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ARTICLE INFO ABSTRACT

Keywords: The dietary exposure to mycotoxins in Ecuadorian children aged 0-23 months (320 rural and 603 urban) was
Exposure assessment evaluated based on the intake of breast milk and staple cereals used as complementary/weaning foods. A
Mycotoxins probabilistic distribution approach by first order Monte Carlo simulation was adopted to assess the locally oc-

Breast milk
Staple cereals
Ecuadorian children

curring mycotoxins (aflatoxins M, and B, in breast milk, ochratoxin A and deoxynivalenol in wheat noodles and
oat flakes, and HT-2 toxin in polished rice). Overall, exposure was modest but higher for rural children due to
their monotonous diet. Aflatoxin exposure by breast milk intake were of health concern in both areas (Margin of
Exposure and Combined Margin of Exposure Index < 10,000). Mycotoxin exposure by staple cereals intake was
considered tolerable across feeding stages for individual mycotoxin-cereal combination (Hazard Quotient < 1)
and combined exposure (Hazard Index < 1). The major exposure was to HT-2 toxin by rice intake at com-
plementary feeding (15% rural and 4% urban above TDI) and at weaning stage (26% rural and 6% urban above
TDI). Since the usual Ecuadorian diet is based on the same staple cereals, risk management actions could lead to
a better protection of young children and also ensure higher safety of the recommended breastfeeding practices
by protecting nursing mothers.

frequency of exposure (Blankson and Mill-Robertson, 2016). A high risk
is expected when consuming monotonous cereal-based diets that are

1. Introduction

Mycotoxins contaminate the diet of a large proportion of the world's
population. Dietary exposure to mycotoxins might be higher in devel-
oping countries because of several conditions such as favorable en-
vironment for fungal growth and mycotoxin production; reliance on
subsistence farming, and poor quality monitoring and enforcement of
regulations in local markets (Shephard, 2008; Wild and Gong, 2010).

Infants and young children are particularly at risk and are about
three times more susceptible than adults to the adverse effects of my-
cotoxins due to their higher intake/body weight ratio, higher metabolic
rate and lower detoxification capacity (Hulin et al., 2014; Sherif et al.,
2009).

The mycotoxin risk in children depends on the magnitude and

typically contaminated with several mycotoxins (Cheli et al., 2014). At
infancy, another potential dietary source of exposure is breast milk due
to the possible lactational transfer of several mycotoxins and their
metabolites from maternal diet (El-Tras et al., 2011). From those, the
hydroxylated metabolite aflatoxin M; (AFM;) is one of the major oc-
curring mycotoxins in breast milk together with its carcinogenic pre-
cursor aflatoxin B; (AFB;) (Giirbay et al., 2010; Turconi et al., 2004).

As in other Latin American (LA) countries, cereals are the most
important complementary foods for infants and young children in
Ecuador (Leonard et al., 2000). A rather low degree of contamination
and co-occurrence of the major mycotoxins of health concern in the
main staple cereals in Ecuador (polished rice, wheat noodles and oat

Abbreviations: AFB;, aflatoxin B;; AFM;, aflatoxin M;; BMDL, lower confidence limit of bench mark dose; DON, deoxynivalenol; HI, Hazard Index; HQ, Hazard Quotient; LOD, limit of
detection; MOE, margin of exposure; MOET, combined margin of exposure index; PMTDI, provisional maximum tolerable daily intake; PTDI, provisional tolerable daily intake; OTA,

ochratoxin A
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flakes) was previously reported (Ortiz et al., 2013a). Despite this
however, a risk of chronic exposure might be expected as well as a
hazard from combined exposure to multiple mycotoxins (Assuncao
et al., 2015).

This study is the first report of dietary exposure to co-occurring
mycotoxins in infants and young children aged 0-23 months in Ecuador
and LA countries. The exposures to HT-2 toxin through polished rice;
deoxynivalenol (DON) and ochratoxin A (OTA) through wheat noodles;
DON and OTA through oat flakes, and AFM; and AFB, through breast
milk intake were evaluated according to the child feeding pattern and
as combined exposure. To prioritize risk management strategies, risk
characterization was assessed comparing the estimated daily exposures
to the reported toxicological levels for chronic exposure of individual
mycotoxins. For combined exposure to multiple mycotoxins, the com-
ponent-based approach based on concentration-addition method was
applied.

2. Material & methods
2.1. Food consumption data

Data on the consumption of staple cereals, i.e. rice, wheat noodles
and oat flakes, were collected from a total of 998 children aged 0-23
months, 348 from a rural canton (Nabon) and 650 from an urban
canton (Cuenca), Azuay province, at the southern Ecuadorian high-
lands. These data were part of a cross-sectional survey conducted from
June to September 2008 to evaluate nutritional status in the Ecuadorian
highlands. This study was approved by the Ethics Committee of the
University Hospital of Ghent, Belgium (Approval code B67020084011),
and the Ethics Committee of the Central University of Quito, Ecuador
(N° CBM/COBI 001-08). The sample size of the study was computed to
detect a difference of 100 kcal d ™! in energy intake between the urban
and rural setting, with a statistical power of 90%, type I error of 5% and
assuming a 20% of non-response.

