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Abstract 

To improve the current knowledge of the rainfall-runoff phenomena of tropical montane 

catchments, the usefulness of several hydrological indicators was explored on a nested cloud 

forest catchment (76.9 km
2
). The used metrics belong to five categories, respectively: base 

flow mean transit time, physicochemical properties of stream water, land cover, topographic 

and hydrometric parameters. We applied diverse statistical techniques for data analysis and to 

contrast findings. Multiple regression analysis showed that mean transit times of base flow 

could be efficiently predicted by sodium concentrations (higher during baseflows) and 

temperatures of stream water, indicating a major influence of geomorphology rather than 
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topographic or land cover characteristics. Principal Component Analysis revealed that no 

specific subset of catchment indicators could be identified as prevailing descriptors for all 

catchments. Hierarchical cluster analysis provided concomitant results, implying larger levels 

of dissimilarity between smaller sub-catchments (~40%) than between larger ones (~2%). 

Overall, results point out an intricate interdependence of diverse processes at surface and 

subsurface level indicating a high level of heterogeneity. Disregarding heterogeneity of 

nested or paired catchments could lead to incomplete or misleading conclusions, especially in 

tropical mountain regions where pronounced spatial and temporal gradients are present. 

1. Introduction 

Over the past decades, a multitude of methods were developed to investigate the hydrological 

functioning, the dominant water flow paths and the runoff generation processes of 

catchments. Originating from various research perspectives and questions, those methods 

give primarily insights to individual components and processes of the hydrological system. 

No matter what method we use, a single hydrological indicator (e.g., mean transit time) is 

only suitable to capture one given aspect of the hydrological system and therefore fails to 

represent the complete range of interacting processes. The latter justifies the search for an 

integrated analysis of the possible measurable and predictable catchment descriptors (e.g., 

Tetzlaff et al., 2009). 

Primarily due to time restrictions, lack of funding, incomplete knowledge and most often 

missing data, the simultaneous application of multiple methods within a given catchment is 

exceptional. Furthermore, the variation in spatial and temporal scales of the processes, 

requiring for their analysis a diversity of input data, hinders mostly the synchronous 

application of different methods in a given basin. In any case, multidisciplinary approaches 

are preferred for validation of findings as they better describe the entire system’s behavior 
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compared to single indicators (Soulsby et al., 2008; Moldan and Černý, 1994). The latter is 

particular true for regions with limited knowledge of their hydrologic functioning (Tetzlaff et 

al., 2007). Research on the hydrological behavior of small or mesoscale catchments (e.g., 

McGrane et al., 2014; Sanda et al., 2014; Roa-Garcia et al., 2011; Crespo et al., 2011; 

Tetzlaff et al., 2008) further provides an important source for upscaling hydrological 

knowledge to regional scales (Ochoa-Tocachi et al., 2016; Rodgers et al., 2005), which is 

essential for the sustainable exploitation of a region’s water resources. Rainfall-runoff 

research generally focused on headwater catchments since they constitute the primary sources 

of runoff (McDonnell and Beven, 2014). They are often well conserved from anthropogenic 

impacts, simplifying their hydrological characterization. As stated by Dunn et al. (2008) and 

Birkel et al. (2011), among other authors, the analysis of nested or paired catchments is ideal 

to acquire insights about the variability of results and to assess the importance of tributary 

sources. In terms of improving knowledge, this study highlights the benefits of using various 

catchment descriptors in parallel for the analysis of the hydrological functioning of a tropical 

mountain cloud forest catchment, situated in south Ecuador. 

In South America, tropical cloud forests are situated in a relative narrow altitudinal range 

(2,500 and 3,500 m a.s.l.) amidst the western headwaters of the Amazon basin and the eastern 

escarpments of the Andean mountains. The forested study catchment drains to the Rio San 

Francisco, and the first results on the rainfall-runoff processes were published by Goller et al. 

(2005) and Crespo et al. (2012). Since then, high resolution elevation data (LiDAR, 1m) 

became available (Silva et al., 2015), allowing more precise estimations of topographic 

indices, like for instance catchment slopes. Besides, new information, like the re-assessment 

of the MTT by Timbe et al. (2015), using a more robust approach and a denser dataset, 

yielded results which differ from previous published data (e.g., Crespo et al., 2012). To 

further improve results, we used in this study in parallel a set of statistical methods such as: 

https://dict.leo.org/ende/index_de.html#/search=assessment&searchLoc=0&resultOrder=basic&multiwordShowSingle=on&pos=0
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bivariate, multiple regression, principal component, and cluster analysis, enabling the 

reconstruction of a more complete and precise picture of the hydrological processes at hand. 

Building on the currently available dataset of this unique environment, results from 

individual analysis methods were cross-checked and compared with those already published 

by Crespo et al. (2012) and Goller et al. (2005), as basis to complement the current 

knowledge of the runoff processes in tropical cloud forest catchments. The catchment 

indicators selected for our analysis, i.e., bivariate and multivariate statistical techniques, 

belong to the following categories: topographic indices, land cover, hydrometric descriptors, 

physicochemical parameters and MTT data. 

