DETERMINACIÓN DEL PERFIL LIPIDICO EN ADOLESCENTES Y NIÑOS DEL CENTRO EDUCATIVO BILINGÜE INTEGRAL "CEBIN"

RESUMEN

Debido a los cambios actuales de alimentación tanto en niños como en adolescentes y

por consiguiente a sus hábitos de ejercicio se ha considerado realizar el estudio del

perfil lipídico.

Para el presente estudio hemos considerado únicamente las variables de Colesterol,

Triglicéridos, HDL y LDL, los mismos que fueron establecidos mediante las técnicas

colorimétricas y enzimáticas descritas por la casa comercial WIENER LAB para este

tipo de determinaciones; sin dejar de lado las aportaciones de la literatura científica

actual.

Los objetivos que nos planteamos al inicio del proyecto son los siguientes:

Determinar el perfil lipídico de los adolescentes y niños del centro educativo

bilingüe integral.

Estudiar el perfil lipídico en el grupo experimental.

Proporcionar información básica de nutrición a los alumnos.

Para el presente proyecto tuvimos alrededor de 220 niños y adolescentes, de edades

comprendidas entre 5 y 17 años; paralelamente realizamos una encuesta de tipo

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

informativa en la que indagamos a los participantes sobre sus hábitos alimenticios tanto

en la institución educativa como en sus respectivos hogares.

Como resultado del trabajo realizado, podemos obtener varias conclusiones siendo lo

más importante los casos con valores altos en los adolescentes en comparación con

los niños, lo que nos indica que a pesar de tener una mayor conciencia de los

problemas que acarrea la mala alimentación no le dan la importancia requerida.

PALABRAS CLAVES

Perfil lipídico, Adolescentes, Niños, Colesterol, Triglicéridos, HDL, LDL, Alimentos

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

ÍNDICE

Índice de Tablas	
Cuadro 1.1 Valores Referenciales de colesterol total	11
Cuadro 1.2 Valores referenciales de Triglicéridos	12
Cuadro 2.1 Esquema reaccional del Colesterol Enzimático	15
Cuadro 2.2 Procedimiento del Colesterol Enzimático	18
Cuadro 2.3 Performance del Colesterol Enzimático	19
Cuadro 2.4 Procedimiento Triglicéridos Enzimático	23
Cuadro 2.5 Performance del Triglicéridos Enzimático	24
Cuadro 2.6 Procedimiento del HDL Colesterol	27
Cuadro 2.7 Performance del HDL Colesterol	28
Cuadro 2.8 Procedimiento del LDL Colesterol	31
Cuadro 2.9 Performance del LDL Colesterol	32
Tabla 3.1 Resultados de la encuesta realizada	41
Tabla 3.2 Parámetros estadísticos con relación al Colesterol de los estudiante	es de la
Escuela	43
Tabla 3.3 Datos del histograma del colesterol de la Escuela	46
Tabla 3.4 Parámetros estadísticos con relación a los Triglicéridos de los estudia	antes de
la Escuela	47
Tabla 3.5 Datos del histograma de los Triglicéridos de la Escuela	50
Tabla 3.6 Parámetros estadísticos con relación al HDL Colesterol de los estudia	antes de
la Escuela	51
Tabla 3.7 Datos del histograma del HDL colesterol de la Escuela	54
Tabla 3.8 Parámetros estadísticos con relación al LDLColesterol de los estudia	antes de
la Escuela	55
Tabla 3.9 Datos del histograma del LDL colesterol de la Escuela	58

AUTORAS:

Colegio59
Tabla 3.11 Datos del histograma del colesterol del Colegio62
Tabla 3.12 Parámetros estadísticos con relación a los Triglicéridos de los estudiantes
del Colegio63
Tabla 3.13 Datos del histograma de los Triglicéridos del Colegio66
Tabla 3.14 Parámetros estadísticos con relación al HDL Colesterol de los estudiantes
del Colegio67
Tabla 3.15 Datos del histograma del HDL colesterol del Colegio70
Tabla 3.16 Parámetros estadísticos con relación al LDL Colesterol de los estudiantes
del Colegio71
Tabla 3.17 Datos del histograma del LDL colesterol del Colegio74
Índice de Gráficos
Gráfico 3.1 Cuadro comparativo de consumo de Frutas y Verduras42
Gráfico 3.2 Cuadro comparativo de consumo de comida "chatarra"42
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)
Gráfico 3.3 Cuadro comparativo del Colesterol de los estudiantes de la escuela (Primera Toma)

AUTORAS:

Gráfico 3.9 Cuadro comparativo del HDL Colesterol de los estudiantes de la escuela
(Primera Toma)52
Gráfico 3.10 Cuadro comparativo del HDL Colesterol de los estudiantes de la escuela
(Duplicado)53
Gráfico 3.11 Histograma del HDL colesterol los estudiantes de la
escuela54
Gráfico 3.12 Cuadro comparativo del LDL Colesterol de los estudiantes de la escuela
(Primera Toma)
Gráfico 3.13 Cuadro comparativo del LDL Colesterol de los estudiantes de la escuela
(Duplicado)
Gráfico 3.14 Histograma del LDL colesterol los estudiantes de la
escuela
Gráfico 3.15 Cuadro comparativo del Colesterol de los estudiantes del Colegio
(Primera Toma)60
Gráfico 3.16 Cuadro comparativo del Colesterol de los estudiantes de la escuela
(Duplicado)6
Gráfico 3.17 Histograma del Colesterol los estudiantes de
Colegio62
Gráfico 3.18 Cuadro comparativo de los Triglicéridos de los estudiantes del colegio
(Primera Toma)64
Gráfico 3.19 Cuadro comparativo de los Triglicéridos de los estudiantes del colegio
(Duplicado)65
Gráfico 3.20 Histograma de los Triglicéridos de los estudiantes de
colegio66
Gráfico 3.21 Cuadro comparativo del HDL Colesterol de los estudiantes del colegio
(Primera Toma)68
Gráfico 3.22 Cuadro comparativo del HDL Colesterol de los estudiantes del colegio
(Duplicado)69
Gráfico 3.23 Histograma del HDL colesterol los estudiantes de
AUTORAS: DIANA SOFIA DÉLEG MONTERO

colegio							70
Gráfico 3.24 Cuadro comparativo del LDL Colesterol de los estudiantes del colegio							
(Primera Toma)							72
Gráfico 3.25 C	uadro comparativ	o del	LDL Co	lesterol de l	os estu	diantes del co	legio
(Duplicado)							73
Gráfico 3.26	Histograma	del	LDL	colesterol	los	estudiantes	del
colegio							74
Índice General							
AGRADECIMIE	NTOS						
DEDICATORIA	S						
RESUMEN							
JUSTIFICACIÓ	N						
		C	apítulo	1			
1 Introducción							
1.1 Nutrición.	1.1 Nutrición2						
1.1.1 Fib	1.1.1 Fibra2						
1.2Alimentad	1.2Alimentación3						
1.2.1 Re	1.2.1 Recomendaciones3						
1.3Vitaminas4							
1.4Macronutrientes4							
1.5 Minerales de importancia en la adolescencia5							
1.6Grasas5							
1.6.1 Clasificación de las Grasas6							
1.6.1.	1 Ácidos Graso	s Trans	3				6
1.6.1.	2 Ácidos Graso	s Satur	ados				7
AUTORAS: DIANA SOFIA DÉL ANA ROSA DELGA JESSICA ESTEFAI		ΛÁΝ				6	

1.6.1.3	Ácidos grasos pol	iinsaturado	s			7
1.6.1.4	Ácidos grasos mo	noinsatura	dos			7
1.6.2 Reco	mendaciones	para	la	ingesta	de	las
grasa	as	7				
1.6.3 Func	iones de las grasas					8
1.6.4 Gras	as perjudiciales					8
1.6.4.1	Trans o hidrogena	adas				9
1.6.4.2	Saturadas					9
1.6.5 Hiper	lipidemias					9
1.7Colesterol						10
	colesterolemia					
1.7.2 Tipos	de Colesterol					11
1.7.3 Facto	ores que aumentan	el colestero	ol sanguí	neo		12
1.7.3.1	Grasas alimentari	as				12
1.7.3.2	Selección de alim	entos				13
1.7.3.3	Balance Energétion	co				13
1.7.3.4	Conducta y Actitu	des				13
1.8Balance En	ergético					13
		Capítulo	2			
Métodos y Mate	eriales					
2.1 Métodos						15
2.1.1 Coles	sterol Enzimático					
2.1.1.1	Significación Clíni	ca				15
2.1.1.2	Fundamentos del	Método				15
2.1.1.3	Reactivos Provisto	os				15
2.1.1.4	Instrucciones para	a su uso				16
2.1.1.5	Precauciones					
2.1.1.6	Estabilidad y Alma	acenamient	to			16
ITODAC.						

2

	2.1.1.7	Indicios de inestabilidad o deterioro de los reactivos1	16
	2.1.1.8	Muestra1	7
	2.1.1.9	Material Requerido1	7
	2.1.1.10	Condiciones de reacción1	7
	2.1.1.11	Procedimiento18	8
	2.1.1.12	Estabilidad de la mezcla de reacción final18	8
	2.1.1.13	Cálculos de los resultados18	8
	2.1.1.14	Valores de referencia1	8
	2.1.1.15	Limitaciones del procedimiento18	3
	2.1.1.16	Performance1	9
2.1	.2 Triglic	éridos1	9
	2.1.2.1	Significación Clínica2	20
	2.1.2.2	Fundamentos del Método2	20
	2.1.2.3	Reactivos Provistos2	20
	2.1.2.4	Instrucciones para su uso	0
	2.1.2.5	Precauciones	С
	2.1.2.6	Estabilidad y Almacenamiento2	1
	2.1.2.7	Indicios de inestabilidad o deterioro de los reactivos2	1
	2.1.2.8	Muestra2	1:1
	2.1.2.9	Material Requerido2	2
	2.1.2.10	Condiciones de reacción2	2
	2.1.2.11	Procedimiento22	2
	2.1.2.12	Estabilidad de la mezcla de reacción final23	3
	2.1.2.13	Cálculos de los resultados23	3
	2.1.2.14	Valores de referencia23	3
	2.1.2.15	Limitaciones del procedimiento23	3
	2.1.2.16	Performance24	4
2.1	.3 HDL (Colesterol24	4
	2.1.3.1	Reactivo Precipitante24	4

AUTORAS:

	2.1.3.2	Significación Clínica	24
	2.1.3.3	Fundamentos del Método	25
	2.1.3.4	Reactivos Provistos	25
	2.1.3.5	Instrucciones para su uso	25
	2.1.3.6	Precauciones	25
	2.1.3.7	Estabilidad y Almacenamiento	25
	2.1.3.8	Indicios de inestabilidad o deterioro de los reactivos	25
	2.1.3.9	Muestra	26
	2.1.3.10	Material Requerido	26
	2.1.3.11	Condiciones de reacción	26
	2.1.3.12	Procedimiento	27
	2.1.3.13	Estabilidad de la mezcla de reacción final	27
	2.1.3.14	Cálculos de los resultados	27
	2.1.3.15	Valores de referencia	28
	2.1.3.16	Limitaciones del procedimiento	28
	2.1.3.17	Performance	28
2. 1	1.4 LDL C	Colesterol	28
	2.1.4.1	Reactivo Precipitante	28
	2.1.4.2	Significación Clínica	28
	2.1.4.3	Fundamentos del Método	29
	2.1.4.4	Reactivos Provistos	29
	2.1.4.5	Instrucciones para su uso	29
	2.1.4.6	Precauciones	29
	2.1.4.7	Estabilidad y Almacenamiento	29
	2.1.4.8	Indicios de inestabilidad o deterioro de los reactivos	30
	2.1.4.9	Muestra	30
	2.1.4.10	Material Requerido	30
	2.1.4.11	Condiciones de reacción	30
	2.1.4.12	Procedimiento	30

AUTORAS:

2.1.4.13 Estabilidad de la mezcla de reacción final	31
2.1.4.14 Cálculos de los resultados	31
2.1.4.15 Valores de referencia	31
2.1.4.16 Limitaciones del procedimiento	31
2.1.4.17 Performance	32
2.2Materiales	32
2.2.1 Materiales para la determinación de Colesterol	32
2.2.2 Materiales para la determinación de Triglicéridos	33
2.2.3 Materiales para la determinación de LDL Colesterol	33
2.2.4 Materiales para la determinación de HDL Colesterol	34
CAPITULO 3	
3. Resultados y Discusión	36
4. Conclusiones	76
5. Recomendaciones	79
6. Bibliografía	81
7. Abreviaturas	83
8. Anexos	85

FACULTAD DE CIENCIAS QUÍMICAS

ESCUELA DE BIOQUÍMICA Y FARMACIA

DETERMINACIÓN DEL PERFIL LIPIDICO EN ADOLESCENTES Y NIÑOS DEL CENTRO EDUCATIVO BILINGÜE INTEGRAL "CEBIN"

Tesis previa a la obtención Del título de Bioquímica y Farmacia

AUTORAS:

DIANA SOFIA DÉLEG MONTERO

ANA ROSA DELGADO YANZA

JESSICA ESTEFANIA ORELLANA ROMÁN

DIRECTORA:

DRA. SILVANA DONOSO

CUENCA - ECUADOR 2010

AGRADECIMIENTOS

Al culminar nuestra tesis queremos agradecer en primer lugar a Dios por habernos dado fortaleza y sabiduría para asumir los retos que se nos presentaron a lo largo de la misma.

