenient to train an exclusive network for each
exoskeleton user [23].
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