This study is based on the general hypothesis that the degree of knowledge on the 

hydrological functioning of a catchment is positively correlated with the amount of catchment 

indicators and the diversity of used analysis techniques; the approach that guarantees 

identification of the key hydrological variables. Furthermore, it is assumed that: a) the 

subjacent geology is approximately similar along the catchment, and b) the length of the 

datasets is sufficient to get a clear picture of the ordinary hydrological conditions and the 

functioning of the study catchment and its tributaries. Our study seeks to answer the 

following research questions: 1) is there a dominance of a common catchment indicator that 

could serve as a descriptor of the runoff processes among all analyzed sub-catchments? and 

2) is catchment heterogeneity similar across the nested catchments? Answers to both these 

questions are essential to define the scale of future catchment inter-comparison studies (e.g., 

paired catchment approaches). The results of this study will positively impact the current 

knowledge of this understudied environment, which, regardless of its low distribution area, 

has a significant effect on the water cycle at larger scales (Wohl et al., 2012; Viviroli et al., 

2011; Roa-Garcia et al., 2011; Laraque et al., 2007; Buytaert et al., 2006). Additionally, 



 

This article is protected by copyright. All rights reserved. 

results presented herein point out priority areas for future research in tropical montane areas 

in view of their management, restauration and conservation. 

2. Study site 

The San Francisco catchment is located in the tropical foothills of the southeastern Andean 

region of Ecuador (3º 58’ 30” S and 79º 4’ 25” W) i.e., the northwestern headwaters of the 

Amazon basin. The study catchment (76.9 km
2
) and seven tributary sub-catchments (0.7 to 

34.9 km
2
) were analyzed (Figure 1, Tables 1 and 2). The average catchment elevation is 

2,555 m above mean sea level, the topography is steep, and the average slope of the tributary 

sub-catchments varies between 67 and 94%. Four meteorological stations collect climate data 

since 1998. Annual average temperatures vary between 15ºC in the lowest part of the 

catchment down to 10ºC at the ridges, with an altitudinal gradient of -0.57 ºC per 100 m. The 

reader is referred to Bendix et al. (2008) for a detailed description of the climate of the study 

area. The moist air masses originating in the eastern Amazon basin release large amounts of 

precipitation at the ridges of the south-eastern side of the catchment, while the eastern and 

northern sides receive less precipitation (Fries et al., 2014). Rains are generally gentle and 

constant with a peak from June to August, while they are lowest during the period November-

January. Among the climate stations, daily rainfall amounts were correlated; for the period 

1998-2012, the minimum coefficient of determination R
2
 between stations was 0.61. 

Snowfall is zero. The contribution of fog to the hydrologic cycle is estimated at 35% at the 

catchment ridges, decreasing to 5% in the valley bottom (Rollenbeck et al., 2011). Lower 

temperatures and higher discharges are common during the wettest period, while the inverse 

behavior is typical for the ‘driest’ period. Preliminary data suggests that stream water of the 

catchment and its tributaries are dominated by baseflow, accounting up to 85% of the total 

runoff (Timbe et al., 2014). The geological formation, homogeneous across the catchment 

area, belongs to the Chiguinda unit consisting of sedimentary and metamorphic Paleozoic 
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rocks (Beck et al., 2008). Southern catchments are more covered by natural pristine forest 

than those located in the northern part, which contain large stretches of pasture (Setaria 

aphacelata and Melinis minutiflora) and weeds, mainly tropical bracken fern (Pteridium 

arachnoideum and Pteridium caudatum) (Goettlicher et al., 2009; Curatola-Fernández et al., 

2013). Soils are classified as Humic Alfisols, Humic Acrisols and Dystric Leptosols in the 

lower part of the catchment (1,000-2,000 m asl), followed by Terric Histosols (1,500-2,800 m 

asl) and Umbric Regosols; Dystric Cambisols at the ridges (1,800-2,800 m asl) (Beck et al., 

2008b; Liess et al., 2009). 

3. Data and Methods 

Thirty indicators, derived from diverse input datasets (Tables 1 and 2) and grouped in five 

general categories, were derived; respectively baseflow mean transit time (MTT), stream 

water physicochemical characteristics, vegetation land cover, topographic indices, and 

hydrometric parameters. Those metrics were analyzed applying bivariate and multivariate 

statistical methods. The multivariate analyses comprised multiple linear regression, Principal 

Component Analysis (PCA, Hotelling, 1933) and agglomerative hierarchical clustering 

(AHC). PCA and AHC were used as alternative approaches to identify the controlling factors 

of the water flow paths. Unlike multiple linear regression analysis, they offer visual means to 

inspect the multidimensional relations of individual indicators and similarities between sub-

catchments. The referred analyses permitted to identify the influence of each individual 

indicator and how they interact within the catchment runoff processes. 

3.1. Hydrological indicators and landscape characteristics 

Mean transit time estimations 

Weekly samples of rainfall and stream flows were collected during a two-year period, 

between August 2010 and August 2012 (Figure 2, Tables 2), analyzed for their isotopic 
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content ( 2
H and  18

O) using a Cavity Ring-Down Spectroscopy (CDRS) (L1102-i, Picarro, 

USA), with a precision of 0.1 ‰ for δ
18

O and 0.5 ‰ for δ
2
H, and used to estimate baseflow 

MTTs for each tributary and the main catchment. Predictions were performed using seven 

lumped-parameter models based on the convolution method (Timbe et al., 2014): gamma 

(GM), exponential (EM), exponential-piston (EPM), linear (LM), linear-piston (LPM), two 

parallel linear reservoirs (TPLR) and dispersion (DM) models. For model estimations, 

uncertainty assessments were performed. The GM and EPM models provided the best 

predictions. The effect of the sampling resolution on those predictions was analyzed by 

Timbe et al. (2015). The MTT estimates of both models were similar and among sub-

catchments they varied between 2.0 and 4.2 years, indicating a predominance of shallow 

aquifers (Timbe et al., 2014). The MTT values shown in Table 1 represent the average value 

of both models. Crespo et al. (2012) estimated for the stream water of the study catchment 

MTT values applying a sinusoidal model, using a considerably smaller isotopic dataset in 

which rainfall, important as the primal source of stream water, was not sampled but inferred 

through an online isotope precipitation calculator (www.waterisotopes.org). 