The selection of the participants was previously described (Ortiz
et al., 2013b). Briefly, the rural canton Nabon is located in the country
side at 3000 m above sea level. It has a considerable territorial dis-
persion which complicates the access the different communities
(Municipal, 2012). Rural households were randomly selected from the
census register of the children under 24 months from all communities of
the canton. The urban canton Cuenca is the third largest city in Ecuador
and it is the capital of the province. Cuenca is located at approximately
2550 m above sea level and at 70 km from Nabon (Guia-Oficial, 2012).
There was no child register available in the urban canton and therefore,
a cluster random sampling scheme was adopted using residential blocks
as primary sampling unit. All households belonging to a selected block
were visited door-to-door and the surveys were conducted without re-
striction in the number of infants that could be found per block.

In both settings, individual consumption data were obtained from
the primary child caregivers at their homes using 24-h dietary recall
questionnaires. Duplicate 24-h recalls were carried out in the urban
area, while a single 24-h recall was conducted in the rural area due to
limited access of the communities. To estimate portion sizes, each re-
spondent was asked to fill a household recipient with the actual amount
of food consumed by the child. This amount was determined in volume
(mL) by trained interviewers and then converted into grams using re-
called data of the consistency of each food consumed. Detailed recipe
data were also collected to calculate the actual amount of consumed
rice, wheat noodles and oat flakes in each of the composite dish. Breast
milk intake was estimated assuming a proxy conversion factor of 13.5g
of milk per minute of breastfeeding (Da Cunha et al., 2013; Mills and
Tyler, 1992). Data entry was done using Lucille food intake software
(Ghent-University, 2010; Ochoa-Avilés et al., 2014) which allowed es-
timating of food intake at ingredient level, based on pre-set food
composition databases.

The consumption of the cereal-based staples foods and breast milk
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per day was calculated and expressed as kg per kg ! body weight (bw)
using data from individual weight measurements. Children from who
body weight data were not available were excluded from the analysis
(n = 75). In total, the exposure assessment was carried out for 923
children, 603 children from the urban area and 320 children from the
rural area. The dietary exposure assessment on daily bases was per-
formed separately for children of the urban and rural area. In addition,
children were grouped in three feeding pattern categories: group 1
(urban n = 61; rural n = 72): children being exclusively or pre-
dominantly breastfed (only water and water-based drinks, vitamins,
minerals and medicines could be consumed besides breast milk)
(PAHO/WHO, 2003); group 2 (urban n = 303; rural n = 163): children
at complementary feeding stage (intake of cereals, cereal products and
breast milk); and group 3 (urban n = 239; rural n = 85): children at
weaning stage (no breast milk intake).

In the urban area, the individual usual dietary intake was de-
termined from the duplicate 24-h recalls using the Multiple Source
Method (MSM) program® (Harttig et al., 2011), that considers the intra-
individual variability in consumption. The MSM outputs for habitual
consumers were used to construct the distribution of consumption data.
In the rural area, no MSM computation was applied and the distribu-
tions were constructed based on only one 24-h recall of the consumer
population.

2.2. Food contamination data

The co-occurrence of ten mycotoxins of health concern in the main
staple cereals identified from the food consumption surveys (polished
rice, wheat noodles and oat flakes) was previously assessed and de-
scribed (Ortiz et al., 2013a). Briefly, samples of polished rice (n = 125)
were collected from May to July 2010 (rainy season) from the biggest
rice mills in Ecuador located at the lowlands of the coastal region,
which are the rice suppliers of the whole country. Samples of oat flakes
(n = 70, 9 rural and 61 urban) and wheat noodles (n = 128, 15 rural
and 113 urban) were collected during February—-March 2010 from open
markets and supermarkets of the same areas where food consumption
surveys were conducted. About half of the urban samples were ran-
domly selected for multimycotoxin analysis, whereas all rural samples
were analyzed (polished rice n = 46; wheat noodles n = 80 and oat
flakes n = 42). Co-occurrence of aflatoxin By, B,, G; and G,, OTA, DON,
fumonisin B;, zearalenone, and HT-2 and T-2 toxin was analyzed by
UHPLC/TOFMS (Ortiz et al., 2013a). No contamination of aflatoxin B,
and G, fumonisin B,, zearalenone and T-2 toxin were found in none of
the samples. In addition, OTA was analyzed in extra batches of oat
flakes samples (n = 35) and wheat noodles (n = 59) by HPLC-FLD that
was more sensitive for this mycotoxin (Ortiz et al., 2013a). All cereal
samples were analyzed as dried raw material.

In the present study, the occurrence of AFB; and AFM; in breast
milk was additionally evaluated. This analysis was carried out as part of
a pilot study conducted from November 2012 to January 2013. Breast
milk samples (n = 78) were obtained by self-expression of volunteer
nursing mothers from the rural canton Nabon. Samples were collected
in sterile plastic containers, transported at 4 °C and then frozen within
1 day at —20 °C until mycotoxin analysis. The analytical procedure is
described as follows.