A nuestra familia por brindarnos el apoyo incondicional, quienes siempre nos alentaron a seguir adelante y a no rendirnos hasta cumplir nuestros sueños.

Un agradecimiento muy especial a nuestra directora de tesis la Doctora Silvana Donoso, quien nos brindó su apoyo, dedicación y ante todo paciencia al momento de responder nuestras dudas e inquietudes.

Además agradecemos a las personas que de uno u otro modo nos han colaborado en el desarrollo de nuestra tesis, dedicando parte de su tiempo a brindarnos sus conocimientos y consejos:

Dra. Lourdes Jerves
Dra. Alejandra Vázquez
Dra. Luz María Samaniego
Dra. Paulina Escobar
Dr. Fabián León
Dra. Diana Astudillo
Dr. Eduardo Sánchez

Dra. Blanca Mejía

No podemos dejar de agradecer al Laboratorio de Atención al Público de la Universidad de Cuenca por habernos abierto las puertas de sus instalaciones para el desarrollo práctico de nuestra tesis.

AUTORAS:

DEDICATORIA

A Dios, por ser mi fuente de fortaleza y perseverancia para cada día seguir adelante.

Para mis padres, que a pesar de los desaciertos y momentos difíciles no dudaron en brindarme su apoyo incondicional, constante y sincero para lograr la culminación de una de mis metas más importantes. Gracias por creer en mi, sin su ayuda no hubiese sido posible llegar hasta el final.

A mis hermanos que con su cariño y entusiasmo supieron darme el ánimo necesario en el momento preciso.

Diana Sofía Deleg Montero

DEDICATORIA

Esta tesis va dedicada primero a Dios que me dio la fortaleza para avanzar a lo largo de esta carrera estudiantil y ser mi guía espiritual en todo este camino.

Pero de manera muy especial a las dos personas más importantes en mi vida y mi corazón mi esposo GEOVANNY FERNANDO RUIZ Y MI HIJA DANIELA FERNANDA no hay palabras que puedan describir mi profundo agradecimiento para ellos, quienes durante todos estos años confiaron en mí; y supieron entender el tiempo que no estuve con ellos.

El, que siempre me apoyo, estuvo allí en los buenos y malos momentos siempre dándome la fortaleza para no rendirme y apoyándome de una de otra manera especialmente en lo que siempre supo hacerlo bien amándome y dándome su cariño y comprensión. Gracias mi amor por acompañarme, entenderme y ayudarme todo este tiempo por ser mi aliento y parte de mi vida.

Mi Hija que me apoyó todos estos años, por su infinito amor, cariño, comprensión. Sobre todo por soportar estos años lejos de ella, por acompañarme en los buenos y malos momentos siempre fue la razón por la que luche para llegar al final a pesar de todos los obstáculos, ella siempre estuvo allí con su inocencia y su felicidad es la que siempre me llenaba de valor para salir adelante gracias mi amor por ser mi fortaleza y la razón por la cual estoy aquí.

A mis **Padres** que siempre me apoyaron de una u otra manera gracias por confiar en mí y hacerme sentir que soy su orgullo.

También un profundo agradecimiento a mí suegro Fernando que fue unas de las personas que mas creyó y confió en mí, por ser como un padre que siempre me dio su apoyo en lo que más pudo.

Y a toda mi familia, tanto de mi como de mi esposo por apoyarme y brindarme su comprensión y ayuda en los momentos que necesite.

Ana Rosa Delgado Yanza

AUTORAS:

DEDICATORIA

El presente trabajo va dedicado principalmente a Dios que fue mi compañero

incondicional y me dio su mano en los días y las noches largas de estudio guiándome

por el camino de la sabiduría.

A mis Papitos Queridos TOYO y RUTH quienes me dieron su confianza, dedicación y

apoyo para la culminación de un sueño más, gracias papitos por darme toda su

comprensión y haberme guiado por el camino del bien.

A mi **HERMANO** por su cariño y apoyo quien con sus palabras me dio aliento en los

momentos adecuados.

A mi esposo **PABLO** por ser mi amigo y compañero quien con amor me enseño que no

siempre es conveniente dar vuelta la página, sino que a veces es necesario rasgarla

para caminar juntos por el sendero de la vida.

Al gran amor de mi vida, mi hija **ROMINA RAFAELLA** quien con su sonrisa y sus ojos

llenos de ternura me dan aliento y me impulsan para seguir adelante en la lucha diaria

y culminar una etapa más en mi vida. Gracias por ser parte de mi.

Jessica Estefania Orellana Román.

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

JUSTIFICACIÓN

Nosotras como alumnas egresadas de la Facultad de Ciencias Químicas, hemos visto la necesidad de realizar una valoración del perfil lipídico debido a que en la actualidad,

los niños y adolescentes tienden a ingerir alimentos no saludables, en la mayoría de

casos no lo hacen en familia, si a eso le unimos cada vez más sedentarismo en sus

juegos y mayor tiempo en frente del televisor, nos encontramos con que están

tendiendo al sobrepeso o la obesidad.

En nuestro medio los adolescentes presentan una tendencia elevada de los valores

referenciales en relación con los niños, en donde la influencia de la dieta y hábitos de

ejercicio son los que con el transcurso del tiempo van a incidir en su estado de salud.

A la presente fecha, el 90% de los casos de pacientes infanto-juveniles con problemas

de niveles de perfil lipídico altos son debido a la mala alimentación, 5% corresponde a

causas secundarias tales como hipotiroidismo, enfermedades hepáticas, etc., y el 5%

restante es de origen hereditario.

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

CAPÍTULO 1

1. INTRODUCCIÓN

La niñez y la adolescencia son etapas de la vida marcadas por importantes cambios emocionales, sociales y fisiológicos. Sobre estos últimos la alimentación cobra una especial importancia debido a que los requerimientos nutricionales, para hacer frente a estos cambios, son muy elevados y es necesario asegurar un adecuado aporte de

energía y nutrientes para evitar situaciones carenciales que puedan ocasionar

alteraciones y trastornos de la salud.

Se debe hacer frente a la alimentación del niño y del adolescente conociendo los

requerimientos nutricionales, sabiendo elegir los alimentos que garantizan una dieta

suficiente en energía y nutrientes, organizando y estructurando las comidas a lo largo

del día. Por último es importante conocer aquellas situaciones que pueden afectar a los

niños y adolescentes y en las que se debe llevar a cabo alguna modificación de la

dieta.

Las necesidades nutricionales de los niños y adolescentes vienen marcadas por los

procesos de maduración sexual, aumento de talla y aumento de peso, característicos

de esta etapa de la vida. Estos procesos requieren una elevada cantidad de energía y

nutrientes, hay que tener en cuenta que en esta etapa el niño gana aproximadamente

el 20% de la talla que va a tener como adulto y el 50% del peso. Estos incrementos se

corresponden con aumento de masa muscular, y masa ósea. Toda esta situación se ve

directamente afectada por la alimentación que debe estar dirigida y diseñada para

cubrir el gasto que se origina.

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

ANSELIN IL TAN

UNIVERSIDAD DE CUENCA

Es muy difícil establecer unas recomendaciones standard para los niños y adolescentes debido a las peculiaridades individuales que presentan estos grupos de población. La mayor parte de las recomendaciones se basan en el establecimiento de raciones que se asocian con "una buena salud.

1.1 NUTRICIÓN

Es el conjunto de procesos mediante los cuales el ser vivo, en éste caso el hombre utiliza, transforma e incorpora en sus propias estructuras una serie de sustancias que recibe del mundo exterior mediante la alimentación, con el objetivo de obtener energía, construir y reparar las estructuras orgánicas y regular los procesos metabólicos.

El proceso nutritivo es, en consecuencia, involuntario, y depende de la acertada elección alimenticia el poder asumirlo de forma satisfactoria.

1.1.1 La Fibra

Es importante consumir fibra natural que la poseen los alimentos y que permanece en el intestino después de hacer la digestión. Ayuda a prevenir enfermedades. Por ejemplo: Cáncer de colon, apendicitis, obesidad, estreñimiento y padecimientos del corazón.

Algunos alimentos que contienen mucha fibra

- Frijoles y garbanzos
- Maíz
- Cereales integrales

1.2 ALIMENTACIÓN

La alimentación es un elemento importante en la buena salud, influye la calidad de los alimentos, la cantidad de comida y los hábitos alimentarios para un bienestar del ser humano, con lo cual se obtiene una nutrición equilibrada.

Las frutas y los vegetales contienen vitaminas, minerales, carbohidratos y fibra. Estas sustancias son necesarias para mantener el funcionamiento del organismo durante todas las etapas de la vida.

Por tal razón se recomienda comer diariamente dos frutas y dos tipos de vegetales. Los jarabes o pastillas de vitaminas no pueden sustituir una alimentación variada y completa que contiene todas las vitaminas y minerales necesarios.

1.2.1 Recomendaciones

- Comer alimentos naturales ricos en vitamina A y C
- Aumentar el consumo de fibra.
- Coma con frecuencia vegetales de color verde, amarillo y anaranjado intenso.
- Reduzca el consumo de grasas animales.
- Disminuya el consumo de embutidos y carnes ahumadas.
- Flimine el consumo de bebidas alcohólicas
- No fume.
- Hay que hacer lo posible por comer las frutas y las verduras crudas y con cáscara (semillas, estopas) e inicie su consumo paulatinamente.
- En el caso de los adultos deben comer diariamente 30 grs. de fibra distribuidos en los diferentes tiempos de comida.
- Se debe tomar suficiente líquido: aproximadamente 8 vasos al día.
- Modere el consumo de sal en las comidas.

AUTORAS:

- Mantenga un peso de acuerdo al tamaño o estatura.
- Evite el exceso de azúcar.

1.3 VITAMINAS

Estas son indispensables para la piel, el pelo, las uñas, los ojos, las vías respiratorias y urinarias. Ayudan al crecimiento de los huesos y de los dientes. Además protegen contra el cáncer de estómago, esófago, laringe y pulmones.

La Vitamina A se encuentra en vegetales y frutas de color amarillo intenso y verde oscuro, como:

- Camote
- Zanahoria
- Mango maduro
- Papaya
- Zapote
- Melón
- Sandía

La vitamina C se encuentra en vegetales crudos y en las frutas principalmente ácidas, como:

- Naranja
- Guayaba
- Fresa
- Limón ácido
- Mandarina
- Mango
- Tomate

AUTORAS:

Ayuda a la cicatrización de las heridas y quemaduras y a la consolidación de las fracturas óseas. Mejora la absorción del hierro. Aumenta las defensas del organismo para evitar enfermedades (principalmente del aparato respiratorio). Al igual que la vitamina A, protege contra el cáncer.

