
Science of Computer Programming 172 (2019) 232–263
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

An empirical comparative evaluation of gestUI to include

gesture-based interaction in user interfaces

Otto Parra a,b,∗, Sergio España c, Jose Ignacio Panach d, Oscar Pastor b

a Computer Science Department, Universidad de Cuenca, Ecuador
b PROS Research Centre, Universitat Politécnica de Valencia, Spain
c Department of Information and Computing Sciences, Utrecht University, the Netherlands
d Escola Tècnica Superior d’Enginyeria, Departament d’Informàtica, Universitat de València, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 March 2018
Received in revised form 30 November 2018
Accepted 3 December 2018
Available online 6 December 2018

Keywords:
Model-driven method
Human–computer interaction
Code-centric method
Gesture-based interaction
Comparative empirical evaluation

Currently there are tools that support the customisation of users’ gestures. In general,
the inclusion of new gestures implies writing new lines of code that strongly depend on
the target platform where the system is run. In order to avoid this platform dependency,
gestUI was proposed as a model-driven method that permits (i) the definition of custom
touch-based gestures, and (ii) the inclusion of the gesture-based interaction in existing user
interfaces on desktop computing platforms. The objective of this work is to compare gestUI
(a MDD method to deal with gestures) versus a code-centric method to include gesture-
based interaction in user interfaces. In order to perform the comparison, we analyse
usability through effectiveness, efficiency and satisfaction. Satisfaction can be measured
using the subjects’ perceived ease of use, perceived usefulness and intention to use.
The experiment was carried out by 21 subjects, who are computer science M.Sc. and
Ph.D. students. We use a crossover design, where each subject applied both methods to
perform the experiment. Subjects performed tasks related to custom gesture definition
and modification of the source code of the user interface to include gesture-based
interaction. The data was collected using questionnaires and analysed using non-parametric
statistical tests. The results show that gestUI is more efficient and effective. Moreover,
results conclude that gestUI is perceived as easier to use than the code-centric method.
According to these results, gestUI is a promising method to define custom gestures and to
include gesture-based interaction in existing user interfaces of desktop-computing software
systems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Gesture-based interfaces are harder to implement and test than traditional interfaces (i.e. interfaces based on WIMP –
Window–Icon–Mouse–Pointer) using a mouse and a pointer [1] because they require more skills and knowledge of the
software engineers about programming languages and tools to write source code. There are some complications in the
definition of custom gestures (in this paper, the word “gesture” is used to refer to touch-based gestures) and their inclusion
in user interfaces. Gesture-based interaction is supported at the source code level (typically third-generation languages)

* Corresponding author.
E-mail addresses: otto.parra@ucuenca.edu.ec, otpargon@upv.es (O. Parra), s.espana@uu.nl (S. España), joigpana@uv.es (J.I. Panach), opastor@dsic.upv.es

(O. Pastor).
https://doi.org/10.1016/j.scico.2018.12.001
0167-6423/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2018.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:otto.parra@ucuenca.edu.ec
mailto:otpargon@upv.es
mailto:s.espana@uu.nl
mailto:joigpana@uv.es
mailto:opastor@dsic.upv.es
https://doi.org/10.1016/j.scico.2018.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2018.12.001&domain=pdf

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 233
[2] that is, using a code-centric method where the developers write source code using a programming language in order
to implement user interfaces with gesture-based interaction included. This involves a great effort with regard to coding
and maintenance when multiple platforms are targeted [3], has a negative impact on reusability and portability, and it
complicates the definition of new gestures [4].

We proposed gestUI, a model-driven method described in [5], to help in the definition of custom gestures and in the
inclusion of gesture-based interaction in existing user interfaces for desktops. The choice of gestUI is due to the fact that
gestUI is the only Model-Driven Development method that allows the end-user to personalise their own gestures. gestUI
method employs a model-to-model (M2M) transformation using ATL (http://eclipse .org /atl/) and a model-to-text (M2T)
transformation using Acceleo (http://www.eclipse .org /acceleo/) to obtain a user interface with gesture-based interaction
included in its functionalities. Regarding the gesture recognition required in our work, there are several methods to consider,
i.e.: $-family ($1 designed for unistroke gestures [6], $N designed for multistroke gestures [7], $P designed for memory
reduction [8], $Q for mobile, wearable and embedded devices [9] and variants), !FTL [10], etc. In our work, we consider
multi-stroke gestures and we adopt $N because this recogniser supports this type of gestures and it is easy to understand
and easy to implement. According to [7], $N supports XML language to describe a gesture, therefore, gestUI supports gestures
defined in XML language.

Moody [11] considers that the objective of the validation should not be to demonstrate that the method is “correct”
but that the method could be adopted based on its pragmatic success which is defined as “the efficiency and effectiveness
with which a method achieves its objectives”. According to ISO 9241-210 [12] and ISO 25062-2006 [13], usability is defined
as “the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use”. Additionally, ISO 25062-2006 establishes that usability evaluation involves
using (1) subjects who are representative of the target population of users of the software, (2) representative tasks, and
(3) measures of efficiency, effectiveness and subjective satisfaction. The ISO also defines that at least one indicator in each
of these aspects should be measured to determine the level of usability achieved [2]. In order to evaluate satisfaction, we
consider the Method Evaluation Model (MEM) [1,3] which considers three primary constructs: perceived ease of use – PEOU
(“the degree to which a person believes that using a particular system would be free of effort”), perceived usefulness – PU
(“the degree to which a person believes that using a particular system would enhance his or her job performance”) and
intention of use – ITU (“the extent to which a person intends to use a particular system”).

The main contribution of this paper is the design and analysis of an experiment that compares two types of methods
to define custom gestures and the inclusion of gesture-based interaction in user interfaces: code-centric and model-driven.
With the aim of validating gestUI, we have designed a comparative empirical evaluation in which we consider both methods
to define custom gestures and to include the gesture-based interaction. We evaluate efficiency, effectiveness and satisfaction
(by means of PEOU, PU and ITU) when the subjects apply gestUI in comparison with a code-centric method to include
gesture-based interaction in existing user interfaces. We used as indicators: (i) the time to finish the task for efficiency;
(ii) the percentage of correct tasks carried out in the experiment for effectiveness, and (iii) the MEM questionnaires for
PEOU, PU and ITU. Results of this evaluation help to know to which extent the use of Model-driven Development (MDD)
helps in the process to define custom gestures and to include gesture-based interaction in user interfaces.

We present and discuss the results obtained in the experiment. We have found that the results obtained for efficiency
and effectiveness are better when the subjects use gestUI in relation to when they employ a code-centric method. Also, the
results achieved for PEOU, PU and ITU are better if the subjects use gestUI in relation to when they employ a code-centric
method.

This paper is organised as follows. Section 2 presents the related work. Section 3 describes two methods for including
gesture-based interaction: the code-centric method and the model-driven method – gestUI. Section 4 describes the experi-
mental planning. Section 5 reports the results of the experiment. Section 6 includes a discussion about the results obtained
in the experiment. Section 7 contains conclusions and outlines our future work.

2. Related work

In this section, we analyse the related work about comparative evaluation between methods based on a model-driven
paradigm and other existing methods (e.g. traditional software development methods) to develop software. There are several
works that report the comparison of experiments using MDD, some of them are described in the following paragraphs and
summarised in Table 1. The following information is included in each column: author(s) of the paper, year of publication,
type of study (e.g. case study, evaluation, controlled experiment), goal of the study, field of application of the experiment,
variables, experimental subject, and the tool used in the experiment.

Kapteijns et al. [14] describe a case study of the development of a small middleware application in order to make a
comparison between MDD implementation with regular third-generation programming. The MDD framework used, which is
called XuWare, allows the generation of a “create–remove–update–delete” functionality for Web applications from Unified
Modelling Language (UML) models. Results obtained show that MDD is highly applicable to small-scale development projects
under conditions which can easily be satisfied.

Bunse et al. [15] describe a case study in order to compare MARMOT (based on MDD and component-based develop-
ment) with RUP and Agile Development. In this evaluation, subjects developed a small control system for an exterior car
mirror. The metrics employed in the evaluation are: model-size, amount of reused elements, defect density and, devel-

http://eclipse.org/atl/
http://www.eclipse.org/acceleo/

234
O

.Parra
et

al./Science
ofCom

puter
Program

m
ing

172
(2019)

232–263
Table 1
Related work.

Experimental subjects Tool employed in the
experiment

ity, Novice and expert
developers

XuWare

del
unt

del

Graduate students MARMOT

Blind and sighted
people

Bachelor degree
students

UniMod versions of
Svetofor and Telepay

ction Master’s degree
students

A set of tools to
implement the
business layer of a web
application

Undergraduate
students

A set of tools to
implement

Graduate students A set of tools to
implement the
business layer of a web
application

and PROS-UPV Researchers INTEGRANOVA

Graduate students OOH4RIA

se Master’s and PhD
students, a post-doc,
industrial software
engineers

MOSKitt4ME

ity Final-year Master’s
degree students

INTEGRANOVA

y Undergraduate and
graduate students

IBM Rational Software
Architecture, Papyrus,
and MagicDraw
RelAggs, CoMoVi, and
CbMVV frameworks

DSL4ABMS

Industry practitioners
(Twenty people
experts in the
engineering secure
systems)

 Software developers An Enterprise Resource
Planning (ERP) system
Author Year Type of
study

Goal Application field Variables

Kapteijns et al.
[14]

2009 Case study To compare an MDD implementation with
regular third generation programming

A small middleware application Development productiv
development time,
application complexity

Bunse et al.
[15]

2009 Case study To compare MARMOT (based on MDD and
component-based development) with RUP
and Agile Development

A small control system for an
exterior car mirror

Development effort, mo
size, defect density, amo
of reused elements, mo
size

Kane et al.
[16]

2011 User study To compare the behaviour of two types of
users (blind and sighted) when they use
gestures in touch-based user interfaces

An application for a Tablet PC

Ricca et al.
[17]

2012 Controlled
experiment

To compare UniMod programming with
code-centric programming

Two new versions of Svetofor and
Telepay: Svetofor+ and Telepay+

Effectiveness of UniMod

Martinez et al.
[21]

2012 Quasi-
experiment

To compare the productivity and
satisfaction of junior Web developers
developing the business layer of a Web
2.0 Application using three methods:
code-centric, model-based or a MDE
approach

Web 2.0 application Productivity and satisfa

Papotti et al.
[18]

2013 Quantitative
study

To evaluate the impact of using
model-driven code generation vs.
traditional development

Web application Development time

Martinez et al.
[20]

2013 Quasi-
experiment

To compare three methods: model-driven,
model-based and code-centric

Web application Perceived usefulness,
perceived ease of use,
compatibility, subjective
norm, voluntariness

Condori-
Fernandez
et al. [19]

2013 Empirical
approach

Usability of model-driven tools Efficiency, Effectiveness
satisfaction

Martinez et al.
[22]

2014 Empirical
study

Maintainability Web application Performance and
satisfaction

Cervera et al.
[23]

2015 Empirical
evaluation

To evaluate usefulness and ease of use of
MOSKitt4ME

Perceived usefulness, ea
of use

Panach et al.
[24]

2015 Experiment To verify some of the most cited benefits
of MDD

Web application Quality, effort, productiv
and satisfaction

Safdar et al.
[25]

2015 Experiment To compare the productivity of the
software engineers when they use UML
modelling tools

Modelling software processes Learnability and memor
load

Neto et al. 2017 Compara-
tive
study

To compare the proposed framework with
other existing frameworks

Credit Behavioural Scoring solutions Performance (time),
Effectiveness

Santos et al.
[27]

2018 Empirical
evaluation

To measure the effectiveness in terms of
productivity

Developing signal control agents in
the domain of ATSC simulations with
a MDD approach

Productivity

Hamid and
Weber
[28]

2018 Empirical
evaluation

To measure effort and feasibility of MDE
application in the metrology domain

Developing a practical application to
a use case in the metrology domain
with strong security requirements

Oliveira et al.
[29]

2018 Empirical
evaluation

To compare BRCode with genMDE Development of Enterprise
Information Systems in industry

Development effort and
financial gains

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 235
opment effort. Their evaluation reveals that model-driven, component-oriented development performs well and leads to
maintainable systems and a higher-than-normal reuse rate.

Kane et al. [16] describe two user studies that compared how blind people and sighted people use touch screen gestures.
The authors of this research describe some design considerations related with touch-based user interfaces in different types
of devices and the definition of touch-based gestures by both types of users. They conducted a study in which both blind
and sighted participants were asked to invent gestures that could be used to conduct standard computing tasks on a
touch screen-based tablet PC. To determine if there were significant differences in how blind and sighted people performed
the same gestures, the authors conducted a second study in which all participants performed the same set of standard
gestures. Based on the results of these two studies, they offer preliminary advice on how to design future touch screen-based
applications for both blind and sighted users.

Ricca et al. [17] describe a controlled experiment with the aim of investigating the effectiveness of Model-driven de-
velopment during software maintenance and evolution activities. Subjects (Bachelor degree students) used two software
systems (Svetofor and Telepay) and by means of UniMod obtained two new versions of these software systems. In this
experiment, the results showed a marked reduction in time to complete the maintenance tasks, with no important impact
on correctness when UniMod is used instead of conventional programming.

Papotti et al. [18] describe a quantitative study in order to evaluate the impact of using model-driven code generation
vs. traditional development of software systems to implement a web application. Results show that the development time
to code generation is shorter than the time required when using traditional development.

Condori-Fernandez et al. [19] describe an empirical approach for evaluating the usability of model-driven tools. They
propose a framework to evaluate the usability, applying it to INTEGRANOVA, an industrial tool that implements an MDD
software development method called the OO-Method. The authors report results about the usability evaluation in terms of
efficiency, effectiveness and satisfaction within an experimental context.

Martinez et al. [20] describe a quasi-experiment in order to compare three methods (model-driven, model-based and
code-centric) developing the business layer of a Web 2.0 application. Results show that MDD approaches are the most diffi-
cult to use but, at the same time, are considered to be the most suitable in the long term. Additionally, these authors in [21]
report a quasi-experiment in order to evaluate productivity and satisfaction when a group of Master’s degree students de-
velop a Web application using three methods: code-centric, model-based (UML) and model-driven (OOH4RIA). Results show
that the use of model-driven Engineering practices significantly increases both productivity and satisfaction of junior Web
developers, regardless of the particular application. Other work reported by these authors [22] concerns an empirical study
on the maintainability of Web applications. In this work, they compare model-driven Engineering with the code-centric
method by using OOH4RIA and Visual Studio .NET, respectively. The results show that maintaining Web applications with
OOH4RIA clearly improves the performance of the subjects.

Cervera et al. [23] describe an empirical evaluation using TAM and Think Aloud methods to assess usefulness and ease
of use of MOSKitt4ME. The results were favourable, that is, MOSKitt4ME was highly rated in perceived usefulness and ease
of use; the authors also obtained positive results with respect to the users’ actual performance and the difficulty.