2.2.1. Analysis of AFB; and AFM;: chemicals and reagents

LC grade water, acetonitrile, methanol, phosphate-buffered saline
(PBS) solution, AFM; standard solution in acetonitrile (10 ug mL™Y)
and standard of solid pure extract of AFB; were supplied by
Sigma-Aldrich (St. Louis, MO, USA). Acetic acid (glacial) was supplied
by Merck KGaA (Darmstadt, Germany). Easi-extract’ Aflatoxin im-
munoaffinity columns were purchased from R-Biopharm Rhoéne
(Glasgow, Scotland). The standard of AFB; was reconstituted using
acetonitrile. Aliquots of standard stock solutions in acetonitrile
(0.1 ugmL ™) were dried under a gentle stream of nitrogen and stored
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at —20 °C. Dried standards were reconstituted with a mixture of acet-
onitrile/water, 1:1 (v/v) and further dilutions were freshly prepared
with the same solvent mixture.

2.2.2. Analysis of AFB; and AFM;: sample treatment

Breast milk samples were skimmed with a mild-heat treatment at
35-37°C for 10 min in a water bath (Memmert. Munich, Germany),
followed by centrifugation for 15minat 2403 g (Hettich EBA 20.
Tuttlingen, Germany). Finally, the lower layer was filtered (Whatman
N°4) (Galvano et al., 2008). A volume of 10 mL of skimmed sample was
applied to immunoaffinity clean-up columns (IAC) (Easi-extract” Afla-
toxin, R-Biopharm Rhéne) at 2-3 mLmin ™!, after bringing the IAC to
room temperature and conditioned with 3 mL of PBS solution. The IAC
was washed with 10 mL of PBS solution followed by 10 mL of water at a
flow rate of 5mL min~ . AFM,; and AFB, were eluted by gravity using
1.5mL of the mixture methanol/acetonitrile, 2:3 (v/v) after 30s of
contact of the IAC with the solvent, and applying back flushing for three
times. After drying the IAC with air stream, the eluate was finally di-
luted with 1 mL of water passed by gravity through the IAC. The sample
was filtered (0.45 pm filter) and a volume of 20 pL was injected into the
HPLC system.

2.2.3. Analysis of AFB; and AFM;: instrumental parameters and analysis

AFM; and AFB; were analyzed on an Agilent 1200 HPLC system
(Agilent Technologies, USA) consisting of an isocratic pump, vacuum
degasser, autosampler, column oven (35°C), and equipped with a
Zorbax Eclipse C18 column (5pum, 4.6 x 250mm, Agilent
Technologies, USA). An isocratic elution was applied with a mobile
phase containing a mixture of acetic acid 2%/acetonitrile/methanol
40:35:25 (v/v/v) at a flow rate of 0.8 mL min ~ . Fluorescence detection
was carried out at 365 and 450 nm of excitation and emission wave-
lengths, respectively. Quantification was performed by measurement of
the peak areas at the retention time of AFM; (4.1 = 0.04 min) and
AFB; (5.3 * 0.01 min) and comparing them with a six-point calibra-
tion curve (1-15pugL~1, R? = 0.998). The method performance para-
meters were evaluated following a single-laboratory optimization con-
sidering the minimum performance parameters for quantitative
methods (Taverniers et al., 2004). Recovery experiments were per-
formed in duplicate at 3 concentration levels (10, 15, 20 ug L™Y). The
limits of detection (LOD) and quantification (LOQ) were calculated
based on a signal-to-noise ratio 3:1 and 6:1, respectively. The intra-day
precision was assessed based on the replicates of the recovery experi-
ments, while inter-day precision was assessed by spiking a testing
sample before extraction of at 10 ug L™ ! of AFM; and AFB; during three
consecutive days.

2.3. Dietary exposure assessment

A probabilistic distribution approach following a first order Monte
Carlo simulation was adopted to assess the dietary exposure to myco-
toxins. For food contamination data, the nature of the data did not
allow distribution fitting as many non-detected values were found and
limited values to attribute a good distribution fitting (Vinci et al.,
2012). Therefore, non-detected values (< LOD) were replaced by half
of the limit of detection (medium bound value) and the mean con-
centration was calculated for each mycotoxin for those values above
LOD. In order to compare the average exposure between urban and
rural children across different feeding stages, only the medium bound
scenario was assumed for this study. Mycotoxins that occurred in only
one of the samples were excluded from the exposure assessment. Data
on daily consumption were fitted to probability distributions. The se-
lection of the best fitting distribution was based on the lowest chi-
square statistic and on inspection of probability—probability (P-P) plots.
The dietary exposure distributions were modeled using first order
Monte Carlo simulation based on 10,000 iterations. Simulations were
performed three times to ensure reliable convergence. Fitting
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distributions and the Monte Carlo simulations were carried out using
the software package @Risk for Microsoft Excel version 6 (Palisade
Corporation, US). The results were reported as estimated daily exposure
of each mycotoxin expressed as ng kg ™' bw day ~'. Combined dietary
exposure assessment was based on the cumulative assessment (CA)
concept that consisted in summing the same toxin present in different
staple foods (EFSA, 2013).