Para los adolescentes se recomiendan, especialmente, las vitaminas que de una u otra forma se relacionan con la síntesis de proteínas, el crecimiento y el desarrollo: vitamina A, D, y Ácido Fólico, B12, B6, Riboflavina, Niacina, y Tiamina, sin que se recomiende cantidad mínima o específica de ninguna de ellas. La fuente principal de todas ellas son las frutas y las verduras.

1.4 MACRONUTRIENTES

Con respecto a los hidratos de carbono y proteínas las recomendaciones en cantidad y calidad son las mismas que para un adulto sano. Se deben mantener las raciones de una dieta sana y equilibrada Se recomienda que, al menos, el 50% de la energía total de la dieta proceda de hidratos de carbono y de un 15 a un 20% de las proteínas asegurando una buena parte de origen vegetal.

En cuanto a grasas, deben representar el 30-35% del total de calorías de la dieta con la relación ácidos grasos saturados, monoinsaturados, poliinsaturados adecuada. No hay que olvidar que el aporte correcto de grasas supone cubrir adecuadamente las necesidades de ácidos grasos esenciales (necesarios para formar diferentes metabolitos) y de vitaminas liposolubles.

1.5 MINERALES DE IMPORTANCIA EN LA ADOLESCENCIA

Son tres los minerales que tienen especial importancia en la adolescencia: el calcio, el hierro y el zinc. Cada uno de ellos se relaciona con un aspecto concreto del crecimiento:

AUTORAS:

- El calcio con el crecimiento de la masa ósea. Se recomiendan unos 1200 mg/día. La disponibilidad es diferente dependiendo del alimento del que proceda siendo los alimentos más adecuados la leche y todos sus derivados. La vitamina D, la lactosa y las proteínas facilitan su absorción mientras que la fibra, la cafeína y el azúcar la dificultan.
- El hierro con el desarrollo de tejidos hemáticos (los glóbulos rojos) y del muscular. La recomienda un suplemento de 2 mg/día para varones en edad adolescente durante el periodo de máximo crecimiento, entre los 10 y 17 años. Para las chicas se recomienda un suplemento de 5mg/día a partir de la menarquia. El hierro que mejor se absorbe es el procedente de la carne, mientras que el procedente de legumbres, verduras.
- El zinc con el desarrollo de la masa ósea y muscular. También está relacionado con crecimiento del cabello y uñas. Está directamente relacionado con la síntesis de proteínas y por lo tanto con la formación de tejidos por lo que es especialmente importante en la adolescencia, se establece una ingesta diaria de zinc en torno a los 12 mg/día para chicas y 15mg/día para chicos. La fuente principal de zinc la constituyen las carnes, pescado y huevos. También los cereales complejos y las legumbres constituyen una fuente importante. La fibra actúa dificultando su absorción.

1.6 GRASAS

Son aquellas sustancias que están formadas por carbono, hidrogeno y oxigeno, no soluble en agua.

Químicamente, las grasas son generalmente triésteres del glicerol y ácidos grasos. Las grasas pueden ser sólidas o líquidas a temperatura ambiente, dependiendo de su estructura y composición. Aunque las palabras "aceites", "grasas" y "lípidos" son todas usadas para referirse a las grasas, la palabra "aceites" es usualmente usada para

AUTORAS:

referirse a lípidos que son líquidos a temperatura ambiente, mientras que la palabra "grasas" es usada para referirse a los lípidos sólidos a temperatura ambiente.

Bioquímicamente, las grasas son sustancias apolares y por ello son insolubles en agua. Esta apolaridad se debe a que sus moléculas tienen muchos átomos de carbono e hidrógeno unidos de modo covalente puro y por lo tanto no forman dipolos que interactúen con el agua.

Las grasas son necesarias para el organismo y una dieta por debajo del 10% de grasas puede acarrear consecuencias negativas para el organismo. El total de grasa diaria para un hombre es de 90g y para las mujeres es de 70g.

Cuando la ingestión de grasa supera la cantidad necesitada se produce un aumento de peso por acumulación de grasa en el tejido adiposo que puede conducir a la obesidad o al riesgo de adquirir numerosas enfermedades. Los alimentos con más grasa son de mayor a menor los aceites, las mantequillas, los frutos secos, el chocolate, las galletas, los huevos, la leche entera y la carne.

Además es muy importante e indispensable distinguir entre una grasa que podríamos considerar recomendable y no recomendable.

Las grasas son también combustibles, como los hidratos de carbono, pero mucho más poderosos. Nos protegen del frío y nos dan energía para que nuestro organismo funcione. Ayudan a transportar y absorber las vitaminas liposolubles (A, D, E, K) y a incorporar los ácidos grasos esenciales que no producimos.

Son una fuente concentrada de calor y energía a la que el cuerpo recurre cuando lo necesita. Cada gramo de grasa provee al organismo 9 calorías, que representan más del doble de las que aportan los hidratos de carbono y las proteínas.

Una vez que el organismo la obtiene, el exceso es utilizado por diferentes tipos de tejidos, pero en su mayoría se deposita en las células adiposas. Estos depósitos sirven como protección y aislamiento de diferentes órganos.

AUTORAS:

La recomendación saludable es que en la alimentación diaria no haya más de un 30% de grasas. Por lo general el consumo es superior al 40% y está dado principalmente por las grasas que aumentan el colesterol malo y el colesterol total.

Hay que distinguir los distintos tipos de grasas. Existen algunas imprescindibles, que tienen efectos benéficos para la salud, y otras perjudiciales.

1.6.1 Clasificación de las grasas

En orden creciente desde las menos saludables hasta las más saludables.

1.6.1.1 Ácidos grasos trans (AGT).

Aumentan la concentración de colesterol total y de LDL y disminuyen el HDL.

En la margarinas, manteca, chocolate, caramelos blandos y otras golosinas, tapas de empanadas y tartas industrializadas, comidas de rotisería, polvos para flanes, bizcochuelos, galletitas de agua y dulces, frituras y productos de pastelería, comidas rápidas, sopas instantáneas, cremas para café.

1.6.1.2 Ácidos grasos saturados (AGS).

Representan más del 50% del peso del alimento: Coco, manteca de cerdo, manteca de cacao (chocolate blanco), manteca.

Representan entre el 10 y el 50% del peso del alimento: Carnes muy grasas, fiambres grasos, crema de leche, chocolate, chorizo, chicharrón, panceta, quesos duros.

Representan menos del 10% del peso del alimento: Leche entera, carnes magras de cerdo, vaca y pollo, corazón, queso fresco.

1.6.1.3 Ácidos grasos poliinsaturados (AGPI).

- Omega-6.
- Omega-3 marino.

AUTORAS:

Omega-3 vegetal.

1.6.1.4 Grasas poliinsaturadas (AGPI).

Representan más del 50% del peso del alimento: Aceites de girasol, de maíz, de uva y de soja, germen de trigo, nuez.

Representan entre el 10 y el 50% del peso del alimento: Semillas de lino, de sésamo y de girasol, nueces, pescados grasos (caballa, sardina, pez espada, atún).

Representan menos del 10% del peso del alimento: Pescados magros (cazón, arenque, mero, mojarra, róbalo), pulpo, legumbres (garbanzos, habas, soja, lentejas), cereales (arroz, avena, maíz, trigo), verduras.

1.6.1.5 Ácidos grasos monoinsaturados (AGMI).

Representan más del 50% del peso del alimento: Aceites de oliva y de canola, almendra, avellana, maní tostado, nuez de pecan, pistacho.

Representan entre el 10 y el 50% del peso del alimento: Palta, carne de cerdo, pavo, semillas de sésamo y de girasol.

Representan menos del 10% del peso del alimento: Huevo entero, aceitunas.

1.6.2 Recomendaciones para la ingesta de las grasas

El consumo elevado de ácidos grasos saturados y ácidos grasos trans aumenta el riesgo de Enfermedad cerebro vascular más que el consumo de grasas totales.

- Se debe restringir la ingesta combinada de ácidos grasos saturados y ácidos grasos trans a menos del 8% del total de calorías diarias.
- El colesterol dietario aumenta el colesterol total y LDL, pero no tanto como los ácidos grasas saturadas y trans.
- El colesterol dietario contribuye al desarrollo de la Enfermedad cerebro vascular.
- Las personas con bajo riesgo coronario pueden comer cantidades razonables de alimentos ricos en colesterol. Las personas con niveles altos de colesterol o con

AUTORAS:

otros factores de riesgo deben restringir la ingesta de alimentos ricos en colesterol.

- Si se reemplaza AGS por AGPI (omega-6), disminuyen el colesterol total, el LDL y los TG plasmáticos y se reduce el riesgo de eventos coronarios y muerte.
- AGPI (omega-6) entre el 8 y el 10% de las calorías totales
- El consumo de AGPI (omega-3) marino disminuye los TG y reduce el riesgo de eventos coronarios y muerte.
- Pescados grasos azules de mar dos veces por semana.
- El consumo de AGPI (omega-3) vegetal previene la arritmia, ingerir 2 gramos por día.
- El consumo elevado de AGS aumenta el riesgo de ECV.
- Si se reemplaza una proporción de AGS por AGPI omega-6, para lograr una relación AGPI/ AGS cuyo resultado sea superior a 1, se reduce el riesgo de ECV.
- El consumo elevado de AGS aumenta el colesterol total y el LDL.
- Si se reemplazan los AGS por glúcidos, AGPI o AGMI disminuyen el colesterol total y el LDL, con un efecto apenas mejor con los AGPI.
- AGS + AGT menos del 8% de las calorías totales.
- En comparación con los AGPI y AGMI, los AGT aumentan la concentración de colesterol total y LDL y disminuye el HDL.
- Los AGT aumentan el riesgo de ECV, en particular cuando la ingesta es elevada.
- AGS + AGT menos del 8% de las calorías totales.
- Si se reemplazan los AGS por AGMI disminuyen el colesterol total y el LDL, aunque no en la misma proporción que con los AGPI.
- Reemplazar una proporción de AGS por AGMI como estrategia para reducir la ingesta de AGS.
- AGMI del 12 al 15% de las calorías totales.

AUTORAS:

- Por lo tanto, consulta a un nutricionista que efectúe los cálculos correspondientes para el manejo total de grasas y confeccione un plan nutricional balanceado con alimentos bajos en AGT y AGS.
- En general, establecer un límite diario de grasas que no supere el 30% de la ingesta calórica. Reduce los AGS a menos del 8%.

1.6.3 Funciones de las grasas

- Proteger los órganos, evitando que algún golpe o movimiento brusco los lesione.
- Proporcionar junto con los hidratos de carbono y las proteínas energía en forma de calorías.
- Transportar las vitaminas A, E, K y D que son las que se llaman vitaminas liposolubles.
- Producción de hormonas
- Producción de las membranas de las células.

Producción de enzimas y neurotransmisores.

1.6.4 Grasas perjudiciales

Su consumo excesivo endurece las arterias y provoca aterosclerosis y problemas cardíacos. Estas grasas nocivas comprenden dos tipos:

1.6.4.1 Trans o hidrogenadas.

Aumentan el colesterol malo y disminuyen el bueno; por tal motivo son consideradas peores enemigas de la salud que las grasas saturadas. Están en la margarinas, manteca, chocolate, caramelos blandos y otras golosinas, tapas de empanadas y tartas industrializadas, comidas de rotisería, polvos para flanes, biscochuelos, Brownies y

AUTORAS:

magdalenas, galletitas de agua y productos de pastelería, productos de copetín, comidas rápidas, sopas instantáneas, cremas para café (tipo Coffe Mate).

La hidrogenación es una tecnología que tiene por objeto prolongar la vida útil de las materias grasas para la venta. Su aplicación hace que durante el proceso industrial se destruyan algunas propiedades nutricionales de los alimentos; además de disminuir el contenido de omega-3 y omega-6, aumenta el colesterol malo y reduce el bueno, lo que ocasiona un efecto perjudicial para el organismo.

1.6.4.2 Saturadas.

Aumentan el colesterol total y el malo. Se encuentran en las carnes grasas, la piel del pollo, vísceras, fiambres y embutidos, lácteos enteros, manteca, crema de leche, helados de crema, productos de pastelería.