Chemical element concentrations of stream water 

For the main river and its tributaries, grab samples were collected fortnightly from April 2007 

until November 2009, covering several flow conditions. Concentrations of chemical elements 

were determined via inductively coupled plasma-mass spectrometry (Agilent 7500ce ICP-

MS, Agilent Technologies, USA). Data for the period April 2007 - November 2008 were 

already published by Bücker et al. (2010) and Crespo et al. (2012). Due to financial 

constraints, metals like Aluminum (Al) were no longer sampled and analyzed after November 

2008. For the catchment, the major cations detected were Sodium (Na), Calcium (Ca), 

Magnesium (Mg) and Potassium (K). Average concentrations of Aluminum (Al) or Iron (Fe) 

were comparable, but at much lower concentrations than the major cations. Table 1 shows the 
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median value of the ion composition. Temperature (T), pH and electrical conductivity (EC) of 

stream waters were measured during the isotope sampling campaign and cross-checked with 

values from the period 2007-2008. Median parameter concentrations at every outlet are listed 

in Table 1 while number of samples used for the analyses are indicated in Table 2. As stated 

by Crespo et al. (2012) can Na and Al in stream water be considered as conservative tracers. 

Furthermore, Figure 3 clearly depicts that the Na concentration in stream water is higher 

during low flows when baseflow is the dominant stream flow component, while Al 

concentrations are higher during high flows, when baseflow is complemented by shallow 

subsurface flow. 

Topographic indices and land cover 

Application of GIS techniques to a digital terrain model of the study area, with a 1 m spatial 

resolution, derived from a LiDAR survey (Silva et al., 2015), yielded the following five 

terrain metrics: median catchment area (A); perimeter (P); catchment altitudinal range (Erng), 

median (E) and maximum elevations (Emax); and median catchment slope (S). Besides, four 

common terrain indices were calculated: catchment area-perimeter ratio (A/P); drainage 

density (DD); topographic wetness index (TWI) (Beven and Kirkby, 1979), and the downslope 

index DSI (Hjerdt et al., 2004), for which we used 5 m as the required elevation unit 

parameter. Two variants of TWI were estimated: TWID8 (O’Callaghan and Mark, 1984) and 

TWID-INF (Tarboton, 1997). As they provided similar results (r = 0.98), just the first one was 

kept for further analyses. 

Land cover data was derived from the classification map proposed by Curatola-Fernández et 

al. (2013), which on its turn is based on a Quickbird scene of October 2010 (four multi-

spectral bands, 2.5 m spatial resolution). In line with the objectives of the current research 

were the land cover types regrouped in three general classes: natural forest (LCforest, 62.3% of 
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total surface area), subparamo vegetation (LCsubparamo, 31.2%) and pasture plus bracken-fern 

(LCpasture, 3.7%). Median values of each class per sub-catchment are listed in Table 1. 

Analysis of the current high resolution DEM data of the research area revealed that the 

average surface slopes between the sub-catchments vary between 66 and 93%, whereas in 

previous studies based on the information available at that time, it was found that that the 

average terrain slope of the sub-catchments varied between 48 and 61% (e.g., Crespo et al., 

2012). Similarly, also apparent differences exist between the recent high-resolution land 

cover classification map provided by Curatola-Fernández et al. (2013) and the previous 

version of Goettlicher et al. (2009). 

Hourly discharge data for the period August 2010 - August 2012 were derived from five-

minute resolution water level records registered by pressure transducers (accuracy ± 0.25 

cmH2O) (MiniDiver and BaroDiver, Schlumberger Water Services, Netherlands) installed at 

each tributary and main outlet. Discharge curves were constructed using bi-weekly observed 

discharge data applying the dilution method, using salt as tracer. For PL, FH, QN and QM, 

the shape of the curves was cross-checked using the velocity-area method. For QC, the 

smallest sub-catchment, a sharp triangular 90º weir located at the outlet served as gauging 

station. River beds at the QP, QR, and QZ gauging stations were unstable and several 

disruptions of water-level records occurred during the observation period. For those stations, 

percentages of missing data were between 51 and 69%. An aggregated hydrological rainfall-

runoff model, NAM (Nielsen and Hansen, 1973), was used to fill discharge data gaps. NAM 

was already used in the catchment as a part of an ensemble of models for runoff prediction 

(Exbrayat et al., 2014). For each catchment, the same modeling approach was used to extend 

the runoff data series for the period March 1998 - August 2012, for which hourly 

meteorological information was available. For each model, average hourly rainfall amounts 

were estimated by Thiessen polygons (Thiessen, 1911), and the reference evapotranspiration 
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was calculated as monthly averages using the Penman-Monteith equation (Monteith, 1981). 

Among sub-catchments, NSE of predictions varied between 0.65 (QM) and 0.81 (QC), while 

it was equal to 0.71 for the main outlet (PL). For every discharge outlet, flow duration curves 

are shown in Figure 4a, while the monthly variation of discharge flows at the main catchment 

outlet is shown in Figure 4b. 

Whereas catchment stream flows normally are characterized using hydrometric statistics 

(Sawicz et al., 2011; Wagener et al., 2007; Olden and Poff, 2003), in our study we used 

modeled hourly rainfall-runoff data to calculate four basic mean annual hydrometric features 

for each catchment (Table 1): specific discharge (SD), specific rainfall (SR), hourly peak 

(MAPF) and low (MALF) flows. Similarly to terrain metrics, composite hydrometric indices 

were estimated such as the ratio of the standard deviation and the mean of the discharges, 

known as the coefficient of variation (CoV); the slope of the flow duration curve between the 

33
th

 and 66
th

 percent of exceedance probability (FDC33-66), considered as an indicator of 

discharge variability for intermediate flow ranges; the Richard-Baker flashiness index (FIR-B) 

(Baker et al., 2004); the rainfall-runoff coefficient (RQP) as the ratio between total discharge 

and total rainfall; and the baseflow index (BFI) as the ratio of total baseflow to total 

discharge. 