2.4. Risk characterization

For individual mycotoxins, the estimated daily exposure was com-
pared to the toxicological thresholds of non-carcinogenic mycotoxins,
i.e. tolerable daily intake (TDI) or provisional maximum tolerable daily
intake (PMTDI): OTA (PMTDI 17 ng kg ~* bw day ~ %) (EFSA, 2010), sum
of HT-2 and T-2 toxins (TDI 100 ngkg ! bw day ~!) (EFSA, 2011) and
DON (TDI 1000 ngkg_1 bw day_l) (SCF, 2002). These comparisons
were reported as percentages of the population at risk of exceeding the
corresponding toxicological threshold. In addition, the Hazard Quotient
(HQ), calculated as the ratio between average exposure and the tox-
icological threshold, was reported. A ratio of HQ > 1 implies a non-
tolerable exposure level (Assuncao et al., 2015; EFSA, 2013). For car-
cinogenic mycotoxins, i.e. AFB; and AFM;, the approach of the Margin
of Exposure (MOE) was calculated as the ratio between the BMDL
(lower confidence limit of the bench mark dose) and the average esti-
mated daily exposure (Pratt et al., 2009). Specifically, the BMDL;,
(10% extra cancer risk) of 170ngkg ™! bw day ' was used that cor-
responds to hepatocarcinoma in experimental rats as effect of the ex-
posure to AFB, and total aflatoxins (EFSA, 2007).

For combined exposure, the component-based approach based on
the CA methods of Hazard Index (HI) and Combined Margin of
Exposure Index (MOET) were applied for thresholded and non-thre-
sholded mycotoxins, respectively (EFSA, 2013). The HI was calculated
as the sum of the respective HQ's for DON and OTA across wheat
noodles and oat flakes. A value of HI > 1 implies non-acceptable level
of the total mixture concentration. The MOET was calculated as the
reciprocal of the sum of the reciprocals of the individual MOE for
aflatoxins in breast milk (EFSA, 2013).

According to the European Food Safety Authority (EFSA) and the
World Health Organization (WHO), a MOE for a single substance of
10,000 and above is considered of low concern for public health, and
therefore, low priority for risk management actions (EFSA, 2007; Pratt
et al., 2009). There are no established criteria to define the magnitude
of an acceptable MOE for mixtures of chemicals that are both genotoxic
and carcinogenic, such as aflatoxins.

3. Results and discussion
3.1. Occurrence of AFB; and AFM; in breast milk

The recovery of the analytical method for the analysis of AFB; and
AFM; was 99 + 6% and 88 * 4%, respectively. The method yielded
an intra- and inter-day precision of 13.1% and 6.8% for AFM; and 1.3%
and 9.3% for AFB,, respectively. Both, recovery and precision were in
compliance with the regulation 2002/657/EC (European-Commission,
2002). The LOD's and LOQ's for AFM; and AFB; were 0.033 and
0.066 gL~ !, and 0.023 and 0.046 gL~ !, respectively. Aflatoxin M,
was quantified in 10 out of 78 breast milk samples (13%) and one
sample was within the LOD-LOQ range. The concentration of AFM;
ranged from 53 to 458ngL~! (216 * 116ngL~!). All breast milk
samples exceeded the maximum limit for AFM; in infant milk set by the
EU regulation (25 ng kg_l) (European-Commission, 2012). Aflatoxin B,
was quantified in 7 out of 78 breast milk samples (9%) in a con-
centration range of 56-291ngL~! (147 = 89ngL™') and no max-
imum permissible level has been set yet for this mycotoxin in infant
milk.

The observed contamination levels of AFM; in breast milk were
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Table 1

Input contamination data for exposure assessment per food source, feeding
pattern category and region, expressed as ng kg ~ ! for staple cereals and ng L™ !
for breast milk.

n® n < LOD" Mycotoxin Mean® SD Min®  Max
Breast milk 78 67/78 AFM; 45 81 17 458
78 71/78 AFB; 24 46 12 291
Polished 46 44/46 HT-2 11,172 4869 10,190 39,540
rice
Wheat 80 64/80 DON 48,379 32,641 26,710 224,172
noo- 139 137/139 OTA 4336 8309 950 93,118
dles
Oat flakes 42 35/42 DON 21,253 24,253 13,200 151,545
77 74/77 OTA 4531 18,194 750 161,570

Number of samples.

Number of samples below the limit of detection and assigned as 0.5 LOD.
Pooled mean of the detected and assigned 0.5 LOD values.

Values corresponding to 0.5 LOD for each combination mycotoxin-matrix
(Ortiz et al., 2013a).

d

similar to the levels reported in some Eastern-European and African
countries (El-Tras et al., 2011; Elzupir et al., 2012; Giirbay et al., 2010;
Polychronaki et al., 2007), but higher than those reported at different
occurrence rates in other LA countries such as in Brazil (2/100 samples;
0.3 and 0.8ng L™Y (tha et al, 2014), Mexico (100/112 samples;
3-34ng L™ 1) (Cantt-Cornelio et al., 2016) and Colombia (45/50 sam-
ples; 0.9-18.5ng L™ 1Y) (Diaz and Sanchez, 2015). From the few avail-
able reports of AFB; occurrence in breast milk, much higher con-
tamination levels and rate than in this study have been observed in
Turkey (75/75 samples; 94.5-4123.8 ng L.~ 1), which contrasts the low
contamination level and rate observed in Italy (1/198 samples;
11.4ng L™ (Turconi et al., 2004).

3.2. Exposure assessment & risk characterization

The input data for the exposure assessment simulations i.e. mean
mycotoxin concentration in medium bound scenario and the best-fit
distributions for consumption data are presented in Table 1 and
Table 2, respectively.

The estimated daily exposure to mycotoxins (mean, standard de-
viation and percentiles P50, P75, P90, P95, P97.5 and P99), HQ and/or
MOE per dietary source and feeding practice of the consumer child

Table 2
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population in the urban and rural area are presented in Table 3 and
Table 4, respectively. The HI for the total exposure to DON and OTA
through staple cereals intake, and the MOET for the total exposure to
aflatoxins through breast milk intake are presented in Table 5.