Panach et al. [24] describe an experiment in order to compare quality, effort, productivity and satisfaction of MDD
and traditional development. Subjects (final-year Master’s degree students) built two web applications from scratch. Results
obtained show that for small systems, and less programming-experienced subjects, MDD does not always yield better results
than a traditional method, even considering effort and productivity.

Safdar et al. [25] describe an experiment, in the context of model-driven software engineering (MDSE), with undergrad-
uate and graduate students in order to compare the productivity of the software engineers while modelling with UML tools
(IBM Rational Software Architecture, Papyrus, and MagicDraw). The authors measure the productivity in terms of modelling
effort required to correctly complete a task, learnability, time and number of clicks, and memory load required for the soft-
ware engineer to complete a task. Their results show that MagicDraw yields good results in terms of learnability, memory
load, and completeness of tasks.

Neto et al. [26] propose a framework based on MDD to systemise the pre-processing stage in knowledge discovery
projects. This stage is a complex task that demands from database designers a strong interaction with experts having a
broad knowledge about the application domain. In order to validate the proposed framework, two comparative studies
were conducted to show that the proposed framework delivers a performance equivalent or superior to those of existing
frameworks and reduces the time of data transformation with a confidence level of 95%.

Santos et al. [27] describe their proposal composed of a modelling language and model-to-code transformations for
producing runnable simulations automatically. In order to analyse the productivity of their MDD approach, they compared
the amount of design and implementation artefacts produced using their approach and traditional simulation platforms.
The authors report an evaluation of the effectiveness of their MDD approach consisting in an empirical study in order to
measure the productivity of their MDD approach. The results show that their MDD approach is effective for reducing the
effort required for developing agent-based simulations.

Hamid and Weber [28] describe an approach based on metamodelling and model transformation techniques to define
patterns at different abstraction levels and to generate different representations according to the target domain. They report
an empirical evaluation of the proposed approach through a practical application to an industrial use case in the metrology
domain with strong security requirements. The case study aimed to determine whether the pattern-based approach leads

236 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Fig. 1. Methods overview: code-centric (left) and model-driven (gestUI) method (right).

to a reduced number or to a simplification of the engineering process steps. Results reveal that domain experts perceived
the approach to be extremely useful and agreed regarding the benefits of adopting the approach in a real industrial context.

Oliveira et al. [29] report a comparative empirical evaluation between BRCode (an interpretative MDE approach for
fast-changing Enterprise applications) and genMDE (a generative MDE approach). They use a case study that involves the
development of an Enterprise Resource Planning (ERP) system data collection based on 34 realistic scenarios in a Brazilian
company. The case study was conducted to evaluate the proposed technique by investigating the impact of the proposed
approach on the development effort and financial gains. The results show the strength of using BRCode to support software
production companies in the business environment.

All these works describe comparative evaluations in order to check whether or not model-driven produces better results
than other methods (e.g. code-centric method, method based on RUP and Agile methodology). The types of study used in
these evaluations are mainly case studies, empirical evaluations and quantitative studies. As far as the authors know, there
are no previous experiments that dealt with the comparison of a model-driven versus a code-centric method in the context
of generating gesture-based interaction. So, this paper is a step forward in the process of covering this gap.

Apart from code-centric and gestUI, there are some commercial products to define customised gestures based on standard
gestures (e.g., Touch Me Gesture Studio of Microsoft [30], ASUS Smart Gesture [31], etc.). The gestures obtained with these
products could be added in a user interface as an additional task performed by developers.

3. Methods to include gesture-based interaction

Next, we describe the two methods used in the experiment to include gesture-based interaction in an existing user
interface [32]: code-centric and model-driven. Both methods are shown in Fig. 1, code-centric on the left and model-driven
on the right. In this figure, we use a similar representation to show the two methods, with the purpose of facilitating the
understanding of the process to be followed in the comparative evaluation described in this paper.

Although the two methods are shown in a similar way, it is necessary to indicate that the code-centric method is
based on tasks related to the source code, while the object-oriented method bases its actions on related activities with the
treatment of models, as explained in this section.

Fig. 1 shows the user interface development life cycle for both methods. In both cases we start from existing activities
and products (represented by means of colour grey) used to develop interfaces that must be enhanced to support gesture-
based interaction and a set of new activities and products (represented by means of the colour white) that deal explicitly
with the gesture-based interaction. In the following sections we describe proposed activities and products of each method.

3.1. Code-centric method

The code-centric method consists in a set of tasks [33] (e.g. conceptualisation and requirements gathering, analysis and
functional description, design, coding, testing and deployment) related with the implementation of a software system using

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 237
a programming language and a tool where software engineers work entirely by editing source code. In this method, software
engineers employ the integrated development environment (IDE) available in some case tool (e.g. Microsoft Visual Studio,1

Eclipse Window Builder,2 NetBeans,3 etc.) which includes toolbars and wizards to construct the user interface by including
forms, panels, buttons, etc. The next step in this process is the code writing to include the logic required in the software
and to complete the development of the user interface.

Specifically, the work [34] describes an example of this method to develop a user interface by means of Eclipse SWT
Designer (Window Builder). This toolkit does not include components to define custom gestures nor to include gesture-based
interaction. SWT works under the assumption that the user interface is already implemented and the developer writes
additional source code containing gesture-based interaction. The final product obtained in the process is the source code
which is compiled in order to implement the user interface.

The set of activities to perform with the aim of including gesture-based interaction in an existing source code through
the code-centric method (Fig. 1, left) is detailed in the following paragraphs:

1. Activity C1: this allows software engineers to define the gestures requirement specification (by means of a language
to specify requirements, e.g. text) which makes up the gesture catalogue and the actions to be performed using such
gesture catalogue. The product obtained in this process is a requirements document containing the specification of the
interaction between gestures and actions included in a user interface.

2. Activity C2: this permits software engineers to select the user interface to include the gesture-based interaction ac-
cording to the aforementioned requirements specification, then he/she analyses the source code of the selected user
interface with the aim of determining the actions included in the user interface source code. The software engineer
defines the gesture–action correspondence by specifying the gesture that allows the execution of an action included in
the user interface.

3. Activity C3: this allows software engineers to specify, by means of XML language each gesture included in the re-
quirements document of the gesture catalogue. This gestures specification is required in order to be supported by the
gesture recogniser algorithm. In this work we use $N [7] as the gesture recogniser. The product obtained in this step is
the gesture catalogue specification written in XML.

4. Activity C4: in this activity the software engineer writes the source code that implements the methods needed to exe-
cute the actions specified with the previously defined gestures, that is, the software engineer combines two products (i)
gesture-based interaction source code and (ii) gesture catalogue specification in order to obtain the gesture-based user
interface. The product obtained in this last step is the user interface source code including gesture-based interaction.

5. Activity C5: this permits testing gestures using existing frameworks (e.g. quill [35], iGesture [36], $N [7]). The gesture
catalogue is generated according to the gesture definition of each framework, hence the users sketch gestures in each
framework in order to test the definition of each gesture. It is important to indicate that quill and iGesture have been
used only as target platforms to perform validity tests of the generation of the gesture catalogue, that is, to verify that
the result of the M2T transformation (definition of a gesture using XML) is adequate and correct. By other side, the $N
transformation is performed in order to check if the definition obtained is correct and to test the gesture in the canvas
included in the website of University of Washington,4 where is described gesture recogniser algorithm called $N.

There are activities represented in Fig. 1 (e.g. implement interfaces, interface design) whose functionality is included in
the process of development of user interfaces using some tools available. These activities are not described in this paper
because we consider that these activities belong to traditional development methods for obtaining user interfaces by using
typical development tools.

When a software engineer employs a code-centric method to include gesture-based interaction, some of the following
problems are involved [37–39]: (i) the amount of time required to implement this type of interaction. Depending on of the
case tool used to obtain the source code required to implement the user interface, the amount of time could be high. In
this case, software engineers have two options to obtain it: (a) writing the source code from scratch or (b) adapting existing
source code; (ii) the gesture specification is not multi-platform; (iii) it is hard to reuse the source code to support gesture-
based interaction in other platforms; (iv) software engineers require skills in the programming language of each platform
employed in the implementation of user interfaces of information system; (v) in some cases, the Integrated Development
Environment (IDE) is not available in all platforms required by users. This situation complicates the job of the software
engineers because they need more training in order to use different IDEs in each platform.

1 See https://docs .microsoft .com /en -us /windows /desktop /appuistart /implementing -a -user-interface to check the process to build a user interface using
Visual Studio of Microsoft.

2 See http://www.vogella .com /tutorials /EclipseWindowBuilder /article .html to check the process to build a user interface using Eclipse.
3 See https://netbeans .org /kb /docs /java /quickstart -gui .html to check the process to build a user interface using Netbeans.
4 https://depts .washington .edu /madlab /proj /dollar /ndollar.html.

https://docs.microsoft.com/en-us/windows/desktop/appuistart/implementing-a-user-interface
http://www.vogella.com/tutorials/EclipseWindowBuilder/article.html
https://netbeans.org/kb/docs/java/quickstart-gui.html
https://depts.washington.edu/madlab/proj/dollar/ndollar.html

238 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Fig. 2. gestUI metamodel (taken from [42]).

3.2. gestUI: a model-driven method

Unlike a code-centric method, a model-driven method requires the definition of models and model transformations for
the generation of source code in order to obtain, in this case, a user interface. Software engineers do not require the use of
an IDE to develop a user interface, making it more affordable the process of obtaining the source code of the user interface
by means of automatic generation.

In order to tackle the problems described in Section 3.1, and that arise when a code-centric method is used, software
engineers have another alternative to implement a software system: using a model-driven paradigm. In this case, software
engineers use tools to describe the structure and behaviour of their software system using conceptual models, and source
code is generated automatically through transformation rules. An example of this method is gestUI [5], which allows the
inclusion of gesture-based interaction from conceptual models without writing any line of code (Fig. 1, right).

gestUI [5] is a model-driven method that permits the definition of custom gestures and the inclusion of gesture-based
interaction in user interfaces for desktop-computing (Fig. 1, right) by means of models and model transformations [40].
Gesture-based interaction is based on the selection and use of functions provided in software systems by means of gestures
on touch-based devices [41]. gestUI is model-driven since its main artefacts are conceptual models (Fig. 2).

We consider that a user interface is used by one or more users. Each user can define his/her own gesture catalogue
containing one or more gestures; each gesture permits an action to be executed. This action is contained in the user
interface. Each gesture is composed of one or more strokes defined by postures, and described by means of coordinates
(X, Y). The sequence of strokes in the gesture is specified by means of an order of precedence. Each posture in a gesture is
related to a figure (line, circle, etc.) with an orientation (up, down, left, right), and is qualified by a state (initial, executing,
final). Single-stroke gestures and multi-stroke gestures are defined by the number of strokes in the gesture.

gestUI is composed of three layers according to the model-driven method: a platform-independent layer, a platform-
specific layer and source code, as shown in Fig. 1, right. Also, this method is iterative and user-centric: (i) it is iterative
because if the users are not satisfied with the definition of gestures, they can repeat the process (i.e. gestUI provides two
loopbacks in order to repeat the process to define gestures), and (ii) it is user-centric because the users are the main actors
in the process of defining custom gestures and in the inclusion of gesture-based interaction in user interfaces.

During the process of code generation, an option is added to the information system which allows redefining any gesture
that is difficult for the user to trace or remember during the runtime of the information system [42,43]. In this context,
tailoring mechanisms are provided by gestUI to define custom gestures for each user and to modify this definition during
the execution stage. In this context, each user decides the gesture-based interaction elements in the beginning of the soft-
ware development life cycle, which will be applied in the user interface in the execution stage. The software engineer then
includes this specification in the user interface and finally, when the user interface is ready, the user performs actions using
the previously defined interaction elements. However, if the user wants to change the initial specification of a gesture-
based interaction then it is necessary to include the tools required to consider the modification of the gesture catalogue
specification with the aim of improving the interaction process.

gestUI is designed to be inserted in any existing user interface development method. Within this context, Fig. 1, right,
shows the activities and products (grey background) of an existing method to build interfaces that aim to be enhanced with
gestUI and activities and products specific of gestUI (white background). For example, if a software engineer uses Eclipse to
generate a user interface during the stage of implementation, it is possible to take the source code of this user interface in
order to apply gestUI to include gesture-based interaction and to obtain a user interface supporting gestures.

In this work, in order to tackle the problems indicated in Section 3.1, we use gestUI to obtain user interfaces with
gesture-based interaction included. Additionally, MDD helps to improve the quality of the product (the user interface) in
terms of productivity, portability, interoperability, reusability. Table 2 shows the relationship between the aforementioned
problems and such factors.

Fig. 3 shows three systems involved in the process described in this paper using gestUI: the information system with
interfaces where we aim to include gesture-based interaction, the gestUI tool to include the gesture-based interaction, and
a framework to test the gestures defined using gestUI (i.e. quill, iGesture, $N).

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 239
Table 2
Relationship between detected problems and factors of the quality of the product improved with MDD.

Problems described in Section 3.1 Factors of the quality of the product
improved by using MDD [33]

Problem (iv): Software engineers require skills in the programming language of each platform. Productivity
Problems (ii): The gesture specification is not multi-platform. Portability
Problem (v): IDE is not available in all platforms required by users. Interoperability
Problem (iii): It is hard to reuse the source code to support gesture-based interaction in other platforms. Reusability
Problem (i): The amount of time required to implement this type of interaction depending of the method

to obtain the source code.
Source code automatic generation

Fig. 3. gestUI tool support.

Regarding the gestUI system, we have developed a tool support [5] using the Java programming language and the Eclipse
Modelling Framework to implement it. This tool is composed of three subsystems, as shown in Fig. 3: Gesture Catalogue
Definition Module, Gesture–Action Correspondence Definition Module and Model Transformation Module. Next we describe
these subsystems.

1. Subsystem “Gesture Catalogue Definition Module”. This contains the M1 activity (Fig. 1, right):
(i) M1 Activity: The subject draws custom gestures using a finger (or a pen/stylus) on a touch-based screen. Each

gesture is stored in a repository. Then, in order to define the platform-independent gesture catalogue, the subject
chooses one or more gestures from the repository and then they are inserted in the gesture catalogue model.
This catalogue model (compliant with the metamodel described in [5]) is the input for the “Model Transformation
Module” and the “Gesture–Action Correspondence Definition Module” subsystems.

2. Subsystem “Gesture–Action Correspondence Definition Module”. This contains two components:
(A) Component: “Gesture-Based Interaction Designer”. The inputs for this component are: the gesture catalogue model

(from M1) and the user interface to include gesture-based interaction. This subsystem contains the M2 activity
(Fig. 1, right):
(ii) M2 Activity: This defines the gesture–action correspondence through the following process: (1) selecting a user

interface source code with the aim of analysing it and finding the actions included in it by applying a parsing
process. The parsing process permits the discovery of a set of actions by means of checking the source code
to search strings (or substrings) containing keywords (e.g. in the Java programming language: JButton, JPanel)
[44]. Some complications can occur in the parsing process, especially depending on the programming language
in which the user interface is written and the components that have been included in that interface. Therefore,
the rules that are included in the parser must be very accurate in order to be able to exhaustively analyse the
source code of a user interface and, in this way, find the actions included in the interface as a previous step to
the inclusion of gesture-based interaction.