1.6.5 Hiperlipidemias

Es causada por una dieta que contiene demasiado colesterol y grasa o cuando el cuerpo produce demasiado colesterol y grasa, o ambos. La obesidad, la falta de ejercicio y una dieta de muchas grasas saturadas y colesterol y pocas frutas, legumbres y alimentos fibrosos, puede contribuir al desarrollo de la hiperlipidemia. Sin embargo, fuera de la dieta hay otros factores que también pueden producir esta condición.

También puede ocurrir por una enfermedad hormonal, tal como la diabetes mellitus, el hipotiroidismo y el síndrome de Cushing; o puede ser debido a ciertos medicamentos como las píldoras anticonceptivas, la terapia hormonal y algunos diuréticos.

La hiperlipidemia generalmente no tiene síntomas. Se determina por medio de un examen de sangre sencillo que mide los niveles de colesterol y los triglicéridos. Según las pautas del Programa Nacional de Instrucción sobre el Colesterol, los adultos saludables deben revisarse una vez cada cinco años, comenzando desde los 20 años.

AUTORAS:

THE SECURIT COMM

UNIVERSIDAD DE CUENCA

Con antecedentes familiares de colesterol elevado u otros factores de riesgo, es posible que se necesiten revisiones clínicas frecuentes.

1.7 COLESTEROL

El colesterol es una sustancia que se encuentra en todos los tejidos animales, de forma especial en la bilis, en los cálculos biliares, en las grasas y, normalmente, en la sangre. El organismo necesita colesterol, pues a partir de él sintetiza hormonas y sales biliares que desempeñan un papel muy importante en la absorción de las grasas procedentes de los alimentos.

Mediante un mecanismo metabólico muy preciso, el organismo mantiene en equilibrio las cantidades de colesterol que hay en la sangre y en el hígado, pero cuando el aporte de colesterol es superior al necesario durante un tiempo prolongado, el mecanismo puede sufrir alteraciones. La más frecuente de ellas es que el hígado deje de fabricar y de destruir el colesterol de forma normal y, en consecuencia, se rompa el equilibrio y se produzca una hipercolesterolemia, es decir, una concentración excesiva de colesterol en la sangre. Nivel de colesterol total valor adecuado debe estar por debajo de 200mg/dl.

1.7.1 Hipercolesterolemia

Se llama así al nivel elevado de colesterol en la sangre, que es uno de los principales factores de riesgo de enfermedades cardiovasculares (ECV). No se manifiesta con síntomas evidentes; para determinarlo es imprescindible el control periódico. Se mide en miligramos por decilitro (mg/dl) y se considera aceptable una variación del 5% entre distintas mediciones.

En su mayoría, los casos de enfermedad coronaria son el resultado del aumento de los niveles sanguíneos de colesterol y grasas, que se depositan en las paredes de los

AUTORAS:

vasos y disminuyen su diámetro; esto no suele causar dolor, a menos que esté bloqueado el 75% del vaso. Cuando la placa que estrecha un vaso interrumpe el flujo de sangre que va al corazón, se produce un ataque cardíaco.

Por cada 1% de reducción de colesterol disminuye 2% el riesgo de ataque cardíaco, la importancia de la alimentación adecuada y la actividad física diaria, pueden llegar a bajar los niveles del colesterol en un 10 a un 20%.

Todos los adultos deben medir el colesterol de manera periódica.

La variación aceptable de diferentes mediciones es del 5 %.

Valores Referenciales de colesterol total			
Valores de colesterol mg/dl	Resultados		
Menos de 170	Deseable		
170-199	Límite		
200 o más	Alto		

CUADRO 1.1

1.7.2 Tipos de colesterol

- LDL. Es el responsable de la acumulación de grasas en las arterias y se conoce como colesterol malo. Sus cifras son más útiles que las de colesterol total para evaluar el riesgo de ECV. (Menor a 110mg/dl)
- HDL. Remueve el exceso de colesterol de la sangre y se conoce como colesterol bueno. Niveles altos de HDL (50-54 mg/dl) pueden reducir el riesgo, mientras que bajas concentraciones (menores de 35 mg/dl) se consideran un factor de riesgo adicional para el desarrollo de enfermedad coronaria.

AUTORAS:

 Triglicéridos (TG).- Son grasas que están presentes en los alimentos y en la sangre.

Los niveles elevados de Triglicéridos en la sangre están relacionados con un aumento en el riesgo de enfermedad cardíaca, aunque no de manera tan directa como los niveles altos de colesterol.

La ingesta excesiva de calorías puede estimular la producción de colesterol y ayudar a transportar Triglicéridos que no son usados para energía. Este proceso aumenta el LDL y disminuye el HDL.

Las siguientes situaciones aumentan los Triglicéridos:

- Obesidad.
- · Diabetes.
- Abuso de alcohol y de azúcares.
- Enfermedad renal.
- Trastornos genéticos para procesar la grasa.

Valores referenciales de Triglicéridos			
Valores en mg/dl	Resultados		
Menos de 150	Normal		
200 a 400	Límite alto		
400 a 1000	Alto		
Más de 1000	Muy alto		

Cuadro 1.2

1.7.3 Factores que aumentan el colesterol sanguíneo

El 70% del colesterol sanguíneo es fabricado por el organismo como consecuencia de un alto suministro de calorías, grasas saturadas y grasas totales. El 30% restante ingresa directamente con los alimentos y contribuye, aunque no de modo automático, a aumentar el colesterol sanguíneo.

La herencia interviene en menor grado en el aumento del colesterol. Sólo 1 de cada 500 individuos tiene altos niveles de colesterol sanguíneo relacionados con la herencia. En estos casos los cambios alimentarios son decisivos para disminuir los niveles de colesterol y mejorar la respuesta a la medicación.

A pesar de que la presencia de colesterol en la sangre suele asociarse con la ingesta de huevos y manteca, antes de considerar el consumo de alimentos y bebidas deben identificarse los factores individuales que determinan su aumento.

Existen cuatro factores primarios, además de la herencia, que ayudan a elevar el colesterol:

1.7.3.1 Grasas alimentarias.

Hay que distinguir entre las grasas útiles y las que aumentan el colesterol sanguíneo. Algunos alimentos nutritivos contienen grasas escondidas, que pueden arruinar un plan de alimentación bajo en grasas.

1.7.3.2 Selección de alimentos.

Debido a una información nutricional deficiente, mucha gente sabe que está comiendo mal, pero ignora cuáles son los cambios que debería efectuar para proteger su salud.

1.7.3.3 Balance energético.

Los niveles de colesterol sanguíneo y triglicéridos se incrementan como consecuencia de un exceso de calorías. Para disminuirlos es útil ajustar el balance entre las calorías

AUTORAS:

THE COLUMN TO LEGACION

UNIVERSIDAD DE CUENCA

que se incorporan y las que se gastan con la actividad física. Esto también sirve para el control del peso.

1.7.3.4 Conducta y actitudes.

Es fundamental estar motivado para modificarlas. Una actitud realista y positiva permite predecir el éxito a largo plazo. Empezar por examinar los hábitos alimentarios, las cantidades que se consumen, las formas de preparación que se elige, el lugar donde comes y la forma de preparación de las comidas.

Otros factores que elevan el colesterol son el embarazo, la enfermedad tiroidea, la diabetes, ciertos medicamentos y el estrés.

1.8 BALANCE ENERGÉTICO

Cuando el ingreso de calorías está en equilibrio con el gasto, el organismo utiliza todas las calorías que incorpora; no se gana ni se pierde peso. Pero si el ingreso supera al gasto, las calorías que no son utilizadas por el cuerpo se depositan como grasa.

El exceso de grasa corporal está asociado con aumentos de los TG y el LDL, disminución del HDL y alto riesgo de enfermedad cardíaca.

La reducción del colesterol sanguíneo y la pérdida de peso van de la mano. Una alimentación pobre en grasas disminuirá el colesterol a la vez que contribuirá al descenso de peso.

El incremento de la actividad física es esencial para la pérdida de peso, y resulta beneficioso incluso para aquellos que no necesitan bajar de peso. Si se reduces las calorías pero no se mantiene activo, la pérdida de peso será menor o se estancará, porque el cuerpo baja el metabolismo para conservar la energía cuando se recorta el ingreso calórico.

AUTORAS:

2. METODOS Y MATERIALES

2.1 METODOS

2.1.1 COLESTEROL ENZIMATICO

Método enzimático para la determinación de colesterol en suero o plasma. Wiener Lab®.

2.1.1.1 SIGNIFICACION CLINICA

La determinación de colesterol en forma aislada tiene utilidad diagnostica limitada. Se ha visto que el colesterol es uno de los factores contribuyentes a la formación de ateromas dado que las complicaciones arterioscleróticas prevalecen en individuos hipercolesterolémicos.

Estudios epidemiológicos demuestran que el riesgo de contraer enfermedad cardiaca coronaria para individuos de más de 40 años con colesterolemia menor a 2,10 g/l es 3 veces menor que entre individuos con más de 2,30 g/l y 6 veces menor que entre individuos con más de 2,60 g/l.

2.1.1.2 FUNDAMENTOS DEL METODO

El esquema reaccional es el siguiente:

ésteres de colesterol
$$\xrightarrow{\text{lipasa}}$$
 colesterol + ácidos grasos colesterol + O₂ $\xrightarrow{\text{CHOD}}$ colesten–3–ona + H₂O

H₂O₂ + 4-AF + fenol $\xrightarrow{\text{POD}}$ quinona coloreada + H₂O

Cuadro 2.1

AUTORAS:

2.1.1.3 REACTIVOS PROVISTOS

- 2.1.1.3.1 Standard: solución de colesterol 2 g/l.
- **2.1.1.3.2 Enzimas:** suspensión contenido lipasa funfal 300 U/ml, colesterol oxidasa (CHOD) 3 U/ml y Peroxidasa (POD) 20 U/ml.
- 2.1.1.3.3 Reactivo 4-AF: solución de 4-amonofenazona 25mmol/l.
- 2.1.1.3.4 Reactivo Fenol: solución de fenol 55mmol/l.

2.1.1.3.5 Concentraciones finales

Lipasa	≥6000 U/I.
CHOD	≥ 60 U/I.
POD	≥ 400 U/I.
4-AF	1,25 mmol/l.
Fenol	2,75 mmol/l.
pH	7,4 ± 0,1 (a t° amb.)

2.1.1.4 INSTRUCCIONES PARA SU USO

- **2.1.1.4.1 Standard:** mezclar por inversión antes de usar.
- **2.1.1.4.2 Enzimas:** homogenizar por inversión antes de usar, evitando la formación de espuma.
- 2.1.1.4.3 Reactive 4-AF: listo para usar.
- **2.1.1.4.4 Reactivo Fenol:** listo para usar
- **2.1.1.4.5** Reactivo de Trabajo: según el volumen de trabajo colocar en una probeta 50 partes de agua destilada, 5 partes de Reactivo 4-

AUTORAS:

AF, 5 partes de Reactivo Fenol y llevar a 100 partes con agua destilada. Agregar 2 partes de Enzimas previamente homogenizadas, mezclar por inversión, sin agitar, rotular y fechar.

Pueden prepararse distintas cantidades respetando las proporciones. Es importante además, respetar el orden de agregado de los reactivos y asegurar una perfecta homogenización de los mismos, a fin de que el Reactivo Fenol no deteriore el Reactivo de Trabajo.

2.1.1.5 PRECAUCIONES

Los reactivos son para uso "in vitro". El fenol es tóxico e irritante.

2.1.1.6 ESTABILIDAD E INSTRUCCIONES DE ALMACENAMIENTO

- **2.1.1.6.1 Reactivos Provistos:** son estables en refrigerador (2-10°C) hasta la fecha de vencimiento indicad en la caja. No mantener a temperaturas elevadas durante lapsos prolongados.
- **2.1.1.6.2 Reactivo de Trabajo:** en refrigerador y en frasco de vidrio color caramel es estable 1 mes a partir del momento de su preparación.

2.1.1.7 INDICIOS DE INESTABILIDAD O DETERIORO DE LOS REACTIVOS

Durante el uso, el Reactivo de Trabajo puede desarrollar un ligero color rosado que no afecta los resultados siempre que se procese un Blanco con cada lote de determinaciones y un Standard periódicamente. Desechar cuando las lecturas del Blanco sean superiores a 0,160 D.O. o las lecturas del standard sean anormalmente bajas.