For the group of youngest children (exclusively or predominantly
breastfed), the daily exposure to AFM; was slightly higher in the urban
(P50-P99: 9.8-30.3 ng kg~ bw day ~ ') than in the rural area (P50-P99:
9.1-28.6ngkg ™! bw day 1). In lesser extent, the daily exposure to
AFB; was also slightly higher in the wurban area (P50-P99:
5.2-16.1 ngkg ™! bw day ') in comparison to the rural area (P50-P99:
4.8-15.2ngkg ™' bw day~'). Both, MOE and MOET values for these
carcinogenic toxins were lower than 10,000 (range 17-122), indicating
that these exposures would be of high priority for risk management
actions. Those values were substantially lower than the cut-off; how-
ever, their interpretation is limited to indicate the need or not of public
health concern. Although, since 2012 the EFSA Scientific Committee
has recommended the establishment of a more specific risk categor-
ization based on the MOE magnitude (i.e. high concern, low concern or
unlikely to be of safety concern), such categorization has not been set
yet (EFSA, 2012).

The introduction of complementary foods resulted in a lower
average exposure to AFM; and AFB; through breast milk intake.
However, both MOE and MOET values were still far lower than 10,000.
The staple cereal-based dietary patterns were similar in both areas at
this feeding stage. Polished rice was the most frequently consumed
cereal (60% urban and 64% rural), followed by wheat noodles (40%
urban and 41% rural) and oat flakes (31% urban and 27% rural).
According to the HQ, the general exposure to mycotoxins through
staple cereals intake could be considered tolerable. The exposure to HT-
2 toxin through rice intake was the most remarkable exposure in the
urban area (HQ = 0.42; 4% above TDI; P50-P99: 42.3-131.0ngkg !
bw day ~') and even more in the rural area where the P99 was about 4
times the TDI (HQ =0.42; 15% above TDI; P50-P99:
42.4-419.1ngkg™! bw day™!). Different combinations of staple cer-
eals are consumed by young children in Ecuador. The combined con-
sumption of staple cereals, especially rice, and breast milk was more
frequent in the rural area (78%) than in the urban area (55%). Only
DON and OTA were present in the other evaluated staple cereals, i.e.
wheat noodles oat flakes, and its combined exposures were considered
tolerable in both areas (HI < 1).

A substantial increase of the exposure to mycotoxins due to the
transition from partial breastfeeding to complete weaning has been

Input consumption data for exposure assessment per food source, feeding pattern category and region: number of consumers (n), mean, minimum and maximum and
best-fit distribution function in the urban area based on usual daily intake (MSM distribution) and in the rural area based on a single dietary 24-h recall, all expressed

1

as kg kg~ ! bw day .

Region n Mean Min Max Function

Group 1: Exclusively and predominantly breastfed children (urban n = 61; rural n = 72)

Breast milk Urban 61 0.2478 0.1004 + oo RiskLoglogistic(0,10037;0,12092;2,9398)
Rural 72 0.2255 - oo + oo RiskExtvalue(0,16485;0,10507)

Group 2: Children at complementary feeding stage (urban n = 303; rural n = 163)

Breast milk Urban 277 0.0876 0.0029 + oo RiskInvgauss(0,084706;0,112455;RiskShift(0,0028816))
Rural 157 0.0925 0.0059 + o RiskLoglogistic(0,0059066;0,052476;1,9084)

Polished rice Urban 187 0.0043 —0.0017 + oo RiskInvgauss(0,0059857;0,0365594;RiskShift(-0,0016837))
Rural 108 0.0059 —0.0002 + oo RiskLoglogistic(-0,00017662;0,0039244;2,0356)

Wheat noodles Urban 129 0.0015 0.0003 + oo RiskLoglogistic(0,00027747;0,0010397;3,1036)
Rural 67 0.0013 0.0001 + o RiskGamma(1,5609;0,00076642;RiskShift(0,00013515))

Oat flakes Urban 99 0.0007 —0.00006 + oo RiskLognorm(0,00080016;0,00053469;RiskShift(-0,0000673412))
Rural 42 0.0009 0.0001 + oo RiskExpon(0,0007518;RiskShift(0,00014346))

Group 3: Children at weaning stage (urban n = 239; rural n = 85)

Polished rice Urban 194 0.0048 - oo + oo RiskExtvalue(0,0037857;0,0018007)
Rural 73 0.0083 0.0002 + oo RiskLoglogistic(0,00018807;0,0053361;2,0575)

Wheat noodles Urban 113 0.0015 - oo + o RiskLogistic(0,00145434;0,00027235)
Rural 46 0.0019 - oo + o RiskExtvalue(0,0012714;0,0010788)

Oat flakes Urban 121 0.0013 0.0005 + oo RiskPearson5(8,5727;0,013786;RiskShift(-0,0004997))
Rural 34 0.0014 0.00005 + o RiskInvgauss(0,0013677;0,0011607;RiskShift(0,0000533386))

544
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Table 3
Estimated daily exposure to mycotoxins per food source for children aged 0-23 months (n = 603) in the urban area categorized according their feeding pattern;
percentage of the population exceeding the tolerable daily intake (TDI), hazard quotient (HQ) and margin of exposure (MOE). Means and percentiles are expressed in

ng kg ™! bw day .