240 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
The process of defining gesture–action correspondence takes as input two arguments: (i) the previously defined
gesture catalogue model with the aim of assigning each gesture with an action; (ii) the source code of a user
interface to search keywords related with actions contained in the structure of source code that is based on a
programming language such as Java (e.g. JButton to define a button, JPanel to define a panel). As a result of this
process we obtain a set of actions included in the user interface. Therefore, if any action is found, a one-to-one
relationship is defined between this action and a gesture.

(B) Component: “Gesture-Based Interface Generator”. The inputs for this component are: gesture–action correspondence
and the user interface source code. The output of this component is the new version of the user interface source
code. It contains the M4 activity (Fig. 1, right):
(iii) M4 Activity: This executes a code generation process in order to obtain the new version of the user interface

source code containing gesture-based interaction. By using an automatic process, we insert each gesture–action
correspondence in the corresponding component of the user interface. This process is iterative while any action
is found in the source code of the user interface. Finally, we apply a code generation obtaining the user interface
with gesture-based interaction included.

3. Subsystem “Model Transformation Module”. The inputs for this subsystem are: gesture catalogue model and the target
platform to perform the model transformations. This subsystem contains the M3 activity (Fig. 1, right):
(iv) M3 Activity: This includes the transformation rules and the scripts written in ATL and Acceleo to apply M2M and

M2T transformations, respectively. This activity requires two inputs: the gesture catalogue definition model and the
target technology. Firstly, a M2M transformation is performed to obtain the gesture catalogue model according to
the specification of the gestures to be used in the gesture recogniser algorithm. In this case, we consider as the
target platform the $N gesture recogniser and we obtain the platform-specific gesture catalogue specification. Sec-
ondly, an M2T transformation is performed to obtain the gesture catalogue described in XML in order to include it
in the user interface. Thirdly, a M2T transformation is performed to obtain the user interface source code including
gesture-based interaction. Additionally, in order to test these transformations, an additional M2T transformation is
performed to obtain a gesture catalogue to be included in two frameworks to test gestures: (i) quill [35] using GDT
2.0 to describe the gesture catalogue and (ii) iGesture [36] using XML to describe the gesture catalogue. Regarding
the source code generated by gestUI, it can be in any programming language used to implement user interfaces
(e.g. Visual Basic, C#, Java). In this case, we need to specify in the transformation rules the keywords of the pro-
gramming language used to implement the user interface. In this work, we use Java as programming language to
generate source code of a user interface.

Additional information about models and model transformations included in gestUI can be found in [40,42].

3.3. Differences between code-centric method and gestUI (model-driven method)

There are some differences to consider between both methods in our work:

a. In the code-centric method the developer needs to specify the custom gesture by means of XML. The custom gesture
definition using gestUI is by means of a canvas that helps the developers to sketch the gesture. A module in gestUI
captures each point of the drawing done with the user’s finger.

b. The code-centric method is based on the writing of source code to include gesture-based interaction by means of an
IDE. In our experiment, the developer employs Java as programming language to include gesture-based interaction in a
user interface. gestUI does not require an IDE to write source code. gestUI is based on the specification of information
to execute model transformations in order to obtain the source code in Java, which includes gesture-based interaction
in a user interface. The target programming language (i.e. Java) can be chosen and it depends on the target system
where the code will be inserted.

c. Using the code centric method, the developer needs to deal with several factors: knowledge of the programming lan-
guage, knowledge of the target platform, experience using the IDE to write the code, etc. Using gestUI, the developer
does not need to know the characteristics of each programming language or platform. Developers only need to know
how to deal with conceptual models, relegating coding particularities to model to code transformations.

In summary, the differences are directly related with the factors to improve the quality of the software product discussed
in Table 2, Section 2.

4. Experimental planning

This section describes the design of the experiment according to the guidelines of Wohlin et al. [45].

4.1. Goal

According to the Goal/Question/Metric template suggested by Moody [11], the research goal is:

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 241
Analyse the outcome of a code-centric and a model-driven method for including gesture-based interaction into user interfaces,
For the purpose of carrying out a comparative evaluation
With respect to the usability of the model-driven method
From the viewpoint of researchers
In the context of researchers and practitioners interested in gesture-based interaction

4.2. Research questions and hypothesis formulation

The goal of our study is to compare the usability of a method to deal with gesture-based interfaces through code-centric
versus model-driven. Since usability is an abstract concept, we need to operationalise it through more measurable concepts.
According to ISO 25062-2006 [13], usability can be measured through effectiveness, efficiency and satisfaction. Following
the works of Moody [11], satisfaction can be measured using perceived usefulness, perceived ease of use and intention to
use.

We consider two scenarios in the experiment, the first one is related to the inclusion of gesture-based interaction (the
subject follows a set of tasks specified in the experiment to include gesture-based interaction in a user interface) and the
second scenario is related to the definition of custom touch gesture (the subject employs a finger or a pen/stylus to sketch
a gesture on a touch-based surface).

Regarding the type of gestures used in this experiment, even though gestUI supports multi-stroke gestures, we decided
to use only single-stroke gestures because our goal in the study is based on CRUD operations (which are simple gestures).5

The experiment is based on CRUD operation since they are the most frequently used in information systems [46,47]. This
decision could result in a simplification of the experimental tasks but it does not reduce the validity of the experiment. We
simplified the tasks in order to minimise the threat Boring, this way we can recruit more subjects. Usually, it is difficult
to recruit subjects for long experiments and the percentage of abandonments is high in them. Note that we are comparing
gestUI versus code-centric to solve the same problem. So, even using a simple experimental problem we are not benefiting
any treatment, conditions are the same. The study of how the complexity of the problems can affect the results is out of
scope of our experiment.

Therefore, in the evaluation of efficiency and effectiveness we consider research questions (RQ1, RQ2, RQ3 and RQ4) to
measure usability within each scenario, since we are interested in evaluating the subjects when they are including gesture-
based interaction in the user interface and when they are defining gestures. However, for the evaluation of satisfaction
(PEOU, PU and ITU) we consider research questions (RQ5, RQ6 and RQ7) without differentiating between scenarios, since
we are interested in the global value of the method (code-centric and gestUI) for usability.

Considering this perspective, the research questions and the null hypothesis (named as H0i , with i = [1..5] and corre-
sponding with each research question) proposed for the experiment are:

RQ1: Regarding the inclusion of gesture-based interaction in user interfaces, is there any difference between the effectiveness of the
code-centric method and gestUI? The null hypothesis tested to address this research questions is: H01: There is no difference
between the effectiveness of gestUI and the code-centric method in the inclusion of gesture-based interaction in user interfaces.

RQ2: Concerning the definition of custom touch gestures, is there any difference between the effectiveness of the code-centric method
and gestUI? The null hypothesis tested to address this research questions is: H02: There is no difference between the effectiveness
of gestUI and the code-centric method to specify custom gestures.

RQ3: Regarding the inclusion of gesture-based interaction in user interfaces, is there any significant difference between the efficiency of
the code-centric method and gestUI? The null hypothesis tested to address this research question is: H03: There is no difference
between the efficiency of gestUI and the code-centric method in the inclusion of gesture-based interaction in user interfaces.

RQ4: Concerning the definition of custom touch gestures, is there any difference between the efficiency of the code-centric method and
gestUI? The null hypothesis tested to address this research question is: H04: When the subjects define gestures, efficiency is the
same independently of the method used.

RQ5: How do subjects perceive the usefulness of gestUI in relation to the code-centric method? The null hypothesis tested to address
this research question is: H05: gestUI is perceived as easier to use than the code-centric method.

RQ6: How do subjects perceive the ease of use of gestUI in relation to the code-centric method? The null hypothesis tested to
address this research question is: H06: gestUI is perceived as more useful than the code-centric method.

RQ7: What is the intention to use of gestUI related to the code-centric method? The null hypothesis tested to address this research
question is: H07: gestUI has the same intention to use as the code-centric method.

5 Prior to the experiment, the gestures that represented the CRUD operations were defined by the authors of this work. However, a module was included
(equivalent to an option in the menu of the information system used in the experiment) that allowed the redefinition of the gestures used in the experi-
ment. This fact means that the gestures can be defined/redefined by the users of the information system. The main idea of this module is that if the gesture
defined by the software engineers/designers are complicated to remember or difficult to trace, users can define their own gestures to perform the actions
in the information system.

242 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Table 3
Factor and treatments of the experiment.

Factor Treatment Description

ID Name

Method to use I Code-centric method Subjects manually write the source code to define custom gestures and to include gesture-based
interaction in a user interface.

II gestUI Subjects employ gestUI with the aim of defining custom gestures and including gesture-based
interaction in a user interface.

Table 4
Response variables to evaluate effectiveness and efficiency of gestUI.

Response variables Metrics Definition Research
question

INCLUSION OF GESTURE-BASED INTERACTION
Effectiveness in the inclusion
of gesture-based interaction

Percentage of correct tasks carried out in the
inclusion of gesture-based interaction (PTCCI).

This is the relationship between: the number of
tasks correctly completed and the total number of
tasks during the inclusion of gesture-based
interaction in the user interface.

RQ1

Efficiency in the inclusion of
gesture-based interaction

Time to finish the task during the inclusion of
gesture-based interaction in the user interface
(TFTI).

This is the number of minutes spent on each task.
This is reported by the subjects during the inclusion
of gesture-based interaction in the user interface.

RQ3

CUSTOM GESTURE DEFINITION
Effectiveness in the custom
gesture definition

Percentage of correct tasks carried out in the
custom gesture definition (PTCCG).

This is the relationship between: the number of
tasks carried out correctly and the total number of
tasks during the definition of custom gestures.

RQ2

Efficiency in the custom
gesture definition

Time to finish the task during the custom
gesture definition (TFTG).

This is the number of minutes spent on the
experimental task. This is reported by the subjects
during the definition of custom gestures.

RQ4

4.3. Factor and treatments

Each software development characteristic to be studied that affects the response variable is called a factor [48] (a.k.a.
“independent variable”). In this case, the factor detected in the experiment is the method to use and it has two treatments:
the code-centric method and the model-driven method. Table 3 includes the description of the factor and its two treatments.

Eclipse Framework is used as a tool to operationalise the code-centric method. This tool is used to implement the source
code in Java that represents a user interface. gestUI operationalises the model-driven method. gestUI is used to include
gesture-based interaction in a user interface through conceptual models (without writing any lines of code) [49].

4.4. Response variables and metrics

Response variables are the effects studied in the experiment caused by the manipulation of factors. In this experiment,
we evaluate gestUI with regard to: effectiveness, efficiency and satisfaction.

4.4.1. Response variables for effectiveness and efficiency
In this experiment, we are interested in the evaluation of the subjects when they define custom gestures using a finger

(or a pen/stylus) on a touch-based surface, and we also are interested in the evaluation of the subjects using gestUI to
include gesture-based interaction. Therefore, we need metrics to evaluate efficiency and effectiveness for each scenario.

In this experiment, in order to answer the research questions (RQ1, RQ2, RQ3 and RQ4), we define a metric per research
question with the aim of evaluating the effectiveness and efficiency of gestUI when the subjects work in two scenarios:
(i) they include gesture-based interaction in a user interface and (ii) they define custom gestures during the experiment.
Table 4 shows the response variables classified per scenario and research question. The columns of Table 4 describe the
response variables, their metrics, definition and the research question that they aim to answer.

In this work, the term “correct task” means that the user has performed the task of defining a gesture (or the inclusion
of gesture-based interaction in the user interface) without errors.

4.4.2. Response variables for satisfaction
In this experiment, in order to answer research questions RQ5, RQ6 and RQ7, we define a metric for each one with the

aim of measuring satisfaction through PEOU, PU and ITU. We use a 5-point Likert scale in order to measure ITU, PEOU and
PU. In this case we are not distinguishing between defining custom gestures and including gesture-based interaction in a
user interface during the experiment, rather we are measuring satisfaction of the whole process. Table 5 describes response
variables, their metrics, definition and the research questions that we aim to answer.

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 243
Table 5
Responses variables to measure satisfaction of use gestUI.a

Response variable Metrics Definition Research
question

Satisfaction Perceived ease of use (PEOU) This is the arithmetic mean of the Likert scale values of MEM
questionnaire items related with perceived ease of use.

RQ5

Perceived usefulness (PU) This is the arithmetic mean of the Likert scale values of MEM
questionnaire items related with perceived usefulness.

RQ6

Intention to use (ITU) This is the arithmetic mean of the Likert scale values of MEM
questionnaire items related with intention to use.

RQ7

a We are aware that Likert scales are qualitative data but some studies propose converting them to quantitative to work with statistical tests [60].

Table 6
Summary of RQ’s, hypotheses, response variables and metrics.

Response variables Metric RQ Hypotheses

Effectiveness in the inclusion of gesture-based interaction PTCCI RQ1 H01

Effectiveness in the custom gesture definition PTCCG RQ2 H02

Efficiency in the inclusion of gesture-based interaction TFTI RQ3 H03

Efficiency in the custom gesture definition TFTG RQ4 H04

Perceived ease of use PEOU RQ5 H05

Perceived usefulness PU RQ6 H06

Intention to use ITU RQ7 H07

Table 6 shows a summary of the research questions, hypotheses, response variables and metrics used to test these
hypotheses.

4.5. Experimental subjects

The experiment was conducted in the context of the Universitat Politècnica de València (Spain). We had 21 subjects
(15 males and 6 females) who are six M.Sc. and fifteen Ph.D. students in Computer Science. The experiment is not part of a
course and the students are encouraged to participate on a voluntary basis.

The background and experience of the subjects are found through a demographic questionnaire handed out at the first
session of the experiment. This instrument consists of 15 questions on a 5-point Likert scale. According to the questions
included in the demographic questionnaire, the results are:

• Mainly, the subjects are between 25–29 (33%) and 30–34 years (24%).
• Regarding the computing platform, two of the most used are: Microsoft Windows (52% of the subjects) and MacOS

(33%). Linux is used by 15% of the subjects.
• All subjects (100%) indicated that they had taken a Java programming course. 62% of the participants had taken a model-

driven development (MDD) course and 52% of the subjects had taken a human–computer interaction (HCI) course.
• Regarding the software development experience using Eclipse IDE and Java, 43% of the subjects reported that they have

“Average” self-rated programming expertise on a 5-point Likert scale. In this scale, the number 3 means “Intermediate”
and the number 5 means “Expert”.

• Furthermore, the subjects reported their experience in model-driven development. The “Average” self-rated model-
driven development expertise was 33% on a 5-point Likert scale. In this scale, the number 3 means “Intermediate” and
the number 5 means “Expert”. Also, in this field, 29% have a “Poor” level and 14% have a “Very Poor” level.