AUTORAS:

2.1.1.8 MUESTRA

Suero o Plasma

- a) Recolección: se debe obtener suero o plasma de la manera usual.
- b) **Aditivos:** en caso de que la muestra a emplear sea plasma, se recomienda únicamente el uso de heparina como anticoagulante para su obtención.

c) Sustancias interferentes conocidas:

- Excepto la heparina, los anticoagulantes comunes interfieren en la determinación.
- Los sueros con hemólisis visible o intensa producen valores falsamente aumentados por lo que no deben ser usados.
- El suero fuertemente hiperlipémicos pueden observarse turbiedad: en tal caso, diluir el volumen final de reacción a ½ ó 1/3 con Blanco de reactivos, repetir la lectura y multiplicar el resultado por el factor de dilución.
- No interfieran: bilirrubina hasta 200 mg/l, ácido ascórbico hasta 75 mg/l, ácido úrico hasta 200mg/l, ni hemólisis ligera.
- d) **Estabilidad e instrucciones de almacenamiento:** el colesterol en suero es estable no menos de una semana en refrigerador (2-10°C) y dos meses en congelador, sin agregado de conservadores.

2.1.1.9 MATERIAL REQUERIDO

- Espectrofotómetro o fotocolorímetro.
- Micropipetas, pipetas y material volumétrico adecuados.

AUTORAS:

- Tubos de fotocolorímetro o cubetas espectrofotométricas de caras paralelas.
- Baño de agua a 37°C (opcional).
- Reloj o timer.

2.1.1.10 CONDICIONES DE REACCION

- Longitud de onda: 505nm espectrofotómetro o en fotocolorímetro con filtro verde (490 – 530nm).
- Temperatura de reacción: 37°C.
- Tiempo de reacción: 15 minutos.
- Volumen de muestra: 20ul.
- Volumen de Reactivo de Trabajo: 2ml.
- Volumen final de reacción: 2,02 ml.

Los volúmenes de muestra y reactivo pueden aumentarse o disminuirse proporcionalmente (Ej. 10ul de Muestra + 1ml de Reactivo de Trabajo o 50ul + 5ml).

2.1.1.11 PROCEDIMIENTO

En tres tubos de fotocolorimétrico o cubetas espectrofotométricas marcadas B (Blanco), S (Standard) y D (Desconocido), colocar:

	В	S	D
Sobrenadante	-	20ul	-
Standard	-	-	20ul
Reactivo de Trabajo	2ml	2ml	2ml

Incubar 15 minutos en baño de agua de 37°C o 30 minutos a temperatura ambiente (25°C). Leer en fotocolorímetro con filtro verde (490 – 530nm) o en espectrofotómetro a 505 nm, llevando el aparato a cero con el Blanco.

Cuadro 2.2

2.1.1.12 ESTABILIDAD DE LA MEZCLA DE REACCION FINAL

El color de reacción final es estable dos horas, por lo que la absorbancia debe ser leída dentro de este lapso.

2.1.1.13 CALCULOS DE LOS RESULTADOS

Colesterol (g/l) = D x f donde
$$f = \frac{2,00 \text{ g/l}}{9}$$

2.1.1.14 VALORES DE REFERENCIA

Valores de colesterol:

✓ Deseable: < 2,00 g/l</p>

AUTORAS:

✓ Moderadamente alto: 2,00 – 2,39 g/l

✓ Elevado. ≥2,40 g/l

2.1.1.15 LIMITACIONES DEL PROCEDIMIENTO

Causas de resultados erróneos son.

- Los reductores disminuyen la respuesta de color mientras que los oxidantes colorean e Reactivo aumento los Blancos.
- Dichos agentes son frecuentemente encontrados en el agua destilada empleada para preparar el Reactivo de Trabajo, por lo que se recomienda controlar la calidad de la misma.
- Los detergentes, metales pesados y cianuros son inhibidores enzimáticos.
- Incubación incorrecta: el nivel del agua en el baño no debe ser inferior al de los reactivos en los tubos.
- Uso de Standard de un equipo con los reactivos de otro.
- Los reactivos y el Standard de cada equipo forman un conjunto perfectamente controlado y estandarizado.

2.1.1.16 PERFORMANCE

2.1.1.16.1 Reproducibilidad: procesando replicados de las mismas muestras en 10 días diferentes, se obtuvo:

AUTORAS:

Nivel	D.S.	C.V.
1,57 g/l	± 0,033 g/l	2,32 %
2,90 g/l	± 0,065 g/l	2,23 %
4,71 g/l	± 0,102 g/l	2,13 %

Cuadro 2.3

- 2.1.1.16.2Recuperación: agregando cantidades conocidas de colesterol a distintos sueros, se obtuvo una recuperación entre 98 y 101%, para todo nivel de colesterol entre 1,90 y 4,79 g/l.
- 2.1.1.16.3Límite de detección: depende del fotómetro empleando y de la longitud de ando. De acuerdo con la sensibilidad requerida, el cambio mínimo de concentración detectable para 0,001 D.O. será aproximadamente de 0,007 g/l.
- 2.1.1.16.4Linealidad: la reacción es lineal hasta 5 g/l. para valores superiores, diluir ½ con el Blanco y repetir la lectura multiplicando el resultado final por 2.

2.1.2 TRIGLICERIDOS ENZIMÁTICO

Método enzimático colorimétrico para la determinación de triglicéridos en suero o plasma. Wiener Lab®.

2.1.2.1 SIGNIFICACION CLINICA

Los triglicéridos son lípidos absorbidos en la dieta y también producidos en forma endógena a partir de los carbohidratos.

Su medición es importante en el diagnostico y manejo de las hiperlipidemias. Estas enfermedades pueden tener origen genético o ser secundarias a otras tales como nefrosis, diabetes mellitus o disfunciones endócrinas. El aumento de triglicéridos se ha identificado como un factor de riesgo en enfermedades ateroscleróticas.

AUTORAS:

2.1.2.2 FUNDAMENTOS DEL METODO

Los triglicéridos son hidrolizados enzimáticamente por una lipasa específica, produciendo glicerol y ácidos grasos. El glicerol se oxida con ácido periódico a formaldehido, que se cuantifica colorimétricamente a 410 nm como 3,5-diacetil-1,4-dihidrolutidina.

2.1.2.3 REACTIVOS PROVISTOS

- **Standard:** solución acuosa de triglicéridos 3g/l (contiene glicerol 0,01g/l para corregir el glicerol endógeno de los sueros).
- Lipasa: frasco conteniendo 5.000 U de lipasa.
- **Diluyente:** Solución de buffer Tris 0,5 mol/l (pH 8,7) conteniendo tensioactivo aniónico (SLS) al 5%.
- Oxidante: solución de ácido periódico 2mmol/l en ácido sulfúrico 0,1 mol/l conteniendo inhibidor enzimático.
- Buffer: solución de acetato de amonio 5 mol/l y arsénico de sodio 190 mmol/l.
- Acetilacetona: 2,4 pentanodiona pura.

2.1.2.4 INSTRUCCIONES PARA SU USO

- Standard: listo para usar.
- Lipasa: volcar el contenido del frasco de Diluyente (previamente llevado a temperatura ambiente) dentro del de Lipasa. Mezclar hasta suspensión homogénea. Reemplazar la tapa por el gotero provisto. Anotar la fecha de preparación-
- Antes de usar, homogenizar por inversión vaciando previamente la pipeta del gotero.

AUTORAS:

- Oxidante: listo para usar.
- Reactivo de Color: transferir el contenido de una ampolla de Acetilacetona
 (1,2mil) a in frasco de vidrio color ámbar de 500mñ de capacidad. Agregar el
 contenido del frasco de Buffer y 250 ml de agua destilada. Agitar hasta
 disolución completa de la Acetilacetona. Rotular y fechar con la etiqueta provista.

2.1.2.5 PRECAUCIONES

- Los reactivos son para uso "in vitro".
- El Buffer contiene azida.

2.1.2.6 ESTABILIDAD E INSTRUCCIONES DE ALMACENAMIENTO

- Reactivos Provistos: estables en refrigerador (2-10°C) hasta la fecha de vencimiento indicada en la cajo. El Buffer puede presentar un depósito blanco e insoluble que debe evitar trasvasarse.
- Lipasa: estable en refrigerador (2-10°C), 2 meses a partir de la fecha de su preparación.
- Reactivo de Color: estable en refrigerador (2-10°C), 1 año a partir de la fecha de su preparación.

2.1.2.6 INDICIOS DE INESTABILIDAD O DETERIORO DE LOS REACTIVOS

Normalmente, los blancos de reactivos oscilan entre 0,100 – 0,200 D.O. en fotocolorímetros y entre 0,200 – 0,300 D.O. en espectrofotómetros. Aumentos en las lecturas de los mismos pueden ser indicios de contaminación de Standard o del Reactivo de Color.

2.1.2.8 MUESTRA

Suero o plasma

- a) Recolección: obtener la muestra de la manera usual (previo ayuno de 12 a 14 horas). Separar los glóbulos rojos dentro de las 2 horas a partir del momento de la extracción.
- b) **Aditivos:** en caso de emplear plasma, se recomienda el uso de Anticoagulante.

c) Sustancias interferentes conocidas:

- Los sueros con hemólisis visible o intensa pueden producir falsamente aumentados. Par descontar tal interferencia, debe procesar un Blanco de Muestra (BM) pero remplazando el agregado de Standard por 20 ul de Muestra en cuestión. Es decir que en el caso de muestra hemolizada su lectura debe corregirse con el correspondiente BM en lugar del B de reactivos.
- En sueros con exceso de lipasa pancreática los triglicéridos se degradan muy rápidamente. Para evitar tal inconveniente se recomienda procesarlos a la brevedad.
- No se observan interferencias por bilirrubina hasta 300 mg/l, fosfolípidos hasta 4 g/l, glucosa hasta 10 g/l ni hemólisis ligera.
- d) **Estabilidad e instrucciones de almacenamiento:** los triglicéridos en suero son estables en refrigerador (2-10°C), sin embargo es recomendable efectuar la determinación lo antes posible a partir del momento de la recolección para evitar la acción de la lipasa endógena. No congelar.

2.1.2.9 MATERIAL REQUERIDO

- Espectrofotómetro o fotocolorímetro.
- Material volumétrico apropiado.

AUTORAS:

- Frasco de vidrio color ámbar.
- Tubos de fotocolorímetro o cubetas espectrofotométricas.
- Baño de agua a 37°C.
- Reloj o timer.

2.1.2.10 CONDICIONES DE REACCION

- Longitud de onda: 410 nm espectrofotómetro o 400-420 nm en (filtro azul) en fotocolorímetro.
- Temperatura de reacción: 37°C.
- Tiempo de reacción: entre 30 y 35 minutos.
- Volumen de muestra: 20ul.
- Volumen de Reactivo de Trabajo: 2ml.
- Volumen final de reacción: 3,57 ml.

2.1.2.11 PROCEDIMIENTO

En tubos de fotocolorimétrico o cubetas espectrofotométricas marcadas B (Blanco), S (Standard) y D (Desconocido), colocar:

	В	S	D
Muestra	-	-	20ul
Standard	20ul	20ul	-
Lipasa	-	2 gt (50ul)	2 gt
	<u> </u>		

Mezclar suavemente. Incubar entre 5 y 10 minutos en baño de agua a 37°C.

AUTORAS:

luego agregar:			
Oxidante	0,5 ml	0,5 ml	0,5 ml
Lipasa	2 gt	-	-
Mezclar. Incubar exactamente 5 minutos a 37°C. luego agregar.			
Reactivo de	3 ml	3 ml	3 ml
Color			
Manalana inauhan an haga da anua a 27º0 damanta 00 minuta / a 5 minuta a			

Mezclar e incubar en baño de agua a 37°C durante 20 minutos (o 5 minutos a 55-65°C). Enfriar y leer en espectrofotómetro a 410 nm o en fotocolorímetro con filtro azul (400-420 nm) de longitud de onda más próxima, llevando el aparato a cero con agua destilada y corriendo las lecturas con el Blanco.