Mean SD P50 P75 P90 P95 P97.5 P99 % above TDI* HQ MOE
Group 1°
AFM; in breast milk 111 5.2 9.8 12.3 16.1 19.4 23.2 30.3 - - 17
AFB; in breast milk 5.9 2.8 5.2 6.5 8.5 10.3 12.3 16.1 - - 33
Group 2°
AFM; in breast milk 4.0 3.4 3.0 4.9 8.0 10.6 13.4 16.8 - - 57
AFB; in breast milk 21 1.8 1.6 2.6 4.2 5.6 7.1 8.9 - - 108
HT-2 in rice 47.2 26.5 42.3 60.9 82.7 97.9 112.1 131.0 4% 0.42 -
DON in wheat noodles 74.0 45.0 63.7 86.2 116.1 143.8 180.4 236.1 0% 0.06 -
OTA in wheat noodles 6.6 4.0 5.7 7.7 10.4 12.9 16.2 21.2 2% 0.34 -
DON in oat flakes 15.7 11.6 12.7 20.1 29.5 36.6 44.6 57.9 0% 0.01 -
OTA in oat flakes 3.3 2.5 2.7 4.3 6.3 7.8 9.5 12.3 0% 0.16 -
Group 3¢
HT-2 in rice 54.0 26.2 49.6 67.4 87.7 102.7 118.5 138.6 6% 0.50 -
DON in wheat noodles 69.9 24.2 69.9 84.6 99.5 109.6 119.1 129.2 0% 0.07 -
OTA in wheat noodles 6.3 2.2 6.3 7.6 8.9 9.8 10.7 11.6 0% 0.37 -
DON in oat flakes 27.8 14.9 24.6 34.3 46.2 56.0 66.2 78.9 0% 0.02 -
OTA in oat flakes 5.9 3.2 5.2 7.3 9.9 119 14.1 16.8 1% 0.31 -

& Group 1 (n = 61), children being exclusively/predominantly breastfed (only water and water-based drinks, vitamins, minerals and medicines could be consumed
besides breast milk). Average children age: 2.6 + 1.7 months of age (min-max = 0.2-7.6).

b Group 2 (n = 303), children at complementary feeding stage (cereal and cereal products & breast milk): rice consumers (n = 187), wheat noodles consumers
(n = 129), oat flakes consumers (n = 99) and breast milk consumers (n = 277). Average children age: 10.9 * 5.6 months of age (min-max = 0.3-23.6).

¢ Group 3 (n = 239), children at weaning stage (no breast milk intake): rice consumers (n = 194), wheat noodles consumers (n = 113) and oat flakes consumers
(n = 121). Average children age: 16.3 * 5.7 months of age (min-max = 0.5-24.0).

4 PMTDI was used for risk characterization of OTA.

Table 4
Estimated daily exposure to mycotoxins per food source for children aged 0-23 months (n = 320) in the rural area categorized according their feeding pattern;
percentage of the population exceeding the tolerable daily intake (TDI), hazard quotient (HQ) and margin of exposure (MOE). Means and percentiles are expressed in

ng kg ™! bw day .

Mean SD P50 P75 P90 P95 P97.5 P99 % above TDI* HQ MOE
Group 1°
AFM; in breast milk 10.1 6.1 9.1 13.2 18.2 21.6 24.7 28.6 - - 19
AFB; in breast milk 5.3 3.2 4.8 7.0 9.6 11.4 13.1 15.2 - - 35
Group 2"
AFM; in breast milk 4.1 8.5 2.6 4.4 7.5 11.0 16.0 27.3 - - 65
AFB; in breast milk 2.2 4.5 1.4 2.4 4.0 5.8 8.5 14.5 - - 122
HT-2 in rice 67.9 177.7 42.4 74.6 128.6 188.2 269.9 419.1 15% 0.42 -
DON in wheat noodles 64.3 45.6 52.8 85.3 125.0 153.3 181.4 216.0 0% 0.05 -
OTA in wheat noodles 5.8 4.1 4.7 7.6 11.2 13.7 16.3 19.4 2% 0.28 -
DON in oat flakes 19.1 15.9 14.2 25.3 39.9 51.2 60.9 76.3 0% 0.01 -
OTA in oat flakes 4.1 3.4 3.0 5.4 8.5 10.9 13.0 16.3 1% 0.18 -
Group 3 ¢
HT-2 in rice 89.9 157.1 61.7 102.6 168.8 236.4 325.1 528.8 26% 0.62 -
DON in wheat noodles 91.5 66.7 80.2 127.2 177.2 215.5 251.2 301.6 0% 0.08 -
OTA in wheat noodles 8.2 6.0 7.2 11.4 15.9 19.3 22.5 27.0 8% 0.42 -
DON in oat flakes 29.6 30.3 19.5 36.4 63.1 86.7 114.0 149.4 0% 0.02 -
OTA in oat flakes 6.3 6.5 4.2 7.8 13.4 18.5 24.3 31.8 6% 0.24 -

2 Group 1 (n = 72), children being exclusively/predominantly breastfed (only water and water-based drinks, vitamins, minerals and medicines could be consumed
besides breast milk). Average children age: 3.3 + 2.0 months of age (min-max = 0.3-10.5).

b Group 2 (n = 163), children at complementary feeding stage (cereal and cereal products & breast milk): rice consumers (n = 108), wheat noodles consumers
(n = 67), oat flakes consumers (n = 42) and breast milk consumers (n = 157). Average children age: 12.8 + 5.0 months of age (min-max = 1.0-23.9).