3.2. Statistical methods 

Bivariate and multivariate statistical methods, common techniques in geohydrology and 

related sciences and very suitable when the analysis involves many variables (Brown, 1998), 

were used for the analysis and interpretation of the diverse sources of information. More 

specifically, the use of a given technique depends on the type of observed data and analysis 

required. When using bivariate analysis, MTT estimations were considered as dependent of at 

least one data category. 
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Bivariate correlations and multiple regression analyses 

Multiple regression analysis was applied to identify the redundant variables, which by 

discarding them simplified further analyses. For this task, p-values and the Pearson product-

moment correlation coefficient (r) were used, which depicts the degree of linear association 

between two variables. To reduce the number of variables, we looked for highly correlated 

ones within the same parameter category. Statistically significant linear correlations (r ≥ ǀ0.7ǀ 

and p-values < 0.05) were evaluated further by means of bivariate plots. For instance, among 

the terrain metric variables, catchment area (A) and the ratio area-perimeter (A/P) were highly 

correlated, therefore only one of these variables was kept. Selection of one variable over 

another was based on the degree of association of a scrutinized variable with other variables 

from a different parameter category. For these cases, the variables depicting strongest 

correlations were maintained for further analysis. 

A stepwise Multiple Regression Analysis, using a General Linear Model, was performed to 

reduce the number of measured variables, to remove collinearity that may exist between them 

and to verify for relationships between MTTs and other catchment indicators. In this method, 

a subset of predictors is sequentially selected from a larger group of predictors through 

statistical testing of the hypotheses. The main parameter of this analysis is the t-test and its 

corresponding probability. The adjusted coefficient of multiple determination (R
2
), was used 

as a measure of how well the independent variables explain changes in the dependent 

variable. Since potential predictive models could differ in the number of independent 

variables involved (i.e., number of model parameters) we used the Akaike Information 

Criterion (Akaike, 1981) to choose the best option. Standardized residuals of observed and 

predicted data were checked for homoscedasticity. 

Principal component and cluster analyses 
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Principal Component Analysis (PCA) (Hotelling, 1933) allows examination of the 

interrelations and variability among measured variables, determines which variables are 

strongest correlated, and the selection of the smallest number of components that explain 

most of the total variance. For this method, the main parameters are the factor loadings and 

the sum of the explained variation. The degree of association between analyzed catchments 

was cross-checked by a hierarchical cluster analysis. For the PCA, as for cluster analysis, the 

same preselected variables as for the MRA were used. Before the analysis, variables were 

standardized (i.e., mean = 0 and standard deviation = 1). The PCA was performed using the 

sample covariance matrix. For cluster analysis, we applied the Agglomerative Hierarchical 

Clustering (AHC). For this analysis, Euclidean distances were computed to measure the 

dissimilarity between pairs of observations, while the Ward’s method (Ward, 1963) was 

applied as the linkage criterion. 

4. Results 

4.1. Correlation and multiple regression analyses 

Redundant variables within the same category were discarded. Among topographic indices, 

for instance, the catchment area A was strongly correlated with the perimeter P (r = 0.96) and 

the A/P ratio (r = 0.98). Conversely, drainage density DD or topographic wetness index TWID8 

did not show significant correlations with any other terrain metric variables. Among terrain 

metrics, not only the median catchment slope S was considered but also the following slope 

ranges: 0-25, 25-50, 50-75, 75-100 and >100%; all of them showed high correlations to S 

(between 0.74 and 0.99). Based on the redundancy analysis, five topographic metrics were 

retained: A/P, TWID8, Emax, S and DD. Similarly, among the hydrometric variables, three 

catchment descriptors were selected: baseflow index BFI, rainfall-runoff ratio RQP and the 

slope of the flow duration curve FDC33-66. From the variables describing the physicochemical 

properties of stream water, four variables were selected: pH, temperature T, and the median 
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concentration of Na and Al. Among land cover variables, LCpastures and LCforest were kept for 

further analyses while LCsubparamo was discarded since it was strongly correlated with 

elevation (Homeier et al., 2008; Curatola-Fernández et al., 2013).  

Correlations were analyzed between the fifteen selected variables (Table 3), namely: MTTs, 5 

terrain indices, 3 hydrometric descriptors, 4 physicochemical properties and 2 land cover 

characteristics. The MTTs were not correlated to any of the topographic or hydrometric 

variables, instead, they were associated to the physicochemical characteristics: Na (r = 0.89) 

and T (r = 0.82) (Figure 5). Hydrometric and terrain indicators were correlated with A/P and 

FDC33-66 (r = -0.94) variables, and RQP and TWID8 (r = -0.74). Physicochemical parameters 

were also correlated to hydrometric, land cover and terrain metrics: Na with TWID8 (r = 0.92), 

MALF (r = -0.72), RQP (r = -0.73). 

The stepwise multiple correlation analysis, considering MTT as potentially dependent of the 

other variables, described a dependency of MTT on the Na, T and A/P variables. Based on the 

Akaike Information Criterion (Akaike, 1981) was the best performing function among three 

preselected predictive models (of 1, 2 and 3 parameters) equal to: MTT = – 3.86087037 – 

0.418018*A/P + 0.376705*T + 7.96E-04*Na. For this function the adjusted R
2
 was 0.97. 