• Regarding experience using gestures on a device/computer, 71% of the subjects occasionally use gestures in their daily
activities. Additionally, 43% of the subjects would like to define custom gestures to use them in their daily activities.

Table 7 summarises the information about the subjects extracted from the demographic questionnaire. We conclude that
subjects have some experience in the context of software development related with this experiment, but they do not have
experience in the definition of custom gestures and the inclusion of gesture-based interaction in user interfaces.

4.6. Experiment design

In this experiment, we use a crossover design [45] (a.k.a. a paired comparison design). This is a type of design where
each subject applies both methods, that is, the subjects use one method (the code-centric method) and then they use a
second method (gestUI, a model-driven method) or vice versa. The order of use of each method depends on which group
the subject was assigned to at the beginning of the experiment in such a way that each treatment is balanced among all
the subjects. This design has the advantages that we are using the largest sample size to analyse the data, hence we avoid
the learning effect and the problem is not confounded with the treatments.

244 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Table 7
Summary of demographic questionnaire.

Value %

Average age
20–24 years 3 14
25–29 years 7 33
30–34 years 5 24
35–39 years 4 19
>40 years 2 10

Gender
Male 15 71
Female 6 29

Computing platform
Microsoft Windows 11 52
MacOS 7 33
Linux 3 15

Courses taken
Java 21 100
HCI 11 52
MDD 13 62

Software development experience
Average experience 9 43
Poor experience 7 33
Very Poor experience 5 24

Experience using gestures 15 71
No experience using gesture 6 29

Model-driven development experience
Average experience 7 33
Poor experience 6 29
Very Poor experience 3 14

Table 8
Crossover design.

ID Treatment Subjects

I Code-centric method G1 G2
II Model-driven method (gestUI) G2 G1

Table 9
Operators and average time on KLM.

Operator Description Average time Observations

M Mental Operation 1.2 s mentally prepare
H Home 0.4 s Home in on keyboard or mouse (change of device)
P Point 1.1 s point with mouse
K Keystroke 0.28 s keystroke or mouse button press
R(t) System responsive t s Waiting for the system to become responsive (t)

With the aim of comparing both methods against each other, each subject uses both methods (treatments) on the same
object; to minimise the effect of the order in which subjects apply the methods, we balanced the treatment applied in the
first term. As Table 8 shows, the experiment is carried out with the subjects separated into two groups (G1 and G2). Each
group is composed of subjects that are assigned according to a random value obtained by means of a random numbers
calculator available on the Internet (https://www.random .org/). Therefore, the 21 subjects were randomly split into two
groups following a process known as counterbalancing: (a) 11 subjects first apply gestUI and then the code-centric method,
whilst (b) the other 10 subjects start with the code-centric method and then apply gestUI.

The expected time to fulfil the tasks defined in each treatment was around two hours. This value was estimated based
on two factors: (i) a previous pilot test and (ii) using the KLM method (Keystroke Level Method) [50,51]. KLM is a model for
predicting the time that an expert user needs to perform a given task on a given computer system. KLM is based on counting
keystrokes and other low-level operations, including the user’s mental preparations and the system’s responses [51]. Using
this model, we estimate the time required to input the lines of code required in the code-centric method considering the
operators and their average time proposed in [52] and shown in Table 9.

https://www.random.org/

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 245
Table 10
Estimating time for the experiment.

Treatment Previous pilot test By using KLM

Code centric method 1 h 08 min. 0 h 57 min.
Model-driven method 0 h 24 min. 0 h 21 min.
Total time 1 h 32 min. 1 h 18 min.

Fig. 4. Software system supporting traditional interaction.

The values of K operator is defined according to type of user: expert typist, average skilled typist, average non-secretarial
typist, worst typist [50]. In this experiment, we consider the average time of a non-secretarial typist because the subjects
participating in the experiment had to type in the source code that was included in the respective instrument of each
method, as is explained in the following pages. R(t) operator (t indicates the time in seconds that the user has to wait)
defines the time when the computer is busy doing some processing, and the user must wait before they can interact with
the system. The estimated values of time to perform the experiment are shown in Table 10.

4.7. Experimental objects

The object used in the experimental investigation is a requirements specification created for this purpose. It contains the
description of a problem related with the definition of custom gestures and the inclusion of gesture-based interaction in user
interfaces of a software system supporting traditional interaction using a mouse and keyboard. Fig. 4 shows this software
system containing a main user interface to manage information of departments, teachers and classrooms in a university by
means of CRUD operations. Each option opens a new interface to specify information required by the university.

Even though gestUI has been used to include gestural interaction in another type of software (see [43,42]), we decided to
perform the experiment with a simple information system since the subjects are familiar with the use of GUI interfaces with
windows and buttons to perform actions. That is, an information system to focus the analysis on answering the research
questions and avoiding functional complications.

Using traditional interaction, when the subjects click on the ‘Manage Departments’ button a new interface is opened,
which contains the information of each previously defined department in a grid included in the user interface. Next, clicking
on the ‘Create’ button, a new interface is opened to enter information concerning a new department. Finally, when the
information is complete, the ‘Save’ button saves the information in a database.

The user must perform the same CRUD operations but using custom gestures, that is, by means of gesture-based inter-
action. In this case, our work is related with the use of indirect symbolic gestures for triggering a command. The gesture is
related with a previously defined action containing the command to execute. Implicitly, such action contains parameters to
include in the command to execute. In general, the gesture can be single-stroke or multi-stroke, but in this experiment we
use single-stroke gestures because we use gestures to specify CRUD operations by means of simple drawings (letters C, R, U
and D).

From the point of view of achieving the objective of the experiment reported in this article, that is, to compare the
actions carried out with the code-centric method and with gestUI, in our opinion, the use of single-stroke gestures in the
experiment does not have serious consequences. Basically, the imposed restrictions in the type of gestures depend on where
the gestures are applied to decide the use of single-stroke or multi-stroke gestures. In this case, single-stroke gestures are
used because they are suitable and enough for plotting the letters that represent the gestures of the CRUD operations. In
another case, a multi-stroke gesture could be a better solution for the purpose of drawing a gesture that allows executing an
action already established in a software (for example, using multi-stroke gestures in a CASE tool to draw primitives from a

246 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Table 11
Instruments defined for the experiment.

Instrument Description

Demographic Questionnaire Questionnaire to assess the subjects’ knowledge and experience of the technologies and concepts used
in the experiment. This document includes questions containing Likert-scale values ranging from 1
(strongly disagree) to 7 (strongly agree).

Task Description Document for
the code-centric method

Document that describes the tasks to be performed in the experiment using the code-centric method
and containing empty spaces to be filled in by the subjects with the start and end times of each step
of the experiment. This document contains guidelines to guide the subject throughout the experiment
and the source code to be included in the user interface.

Task Description Document for
the model-driven method
(gestUI)

Document that describes the tasks to be performed in the experiment using the model-driven method
and containing empty spaces to be filled in by the subjects with start and end times of each step of
the experiment. This document contains guidelines to guide the subject throughout the experiment.

Post-test Questionnaire for the
code-centric method

Questionnaire with 16 questions containing Likert-scale values ranging from 1 (strongly disagree) to 7
(strongly agree) to evaluate satisfaction of the whole process when the subjects use the code-centric
method to define custom gestures and to include gesture-based interaction.

Post-test Questionnaire for the
model-driven method
(gestUI)

Questionnaire with 16 questions containing Likert-scale values ranging from 1 (strongly disagree) to 7
(strongly agree) to evaluate satisfaction of the whole process when the subjects use the model-driven
method (gestUI) to define custom gestures and to include gesture-based interaction.

diagram, or a multi-stroke gesture to execute a complex action that includes the command to execute and some parameter
or option of the command).

Therefore, if gesture-based interaction is included in user interfaces, the subjects can sketch gestures on the touch-based
display of the computer in order to execute some actions (in this case, the CRUD operations). One gesture can contain the
definition of one or more actions, but the gesture–action correspondence must be unique per interface. Gestures are defined
during the specification of the gesture-based interaction in each user interface. In this case, the ‘D’ gesture contains two
actions (each one in a different interface): (i) it can be used to open the user interface to manage departments, and (ii) it
can be used to delete one previously selected record in the database.

After the user draws the gesture, $N is used for recognition. This process is online and, if the gesture is recognised,
the previously specified action is triggered. This specification was made at the time the gesture–action correspondence was
defined (see Section 3.2, in the description of the Subsystem “Gesture–Action Correspondence Definition Module”). In this
case, an action is related with a command containing the instruction to execute each CRUD operation, for example, the
gesture “S” executes the command to save the information included in the fields of the user interface in the database of the
information system.

Even though the problem is small, it contains the necessary elements to validate the method: (i) a gesture catalogue
definition containing the aforementioned six gestures, and (ii) the process to include the gesture-based interaction in the
existing user interface source code. The inclusion of a greater number of user interfaces or gestures in the catalogue during
the experiment would mean repetitive work for the subjects.

4.8. Instrumentation

All the material required to support the experiment was developed beforehand, including the preparation of the experi-
mental object, instruments and task description documents for data collection used during the execution of the experiment.
The instruments used in the experiment are described in Table 11.

4.9. Experiment procedure

This section describes the procedure used to conduct the experiment. Prior to the experiment session, a pilot test was
run with one subject who finished the Master’s degree in Software Engineering in the Universitat Politècnica de València.
This pilot study helped us to improve the understandability of some instruments.

In this experiment, we consider a user interface of the existing software system mentioned in Section 4.7. In this user
interface, users perform CRUD operations to manage information by means of a traditional interaction with a mouse and
a keyboard. We are interested in including gesture-based interaction in the user interfaces of a software system. So, the
experiment addresses a real problem, i.e. the definition of custom gestures and the inclusion of gesture-based interaction in
an existing user interface to perform the aforementioned operations.

Prior to the experiment and considering that gestUI is a model-driven method, the definition of the gesture catalogue
starts with the platform independent definition (that is, the PIM of the gestures), then through the use of model trans-
formations the specific model of gestures is obtained (that is, the PSM of the gestures). The detail of this process is not
included in this article, but it can be reviewed in [5]. On the other hand, we define the gesture catalogue that the subjects
require to apply both treatments in the experiment in coordination with some representative users of this type of infor-
mation systems. The gesture catalogue (see Table 12) consists of four gestures to execute each CRUD operations action and
one additional gesture to save the information in the database (‘S’ gesture). Observe that the ‘D’ gesture has two actions to

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 247
Table 12
Gesture catalogue defined in the experiment.

Action Gesture Description User interface

Open the “Managing Department”
user interface

The user sketches this gesture to open the user interface
to manage departments in the university.

Main user interface

Create a new department The user sketches this gesture to open the user interface
to create a new department.

Managing departments

Read a department record The user sketches this gesture to open the user interface
to read the previously selected record of a department.

Managing departments

Update the information of the
existing department

The user sketches this gesture to open the user interface
to update the previously selected record of a department.

Managing departments

Delete a record of a department The user sketches this gesture to open the user interface
to delete the previously selected record of a department.

Managing departments

Save the information of a department The user sketches this gesture to save the information of
a department in the database.

Department Information

Fig. 5. Software system supporting gesture-based interaction.

execute depending on the user interface where the gesture is sketched by the user. This gesture catalogue is included in the
Task Description Document of each treatment.

Hence, the user interface must contain the definition of gestures to perform CRUD operations. For instance, Fig. 5 shows
three gestures defined in the user interface: (i) ‘D’, to open the user interface to manage departments; (ii) ‘C’, to create a new
department, by opening the user interface to enter the information of a new department; (iii) ‘S’, to save the information in
the database.

In this experiment, each user interface of the information system used in the experiment has an additional area where
the gestures are drawn exclusively there, without worrying about “invading” the rest of the user interfaces on the screen
of the computer. This decision was taken since the gesture might start on some control of other user interface and an
unexpected action might occur before finishing the gesture.

We consider two versions of the “Task Description Document”, as explained in Table 11. We use a sub-index ‘c’ when
naming the task ID to express the treatment “Code-centric method” and we use a sub-index ‘g’ to express this treatment
gestUI when naming the task ID. The subjects apply both treatments designed in the experiment with the aim of managing
the input of gestures sketched by the users to execute actions in the software system. Task Description Documents were
delivered to the subjects before starting the experiment.

Fig. 5 shows the execution of the actions related to the set of gestures defined to perform the experiment described in
this paper. The following events occur when the user sketches the gestures:

– The user sketches a gesture (“D”) in order to open a user interface to manage departments.
– If the gesture is recognised, the “Manage Departments” user interface is opened. Next, the user sketches the gesture

(“C”) with the aim of opening a user interface to create departments.
– If the gesture is recognised, the “Create a department” user interface is opened. When the user finishes to enter the

information of the department, he/she sketches other gesture (“S”) in order to save the information in a database.
– Finally, if the gesture is recognised, the information is saved in a database.

248 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Table 13
An excerpt of the Task Description Document containing the sequence of steps for custom gesture definition using the code-centric method.

No. Task ID Task description Observations

1 TG1C Definition of gesture “C” The subject sketches the “C” gesture using a finger or a pen/stylus
2 TG2C Definition of gesture “R” The subject sketches the “R” gesture using a finger or a pen/stylus
3 TG3C Definition of gesture “U” The subject sketches the “U” gesture using a finger or a pen/stylus
4 TG4C Definition of gesture “D” The subject sketches the “D” gesture using a finger or a pen/stylus
5 TG5C Definition of gesture “S” The subject sketches the “S” gesture using a finger or a pen/stylus
6 TG6C Save gesture catalogue The subject saves the gesture catalogue

The steps in the procedure of the experiment are:

Step 1: The goal of the experiment was introduced to the subjects and guidelines on how to conduct the process were given
to them.

Step 2: Each subject filled in a Demographic Questionnaire before starting the experiment where the subjects were asked
about age, gender, courses taken, experience in software development, experience in model-driven development, and expe-
rience using gestures (Table 7). Results of this questionnaire are described in Section 4.5.

Step 3: The subjects did the experiment divided into two groups (G1 and G2) following the instructions given in the Task
Description Document of each method. In this experiment, for each method, we separately evaluate two processes: (i)
custom gesture definition and (ii) inclusion of gesture-based interaction, since we are interested in evaluating effectiveness
and efficiency of the subjects when they specify gestures on a touch-based device and when they include gesture-based
interaction. The evaluation of effectiveness and efficiency, taking in account PTCCG, PTCCI, TFTI, and TFTG (see Section 4.4)
is performed based on the information registered in the Task Description Document.

During the inclusion of gesture-based interaction in the user interface we use the next process: When the subject
finished the previously defined tasks to include the gesture-based interaction (Table 14 includes an excerpt of the cor-
responding Task Description Document), we analyse the questionnaire filled by the subject regarding performed tasks:
number of tasks correctly completed and the number of incomplete tasks. Then, we obtain the percentage of tasks correctly
completed in relation with the total number of tasks. Similar process is followed to calculate PTCCG.