¢ Group 3 (n = 85), children at weaning stage (no breast milk intake): rice consumers (n = 73), wheat noodles consumers (n = 46) and oat flakes consumers
(n = 34). Average children age: 18.1 + 5.7 months of age (min-max = 4.3-24.0).

4 PMTDI was used for risk characterization of OTA.

suggested elsewhere (Gong et al., 2003; Kimanya et al., 2014; Shouman noodles & oat flakes (16% rural and 7% urban). Since only HT-2 toxin

et al., 2012). In this study, at weaning stage polished rice was also the exposure was assessed due to the contamination pattern of Ecuadorian
most frequently consumed cereal in both areas (81% urban and 86% rice (Table 1), this was the most remarkable exposure in both areas
rural), followed by the consumption of wheat noodles (49% urban vs. considering the significant rice consumption. This exposure was con-

53% rural) and oats flakes (51% urban vs. 41% rural). The combination siderably high in the rural area (HQ = 0.62; 26% above TDI; P50-P99:
of different staple cereals on daily bases was more common in the rural 61.7-528.8 ngkg ™! bw day ') being the P99 about 5 times the TDI.

area than in the urban area (68% vs. 44%). The most prevalent com- Whereas, the exposure of HT-2 toxin in the urban area (HQ = 0.50; 6%
binations were polished rice with wheat noodles (30% rural and 13% above TDI; P50-P99: 49.6-138.6 ngkg ! bw day ~!) was similar to the
urban); with oat flakes (18% rural and 19% urban), and with wheat exposure observed at complementary feeding stage. On the other hand,
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Table 5

Combined Margin of Exposure Index (MOET) for the total exposure to aflatoxins
through breast milk intake and Hazard Index (HI) for the total exposure to
deoxynivalenol (DON) and Ochratoxin A (OTA) through wheat noodles and oat
flakes intake, for urban and rural children aged 0-23 months (n = 923) cate-
gorized according their feeding pattern.

MOET HI
Urban Rural Urban Rural
Group 1°
Aflatoxins in breast milk 10 11 - -
Group 2"
Aflatoxins in breast milk 28 27 - -
DON in wheat noodles and oat flakes - - 0.08 0.07
OTA in wheat noodles and oat flakes - - 0.50 0.46
Group 3 ¢
DON in wheat noodles and oat flakes - - 0.09 0.10
OTA in wheat noodles and oat flakes - - 0.68 0.67

2 Group 1 (n = 133), children being exclusively/predominantly breastfed
(only water and water-based drinks, vitamins, minerals and medicines could be
consumed besides breast milk).

> Group 2 (n = 466), children at complementary feeding stage (cereal and
cereal products & breast milk).

€ Group 3 (n = 324), children at weaning stage (no breast milk intake).

the combined exposure to OTA and DON at weaning stage reached
acceptable HI values in both areas.

Overall, the exposure to mycotoxins through staple cereals was ra-
ther modest, except of the remarkable exposure to HT-2 toxin through
rice intake. The exposure was higher for rural children due to their
monotonous cereal-based diet. In particular, this was evidenced with
the increased exposure during the transition from complementary
feeding to weaning stage. In contrast, a more varied diet of the urban
children may lead to a diluting effect of the overall exposure to my-
cotoxins or may also lead to the introduction of other dietary sources of
mycotoxins, such as dairy products and other cereals. However, this
was not assessed in this study as well as the potential presence of
modified mycotoxins (Berthiller et al., 2013). On the other hand, the
different exposures of rural and urban children could also be related to
the age distribution of the feeding categories (Tables 3 and 4). This
differed significantly between areas (P = 0.049 for group 1; P = 0.0003
for group 2; P = 0.011 for group 3) and rural child feeding patterns are
characterized by longer breastfeeding stages and their subsequent risk
of exposure.

Regarding the exposure through breastfeeding, besides aflatoxins,
several mycotoxins and their metabolites can potentially transferred to
human breast milk (Degen et al., 2013; Ediage et al., 2013; Tha et al.,
2014; Munoz et al.,, 2010; Navas et al., 2005; Rubert et al., 2014;
Turconi et al., 2004). In LA countries, the main focus has been the study
of lactational transfer of OTA and AFM, as reported in Chilean (Mufioz
et al., 2010, 2014) and Brazilian studies (Iha et al., 2014; Navas et al.,
2005). Thus, further multimycotoxin analysis of biomarkers might be of
first choice to understand the potential risk of nursing infants in the
studied region (Ediage et al., 2013; Turner et al., 2012). The pivotal
role of breastfeeding in infant nutrition must be preserved; therefore,
actions must be taken to improve the quality of maternal diet. To
consider, the cereals used for complementary foods are also staple
cereals in the usual Ecuadorian diet. Consequently, nursing mothers
could be potentially exposed to several mycotoxins. The assessment of
combined exposures should be further explored aiming to provide an
epidemiological overview of the mycotoxin food hazard in those highly
vulnerable population groups (Meek et al., 2011). In addition, some
sources of variations in maternal exposure to mycotoxins should be
taken into account in further studies, such as regional differences in
dietary patterns (Mahdavi et al., 2010) and socio-economic disparities
(Peraica et al., 2014). In this regard, the limitation of collecting breast
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milk samples from only rural mothers might be considered a worse
scenario for urban children.