Among the selected independent variables, Na has the greatest effect on MTT; standardized 

coefficients were 0.614 for Na, 0.390 for T and -0.205 for A/P. 

4.2. Principal component and cluster analyses 

Three principal components accounted for 88% of the total variance (Figures 6a and 6b). The 

first principal component PC1 (46%) was significantly associated to at least one parameter 

from every data category, i.e., factor loadings were largest for TWID8 (0.98), Na (0.93), 

LCpastures (0.92), MTT (0.85) and RQP (-0.79). The second component PC2 (25 %) was mainly 

affected by hydrometric parameters: BFI (0.44) and FDC33-66 (-0.44). The third component 
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PC3 (17%) was mainly influenced by Al (0.58) and DD (-0.53). The nested catchments could 

be clustered in three groups based on their degree of affinity to the principal components and 

their associated variables: a) mainly associated to PC1: QP and QC; b) related to PC3: QM 

and QR; and c) no distinctive relationship to any of the first three principal components: PL, 

FH, QN and QZ. The AHC analysis yielded similar results. Degrees of dissimilarity were 

noticeably higher for small than for larger catchments (Figure 6c). 

5. Discussion 

Identification of the rainfall-runoff processes is a common challenge in catchment hydrology. 

Research in this area has been boosted since the wide spread use of tracers to infer catchment 

water flow paths and their associated MTTs (Soulsby et al., 2009; McGuire and McDonnell, 

2006). However until today the use of tracers for the unraveling of the hydrological 

functioning is limited in tropical montane cloud forest areas (Wohl et al., 2012). 

In our study, bivariate correlations point to significant statistical relationships between MTT 

and physicochemical metrics of stream water: Na concentrations and temperature T. Since 

observed data for the main outlet and tributaries depict higher Na concentrations during base 

flows (Figure 3), the correlation between MTT and Na means that waters passing through 

deeper flow paths would have greater Na concentrations and therefore higher MTTs. This 

behavior is also supported by the correlation between MTT and T, having in mind that the 

temperature of stream water is a proxy for the depth of origin of that water (Guzmán et al., 

2016). Highest T averages, of around 16°C, were registered for two of the smallest sub-

catchments (QP and QC), which also have the highest MTTs and Na concentrations (Table 

1). On the other hand, stream water temperatures are around 14.5°C for the large catchments 

such as PL or FH. The lack of correlations between MTTs and the other metrics points out 

that the subsurface characteristics are the main source of divergence between intra-catchment 
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runoff processes. Even when then underlying geology is the same across the San Francisco 

area (Beck et al., 2008), the bedrock topography would not necessarily match the one of the 

catchment surface. Soil thickness variability or differences in the soil-bedrock permeability of 

the interface, as in the case of Mueller et al. (2013), are more likely explanations for our 

results. 

The strong control exerted by geology in water flow paths might be responsible for masking 

other, less dominant catchment indicators. This could be the case for land cover, for which 

we found no significant correlation with MTTs, although it is contrasting for some of the 

investigated sub-catchments. Sub-catchment QC (50.8% covered by pastures) and QM (99% 

covered by pristine forest), not only have considerably different land cover but also MTTs 

(4.1 versus 2.1 y, respectively). Nevertheless, this actually points out that catchment flows in 

our study area are governed by a stronger driver than land cover. This is somehow surprising 

as research on the land use and land cover patterns effect on runoff is well documented at 

catchment (Ochoa-Tocachi et al., 2016; Molina et al., 2015 ; Roa-Garcia et al., 2011; Neill et 

al., 2011; Chaves et al., 2008; Coe et al., 2011) and regional scale (Davidson et al., 2012; 

Coe et al., 2009; Soares-Filho et al., 2006). Several of these studies showed that deforestation 

reduces evapotranspiration and soil hydraulic conductivity, enhancing during rainfall events 

via overland flow and shallow sub-surface flow stream flow. 

The step-wise multiple linear regression analysis provided similar results than those from the 

bivariate analysis. For this, even though 15 parameters were included as possible sources of 

variation of MTT, the best predictive equation reached an almost perfect performance (R
2
 = 

0.97) with only three indicators: Na, T and A/P. Among them, the dependence of MTT on Na 

and T was stronger than the dependence on A/P. While the feasible reasons for the 

dependence of MTT on Na and T were already discussed, the inverse correlation between 

MTT and A/P ratios (Table 1) indicates that small catchments have relatively longer MTTs 
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than larger ones. As pointed earlier, this behavior could be related to differences among 

catchment aquifer volumes because of high degrees of heterogeneity in soil thickness or 

permeability of the soil-bedrock interface (e.g., Hale and McDonnell, 2016; Mueller et al., 

2013). The findings of Hale and McDonnell (2016), comparing the runoff-characteristics and 

MTTs of two nested catchments with similar hydro-meteorological conditions, are pointing in 

the same direction; they found high degrees of heterogeneity in runoff characteristics mainly 

due to differences in the underlying geology. However, such marked heterogeneity between 

study units belonging to the same nested catchment has not been commonly reported. The 

reason could lie in that, when dealing with nested or paired catchments, we are tempted to 

assume that geological characteristics are uniform (e.g., Ogden et al., 2013; Roa-Garcia et al., 

2011), even when no detailed information is available. As such, assumptions of homogeneous 

conditions between nested catchments could lead to gross errors (Kirchner, 2016). 