Next, we evaluate each method (code-centric and gestUI) in a global way with regard to PEOU, PU and ITU. The sequence
of steps for each group is the following.

– G1 group. G1 subjects applied the code-centric method to complete Treatment I.

Treatment I (code-centric method). In this case, the subjects received the Task Description Document containing instructions
to apply the code-centric method with the aim of adding new source code to define custom gestures. Following the in-
structions included in the Task Description Document, the subjects perform a sequence of steps (see Table 13 that contains
an excerpt of the Task Description Document) to define the catalogue of gestures described in Table 12. The definition of a
gesture using the code-centric method consists of the creation of an XML file whose structure, in this case, is based on the
gesture specification according to $N gesture recogniser [7].

Even though the subjects received an Eclipse project containing existing source code of the user interface, they must
write new lines of source code included in the Task Description Document using the editor of the Eclipse IDE in the existing
source code in order to add functionalities related to gesture-based interaction. The source code included in the instrument
called “Task Description Document” does not represent the only solution code for the purpose of including interaction based
on gestures in the user interface, however, it is a solution that allows to conduct the experiment.

The decision to include source code was taken with the aim of reducing the duration time of the experiment considering
that if the subjects had written all the source code to define gestures and to include gesture-based interaction in the existing
user interface from scratch, probably they would have required a greater number of hours (or maybe days). We think that
this decision could have some influence on the result of the experiment depending on the subject’s experience in software
development and the time required to write source code in the Eclipse Framework IDE.

An excerpt of the sequence of steps to perform in the experiment to include gesture-based interaction using the code-
centric method is included in Table 14.

Tasks TI1C, TI2C and TI3C allow the adaptation of the source code of $N gesture recogniser in the source code of the
user interface with the aim of adding a gesture recogniser in the software system to recognise the gestures sketched by the
users. TI4C includes a panel in the user interface where the gestures are sketched by using a finger or pen/stylus. TI5C and
TI6C permit the inclusion of listeners to sense the finger that is sketching a gesture. These listeners capture the information
produced on the user interface when a gesture is sketched. TI7C and TI8C manage the process to draw the gesture on the
user interface. TI9C implements a method to define the gesture–action correspondence. In this case, the subject needs to
execute a process to search actions included in the source code. We use a user interface where the actions are related
with buttons definition (e.g. ‘Manage Departments’, ‘Create’, ‘Save’). Subjects define the action–gesture relationship using
the specification of gestures described in Table 12.

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 249
Table 14
An excerpt of the Task Description Document containing the sequence of steps for gesture-based interaction inclusion using
the code-centric method.

Task ID Task description

TI1C To include $N as gesture recogniser in the software system.
TI2C To implement methods and attributes required to use $N as gesture recognition.
TI3C To implement the method to read gestures sketched by the user.
TI4C To add a new panel in the user interface to draw gestures.
TI5C To write a method to implement a listener sensing the finger (or pen/stylus) that is drawing a gesture.
TI6C To write a method to implement a listener sensing that the gesture definition is complete.
TI7C To implement a method to manage graphics in Java.
TI8C To implement a method to paint a gesture on the user interface.
TI9C To implement a method containing the gesture–action correspondence.
TI10C To compile the new version of the source code and to run the software system.

Table 15
An excerpt of the Task Description Document for custom gesture definition using gestUI.

Task ID Task description

TG1G Definition of gesture “C”
TG2G Definition of gesture “R”
TG3G Definition of gesture “U”
TG4G Definition of gesture “D”
TG5G Definition of gesture “S”
TG6G Executing model-transformation to obtain a platform-independent gesture catalogue

Table 16
Gesture–action correspondence step-by-step definition.

No. Description Explanation

1 It selects a gesture from the gesture catalogue This contains the gesture selected by the subject.
2 It selects an action from the list of actions included in the user interface This contains the actions selected by the subject.
3 It contains the gesture–action correspondence definition The subject confirms the gesture–action correspondence.
4 It generates the new version of the source code of the user interface This contains the process to generate the source code of the user

interface containing gesture-based interaction.

As a final result, the subjects obtain a new version of source code containing gesture-based interaction in the user
interface in order to execute actions indicated in the requirements specification using gestures. Then, in TI10C, the subjects
must compile the source code of the software system in Eclipse IDE, and then they can execute the software system in
order to test the gestures defined in the process to execute the previously specified actions in the experiment.

– G2 group. G2 subjects employed gestUI to complete Treatment II.

Treatment II (gestUI). In this procedure, we consider the same user interfaces of the software system shown in Fig. 4. G2
subjects received the Task Description Document containing instructions to apply gestUI to define custom gestures and to
include gesture-based interaction in the user interface. This treatment consists of the definition of the gesture catalogue,
and the specification of data to apply model transformations in order to generate the source code of the user interface
containing the gesture-based interaction.

Firstly, the subjects define the gesture catalogue by means of a pen/stylus or a finger on a touch-based surface. These
gestures are stored in a repository, as described in Section 3.2, and then the platform-independent gesture catalogue
(gesture-catalogue model) is obtained. The tasks to perform this step are included in Table 15, which shows an excerpt
of the Task Description Document for this treatment.

Secondly, with the aim of obtaining the platform-specific gesture specification, subjects apply a model-to-model trans-
formation that requires as input the gesture catalogue model.

Thirdly, the subject selects the user interface and the platform-specific gesture specification to design the gesture-based
interaction by defining the gesture–action correspondence. This correspondence is defined with the aim of assigning each
gesture to an action. Fig. 6 shows the interface of the tool that contains the process to define this correspondence consisting
of steps 1 to 4 shown in red.

Finally, gestUI generates the code with a new version of the user interfaces including gesture-based interaction. Then, the
subjects use Eclipse IDE to compile the source code of the software system and afterwards they test the gestures defined in
the process.

Table 16 contains the description of the steps shown in Fig. 6.

250 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Fig. 6. Gesture–action correspondence definition using tool support. (For interpretation of the colours in the figure(s), the reader is referred to the web
version of this article.)

At the end of this process, the result is the generated source code of the user interface of the software system supporting
gesture-based interaction to execute actions, according to the definition of gesture–action correspondence. Fig. 5 shows the
same software system described in Fig. 4 but supporting gesture-based interaction.

Step 4. Subjects filled in the corresponding Post-Test Questionnaire according to the treatment employed in the experiment.

According to Table 8, in Section 4.6, after the G1 subjects employed the code-centric method they must employ gestUI
to complete Treatment II, repeating steps 1 to 3 again. In similar way, after the G2 subjects employed the gestUI method
they must employ the code-centric method to complete Treatment I.

The data to evaluate PEOU, PU and ITU in this experiment were obtained from the post-task and post-test questionnaires.
After the data was gathered, they were checked for correctness and the subjects were consulted when necessary. The data
obtained of the aforementioned questionnaires filled in by the subjects are used to measure the response variables defined
in Section 4.4.

4.10. Threats of validity

In this section we discuss the most important threats to the validity of this evaluation. We have classified the threats
according to Wohlin et al. [45], each of which is discussed below.
Internal validity: The main threats to the internal validity of the experiment are:

(i) Subject’s experience in defining gesture-based interaction: this threat was resolved since none of the subjects had any
experience in tasks related to the topic of custom gesture definition included in the experiment, according to the
pre-test questionnaire. So, the subjects’ experience in both treatments is the same.

(ii) Subject’s experience in software development: there are some factors that can influence the experiment:
a. Some of the subjects could have more experience than others in the development of software. Although we used the

pre-test questionnaire in order to find out their experience in this field, this threat could not be resolved since we
designed the groups in a random way. This threat could affect the evaluation of the effectiveness and the efficiency
because the time required to perform the experiment depends on the experience level of the subjects.

b. In some cases, subjects without an adequate level of experience in managing source code could produce syntax
errors in the source code when inserting the additional source code. This threat could be resolved, since the subjects
received adequate information and printed source code without errors included in the Task Description Document
with the aim of obtaining a new version of the existing source code of the user interface.

(iii) Information exchange among subjects: this threat was resolved since the experiment was developed in one session, and
it was difficult for the subjects to exchange information with each other.

(iv) Learning effect: this threat could not be resolved in both treatments (described in Section 4.7.1 and 4.7.2, respectively)
since the process to define custom gestures is identical to the five gestures included in the experiment. Therefore,
the definition of the first gesture required more time and effort compared to the following gestures. This threat could
affect the evaluation of efficiency and effectiveness because the time needed to perform the experiment depends on
the experience level of the subjects.

(v) Fatigue: The experiment may suffer this threat since the gestures used with gestUI and with code-centric are the same,
which may be boring for the subjects.

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 251
External validity: The main threats to the external validity of the experiment are:

i. Duration of the experiment: there are some factors that can influence the duration of the experiment.
a. Since the duration of the experiment was limited to 2 hours, only one interface, six actions (CRUD operations + save

the information + open the interface to manage departments) and five gestures were selected. However, repetitive
tasks could permit a reduction of time since the subject already knows the process to perform. This threat could
not be resolved since these tasks, even though repetitive, were necessary to build the system.

b. Subjects require time to analyse the structure and the logic of the existing source code before the inclusion of the
additional source code. This threat could be resolved by including adequate instructions in the Task Description
Document in order to perform the experiment.

c. If any subject requires the maximum amount of time to perform the experiment, which is 2 hours (according
to what is specified in Section 4.6), the information is considered not valid to process because this situation can
represent some of the following situations: (i) the subject writes source code slowly using the keyboard and mouse,
(ii) a subject does not have the same experience in the use of software tools for software development in relation
to other subjects and he/she requires more time to complete the experiment probably performing additional tasks
(e.g. checking if the source code was completely transcribed from the Task Description Document to the Eclipse
project, checking for syntax errors in the source code).

d. Total time required to perform the experiment depends on of the typing speed and the experience of the subject
in managing source code. This threat could not be resolved in Treatment I (it contains more lines of code to write
than Treatment II) since we do not check each subject’s typing ability on the computer.

e. Time required to check whether the inclusion of the gesture-based interaction was successful varies depending on
the experience of the subjects. This threat could be resolved since the subjects answered a question in the pre-test
questionnaire about experience in the use of an IDE to develop software in a positive way (43% have an “average”
self-rated expertise and 38% have an “experienced” self-rated experience).

ii. Representativeness of the results: despite the fact that the experiment was performed in an academic context, the results
could be representative with regard to novice evaluators with no experience in evaluations related with the gesture in-
teraction definition and inclusion. With respect to the use of students as experimental subjects, several authors suggest
that the results can be generalised to industrial practitioners [53,54].

Construct validity: The main threat to the construct validity of the experiment is:

(i) Type of measurements to consider in the experiment: measurement that are commonly employed in this type of experiment
were used in the quantitative analysis. The reliability of the questionnaire was tested by applying the Cronbach test, the
obtained value is higher than the acceptable minimum (0.70).

Conclusion validity: The main threats to the conclusion validity of the experiment are:

(i) Validity of the statistical tests applied: this was resolved by applying Wilcoxon Signed-rank test, one of the most common
tests used in the empirical software engineering field. According to Wohlin et al. [45] if we have a sample whose size is
less than 30 and we have a factor with two treatments, we can use non-parametric statistical tests such as the Wilcoxon
Signed-rank test. In Section 4.11 the non-parametric tests used in this experiment are detailed.

(ii) Low statistical power: this happens when the sample size is not large enough. The power of any statistical test is defined
as the probability of rejecting a false null hypothesis. According to G*Power [55] the sample size needed for an effect
size of 0.8 is 20 subjects, which is the number of subjects we have. So, this threat has been minimised.

4.11. Data analysis

The calculated values are checked to see the p-value (significance level). An important issue is the choice of significance
level which specifies the probability of the result being representative. Generally speaking, the practice dictates rejecting
the null hypothesis when the significance level is less than or equal to 0.05 [48].

The first step is to analyse the reliability of the data obtained in the experiment: we start by calculating the Cronbach
coefficient (alpha). In this case, the result obtained is 0.736. According to [56] if the Cronbach coefficient is greater or equal
to 0.7 then the reliability of the data is assumed.

Boone et al. [57] recommend some data analysis procedures for Likert scale data: (a) for central tendency: mean, (b) for
variability: standard deviation, (c) for associations: Pearson’s r, and (d) other statistics using: ANOVA, t-test, regression. Ac-
cording to Juristo et al. [48], if we have a sample whose size is less than 30 and it follows a normal distribution, then we
employ t-distribution (Student’s), but if the sample does not follow a normal distribution then we can apply the Wilcoxon
Signed-rank test in order to analyse the data obtained in the experiment. A normality test using the Shapiro–Wilk test is re-
quired in order to verify if the data is normally distributed. We use this test as our numerical means of assessing normality
because it is more appropriate for small sample sizes (<50 samples). Then, using Shapiro–Wilk we obtained the result that
the data is not normally distributed. In this case, we cannot apply the t-distribution test because this test requires normally
distributed data. So, we apply the Wilcoxon Signed-rank test.

252 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Table 17
Non-parametric Levene’s test for the variables in the experiment.

Variable F df1 df2 Sig.

PEOUg 0.353 1 19 0.560
PEOUc 0.004 1 19 0.948
Pug 0.042 1 19 0.840
PUc 0.754 1 19 0.396
ITUg 0.147 1 19 0.706
ITUc 0.416 1 19 0.527

Table 18
Descriptive statistics for metrics.

N Min. Max. Mean Std. Dev.

PTCCIg 21 50 100 82.1429 17.9284
PTCCIc 21 50 100 77.3810 15.6220
PTCCGg 21 75 100 91.6667 12.0762
PTCCGc 21 25 100 71.4286 19.8206
TFTIg 21 9.00 33.00 19.7143 7.0224
TFTIc 21 18.00 49.00 28.3810 7.8834
TFTGg 21 12.75 66.75 31.8929 16.8301
TFTGc 21 60.50 346.25 154.6786 66.5967
PEOUg 21 1 5 3.2857 0.2154
PEOUc 21 1 5 3.3280 0.5073
PUg 21 1 5 3.8176 0.3451
PUc 21 1 5 3.2786 0.5762
ITUg 21 2 5 3.7381 0.7179
ITUc 21 1 4 2.9286 0.6761
Valid N 21

The next step is verifying whether the data satisfy the sphericity condition and whether they are homogeneous:

– In order to check the sphericity condition, Mauchly’s test can be used. However, in this work, there are only two levels
of repeated measures (with the gestUI method and with a code-centric method), which precludes a sphericity violation
and the test is unnecessary.

– Non-parametric Levene’s test is used to test if the samples have homogeneity in their variances. In the result of this
test we can observe in column “Sig.” in Table 17, that the non-parametric Levene’s test for homogeneity of variances
provides a p-value > 0.05, allowing us to assume that the data have homogeneity in their variances.