Cuadro 2.4

2.1.2.12 ESTABILIDAD DE LA MEZCLA DE REACCION FINAL

El color de reacción final es estable 3 horas, por lo que la absorbancia debe ser leída dentro de este lapso.

2.1.2.13 CALCULO DE LOS RESULTADOS

Triglicéridos (g/l) = D x f
$$f = 3 g/l$$

 $D = Abs_D - Abs_B$

 $S = Abs_S - Abs_B$

2.1.2.14 VALORES DE REFERENCIA

Valores de Triglicéridos

✓ Deseable: < 1,50 g/l</p>

AUTORAS:

✓ Moderadamente elevado a elevado: 1,50 – 1,99 g/l.

✓ Elevado: 2,00 – 4,99 g/l.

✓ Muy elevado: ≥ 5,00 g/l.

2.1.2.15 LIMITACIONES DEL PROCEDIMIENTO

- Las reacciones correspondientes a Blanco y Standard pueden presentar turbidez

al retirarse del baño por lo que las mismas deben enfriarse antes de proceder a

su lectura.

El uso de filtros con semiancho de banda superior a 20nm disminuye la

sensibilidad y reproducibilidad del sistema.

- La Lipasa debe mediarse con el gotero provisto (2 gotas equivalen a 50 ul) y

adicionarse a cada tubo antes de colocarlo en el baño de agua, manteniendo el

gotero en posición vertical.

La Lipasa, saliva o reactivos ácidos hidrolizan los triglicéridos, pudiendo

disminuir el titulo del Standard (cuya lectura corregida generalmente oscila

alrededor de 0,300 D.O. en espectrofotómetros).

Las contaminaciones con formal o glicerol producen resultados falsamente

aumentados. Deben evitarse el contacto de estas sustancias con el material a

usar (ej.: el frasco donde se prepara el Reactivo de color no tiene que haber

contenido Inhibidor de Fosfatasa).

2.1.2.16 PERFORMANCE

a) Reproducibilidad: procesando día a día, replicados de las mismas muestras se

obtuvieron los siguientes datos:

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA

JESSICA ESTEFANIA ORELLANA ROMÁN

47

Nivel	D.S.	C.V.
1,10 g/l	± 0,042 g/l	3,6 %
2,40 g/l	± 0,065 g/l	2,73 %

Cuadro 2.5

- b) **Recuperación:** agregando cantidades conocidas de trioleína a distintos sueros, se obtuvo una recuperación entre 97 y 101%.
- c) **Linealidad:** la reacción es lineal hasta 15 g/l de triglicéridos. Para valores superiores, diluir la solución coloreada final (Blanco y Desconocido) 1:3 con agua destilada. La lectura puede efectuarse de inmediato y la estabilidad es la misma que en la reacción original. Para los cálculos debe considerarse D = Abs_D dil. Abs_{B dil.} El resultado obtenido debe multiplicarse por la dilución efectuada.

2.1.3 HDL COLESTEROL

2.1.3.1 Reactivo Precipitante

Reactivo precipitante para la separación de las lipoproteínas de alta densidad (HDL) en suero o plasma. Wiener Lab®.

2.1.3.2 SIGNIFICACION CLINICA

Las lipoproteínas plasmáticas son partículas esféricas que contienen cantidades variables de colesterol, triglicéridos, fosfolípidos y proteínas. Estas partículas solubilizan y transportan el colesterol en el torrente sanguíneo.

La proporción relativa de proteína y lípido determina la densidad de estas lipoproteínas. La función principal de las lipoproteínas de alta densidad o HDL (hig densitu lipoproteína) en el metabolismo lipídico es la captación y trasporte de colesterol desde

AUTORAS:

los tejidos periféricos al hígado en un proceso conocido como transporte reverso de colesterol (mecanismo cardioprotectivo).

El HDL colesterol bajo, está asociado con un alto riesgo de enfermedad cardíaca. Por este motivo la determinación de HDL colesterol es una herramienta útil en la identificación de individuos de alto riego.

2.1.3.3 FUNDAMENTOS DEL METODO

Las lipoproteínas de alta densidad (HDL) se separan precipitando selectivamente las lipoproteínas de baja y muy alta densidad (LDL y VLDL) mediante el agregado de sulfato de dextrán de PM 50.000 en presencia de iones Mg⁺⁺.

En le sobrenadante separado por centrifugación, quedan las HDL y se realiza la determinación del colesterol ligado a las mismas, empleando el sistema enzimático Colesterol oxidasa/Peroxidasa con colorimetría según Trínder (Fenol/4-Aminofenazona).

2.1.3.4 REACTIVOS

- Reactivo Dextrán: solución de sulfato de dextrán (PM 50.000) o,032mmol/l.
- Reactivo Magnesio: solución de cloruro de magnesio 1,5 M.

2.1.3.5 INSTRUCCIONES PARA EL USO

• Reactivo Precipitante; preparación: en el frasco provisto medir 2,5ml de Reactivo Dextrán y 2,5ml de Reactivo Magnesio. Mezclar por inversión y colocar fecha de preparación.

Pueden prepararse cantidades menores de acuerdo a las necesidades, respetando la proporción 1 + 1 par ambos reactivos.

AUTORAS:

2.1.3.6 PRECAUCIONES

Los reactivos son para uso diagnóstico "in vitro".

2.1.3.7 ESTABILIDAD E INSTRUCCIONES DE ALMACENAMIENTO

- Reactivos Provistos: son estables a temperatura ambientales hasta la fecha de vencimiento indicad en la caja.
- Reactivo Precipitante: es estable 6 meses a temperatura ambiente o 1 año en refrigeración (2 -10°C) a partir de la fecha de preparación.

2.1.3.8 INDICIOS DE INESTABILIDAD O DETERIORO DE LOS REACTIVOS

Cualquier indicio de contaminación bacteriana puede ser signo de deterioro de los reactivos.

2.1.3.9 MUESTRA

Suero o plasma

- a) Recolección: obtener la muestra de la manera habitual.
- b) Aditivos: en caso de utilizar plasma, recogerlo únicamente con heparina.
- c) **Sustancias interferentes conocidas:** anticoagulantes distintos de la heparina y bilirrubinemia mayor de 50mg/l son causantes de interferencia.
- d) Estabilidad e instrucciones de almacenamiento: separar el suero dentro de la hora de la extracción. Las Lipid Research Clinics recomiendan refrigerar la muestra hasta la realización del ensayo. El almacenamiento o conservación de las muestras a temperatura ambiente altera la composición lipoproteica de las muestras aún antes de las 24 horas.

AUTORAS:

Algunos autores mencionan estabilidad de 3 días a 4°C que se prolongan al congelar, pero existe mucha variedad entre muestras diferentes, por la que se recomienda mantener la muestra refrigerada y procesar dentro de las 24 horas.

2.1.3.10 MATERIAL REQUERIDO

Espectrofotómetro o fotocolorímetro.

- Micropipetas y pipetas para medir los volúmenes indicados.
- Tubos de Kahn
- Tubos de fotocolorímetro o cubetas espectrofotométricas de caras paralelas.
- Baño de agua a 37°C.
- Reloj o timer.

2.1.3.11 CONDICIONES DE REACCION

- Longitud de onda: 505nm espectrofotómetro o en fotocolorímetro con filtro verde (490 – 530nm).
- Temperatura de reacción: 37°C.
- Tiempo de reacción: 45 minutos.
- Volumen de muestra: 500ul.
- Volumen de reactivo Precipitante: 50ul.
- Volumen de Sobrenadante 100ul.
- Volumen de reactivo de tratamiento de Colestat enzimático o Colestat enzimático AA/líquida: 2 ml.
- Volumen final de reacción: 2,1 ml.

AUTORAS:

2.1.3.12 PROCEDIMIENTO

En un tubo de Kahn medir 0,5 ml (500ul) de muestra y agregar 50ul de Reactivo Precipitante. Homogenizar agitando (sin invertir) durante 20 segundos y dejar 30-40 minutos en refrigerador (4-10°C) o 15 minutos en baño de agua a la misma temperatura. No colocar en congelador.

Centrifugar 15 minutos a 3000 r.p.m. usar el sobrenadante límpido como muestra.

En 3 tubos de fotocolorímetro marcados B, S y D colocar

	В	S	D
Sobrenadante	-	-	100ul
Standard	-	20ul	-
Reactivo de Trabajo	2ml	2ml	2ml

Mezclar e incubar 5 minutos a 37°C si se usa el Reactivo de Trabajo de Colestat enzimático AA/líquida o 15 minutos a 37°C cuando se usa el de Colestat enzimático.

Retirar del baño y enfriar. Leer a 505 nm en espectrofotómetro o en colorímetro con filtro verde (490-430 nm), llevando a cero con el Blanco.

Cuadro 2.6

2.1.3.13 ESTABILIDAD DE LA MEZCLA DE REACCION FINAL

El color de reacción es estable 2 horas por lo que la absorbancia debe ser leída dentro de ese lapso.

2.1.3.14 CALCULO DE RESUTADOS

0,457 = 2 (g/l) x VF_E x VR_E x V_s

$$\frac{V_{M}}{V_{R}} \frac{V_{R}}{V_{R}} \frac{V_{E}}{V_{E}} \qquad \text{donde:}$$

 VF_E = volumen final de extracto = 0,55 ml.

 V_M = volumen de muestra procesada = 0,5 ml.

VR_E = volumen de reacción con extracto = 2,1 ml.

VR_S = volumen de reacción con Standard = 2,02 ml.

V_s = volumen de Standard en la reacción = 0,020 ml.

V_E = volumen de extracto en la reacción =0,1 ml.

Si se emplean volúmenes de Reactivo diferentes de 2ml el factor 0,457 varía y debe ser calculado nuevamente, reemplazando en la fórmula VR_E y VR_S.

2.1.3.15 VALORES DE REFERENCIA

HDL Colesterol: 0,40 – 0,60 g/l.

Valores mayores de 0,40 g/l se consideran recomendables y los que se encuentran por encima de 0,60 g/l se han considerado como protectivos. Por el contrario, valores de

AUTORAS:

HDL colesterol por debajo de 0,40 g/l se consideran como índice significativo de riesgo de enfermedad cardíaca coronaría.

2.1.3.16 LIMITACIONES DEL PROCEDIMIENTO

Ver Sustancias interferentes conocidas en MUESTRA

La exactitud y precisión de la determinación depende fundamentalmente de la observación de las condiciones de precipitación, por lo que los tiempos y temperatura establecidos, si bien no requieren un control rigoroso, deben ser respetados.

Cuando el HDL colesterol no puede separarse por completo en una centrífuga común debido a niveles elevados de triglicéridos pueden efectuarse la determinación de la siguiente manera: seguir las instrucciones indicadas en PROCEDIMIENTO hasta la incubación a 4 - 10°C y luego de la misma, colocar la mezcla de reacción en tubos capilares y centrifugar en centrifugas de microhematocrito a 10.000 r.p.m. durante 5 minutos. Cortar el capilar desechando el precipitado y utilizar el sobrenadante limpio para la prueba.

2.1.3.17 PERFORMANCE

a) **Reproducibilidad:** procesando replicados de una misma muestra en el día se obtienen los siguientes valores:

Nivel	D.S.	C.V.
0,29 g/l	± 0,011 g/l	3,8%
0,63 g/l	± 0,023 g/l	3,7%

Cuadro 2.7

b) **Linealidad:** la reacción es lineal hasta 5 g/l.

AUTORAS:

2.1.4 LDL COLESTEROL

2.1.4.1 Reactivo Precipitante

Para la separación de las lipoproteínas de baja densidad (LDL) en suero. Wiener Lab®.

2.1.4.2 SIGNIFICACION CLINICA

El contenido aproximado de colesterol en cada familia de lipoproteínas es (en % por unidad de peso): 1% en los quimiocrones, 18% en las VLDL, 50% en las LDL y 32% en las HDL. Dada que cada familia posee distinta actividad biológica, el significado clínico de un aumento de colesterol depende de la o las lipoproteínas que se encuentran en exceso.

Por otra parte, los mecanismos reguladores de los niveles plasmáticos de lipoproteínas son muy complejos y pueden ser afectados por múltiples factores (genéticos, ambientales, fisiológicos o patológicas), siendo posible encontrar valores de colesterol total cercanos al rango normal acompañados de alteraciones en las fracciones lipoproteicas.