It is not unlikely that the observed heterogeneity points out to additional issues. For example, 

there is no specific metric that keeps the same level of influence among all analyzed 

catchment runoff processes. More in particular, it is expected that geological features exert 

greater influence on catchments with large MTTs than on those with shorter ones. In this 

context, a multidimensional approach consisting of Principal Component Analysis was useful 

to screen the expected high heterogeneity between catchments and associated governing 

factors. As for instance, PC1 (46%) depended on at least one metric from each hydrological 

indicator category. Along PC1, the smallest catchments showed the most marked differences 

between them (Figure 6, QC vs. QM), while the larger catchments (PL, FH, QN, QZ) 

responded more similar. Another range of heterogeneity among catchments was depicted by 

PC2; the southeastern tributaries, QM and QR accounted lower BFI ratios compared to 

similar sized sub-catchments, QP and QC, located in the northern part of the catchment. 

Marked differences between two small forest catchments (QR and QM) were also shown 
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along PC3. Higher dissimilarities between smaller catchments than for larger ones were 

further depicted by HCA results. Catchment heterogeneity depicted by PCA is in line with 

results described by Tetzlaff et al. (2009). Those authors, to contrast the hydrology of three 

mesoscale catchments and their associated sub-catchments in the Cairngorm mountains of 

Scotland, used a similar PCA analysis with MTT estimations and topographic indices. 

Our findings, based on the simultaneous application of several methods in which higher 

spatial resolution data are used (e.g., hi-res land cover information and terrain indices derived 

from a LiDAR 1m DEM), corroborate the results provided by Crespo et al. (2012) in their 

preliminary evaluation of the hydrological functioning of the same nested catchment. 

Although lateral subsurface shallow flows (like those through the organic soil layer) could 

eventually occur during storm events, reaching contributions up to 81% of the total flow 

(Goller et al., 2005), during normal to dry catchment wetness conditions, stream flows are 

predominantly fed by subsurface flows coming from deeper soil horizons. The latter also 

means that the control exerted by surficial catchment characteristics are subdued in favor of 

deeper catchment characteristics, like geology. Our results are also supported by recent 

findings on a hillslope scale experiment in the same catchment, in which Windhorst et al. 

(2014) combined hydrological modelling with weekly stable isotopes information to account 

for the fraction of water that vertically percolates (50%) and the fraction that flows lateral 

near-surface (16%). 

The diversity of rainfall-runoff mechanisms present in apparently homogeneous nested 

catchments, expose the ubiquitous heterogeneity of environmental systems at all scales 

(McDonnell et al., 2007; Kirchner, 2016). Given previous, it is essential to combine diverse 

sources of information in studies dealing with the characterization of hydrological processes. 

Besides, considering the scarce research dealing with rainfall-runoff processes in tropical 

areas, more field-based studies in catchments with diverse or contrasting behaviors are 
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necessary to identify the most relevant and representative runoff processes (Beck et al., 2016; 

Wohl et al., 2012). For this, the use of analysis techniques that combine diverse and 

comprehensive data sets is a must (Bonan, 2008). 

Independent of our findings should land cover among the multitude of metrics be considered 

as a basic parameter, since in many South American ecosystems (Ochoa-Tocachi et al., 2016; 

Coe et al., 2013; Molina et al., 2015; Tapia-Armijos et al., 2015; Iñiguez-Armijos et al., 

2014) man-made changes in natural land cover and land use have been identified as an 

emerging ecological problem. As for example, for a South American tropical montane cloud 

forest catchment, Roa-Garcia and Weiler (2010) identified a strong influence of land cover on 

catchment MTT estimations (0.1 to 1.8 y). Since these changes affect not only hydro-

meteorological, or land-surface aspects, but also geomorphological and biogeochemical 

factors, integral and accurate understanding of the ecosystem requires the simultaneous 

analysis of as many as possible related variables. Comprehensive analysis of these data, using 

the widely-known bivariate and multivariate statistical techniques, should be the benchmark 

for the inter-comparison of catchments’ hydrology. 

6. Conclusions 

The heterogeneity in the nested study catchment points out that special care should be taken 

with assumptions dealing with the homogeneity of study units when conducting experiments 

in nested or paired catchments. The implications of overlooking natural heterogeneity at these 

spatial scales are not trivial. Most studies are conducted in small headwater catchments based 

on the premise of easier monitoring and the likelihood of the non-interference of a large 

number of variables present at larger basin scales. In contrast, our results showed larger 

differences for smaller than for larger sub-catchments. In this context, extrapolation of results 

for even an apparently similar adjoining catchment, could be risky. Besides, we should 
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consider that among related studies, just a small fraction takes care of tropical montane forest 

areas, for which the lack of detailed information often result in gross simplifications, e.g., 

stable conditions are assumed based only on the spatial proximity between study units. Our 

approach, using diverse and widely-known statistical tools, allowed to crosscheck findings 

from different perspectives, provides an extra level of reliability, and furnishes guidelines for 

future monitoring and successful analysis. 
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Figure 1. Location and topography of the San Francisco catchment and its tributary sub-catchments: 

Francisco Head (FH), Zurita (QZ), Navidades (QN), Ramon (QR), Milagro (QM), Pastos (QP) and 

Cruces (QC). The name of main catchment outlet is Planta (PL). 
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Figure 2. Seasonal variations of water isotope signals of stream water, collected at the main outlet PL 

and its tributaries: FH, QN, QZ, QR, QM, QP and QC, and for rainfall collected at 1900 m a.s.l. 

Acronyms are defined in Figure 1. 
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Figure 3. Left column, colored filled dots show observed concentrations of Sodium (Na) and 

Aluminum (Al) for the San Francisco stream water and its tributaries corresponding the respective 

streamflow conditions at sampling. Right column, observed concentrations of Na and Al of the studied 

catchments as represented by boxplots (the notches indicate the 95% confidence interval for the 

medians); values located further away below the first or above the third quartile are considered 

extreme ones (+). Catchment acronyms are defined in Figure 1. 