In the section 5, we report the quantitative results of the experiment based on the statistical analysis of the data using
(i) descriptive statistics (mainly arithmetic mean), (ii) box-and-whisker plot, (iii) Spearman’s Rho correlation coefficient to
study the correlation between both treatments, and (iv) the Wilcoxon Signed-rank test with the aim of addressing the
research questions. The results of applying Wilcoxon Signed-rank test are described grouped by variables (PTCCI, PTCCG,
TFTI, TFTG, PU, PEOU and ITU).

Additionally, at the end of the Section 5, we include the results of the effect size calculation in order to check the
meaningfulness of the results and allow comparison between studies.

A significance level of 0.05 was established to statistically test the obtained results with subjects in the experiment. The
analysis has been performed using the SPSS v.23 statistical tool.

5. Results

In this section, the subscript ‘g’ located at the end of each variable means “using the gestUI method”, and the subscript ‘c’
means “using the code-centric method”. Next, we analyse the results for each research question.

5.1. RQ1: effectiveness in the inclusion of gesture-based interaction

We consider two treatments to analyse PTCCI in the inclusion of gesture-based interaction: PTCCIg and PTCCIc.
According to Table 18, the mean of PTCCIg (82.14%) is greater than the mean of PTCCIc (77.38%), that is, the subjects

achieved a greater percentage of correctly carried out tasks using gestUI than when they employed the code-centric method.
Fig. 7 presents the box-and-whisker plot containing the distribution of the PTCCI variable per method. The medians

of PTCCIg and PTCCIc are similar, but the third quartile is better for PTCCIg, since the percentage of correctly carried out
tasks achieved by the subjects using gestUI is greater than the percentage achieved when the subjects use the code-centric
method. This means that gestUI is slightly more effective than the code-centric method when the subjects include gesture-
based interaction in user interfaces.

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 253
Fig. 7. Box-and-whisker plot of PTCCI.

Table 19
Wilcoxon Signed-rank test for PTCCI.

N Mean rank Sum of ranks

PTCCIc–PTCCIg Negative ranks 6a 4.50 27.00
Positive ranks 2b 4.50 9.00
Ties 13c

Total 21

a PTCCIc < PTCCIg.
b PTCCIc > PTCCIg.
c PTCCIc = PTCCIg.

Using Spearman’s Rho correlation coefficient, we obtained a positive correlation (0.638). So, we can conclude that PTCCIg
and PTCCIc are strongly correlated, that is, when the percentage of correctly carried out tasks using gestUI increases, the
percentage using the code-centric method also increases.

In order to check whether the observed differences were significant we ran the Wilcoxon Signed-rank test. We obtained
the results shown in Table 19. They show that two subjects (2/21) have obtained a greater number of correctly carried
out tasks using the code-centric method compared to gestUI to include gesture-based interaction in the experiment. Six
subjects (6/21) have obtained a greater number of correctly carried out tasks using gestUI compared to the code-centric
method. However, thirteen subjects (13/21) have obtained the same number of correctly carried out tasks for both methods.

The results obtained with this test are: 2-tailed p-value = 0.157 > 0.05 and Z = −1.414, therefore, according to this
result, we cannot reject the null hypothesis and can conclude that “There is no difference between the effectiveness of the gestUI
and the code-centric methods in the inclusion of gesture-based interaction in user interfaces”.

5.2. RQ2: effectiveness in the definition of custom gestures

We consider two treatments to analyse PTCCG in the custom gesture definition: PTCCGg and PTCCGc.
According to Table 18, the mean of PTCCGc (71.43%) is less than the mean of PTCCg (91.67%), that is, the subjects achieved

a relatively greater percentage of correctly carried out tasks using gestUI than when they employed the code-centric method.
Fig. 8 presents the box-and-whisker plot containing the distribution of the PTCCG variable per method. The median, the

first quartile and the third quartile are better for PTCCGg, since it achieved a greater percentage of correctly carried out
tasks. This means that gestUI was more effective than the code-centric method when the subjects define custom gestures.

Using Spearman’s Rho correlation coefficient, we obtained a positive correlation (0.456). Then, we can conclude that
PTCCGg and PTCCGc have a moderate correlation, that is, when the percentage of correctly carried out tasks with PTCCGg
increases, there is a moderate increment in the percentage of PTCCGc.

In order to check whether the observed differences were significant we ran the Wilcoxon Signed-rank test. We obtained
the results shown in Table 20.

It shows that fourteen subjects (14/21) have obtained more correctly carried out tasks using gestUI compared to using
the code-centric method, zero (0/21) subjects have obtained more correctly carried out tasks using the code-centric method
than using gestUI, and there are seven (7/21) subjects that have obtained the same percentage using both methods.

The results obtained with this test are: 2-tailed p-value = 0.000 < 0.05 and Z = −3.556, therefore, according to this
result, we reject the null hypothesis and can conclude that “gestUI is more effective than the code-centric method in the definition
of custom gestures”.

254 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Fig. 8. Box-plot-whisker of PTCCG.

Table 20
Wilcoxon signed-rank test for PTCCG.

N Mean rank Sum of ranks

PTCCGc–PTCCGg Negative ranks 14a 7.50 105.00
Positive ranks 0b .00 .00
Ties 7c

Total 21

a PTCCGc < PTCCGg.
b PTCCGc > PTCCGg.
c PTCCGc = PTCCGg.

Fig. 9. Box-plot for TFTI.

5.3. RQ3: efficiency in the inclusion of gesture-based interaction

We consider two treatments to analyse TFTI in the inclusion of gesture-based interaction: TFTIg and TFTIc.
According to Table 18, the mean of TFTIc (28.38) is greater than that of TFTIg (19.71), that is, the time required to include

gesture-based interaction in the experiment using the code-centric method is greater than the time needed to perform this
task using gestUI.

Fig. 9 presents the box-and-whisker plot containing the distribution of the TFTI variable per method. The medians, first
quartile and third quartile are better for TFTIg, since the time needed to conduct the experiment is less when the subjects
use gestUI rather than when the subjects use the code-centric method. This means that the time to finish the task with
gestUI is better than with code-centric.

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 255
Table 21
Wilcoxon Signed-rank test for TFTI.

N Mean rank Sum of ranks

TFTIc–TFTIg Negative ranks 3a 7.17 21.50
Positive ranks 18b 11.64 209.50
Ties 0c

Total 21

a TFTIc < TFTIg.
b TFTIc > TFTIg.
c TFTIc = TFTIg.

Fig. 10. Box-plot of TFTG.

Using Spearman’s Rho correlation coefficient, we obtained a positive correlation (0.210). Then, we can conclude that TFTIg
and TFTIc have a weak correlation, that is, between TFTIg and TFTIc there is not a significant relationship (Sig. (2-tailed) >
0.05) in the process of including gesture-based interaction.

In order to check whether the observed differences were significant we ran the Wilcoxon Signed-rank test. We obtained
the results shown in Table 21. They show that eighteen subjects (18/21) have employed more time using the code-centric
method compared to gestUI to include gesture-based interaction in the experiment. Three subjects (3/21) have employed
less time using the code-centric method than gestUI to include gesture-based interaction in the experiment.

The values obtained with this test are: 2-tailed p-value = 0.001 < 0.05 and Z = −3.269, therefore, according to this
result, we reject the null hypothesis and we can conclude that “gestUI is more efficient than the code-centric method in the
inclusion of gesture-based interaction in user interfaces”.

5.4. RQ4: efficiency in the definition of custom gestures

We consider two treatments to analyse TFTG in the definition of custom gestures: TFTGg and TFTGc.
According to Table 18, the mean of TFTGc (154.67) is greater than the mean of TFTGg (31.89), which means that the time

required to define custom gestures in the experiment using the code-centric method is greater than the time to do this task
using gestUI.

Fig. 10 presents the box-and-whisker plot containing the distribution of the TFTG variable per method. The median, first
quartile and third quartile are better for TFTGg, since TFTGg needs less time to complete the task. This means that gestUI
was more efficient than code-centric method regarding the time required by the subject to define custom gestures during
the experiment.

Using Spearman’s Rho correlation coefficient, we obtained a positive correlation (0.216). Then, we can conclude that
TFTGg and TFTGc have a weak correlation, that is, when the time required to define custom gestures using code-centric
method increases, the time using gestUI method also has a weak increment.

In order to check whether the observed differences were significant, we run Wilcoxon Signed-rank test. We obtain the
results shown in Table 22.

It shows that twenty-one subjects (21/21) have employed more time using the code-centric method than gestUI to define
custom gestures in the experiment.

256 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Table 22
Wilcoxon Signed-rank test for TFTG.

N Mean rank Sum of ranks

TFTGc–TFTGg Negative ranks 0a .00 .00
Positive ranks 21b 11.00 231.00
Ties 0c

Total 21

a TFTGc < TFTGg.
b TFTGc > TFTGg.
c TFTGc = TFTGg.

Fig. 11. Box-plot for PEOU.

The values obtained with this test are: 2-tailed p-value = 0.000 < 0.05 and Z = −4.015, therefore, according to this
result, we reject the null hypothesis and we can conclude that “When the subjects define gestures, gestUI is more efficient than
the code-centric method”.

5.5. RQ5: perceived ease of use

We consider two treatments to analyse PEOU: PEOUg and PEOUc.
Table 18 presents the results obtained through questions related to PEOU within Post-task and Post-test questionnaires.

In this case, the mean is above 3.0 in both cases. There is a difference of 0.042 between the mean of PEOUc and the mean
of PEOUg, that is, the PEOU of gestUI is relatively greater than the PEOU of the code-centric method.

Fig. 11 shows the box-and-whisker plot containing the distribution of the PEOU variable per method. The medians of
both treatments are the same. The first quartile is slightly better for gestUI and the third quartile is slightly better for the
code-centric method. This means that there are no differences between both treatments.

Using Spearman’s Rho correlation coefficient, we obtain a positive correlation (0.408). So, we can conclude PEOUg and
PEOUc have a moderate correlation, that is, when the perceived ease of use with gestUI increases, PEOU using the code-
centric method also increases.

In order to check whether the observed differences were significant, we ran the Wilcoxon Signed-rank obtaining the
results shown in Table 23. They show that eight subjects (8/21) perceive that gestUI is easier to use than the code-centric
method, eight subjects (8/21) perceive that the code-centric method is easier to use than gestUI and, five (5/21) perceive
that both methods are easy to use.

The values obtained with this test are: 2-tailed p-value = 0.917 > 0.05 and Z = −0.104, therefore, according to this
result, we cannot reject the null hypothesis and we can conclude that “gestUI is perceived as easier to use than the code-centric
method”.

5.6. RQ6: perceived usefulness

We consider two treatments to analyse perceived usefulness: PUg and PUc.
Table 18 presents the results obtained through questions related to PU in Post-task and Post-test questionnaires. In this

case, the mean of PUc is less than PUg, that is, perceived usefulness of gestUI (mean = 3.82) is greater than the perceived
usefulness of the code-centric method (mean = 3.28).

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 257
Table 23
Wilcoxon Signed-rank test for PEOU.

N Mean rank Sum of ranks

PEOUc–PEOUg Negative ranks 8a 8.25 66.00
Positive ranks 8b 8.75 70.00
Ties 5c

Total 21

a PEOUc < PEOUg.
b PEOUc > PEOUg.
c PEOUc = PEOUg.

Fig. 12. Box-plot of PU.

Table 24
Wilcoxon Signed-rank test for PU.

N Mean rank Sum of ranks

PUc–PUg Negative ranks 15a 10.63 159.50
Positive ranks 3b 3.83 11.50
Ties 3c

Total 21

a PUc < PUg.
b PUc > PUg.
c PUc = PUg.

Fig. 12 presents the box-and-whisker plot containing the distribution of the PU variable per method. The median, first
quartile and third quartile of PUg is better than PUc. This means that the subjects perceived gestUI to be more useful than
the code-centric method.

Using Spearman’s Rho correlation coefficient, we obtain a positive correlation (0.310). So, we can conclude that PUg and
PUc have a weak correlation, that is, when the perceived usefulness of the code-centric method increases, the perceived
usefulness using the gestUI method also increases.

In order to check whether the observed differences were significant, we ran the Wilcoxon Signed-rank obtaining the
results shown in Table 24. This test shows that fifteen subjects (15/21) perceive gestUI to be more useful than the code-
centric method in the experiment. Three subjects (3/21) perceive the code-centric method to be more useful than gestUI,
and three (3/21) consider that both methods have the same level of perceived usefulness in the experiment.

The values obtained with this test are: 2-tailed p-value = 0.001 < 0.05 and Z = −3.239, therefore, according to this
result, we reject the null hypothesis and we can conclude that “gestUI is perceived as more useful than the code-centric method”.

5.7. RQ7: intention to use

We consider two treatments to analyse ITU: ITUg and ITUc.
Table 18 presents the results obtained through questions related to ITU in Post-test and Post-task questionnaires. In this

case, the mean of ITUg (3.74) is above 3.0 while the mean of ITUc (2.93) is below to 3.0.

258 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
Fig. 13. Box-plot of ITU.

Table 25
Wilcoxon Signed-rank test for ITU.

N Mean rank Sum of ranks

ITUc–ITUg Negative ranks 13a 8.65 112.50
Positive ranks 2b 3.75 7.50
Ties 6c

Total 21

a ITUc < ITUg.
b ITUc > ITUg.
c ITUc = ITUg.

Table 26
Summary of the results obtained in the experiment.

Variable Null hypothesis
status

Conclusion

PTCCI Not rejected There is no significant difference between the effectiveness of gestUI and the code-centric method in the
inclusion of gesture-based interaction in user interfaces.

PTCCG Rejected There is a significant difference between the effectiveness of gestUI and the code-centric method in the
specification of custom gestures. Results obtained are better when the subjects use gestUI rather than the
code-centric method, that is, PTCCGg is greater than PTCCGc.

TFTI Rejected There is a significant difference between the efficiency of gestUI and the code-centric method in the inclusion of
gesture-based interaction in user interfaces. The results obtained are less when the subjects use gestUI rather
than when they use the code-centric method.

TFTG Rejected When the subjects define gestures, gestUI is more efficient than the code-centric method.
PEOU Not rejected gestUI is perceived as easier to use than the code-centric method.
PU Rejected gestUI is perceived as more useful than the code-centric method.
ITU Rejected gestUI has an intention to use greater than the code-centric method

Fig. 13 presents the box-and-whisker plot containing the distribution of the ITU variable per method. The median, the
first and third quartile are better for ITUg. This means that gestUI has a greater intention to use than the code-centric
method when the subjects use it to define custom gestures and to include gesture-based interaction.

Using Spearman’s Rho correlation coefficient, we obtain a positive correlation (0.080). So, we can conclude that ITUg and
ITUc have a very weak correlation, that is, when the intention to use of gestUI (ITUg) increases, the intention to use of the
code-centric method (ITUc) increases very little compared with ITUg.

In order to check whether the observed differences were significant, we ran the Wilcoxon Signed-rank obtaining the
results included in Table 25. They show that gestUI has greater intention to use than the code-centric method (13/21
subjects), the code-centric method has two (2/21) subjects with intention to use, and six (6/21) subjects have an intention
to use for both methods.