Las HDL y las LDL han sido las más estudiadas por su importante actividad biológica:

- Las LDL, producto del metabolismo de las VLDL en el plasma, son las encargados del transporte del colesterol exógeno (y en mucho menos proporción, endógeno) hacia el interior de las células;
- Las HDL, sintetizadas en el hígado, remueven el colesterol no utilizado por las células (dentro de ciertos límites de concentración), transportándolo hacia el hígado para su degradación.

Diversos estudios epidemiológicos han confirmado que el exceso de colesterol de LDL con respecto a un valor crítico (1,9g/l) debe ser considerado como factor de riesgo para **AUTORAS**:

el desarrollo de enfermedad cardíaca coronaria, considerando que el efecto protector

de las HDL sólo parece tener relevancia dentro de cierto rango de concentraciones de

colesterol circulante.

Tales hallazgos permiten deducir que los valores aislados de colesterol de HDL o de

LDL no pueden tomarse como índices predictivos de riesgo, sino que es necesario

conformar un perfil lipídico con los valores de colesterol total, colesterol de HDL y

colesterol de LDL.

2.1.4.3 FUNDAMENTOS DEL METODO

Las lipoproteínas de baja densidad (LDL o ß-lipoproteínas) se separan del suero

precipitándolas selectivamente mediante el agregado de polímeros de alto peso

molecular. Luego de centrifugar, en el sobrenadante quedan las demás lipoproteínas

(HDL y VLDL); el colesterol ligado a las mismas se determina empleando el sistema

Por diferencia entre el colesterol total y el determinado en el sobrenadante, se obtiene

el colesterol unido a las LDL.

2.1.4.4 REACTIVOS PROVISTOS

Reactivo Precipitante: solución 1g/l de sulfato de polivinilo disuelto en polietilenglicol

(PM: 600) al 25%, pH 6,7.

2.1.4.5 INSTRUCCIONES DE USO

Reactivo Precipitante: listo para usar.

2.1.4.6 ESTABILIDAD E INSTRUCCIONES DE ALMACENAMIENTO

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA

JESSICA ESTEFANIA ORELLANA ROMÁN

56

ne was transport

UNIVERSIDAD DE CUENCA

2.1.4.6.1 Reactivo Precipitante: estable en refrigerador (2-10°C) hasta la fecha

de vencimiento indicada en la caja.

2.1.4.7 INICIOS DE INESTABILIDAD O DETERIORO DE LOS REACTIVOS

Todo cambio en la coloración y otro aspecto físico del reactivo, puede ser inicio de

deterioro del mismo.

2.1.4.8 MUESTRA

Suero

a) Recolección: el paciente debe estar en ayunas (de 12 a 16 horas). Obtener

suero de la manera usual y separar del coágulo dentro de la hora de la

extracción.

b) Aditivos: no se requiere.

c) Sustancias interferentes conocidas: los sueros hipertrigliceridémicos (con

quilomicronemia) producen sobrenadantes turbios; la bilirrubina interfiere en

niveles mayores de 50mg/l.

d) Estabilidad e instrucciones de almacenamiento: el suero debe ser

preferentemente fresco. En caso de no procesarse en el momento, puede

conservarse en el refrigerador (2-10°C) durante no más de 24 horas contadas a

partir del momento de la extracción. No congelar.

2.1.4.9 MATERIAL REQUERIDO

✓ Centrífuga

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

57

- ✓ Tubos de Kahn o de centrífuga
- ✓ Pipetas y Micropipetas para medir los volúmenes indicados.

2.1.4.10 PROCEDIMIENTO

En un tubo de Kahn, colocar:	
Muestra	200ul
Reactivo Precipitante	100ul

Homogenizar agitando (sin invertir) durante 20 segundos y dejar 15 minutos en un baño de agua a 20-25°C. Centrifugar 15 minutos a 3000 r.p.m. separar inmediatamente el sobrenadante. Usar el sobrenadante como Muestra para el ensayo colorimétrico.

En tres tubos de fotocolorímetro marcados B (Blanco), S (Standard) y D (Desconocido), colocar:

	В	S	D
Sobrenadante	-	-	100ul
Standard	-	20ul	-
Reactivo de	2ml	2ml	2ml
Trabajo			

Mezclar e incubar 5 minutos a 37°C si se usa el Reactivo de Trabajo de **Colestat enzimático AA/líquida** o 15 minutos a 37°C se usa el de **Colestat enzimático**. Retirar del baño y enfriar. Leer en espectrofotómetro a 505 nm o en fotocolorímetro con filtro verde (490-530 nm), llevando el aparato a cero de absorbancia con el Blanco.

Cuadro 2.8

AUTORAS: DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA

JESSICA ESTEFANIA ORELLANA ROMÁN

2.1.4.11 CALCULO DE LOS RESULTADOS

LDL colesterol (g/l) = Colesterol total (*) - (D x f)

$$f = 0.624$$
S

(*) Valor obtenido con Colestat enzimático o Colestat enzimático AA/líquida.

El valor 0,624 surge de:

$$0,624 = 2 (g/I) \times VF_{E} \times VR_{E} \times V_{S}$$

$$V_{M} \quad VR_{S} \quad V_{E}$$

Donde

 VF_E = volumen final de extracto = 0,3 ml.

 V_M = volumen de muestra procesada = 0,2 ml (200ul).

VR_E = volumen de reacción con extracto = 2,1 ml.

VR_S = volumen de reacción con Standard = 2,02 ml.

V_s = volumen de Standard en la reacción = 0,02 ml (20ul).

V_E = volumen de extracto en la reacción =0,1 ml (100ul).

Si se emplean volúmenes diferentes el factor 0,624 varía y debe ser calculado nuevamente.

2.1.4.12 VALORES DE REFERERNCIA

Valores de LDL colesterol en relación al riesgo de contraer enfermedad cardíaca coronaria (ECC):

- **Riesgo bajo o nulo** (sujetos normales): valores de LDL colesterol menores de 1,29 g/l.

AUTORAS:

- **Riesgo moderado a elevado** (individuos con probabilidad de contraer ECC): valores entre 1,30 y 1,89 g/l.
- Riesgo muy elevado (individuos sospechosos o de padecer ECC): valores de LDL colesterol≥ 1,90 g/l.

2.1.4.13 LIMITACIONES DEL PROCEDIMIENTO

Cuando se procesan muestras ictéricas, deberán diluirse los sueros 1/2 ó 1/3 con solución fisiológica y emplearse el procedimiento habitual, teniendo en cuenta el factor de dilución para los cálculos.

Cuando el LDL colesterol no puede separarse por completo en una centrifuga común debido a niveles elevados de triglicéridos, pueden efectuarse la determinación de la siguiente manera:

Seguir las instrucciones indicadas en PROCEDIMIENTO hasta la incubación en baño de agua a 20-25°C, 15 minutos, luego colocar la mezcla de reacción en capilares y centrifugar en centrifugas de microhematocrito, a 10.000 r.p.m. durante 5 minutos. Cortar el capilar desechando el precipitado y utilizar el sobrenadante para la prueba.

En todos los casos en que los valores de colesterol unido a HDL y VLDL (D x f, según los cálculos) sean superiores a 1g/l, se debe repetir la determinación con los mismos sueros empleando 100ul de muestra y 200ul de Reactivo Precipitante.

Continuar con la técnica descripta, tomando 100ul de sobrenadante y utilizar el factor 1,248 para los cálculos en lugar del anterior.

No dejar el precipitado en contacto con el sobrenadante, debido a que puede haber redisolución provocando valores de lecturas elevadas con la consiguiente disminución de los valores del LDL colesterol.

AUTORAS:

2.1.4.14 PERFORMANCE

Reproducibilidad: procesando replicados de una misma muestra en el día, se obtienen los siguientes valores:

Nivel	D.S.	C.V.
1,14 g/l	± 0,03 g/l	2,6 %
2,03 g/l	± 0,04 g/l	2,0 %

Cuadro 2.9

2.2 MATERIALES

2.2.1 MATERIALES PARA LA DETERMINACIÓN DE COLESTEROL

- **Producto**: COLESTEROL Enzimático

Proveedor: Wiener Lab®.

- Paquetes utilizados: Cinco

- Equipo para procesar: 250 ml de Reactivo de Trabajo en cada paquete.

- **Código**: 1220101

- **No de Lote**: 0812020830

0810017490 0809412551

2.2.1.2 AGUA DESTILADA

AUTORAS:

- **Producto:** Agua destilada

- **Proveedor:** Laboratorio de Atención al Público de la Universidad de Cuenca.

- No de lote: no disponible.

2.2.1.3 DISPOSITIVO

- DISPOSITIVO: Espectrofotómetro

- Modelo: 690

- **Serie**: 012406

- **Ubicación:** Laboratorio de Atención al Púbico de la Universidad de Cuenca.

2.2.2 MATERIALES PARA LA DETERMINACION DE TRIGLICÉRIDOS

- Producto: TG TRIGLICÉRIDOS Enzimático

- **Proveedor**: Wiener Lab.

- Paquetes utilizados: Tres

- Equipo para procesar: 100 determinaciones.

- **Código**: 1780051

- **No de Lote**: 0804005470

0910014192

0809100301

2.2.2.1 DISPOSITIVO

Características descritas en el punto 2.2.1.3 para la determinación del Colesterol.

AUTORAS:

2.2.3 MATERIALES PARA LA DETERMINACIÓN DE LDL COLESTEROL.

- **Producto**: LDL colesterol

- **Proveedor**: Wiener Lab.

- Equipo para procesar: 100 muestras.

- No de Paquetes. Tres.

- **Código**: 1220104

- **No de Lote**: 0810017310

0807012190

0808900153

2.2.3.1 DISPOSITIVO

Características descritas en el punto 2.2.1.3 para la determinación del Colesterol.

2.2.4 MATERIALES PARA LA DETERMINACION DE HDLcolesterol.

- **Producto**: HDL colesterol

- **Proveedor**: Wiener Lab.

- Equipo para procesar : 100 sueros

- No de Paquetes: 2 de dos y 1 de uno

- **Código**: 1220103

- **No de lote:** 0905027530

AUTORAS:

0909118193 0814002139

2.2.4.1 DISPOSITIVO

Características descritas en el punto 2.2.1.3 para la determinación del Colesterol.

3. RESULTADOS Y DISCUSION

En la encuesta realizada se hicieron dos preguntas en las que tratamos de indagar sobre los hábitos alimenticios de los alumnos que colaboraron con el estudio:

- 1. ¿Está incluida en la dieta diaria el consumo de frutas y verduras?
- 2. ¿Consume diariamente comida "chatarra"?

En donde para la primera pregunta el 80% de alumnos, especialmente los de la escuela consumen con su desayuno o en el transcurso del día frutas y verduras.

Para la segunda pregunta el 95% de los alumnos consumen por lo menos una pequeña cantidad de comida "chatarra" que en su mayoría tiene una gran cantidad de grasa perjudicial para la salud.

RESULTADOS DE LA ENCUESTA REALIZADA.