 

  



 

This article is protected by copyright. All rights reserved. 

 

Figure 4. Left, flow duration curves (FDC) for the main catchment outlet PL and its tributaries: FH, 

QN, QZ, QR, QM, QP and QC. Right, monthly variation of discharge for the referred study units 

(median values obtained from hydrological modelling for period 1998-2012); boxplots show the 

monthly variation of discharge at the main catchment outlet PL, notches indicate the 95% confidence 

interval from the median value. Acronyms are defined in Figure 1. 
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Figure 5. Relationships between baseflow mean transit times MTTs (symbol represents the average 

value of best predictions provided by GM and EPM models while error bars indicate the averaged 

95% confidence limits of those models) and catchment area-perimeter ratio (A/P); catchment’s 

maximum elevation (Emax); drainage density (DD); median catchment slope (S); median topographic 

wetness index (TWID8); rainfall-runoff ratio (RQP); baseflow index (BFI); area covered by forest 

(LCFOREST); median stream water potential of hydrogen (pH) and temperature (T); median stream 

water concentrations of Sodium (Na) and Aluminum (Al). Only significant correlations (| r | ≥ 0.7) are 

shown. 
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Figure 6. Principal component analysis (PCA) (subplots a and b) and cluster analysis (c) for the San 

Francisco catchment and its seven tributary sub-catchments. Each catchment was characterized using 

15 catchment characteristics (MTT, mean transit time; A/P, catchment area-perimeter ratio; Emax, 

maximum catchment elevation; DD, drainage density; S, median catchment slope; TWID8, topographic 

wetness index; RQP, rainfall-runoff ratio; BFI, baseflow index; LCFOREST and LCPASTURE, areas covered 

by forest and pastures + bracken fern, respectively; pH, median stream water potential of hydrogen; 

median stream water temperature (T); Na, median stream waters concentrations of Sodium; Al, 

median stream water concentration of Aluminum). Arrows indicate the magnitude of component 

loading. Catchment acronyms are defined in Figure 1. 
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Table 1. Main characteristics of the San Francisco catchment and its tributaries. Acronyms are defined 

in Figure 1. 

Indicators Units 

Main 

outlet   
Tributary outlet 

PL   FH QZ QN QR QM QP QC 

Transit time                     

Mean transit time baseflow years 2.08   1.97 2.46 2.10 2.83 2.23 4.03 4.23 

Land cover indicators                     

Forest % 62.3 

 

58.5 54.9 57.2 73.3 98.9 74.1 39.4 

Sub-páramo % 31.2 

 

38.6 40.3 35.2 25.8 0.0 15.6 0.0 

Pasture & bracken % 3.7 

 

0.7 3.6 3.7 0.2 0.3 8.3 50.8 

Land surface indicators                     

Area [A] ha 7674.0 

 

3465.0 1132.8 1008.6 464.4 132.2 339.4 68.8 

Max. elevation [Emax] m 3229 

 

3229 3088 3007 3147 2646 2907 2553 

Elevation range [Erng] m 1533 

 

1357 1088 995 1444 794 1017 606 

Drainage density [DD] km km-2 1.95 

 

2.00 1.83 1.73 2.31 1.68 175 1.69 

Area/Perimeter [A/P] km2 km-1 1.45 

 

0.93 0.55 0.47 0.35 0.18 0.30 0.15 

Median elevation [E] m 2524 

 

2593 2611 2584 2440 2237 2433 2288 

Median catchment slope [S] % 82.0 

 

83.3 79.3 75.9 92.6 86.8 81.1 66.1 

Topographic wetness index [TWID8] - 2.68 

 

2.63 2.69 2.70 2.56 2.55 2.84 3.08 

Downslope index [DSI] % 72 

 

73 72 70 84 74 72 60 

Hydraulic indicators                     

Mean annual specific discharge [SD] mm 1546 

 

2028 719 703 2842 2417 849 783 

Mean annual specific rainfall [SR] mm 2289 

 

2735 1424 1417 3612 3254 1631 1631 

Coefficient of Variation [CoV] - 0.39 

 

0.47 0.59 0.60 0.85 0.77 0.66 0.69 

Flow duration curve slope [FDC33-66] - 1.09 

 

1.21 1.42 1.45 1.69 1.59 1.52 1.64 

Flashiness Index [FIRB] - 0.14 

 

0.19 0.21 0.21 0.37 0.34 0.22 0.22 

Mean Annual Peak Flow [MAPF] mm h-1 0.64 

 

1.20 0.54 0.56 3.58 2.74 0.73 0.71 

Mean Annual Low Flow [MALF] mm h-1 0.08 

 

0.10 0.03 0.03 0.10 0.09 0.03 0.03 

Rainfall-Runoff Coefficient [RQP] - 0.67 

 

0.73 0.50 0.49 0.78 0.73 0.52 0.48 

Base Flow Index [BFI] - 0.79 

 

0.73 0.69 0.69 0.54 0.58 0.72 0.73 

Hydro Physicochemical indicators of stream waters                 

pH - 6.90 

 

7.07 7.24 7.13 6.99 6.55 7.21 7.23 

Electrical conductivity [EC] µS cm-1 15.3 

 

13.0 23.9 23.5 14.0 6.2 29.2 29.8 

Temperature oC 14.5 

 

14.0 13.6 13.7 15.4 14.9 15.6 16.1 

Sodium [Na] µg L-1 1382.5 

 

1200.5 1570.5 1514.3 1313.5 647.3 2539.0 2728.5 

Calcium [Ca] µg L-1 1170.0 

 

833.4 1891.5 2130.8 664.7 224.3 1699.0 1783.0 

Magnesium [Mg] µg L-1 393.2 

 

307.8 530.9 443.6 363.2 161.7 798.1 820.1 

Potassium [K] µg L-1 333.8 

 

281.5 359.4 355.8 348.8 265.7 451.2 585.3 

Aluminum [Al] µg L-1 45.0 

 

47.3 47.1 49.5 26.4 56.6 37.9 39.5 
a
 The percentage of impervious areas (e.g., road) or water bodies (rivers) is not shown since they have 

relatively lower values. 
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Table 2. Number of stream water samples analyzed for their isotopic, physicochemical properties and 

main element concentrations. 