The values obtained with this test are: 2-tailed p-value = 0.003 < 0.05 and Z = −3.005, therefore, according to this
result, we reject the null hypothesis, and we can conclude that “gestUI has an intention to use greater than the code-centric
method”.

In summary, the result of each hypothesis is shown in Table 26.

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 259
Table 27
Effect size of the metrics.

Response variable Metric Mean St. Dev. Cohen’s d Equivalence

Effectiveness in the inclusion of gesture-based interaction. PTCCI
PTCCIg 82.1429 17.9284 0.2832 Medium
PTCCIc 77.3810 15.6220

Effectiveness in the custom gesture definition. PTCCG
PTCCGg 91.667 12.076 1.233 Large
PTCCGc 71.428 19.821

Efficiency in the inclusion of gesture-based interaction. TFTI
TFTIg 19.714 7.022 1.161 Large
TFTIc 28.381 7.883

Efficiency in the custom gesture definition. TFTG
TFTGg 31.893 154.678 2.5279 Large
TFTGc 16.8301 66.5967

Satisfaction PU
PUg 3.8176 0.3451 1.1349 Large
PUc 3.2786 0.5762
PEOU

PEOUg 3.2857 0.2154 0.1085 Small
PEOUc 3.3280 0.5073
ITU

ITUg 3.7381 0.7179 1.1609 Large
ITUc 2.9286 0.6761

5.8. Effect-size calculation

According to Kotrlik [58], effect size measures focus on the meaningfulness of the results and allow comparison between
studies, furthering the ability of researchers to judge the practical significance of results presented. We use means and stan-
dard deviations of the metrics defined in this experiment to calculate Cohen’s d and effect-size correlation r. The calculation
was performed using the effect size calculator provided by the University of Colorado (Colorado Springs), available at http://
www.uccs .edu /~lbecker/.

Based on the work of Lakens [59], we can see that the effect size is “Large” if d > 0.8, “Medium” if d <= 0.5 and d > 0.2,
and “Small” if d < 0.2. In Table 27, we present the results of the effect size calculation of the metrics included in this
experiment and this shows the equivalences applied to the results obtained.

According to this classification, the results obtained for effect size show that:

(i) In the case of PTCCG, TFTI, TFTG, PU and ITU, the effect size calculated through Cohen’s d is greater than 0.8, which
means that it is classified as “Large”. So, there is a significant difference in the application of each method in this exper-
iment related to: effectiveness in the definition of custom gestures (PTCCG), efficiency in the inclusion of gesture-based
interaction (TFTI), efficiency in the definition of custom gesture (TFTG), perceived usefulness (PU) and intention to use
(ITU).

(ii) In the case of PTCCI, the effect size calculated through Cohen’s d is equal to 0.2832 (d > 0.2), which is classified as
“Medium”. So, the difference in the application of each method to include gesture-based interaction in a user interface
considering the effectiveness in the inclusion of gesture-based interaction, is not important.

(iii) In the case of PEOU, the effect size calculated through Cohen’s d is less than 0.2 (d = 0.1085), which is classified as
“Small”. So, there is a minimum difference in the application of each method in this experiment related to the perceived
ease of use (PEOU).

In the next section, we analyse the results obtained in this experiment.

6. Discussion

In this section, we discuss the results of the experiment described in Section 5 in order to draw some conclusions regard-
ing the comparison of gestUI (a model-driven method) and the code-centric method (traditional software development). In
order to validate gestUI, three aspects are considered in this experiment: effectiveness (using PTCCI, PTCCG), efficiency (us-
ing TFTI and TFTG) and satisfaction (using PU, PEOU and ITU). The discussion about the results obtained in the experiment
is performed according to the aforementioned research questions.

http://www.uccs.edu/~lbecker/
http://www.uccs.edu/~lbecker/

260 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
6.1. Effectiveness

RQ1: Effectiveness in the inclusion of gesture-based interaction
Regarding PTCCI metric, which is related with RQ1, the results show that there is no significant difference between

the results obtained when the subjects applied gestUI and when the subjects applied the code-centric method to include
gesture-based interaction in an existing user interface. We consider that the small difference obtained (approximately 4%)
by applying both methods to calculate PTCCI is because (i) the subjects used existing source code (included in the Task
Description Document) instead of writing the source code from scratch as is done in a typical development process [39].
This context helped to obtain better results with the code-centric method and the difference was less than expected; (ii) the
subjects were not familiar with the process defined in gestUI to apply a model-driven method (i.e. by using model trans-
formations to include gesture-based interaction); (iii) the subjects did not have experience in the inclusion of gesture-based
interaction and when they applied gestUI, the process was not very intuitive to follow. However, the process implemented
in gestUI is like a typical wizard included in some available applications in any operating system. Therefore, if the user is
not familiar with the process of gestUI, this feature (wizard) helped to the users to perform the inclusion of gesture-based
interaction with minor number of problems regarding to code-centric method.

RQ2: Effectiveness in the definition of custom gestures
About PTCCG metric, which is related with RQ2, values obtained show that gestUI is significantly more effective than

the code-centric method in the definition of custom gestures. The percentage obtained with gestUI is greater than the
percentage obtained with the code-centric method. In this case, the difference between the percentage of task correctly
carried out in the custom gestures definition using gestUI or using the code-centric method is almost 20%. This difference is
due to subjects using gestUI having a more intuitive process to follow to define gestures and to obtain a XML file containing
the description of the gesture. In gestUI we added a canvas to draw gestures, in a similar way as $N. Therefore, the subjects
can perform this task easier than with other method. By other side, using the code-centric method, the process of defining
gestures is more complex because it includes additional tasks (e.g. analyse the shape of the gesture, draw it and define it
using XML, among others) requiring more effort. In both methods, the subjects started defining a gesture whose definition
process was new for them, but in the other gestures, the process was similar which meant that they required less effort to
define the rest of gestures in the same method.

6.2. Efficiency

RQ3: Efficiency in the inclusion of gesture-based interaction
Concerning the TFTI metric, related with RQ3, values obtained show that gestUI is significantly more efficient than the

code-centric method in the inclusion of gesture-based interaction in user interfaces. When the subjects did the experiment
using gestUI, they required less time than when they used the code-centric method. The difference of time between both
methods is moderate (8.67 min.) in the inclusion of gesture-based interaction in user interfaces, this could be related to the
ability to type the source code in a correct way, probably because the subjects had experienced developing software (ac-
cording to the demographic questionnaire, the average self-rated programming expertise was 43%). Also, they required less
time to type source code since they had experience using the integrated development environment used in the experiment
(according to the demographic questionnaire 38% had an “experienced” level and 43% had a “medium experienced” level
with Eclipse Framework). Probably, the aforementioned wizard available in gestUI to perform the process of inclusion of
gesture-based interaction helped to the subject to be more efficient completing the process specified in the Task Description
Document. By other side, the null experience of the subjects in the use of gestUI involved a higher time in the use of gestUI.
Other results of the use of gestUI is that we identified difficulty to apply the model transformations included in gestUI.

RQ4: Efficiency in the definition of custom gestures
Regarding TFTG metric, related with RQ4, obtained results show that the time required to define custom gestures using

gestUI is less than the time required using the code-centric method. The difference of the time required to define custom
gestures, by means of each method, is high (122.7857) since some subjects had some problems with the definition of
gestures using XML language as they were not familiar with the syntax of XML. Another aspect that could have increased the
time required with the code-centric method is related to syntax errors generated during the process of gesture definition. If
the subjects run the experiment first with gestUI and then with the code-centric method, they require a longer time than
those subjects that run the experiment first with the code-centric method and then with gestUI. In this case, there were
some problems when the subjects employed $N to recognise some gestures sketched by them. This could have had some
influence in the duration of the process of custom gesture definition.

In summary, regarding effectiveness and efficiency, we can say that:

– The result obtained in the experiment permit one to say, in general, that the effectiveness and efficiency of gestUI are
greater than those of the code-centric method.

– Considering the metrics PTCCG, TFTG and TFTI, the results obtained with Cohen’s d value (d > 0.8, i.e. “Large”) suggest
a high practical significance for the results obtained. Also, Cohen’s d value (d = 0.2832 for PTCCI) suggested a moderate
practical significance for the results obtained.

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 261
– Concerning the values of TFTG and TFTI obtained in the experiment, we think that if the subjects had written the
source code from scratch, the difference in time would have been greater. In general, the overall results lead us to
interpret that gestUI has achieved better effectiveness and efficiency for the subjects in almost all the analysed statistics
in comparison with the code-centric method.

– Finally, considering effect size, we can conclude that in comparison, effectiveness and efficiency of gestUI are better
than those obtained with the code-centric method in the custom gesture definition.

6.3. Satisfaction

RQ5: Perceived ease of use
With respect to PEOU, related with RQ5, obtained results show that the difference between PEOUg (3.286) and PEOUc

(3.328) is minimal (0.0423). So, we can say that the subjects perceive that both methods are easy to use. However, in the
case of the code-centric method, this result could be influenced by the inclusion of source code in the Task Description
Document as was explained in Section 4.7.1. This decision was taken with the aim of reducing the complexity of the code-
centric method and the time required to do the experiment. Other factor that may affect the result can be the experience
of the subjects in the use of the IDE (Eclipse) used in the experiment to write the source code required in the code-centric
method. The subjects perceived as ease of use the code-centric method because they are familiar with the process of writing
code in an IDE to obtain a solution of software.

RQ6: Perceived usefulness
Regarding PU, which is related with RQ6, obtained results show that there is difference (0.539) between the values of

PUg (3.8176) and PUc (3.2786). So, we can say that the subjects perceive gestUI to be more useful than the code-centric
method. The subjects perceive the usefulness of gestUI by noting that if gestUI is easy to use they may find gestUI more
useful, and hence, have some motivation to use it. Specifically, the subjects perceive the usefulness of gestUI when they use
it to automatically obtain source code to include gesture-based interaction in a user interface based on a specification of
gestures and actions to define the gesture-based interaction.

RQ7: Intention to use
About ITU, related with RQ7, obtained results show that there is a difference (0.8095) between the values of ITUg (3.7381)

and ITUc (2.9286). So, we can say that the subjects have an intention to use gestUI greater than the code-centric method.
This conclusion is based on the fact that the subjects considered gestUI as easy to use and useful compared to the code-
centric method.

In general, the results of our work indicate that gestUI is accepted by the subjects since the results obtained for effective-
ness, efficiency and satisfaction with gestUI are better that the results obtained with the code-centric method. With these
results we could say that gestUI is a hopeful approach and justifies further investigation.

7. Conclusions and future work

This paper compares a model-driven method (gestUI) versus a traditional software development method (the code-
centric method) in terms of (i) effectiveness in the custom gesture definition, (ii) effectiveness in the inclusion of gesture-
based interaction, (iii) efficiency in the custom gesture definition, (iv) efficiency in the inclusion of gesture-based interaction,
and satisfaction (PEOU, PU and ITU) through an experimental investigation. Results show that, in general, gestUI has a greater
effectiveness, efficiency and satisfaction level than the code-centric method, and gestUI was also perceived by the subjects
as easier to use than the code-centric method. It is important to highlight that these differences between gesUI and a
code-centric method arise even when we work with simple experimental problems, as we use in our experiment.

Some aspects that must be contextualised according to the type of experiment are:

(i) The sample size is small, twenty-one (21) subjects.
(ii) The subjects were M.Sc. and Ph.D. students and they do not have enough experience in the topics included in the

experiment: tasks related with the custom gesture definition and the inclusion of gesture-based interaction.
(iii) The subjects have experience in software development using the Java programming language, which could have influ-

enced the results obtained with the code-centric method.
(iv) We consider that the decision to include source code in the Task Description Document to reduce the time for the

code-centric method has reduced the differences in terms of efficiency between treatments, since subjects only had to
transcribe the source code specified in the document.

Gesture definition is interesting for the subjects since they can specify their own gestures with the aim of executing
actions in a user interface. In this context, each subject defined four gestures in order to use them in the user interface
doing CRUD operations in a database. The subjects could define their own gestures according to their preferences.

Tailoring mechanism included in gestUI is very interesting because it permits that the users redefine some gesture hard
to remember or draw. If the users experience problems when using gestures, they can solve this situation by themselves
using this mechanism to redefine custom gestures without the support of a software engineer.

262 O. Parra et al. / Science of Computer Programming 172 (2019) 232–263
gestUI and its features give to the users the potential needed to define custom gestures and to include gesture-based
interaction in user interfaces whose source code is available. It is sufficient with apply gestUI in order to incorporate gestures
in a user interface. gestUI helps to improve the level of desirability of the software system as the user employs custom
gestures that he/she has defined.

Even though the experimental results are good for the usefulness of gestUI, we are aware that more experimentation is
needed to confirm these results. Existing results must be interpreted within the context of this experiment. In general, the
subjects considered gestUI a good solution since they defined custom gestures and they included the gestures in the user
interface in a short time compared to the time required when they used the code-centric method.

As future work, we plan to perform more replications of the experiment in order to minimise the influence of the threats
to validity identified. Additionally, we consider some aspects that could be included in future work such as: (i) studying how
to adapt gestUI to an existing model-driven framework to implement user interfaces because its architecture means it can
be adapted to an existing framework based on the model-driven paradigm; (ii) the evaluation of gestUI with end-users who
do not play the role of developers, since gestUI aims to be easy to use and any user could define gestures and include
them in a user interface; (iii) different replications will allow us to build a family of experiments where data could be
aggregated through meta-analysis or pooling data. This way we can improve the statistical power of the analysis; (iv)
to include additional platforms (e.g. mobile platform) as a target to produce gesture-based user interfaces; currently we
support desktop-computing; (v) to include additional programming languages (e.g. Visual Studio .NET with C#) as target
language to generate source code, currently we support Java, in order to give support for gesture-based interaction to other
types of software systems.

Further details about this validation can be found at https://gestui .wordpress .com /evaluation.

Acknowledgements

This work has been supported by Department of Computer Science of the Universidad de Cuenca and SENESCYT of
Ecuador, and received financial support from the Generalitat Valenciana under “Project IDEO (PROMETEOII/2014/039)” and
the Spanish Ministry of Science and Innovation through the “DataMe Project (TIN2016-80811-P)”.

References

[1] M. Hesenius, T. Griebe, S. Gries, V. Gruhn, Automating UI tests for mobile applications with formal gesture descriptions, in: Proc. of 16th Conf. on
Human–Computer Interaction with Mobile Devices Services, 2014, pp. 213–222.

[2] S.H. Khandkar, S.M. Sohan, J. Sillito, F. Maurer, Tool support for testing complex multi-touch gestures, in: ACM International Conference on Interactive
Tabletops and Surfaces, ITS’10, NY, USA, 2010.