Different approaches to evaluate the exposure to multiple myco-
toxins from multiple sources have been proposed (EFSA, 2013). Parti-
cularly, the approach of grouping mycotoxins with plausible common
mode of action could be of concern in this study. For instance, re-
garding the suggested effect of immunomodulation of trichothecenes,
OTA and aflatoxins, as well as the hypothesized interaction of afla-
toxins, fumonisins and DON with childhood growth faltering (Peraica
et al., 2014; Smith et al., 2012). Even though, its application is still
complex and challenging in terms of modelling of additive risk assess-
ment and biological pathways interpretation when considering syner-
gism and mycotoxin concentrations (Assuncao et al., 2016).

The staple cereals evaluated in this study were from different origin,
i.e. either locally cultivated (rice), imported as raw material (wheat
flour), and imported as final product (oat flakes). Therefore, possible
risk management strategies could be driven towards improvement of
agricultural and storage practices, as well as enforcement of regulations
for imported goods. Due to the high consumption, special attention
should be given to potential mycotoxin contamination in polished rice.
This should not be only focused on HT-2 toxin, but also on other my-
cotoxins that might remain after rice milling. On the other hand,
maximum permitted levels for the most prevalent mycotoxin-cereal
combination for imported and produced goods should be included in
Ecuadorian regulations, which are currently very scarce.

3.3. Uncertainties related to the risk assessment

In this study some uncertainties need to be addressed towards a
better understanding and interpretation of the results and their im-
plications. First, contamination data of the majority of the cereal
samples was attributed as half of the limit of detection due to the very
low mycotoxin occurrence (as detailed in Table 1). This could represent
a positive biased scenario, suggesting that the exposure severity might
be softer. This would happen if the undetected data would be left-
skewed as likely given for environmental contaminants distributions
that degrade following first-order kinetic, usually adopting a lognormal
shape. However, the imputed contamination data were best-fitted as
Pareto distributions due to the large number of undetected values. In-
stead, mean contamination values were used for the exposure assess-
ments. Secondly, seasonal variations could influence the contamination
degree (Jonsyn-Ellis, 2001), but it was not considered when sampling
staple cereals for multi-mycotoxin analysis. Moreover, a likelihood of
worsened contamination patterns due to climate change has been
suggested (Tirado et al., 2010; Uyttendaele et al., 2015) and, therefore,
current contamination patterns should be assessed in follow-up studies.
Another uncertainty source would be that the exposure assessment
computation for rural children was carried out based on only one 24-h
recall due to logistic constraints. This might lead to the estimation of
non-usual intake; however, the statement of monotonous rural diet is
based on intake studies (data not shown) and food accessibility in this
area. Finally, this study was carried out using contamination data of
staple cereals analyzed on raw dry basis. Although, the employment of
these kind of data is a commonly accepted methodology (Lambe, 2002),
the use of contamination data of foods as consumed could contribute to
the reduction of degree of uncertainties. Cereal processing and cooking
could reduce mycotoxin content (Stoev, 2013) and this might lead to
certain variations in the mycotoxin exposure patterns. For instance, the
water-soluble DON can be partially removed due to leaching into the
cooking water (Kushiro, 2008). On the other hand, most mycotoxins are
heat-stable and hydrophobic; consequently, slight reduction might be
expected due to cooking (Bhat et al., 2010; Stoev, 2013).

4. Conclusion

This study is the first report of dietary exposure assessment to
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mycotoxins in Ecuadorian children aged 0-23 months through breast
milk and staple cereals (polished rice, wheat noodles and oat flakes)
used for complementary feeding. The presence of the carcinogenic AFB,;
and its cytotoxic metabolite AFM; in breast milk of nursing mothers
was evidenced. Moreover, due to their more monotonous cereal-based
diet, children from the rural area were considerably more exposed to
mycotoxins, such as HT-2 through polished rice intake and in lesser
extent to DON and OTA through wheat noodles and oat flakes intake.

In general, we report a modest exposure to mycotoxins, with the
exception of the considerable exposure to HT-2 toxin due to the high
rice consumption. However, follow-up studies to fill some gaps could be
recommended to discard significant exposure to mycotoxins in
Ecuadorian young children. In addition, this could represent a public
health and food safety challenge considering the potential chronic ex-
posure due to the frequent consumption of those staple foods, as well as
the possible additive of synergic adverse effects of multiple mycotoxin
exposure even at low levels.

The development of risk management actions for further monitoring
and mitigation of mycotoxin contamination in staple cereals, especially
for the locally cultivated and highly consumed rice, could drive to the
protection of young children as well as general consumers. Of particular
importance, the food safety of nursing mothers must be ensured for
subsequent reduction of lactational transfer of aflatoxins and other
likely mycotoxins. Additionally, a possible shifting to alternative staples
cereals as complementary foods could be considered but this might
demand assessments, including consumers’ accessibility and accept-
ability evaluations as well as mycotoxin analysis in foods and as bio-
markers.
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