Site δ18O, δ2H a pH a,b EC a T a Na c Ca c Mg c K c Al d 

PL 104 62 (82) 104 (74) 94 (79) 81 79 80 80 56 

FH 98 62 (50) 101 (42) 92 (45) 61 61 61 61 47 

QZ 103 62 (52) 102 (45) 94 (48) 67 66 67 67 47 

QN 104 62 (50) 104 (41) 96 (46) 56 56 56 56 43 

QR 104 60 (72) 103 (64) 93 (70) 77 77 77 77 53 

QM 104 62 (74) 103 (65) 93 (71) 65 66 67 65 51 

QP 103 61 (70) 103 (63) 93 (62) 77 75 77 77 52 

QC 102 60 (54) 102 (46) 92 (45) 57 57 57 57 40 

a
 According to a weekly sampling scheme, samples for isotopic analysis and in-situ measurements of 

physicochemical properties (pH, electrical conductivity EC and Temperature T) were performed from 

August 2010 until August 2012. Values in parentheses correspond to measurements during the 

sampling campaign for major chemical elements. 
b
 The harsh moisture conditions of the area caused 

malfunction of the pH-meter, causing disruptions of the data series. 
c
 Samples for major elements (Na, 

Ca, Mg and K) were taken fortnightly since April 2007 until November 2009. Sampling of minor 

elements like Al started in April 2007 but were discontinued in November 2008. 
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Table 3. Results of the multiple regression analysis using fifteen selected parameters (indicators) of the catchment. 

Parameter MTT LCforest LCpasture
 Emax DD A/P S TWID8 FDC RQP BFI pH T Na 

LCforest 
-0.258                           

0.538 

             
LCpasture

 0.739 -0.608 

            0.036 0.110 

            
Emax 

-0.583 -0.102 -0.664 

           0.129 0.811 0.073 

           
DD 

-0.249 0.035 -0.392 0.693 

          0.553 0.934 0.337 0.057 

          
A/P 

-0.567 -0.194 -0.361 0.750 0.327 

         0.142 0.645 0.379 0.032 0.430 

         
S 

-0.461 0.745 -0.817 0.488 0.663 0.149 

        0.250 0.034 0.013 0.220 0.073 0.725 

        
TWID8 

0.804 -0.666 0.920 -0.542 -0.492 -0.277 -0.883 

       0.016 0.072 0.001 0.165 0.216 0.506 0.004 

       
FDC 

0.571 0.204 0.347 -0.649 -0.069 -0.941 -0.007 0.204 

      0.139 0.629 0.400 0.082 0.871 0.000 0.988 0.628 

      
RQP 

-0.489 0.586 -0.532 0.351 0.659 0.268 0.826 -0.741 -0.118 

     0.219 0.127 0.175 0.394 0.076 0.522 0.011 0.035 0.781 

     
BFI 

0.057 -0.600 0.284 0.189 -0.347 0.605 -0.606 0.504 -0.733 -0.473 

    0.893 0.116 0.495 0.654 0.400 0.112 0.112 0.203 0.038 0.236 

    
pH 

0.486 -0.801 0.414 0.140 -0.023 -0.066 -0.561 0.627 0.015 -0.707 0.440 

   0.222 0.017 0.308 0.742 0.956 0.877 0.148 0.096 0.972 0.050 0.275 

   
T 

0.825 0.078 0.612 -0.588 -0.012 -0.478 -0.124 0.521 0.588 0.015 -0.198 -0.008 

  0.012 0.855 0.107 0.126 0.977 0.231 0.770 0.186 0.125 0.973 0.639 0.985 

  
Na 

0.887 -0.597 0.751 -0.352 -0.302 -0.287 -0.693 0.921 0.250 -0.729 0.430 0.766 0.549 

 0.003 0.119 0.032 0.393 0.468 0.491 0.057 0.001 0.551 0.040 0.288 0.027 0.159 

 
Al 

-0.529 0.217 -0.200 -0.198 -0.660 0.140 -0.180 -0.200 -0.379 -0.089 0.239 -0.418 -0.558 -0.452 

0.178 0.605 0.635 0.638 0.075 0.740 0.671 0.635 0.354 0.834 0.569 0.302 0.151 0.261 

Two values are shown for each catchment indicator (percentages of land covered by forest LCforest or pastures plus bracken fern LCpasture, maximum catchment 

elevations Emax, Drainage Density DD, area-perimeter ratio A/P, median catchment slope S, Topographic Wetness Index TWID8,  flow duration curve between 

the 33 and 66% of exceedance probability FDC33-66, rainfall-runoff coefficient RQP, Baseflow Index BFI, pH, Temperature T, Sodium Na and Aluminum Al 

concentrations), values in the top correspond to the Pearson product-moment correlation coefficient (r) and values in the bottom show p-values. Values in 

bold stand for cases where r ≥ ǀ0.7ǀ and p-values < 0.05. 