[3] D. Schmidt, Guest editor’s introduction: model-driven engineering, IEEE Comput. 39 (2) (2006) 25–31.
[4] H. Lü, Y. Li, Gesture coder: a tool for programming multi-touch gestures by demonstration, in: Proceedings of the 2012 ACM on Human Factors in

Computing Systems, 2012, pp. 2875–2884.
[5] O. Parra, S. España, O. Pastor, A model-driven method and a tool for developing gesture-based information system interfaces, in: Proceedings of the

CAiSE 2015 Forum at the 27th International Conference on Advanced Information Systems Engineering, CAiSE 2015, Stockholm, Sweden, 2015.
[6] J. Wobbrock, A. Wilson, Y. Li, Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes, in: Proceedings of ACM

Symposium on User Interface Software and Technology, UIST 2007, Newport, Rhode Island, USA, 2007.
[7] L. Anthony, J.O. Wobbrock, A lightweight multistroke recognizer for user interface prototypes, in: Proc. of Graphics Interface, 2010, pp. 245–252.
[8] R. Vatavu, L. Anthony, J. Wobbrock, Gestures as point clouds: a $P recognizer for user interface prototypes, in: Proceedings of the 14th ACM Interna-

tional Conference on Multimodal Interaction, ICMI’12, Santa Monica, California, USA, 2012.
[9] R.-D. Vatavu, L. Anthony, J. Wobbrock, $Q: a super-quick, articulation-invariant stroke-gesture recognizer for low-resource devices, in: Proceedings of

the 20th International Conference on Human–Computer Interaction with Mobile Devices and Services, MobileHCI ’18, Barcelona, Spain, 2018, 23, 12
pages.

[10] J. Vanderdonckt, P. Roselli, J.L. Perez-Medina, !FTL, an articulation-invariant stroke gesture recognizer with controllable position, scale, and rotation
invariances, in: Proceedings of the 20th ACM International Conference on Multimodal Interaction, ICMI’18, Boulder, CO, USA, 2018.

[11] D. Moody, The method evaluation model: a theoretical model for validating information systems design methods, in: ECIS 2003 Proceedings, Naples,
Italy, 2003.

[12] ISO/IEC, Ergonomics of Human–System Interaction, ISO, 2010. [Online]. Available: https://www.iso .org /obp /ui /#iso :std :iso :9241 :-210 :ed -1 :v1 :en. (Ac-
cessed 28 September 2015).

[13] ISO/IEC/JTC 1/SC 7, ISO/IEC 25062:2006, Software engineering – Software product Quality Requirements and Evaluation (SQuaRE) – Common Industry
Format (CIF) for usability test reports, ISO, Geneva, 2006.

[14] T. Kapteijns, S. Jansen, S. Brinkkemper, H. Houët, R. Barendse, A comparative case study of model driven development vs traditional development:
the tortoise or the hare, in: 4th European Workshop on “From Code Centric to Model Centric Software Engineering: Practices, Implications and ROI”,
Enschede, The Netherlands, 2009.

[15] C. Bunse, H. Gross, C. Peper, Embedded system construction – evaluation of model-driven and component-based development approaches, in: M.R.
Chaudron (Ed.), Models in Software Engineering: Workshops and Symposia at MODELS 2008, Springer, Heidelberg, 2009, pp. 66–77.

[16] S. Kane, J. Wobbrock, R. Ladner, Usable gestures for blind people: understanding preference and performance, in: CHI 2011: Session: Gestures, Vancou-
ver, Canada, 2011.

[17] F. Ricca, M. Torchiano, M. Leotta, A. Tiso, G. Guerrini, G. Reggio, On the Impact of State-based Model-Driven Development on Maintainability: A Family
of Experiments using UniMod,”, Journal of Empirical Software Engineering (EMSE) 23 (3) (2018) 1743–1790, https://doi .org /10 .1007 /s10664 -017 -9563 -
8.

[18] P.E. Papotti, A.F. do Prado, W. Lopes de Souza, C.E. Cirilo, L. Ferreira Pires, A quantitative analysis of model-driven code generation through software
experimentation, in: Proceedings of 25th International Conference, CAiSE 2013, in: LNCS, vol. 7908, 2013, pp. 321–337.

[19] N. Condori-Fernandez, J.I. Panach, A.I. Baars, T. Vos, O. Pastor, An empirical approach for evaluating the usability of model-driven tools, Sci. Comput.
Program. 78 (2013) 2245–2258.

https://gestui.wordpress.com/evaluation
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib31s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib31s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib32s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib32s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib33s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib34s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib34s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib35s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib35s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib36s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib36s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib37s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib38s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib38s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib39s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib39s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib39s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3130s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3130s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3131s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3131s1
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-1:v1:en
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3134s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3134s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3134s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3135s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3135s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3136s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3136s1
https://doi.org/10.1007/s10664-017-9563-8
https://doi.org/10.1007/s10664-017-9563-8
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3138s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3138s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3139s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3139s1

O. Parra et al. / Science of Computer Programming 172 (2019) 232–263 263
[20] Y. Martinez, C. Cachero, S. Melia, MDD vs traditional software development: a practitioner subjective perspective, Inf. Softw. Technol. 55 (2) (2013)
189–200.

[21] Y. Martinez, C. Cachero, S. Meliá, Evaluating the impact of a model-driven web engineering approach on the productivity and the satisfaction of
software development teams, in: Proceedings of 12th International Conference Web Engineering, ICWE 2012, in: LNCS, vol. 7387, 2012, pp. 223–237.

[22] Y. Martinez, C. Cachero, S. Meliá, Empirical study on the maintainability of Web applications: model-driven engineering vs code-centric, Empir. Softw.
Eng. 19 (2014) 1887–1920.

[23] M. Cervera, M. Albert, V. Torres, V. Pelechano, On the usefulness and ease of use of a model-driven method engineering approach, Inf. Softw. Technol.
50 (2015) 36–50.

[24] J.I. Panach, S. España, O. Dieste, O. Pastor, N. Juristo, In search of evidence for model-driven development claims: an experiment on quality, effort,
productivity and satisfaction, Inf. Softw. Eng. 62 (C) (2015) 164–186.

[25] S. Safdar, M. Iqbal, M. Khan, Empirical evaluation of UML modeling tools—a controlled experiment, in: Modelling Foundations and Applications, ECMFA
2015, L’Aquila, Italy, in: Lecture Notes in Computer Science, vol. 9153, 2015.

[26] R. Neto, P. Adeodato, A. Salgado, A framework for data transformation in Credit Behavioral Scoring applications based on Model Driven Development,
Expert Syst. Appl. 72 (2017) 293–305.

[27] F. Santos, I. Nunes, A. Bazzan, Model-driven agent-based simulation development: a modeling language and empirical evaluation in the adaptive traffic
signal control domain, Simul. Model. Pract. Theory 83 (2018) 162–187.

[28] B. Hamid, D. Weber, Engineering secure systems: models, patterns, and empirical validation, Comput. Secur. 77 (2018) 315–348.
[29] A. Oliveira, V. Bischoff, L. Gonçales, K. Farias, M. Segalotto, BRCode: an interpretive model-driven engineering approach for enterprise applications,

Comput. Ind. 96 (2018) 86–97.
[30] Microsoft, TouchMe Gesture Studio, Appsolutely Apps, 2015. [Online]. Available: https://www.microsoft .com /en -us /p /touchme -gesture -studio /

9wzdncrdg0l8. (Accessed 2 August 2018).
[31] ASUS, Smart Gesture – Introduction of ASUS Smart Gesture Software, 2018. [Online]. Available: https://www.asus .com /support /FAQ /1009613/. (Ac-

cessed 2 August 2018).
[32] A. Forward, T. Lethbridge, Problems and opportunities for model-centric versus code-centric software development: a survey of software professionals,

in: Proceedings of the 2008 International Workshop on Models in Software Engineering, MiSE’08, Leipzig, Germany, 2008.
[33] A. Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Architecture: Practice and Promise, Addison–Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2003.
[34] L. Vogel, Eclipse Rich Client Platform. The Complete Guide to Eclipse Application Development, Lars Vogel, 2015.
[35] A.C. Long, J.A. Landay, L.A. Rowe, quill: A Gesture Design Tool for Pen-Based User Interfaces, 2009.
[36] B. Signer, U. Kurmann, M. Norrie, IGesture: a general gesture recognition framework, in: 9th Conf. on Document Analysis and Recognition, Brazil, 2007.
[37] A. Milicevic, D. Jackson, M. Gligoric, D. Marinov, Model-based, event-driven programming paradigm for interactive web applications, in: OnWard! 2013,

Indiana, USA, 2013.
[38] S. Sim, R. Gallardo-Valencia, Introduction: remixing snippets and reusing components, in: Finding Source Code on the Web for Remix and Reuse,

Springer Science+Business, New York, 2013, p. 348.
[39] J. Farrell, An Object-Oriented Approach to Programming Logic and Design, Course Technology, Boston, 2013.
[40] O. Parra, S. España, O. Pastor, gestUI: a model-driven method and a tool for including gesture-based interaction in user interfaces, Complex Syst. Inf.

Model. Q. 6 (2016) 73–92.
[41] J. Kolb, B. Rudner, M. Reichert, Gesture-based process modeling using multi-touch devices, Int. J. Inf. Syst. Model. Des. 4 (4) (2013) 48–69.
[42] O. Parra, S. España, O. Pastor, Tailoring user interfaces to include gesture-based interaction with gestUI, in: Conceptual Modeling, ER 2016, Gifu, Japan,

in: Lecture Notes in Computer Science, 2016.
[43] O. Parra, S. España, J. Panach, O. Pastor, Extending and validating gestUI using Technical Action Research, in: 11th International Conference on Research

Challenges in Information Science (RCIS), Brighton, UK, 2017.
[44] K. Krugler, Krugle code search architecture, in: Finding Source Code on the Web for Remix and Reuse, Springer Science+Business, New York, USA, 2013,

p. 348.
[45] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, A. Wesslèn, Experimentation in Software Engineering, Springer, Berlin, 2012.
[46] C. Truica, F. Radulescu, A. Boicea, I. Bucur, Performance evaluation for CRUD operations in asynchronously replicated document oriented database, in:

2015 20th International Conference on Control Systems and Computer Science, Bucharest, Romania, 2015.
[47] F. Li, W. Wang, J. Qu, H. Han, The design of adaptive user interface based on the grey relational grade, J. Phys. Conf. Ser. 1060 (1) (2018) 1–10.
[48] N. Juristo, A. Moreno, Basics of Software Engineering Experimentation, Springer US, 2001.
[49] O. Parra, S. España, O. Pastor, Including multi-stroke gesture-based interaction in user interfaces using a model-driven method, in: Proceedings of the

XVI International Conference on Human Computer Interaction, INTERACCION ’15, Vilanova i la Geltrú, Barcelona, 2015.
[50] D. Kieras, Using the Keystroke-Level Model to Estimate Execution Times, University of Michigan, Michigan, USA, 2001.
[51] S. Card, A. Newell, T. Moran, The Psychology of Human–Computer Interaction, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1983.
[52] J.H. Kim, R.C. Miller, 6.813/6.831 User Interface Design, MIT, 2009. [Online]. Available: http://courses .csail .mit .edu /6 .831 /2009 /handouts /ac18 -predictive -

evaluation /klm .shtml. (Accessed 28 October 2015).
[53] P. Runeson, Using students as experiment subjects – an analysis on graduate and freshmen student data, in: Proceedings 7th International Conference

on Empirical Assessment Evaluation in Software Engineering, 2003, pp. 95–102.
[54] M. Svahnberg, A. Aurum, C. Wohlin, Using students as subjects – an empirical evaluation, in: Proceedings of the Second ACM–IEEE International

Symposium on Empirical Software Engineering and Measurement, Kaiserslautern, Germany, 2008.
[55] F. Faul, E. Erdfelder, A.G. Lang, A. Buchner, G*Power3: a flexible statistical power analysis program for the social, behavioural, and biomedical sciences,

Behav. Res. Methods 39 (2007) 175–191.
[56] K. Maxwell, Applied Statistics for Software Managers, Prentice–Hall, 2011.
[57] H. Boone, D. Boone, Analyzing Likert data, J. Ext. Sharing Knowledge, Enriching Extension 50 (2) (2012).
[58] J. Kotrlik, The incorporation of effect size in information technology, learning, and performance research, Inf. Technol. Learn. Perform. J. 21 (1) (2003)

1–7.
[59] D. Lakens, Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs, Front. Psychol. 4 (2013)

1–12, Article 863.
[60] S. Jamieson, Likert scales: how to (ab)use them, Med. Educ. 38 (2004) 1217–1218.

http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3230s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3230s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3231s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3231s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3232s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3232s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3233s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3233s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3234s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3234s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3235s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3235s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3236s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3236s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3237s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3237s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3238s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3239s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3239s1
https://www.microsoft.com/en-us/p/touchme-gesture-studio/9wzdncrdg0l8
https://www.asus.com/support/FAQ/1009613/
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3332s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3332s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3333s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3333s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3334s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3335s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3336s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3337s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3337s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3338s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3338s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3339s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3430s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3430s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3431s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3432s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3432s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3433s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3433s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3434s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3434s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3435s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3436s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3436s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3437s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3438s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3439s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3439s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3530s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3531s1
http://courses.csail.mit.edu/6.831/2009/handouts/ac18-predictive-evaluation/klm.shtml
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3533s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3533s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3534s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3534s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3535s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3535s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3536s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3537s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3538s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3538s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3539s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3539s1
http://refhub.elsevier.com/S0167-6423(18)30074-1/bib3630s1
https://www.microsoft.com/en-us/p/touchme-gesture-studio/9wzdncrdg0l8
http://courses.csail.mit.edu/6.831/2009/handouts/ac18-predictive-evaluation/klm.shtml

	An empirical comparative evaluation of gestUI to include gesture-based interaction in user interfaces
	1 Introduction
	2 Related work
	3 Methods to include gesture-based interaction
	3.1 Code-centric method
	3.2 gestUI: a model-driven method
	3.3 Differences between code-centric method and gestUI (model-driven method)

	4 Experimental planning
	4.1 Goal
	4.2 Research questions and hypothesis formulation
	4.3 Factor and treatments
	4.4 Response variables and metrics
	4.4.1 Response variables for effectiveness and efﬁciency
	4.4.2 Response variables for satisfaction

	4.5 Experimental subjects
	4.6 Experiment design
	4.7 Experimental objects
	4.8 Instrumentation
	4.9 Experiment procedure
	4.10 Threats of validity
	4.11 Data analysis

	5 Results
	5.1 RQ1: effectiveness in the inclusion of gesture-based interaction
	5.2 RQ2: effectiveness in the deﬁnition of custom gestures
	5.3 RQ3: efﬁciency in the inclusion of gesture-based interaction
	5.4 RQ4: efﬁciency in the deﬁnition of custom gestures
	5.5 RQ5: perceived ease of use
	5.6 RQ6: perceived usefulness
	5.7 RQ7: intention to use
	5.8 Effect-size calculation

	6 Discussion
	6.1 Effectiveness
	6.2 Efﬁciency
	6.3 Satisfaction

	7 Conclusions and future work
	Acknowledgements
	References