Código	Edad	Pregunta 1	Pregunta 2
1	5	si	si
2	5	si	si
3	6	si	si
4	6	no	si
5	6	si	si
6	5	si	si
7	5	si	si
8	5	si	si
9	6	si	si
10	5	si	si
11	6	si	no
12	6	si	si
13	5	si	si
14	6	si	si

15 16 17 18 19 20 21	6 5 6 5 6 7	si si si si no	si si si
17 18 19 20	6 6 5 6	si si	si
18 19 20	6 5 6	si	
19 20	5 6		si
20	6	no	i
 			si
21	7	no	si
	1	no	si
22	6	si	si
23	6	si	si
24	7	si	si
25	7	si	si
26	7	si	si
27	7	si	si
28	6	Si	si
29	6	si	si
30	7	si	si
31	7	si	si
32	7	si	si
33	6	si	si
34	7	si	si
35	7	si	no
36	6	no	si
37	6	si	si
38	8	si	si
39	7	si	si
40	8	si	si
41	8	si	si
42	8	si	si
43	7	si	si
44	7	si	si
45	8	si	si
46	8	Si	Si
47	7	si	si
48	7	si	si
49	8	Si	Si
50	9	si	si
51	9	si	si
52	9	si	si
53	8	si	si

AUTORAS:

54	8	no	si
55	9	no	si
56	8	no	si
57	8	si	si
58	9	si	si
59	9	si	no
60	8	si	si
61	9	si	si
62	9	si	si
63	9	si	si
64	9	si	si
65	10	si	si
66	10	si	si
67	10	si	si
68	9	no	si
69	10	no	si
70	9	si	si
71	9	si	si
72	10	si	si
73	9	Si	si
74	10	Si	si
75	10	si	si
76	9	no	si
77	11	Si	si
78	11	si	si
79	10	no	si
80	11	Si	si
81	11	Si	si
82	11	si	si
83	10	no	si
84	11	si	si
85	10	si	si
86	10	si	si
87	11	si	si
88	11	si	si
89	11	no	si
90	11	no	si
91	10	no	si
92	10	no	si

AUTORAS:

93	11	Si	no
94	12	si	si
95	12	si	si
96	12	si	si
97	11	si	si
98	11	si	si
99	12	si	si
100	11	si	si
101	12	si	si
102	11	si	si
103	11	si	si
104	12	si	si
105	11	si	si
106	12	Si	si
107	12	si	si
108	11	Si	no
109	11	Si	si
110	12	Si	no
111	12	no	si
112	12	no	si
113	12	no	si
114	13	Si	si
115	13	si	si
116	12	no	si
117	13	Si	si
118	13	no	si
119	12	no	si
120	13	si	si
121	12	si	si
122	15	si	no
123	13	si	no
124	12	si	si
125	12	si	si
126	12	no	si
127	13	si	si
128	14	si	si
129	13	no	si
130	12	no	si
131	13	si	si

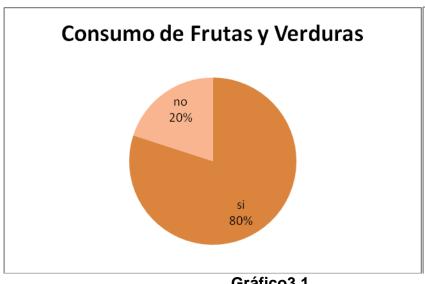
AUTORAS:

132	14	si	si
133	14	si	si
134	14	no	si
135	14	si	si
136	13	si	no
137	14	si	si
138	15	si	si
139	13	si	si
140	13	no	si
141	14	si	si
142	14	si	no
143	14	si	si
144	14	no	si
145	13	Si	si
146	14	si	si
147	13	si	si
148	13	si	si
149	14	si	si
150	14	no	si
151	13	no	si
152	13	no	si
153	14	si	si
154	14	si	si
155	14	si	si
156	15	si	si
157	13	si	si
158	13	si	si
159	13	no	si
160	14	si	si
161	13	si	si
162	14	Si	si
163	15	Si	si
164	15	si	si
165	14	Si	si
166	15	no	si
167	16	si	si
168	15	si	Si
169	15	Si	si
170	14	si	si

AUTORAS:

	Г		
171	16	Si	si
172	14	Si	si
173	14	si	si
174	16	no	si
175	16	no	si
176	15	no	si
177	15	no	si
178	15	Si	si
179	14	si	si
180	14	si	si
181	15	si	si
182	15	si	si
183	15	si	si
184	15	si	si
185	14	Si	si
186	15	no	si
187	16	no	si
188	16	no	si
189	16	si	si
190	16	si	si
191	15	Si	si
192	16	Si	si
193	15	si	si
194	15	si	si
195	15	no	si
196	16	no	si
197	16	Si	si
198	16	si	si
199	16	si	si
200	15	no	si
201	16	si	si
202	15	si	si
203	16	Si	si
204	15	si	si
205	16	si	si
206	16	Si	si
207	17	Si	si
208	16	Si	si
209	17	si	si
1			

AUTORAS:



210	16	si	si
211	16	si	si
212	16	Si	si
213	17	si	si
214	17	si	si
215	16	si	si
216	16	si	si
217	16	si	si
218	17	si	si
219	17	si	no
220	17	si	si

Tabla 3.1

CUADROS COMPARATIVOS DE LA ENCUESTA REALIZADA

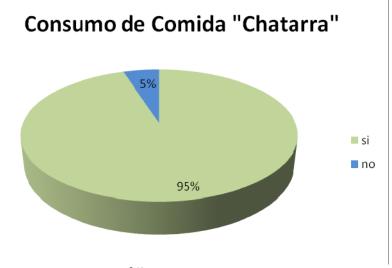


Gráfico3.1

Gráfico 3.2

ESCUELA COLESTEROL

Parámetros estadísticos con relación al Colesterol de los estudiantes de la Escuela

	1ra TOMA	DUPLICADO
Media Aritmética	146,419355	146,333333
Desviación Estándar	26,8430716	26,529038
Coeficiente de Variación	18,3330077	18,1291831

Tabla 3.2

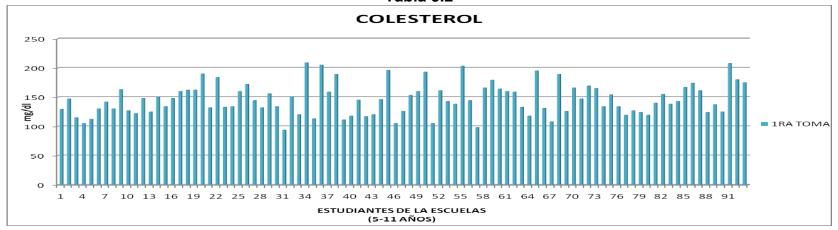
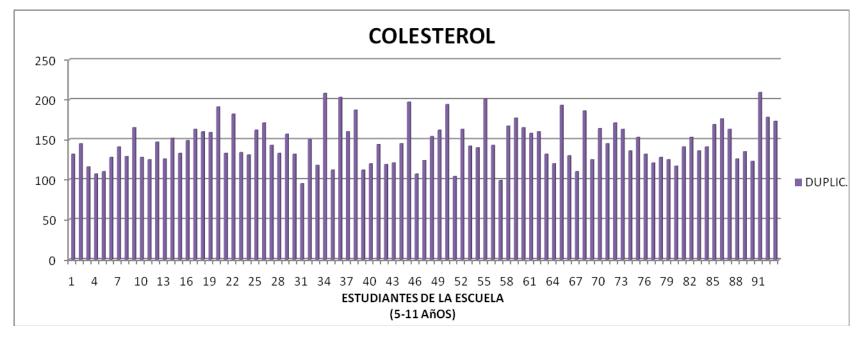
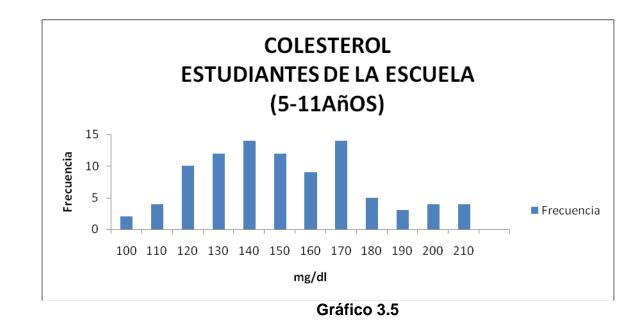


Gráfico 3.3

Los valores de colesterol de la gran mayoría están dentro de los valores normales, tomando muy en cuenta la minoría que está alterada.

AUTORAS:




Gráfico 3.4

La variación entre la primera y segunda toma varía entre ±1 o ± 2

Clase	Frecuencia
100	2
110	4
120	10
130	12
140	14
150	12
160	9
170	14
180	5
190	3
200	4
210	4

AUTORAS:

TRIGLICERIDOS

Parámetros estadísticos con relación a los Triglicéridos de los estudiantes de la Escuela

	1ra TOMA	DUPLICADO
Media Aritmética	90,6236559	91,1827957
Desviación Estándar	18,831007	17,8599298
Coeficiente de	20,7793504	19,5869513
Variación		

Tabla 3.4

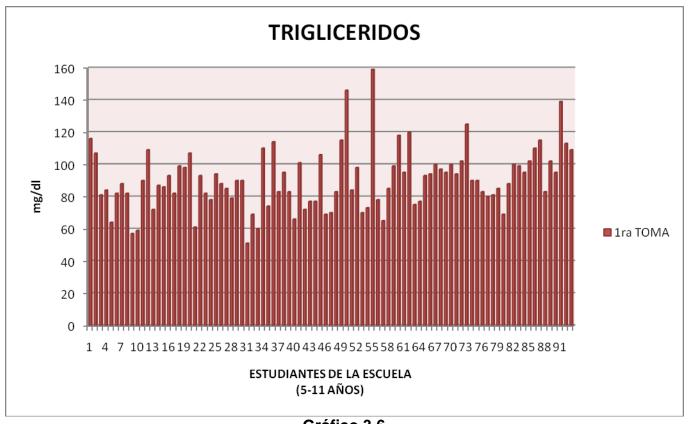


Gráfico 3.6

Existen alteraciones en los valores de triglicéridos tomando en cuenta que se trata de niños entre 5-11 años, pero no es una gran mayoría para el número de muestras tomadas.

AUTORAS:

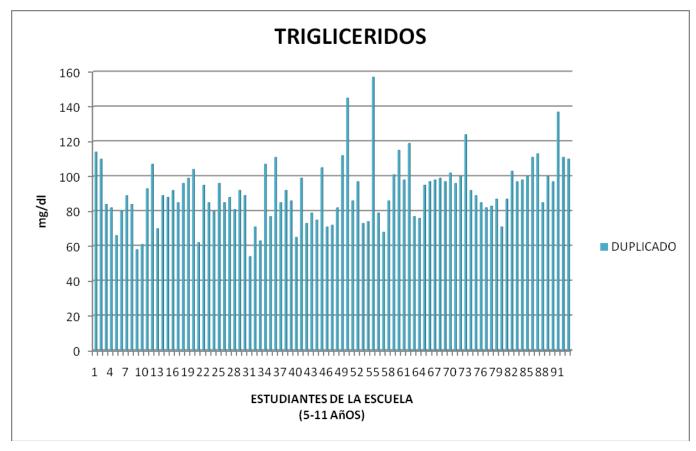


Gráfico 3.7

El intervalo entre la primera y segunda toma varía entre ± 1 o ± 2

Clase	Frecuencia
60	3
70	8
80	13
90	24
100	22
110	11
120	8
130	1
140	1
150	1
160	1

Tabla 3.5

Gráfico 3.8

AUTORAS:

HDL

Parámetros estadísticos con relación al HDL de los estudiantes de la Escuela

	1ra TOMA	DUPLICADO
Media Aritmética	48,2688172	47,9892473
Desviación Estándar	7,98523064	7,30915838
Coeficiente de	16,543249	15,2308252
Variación		

Tabla 3.6

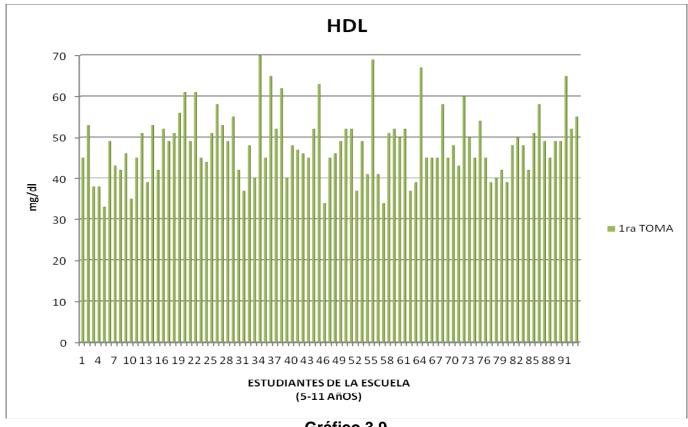


Gráfico 3.9

Existen valores buenos de HDL y es excelente porque remueve el exceso de colesterol de la sangre. Niveles altos de HDL pueden reducir el riesgo, mientras que bajas concentraciones se consideran un factor de riesgo adicional para el desarrollo de enfermedad coronaria

AUTORAS:

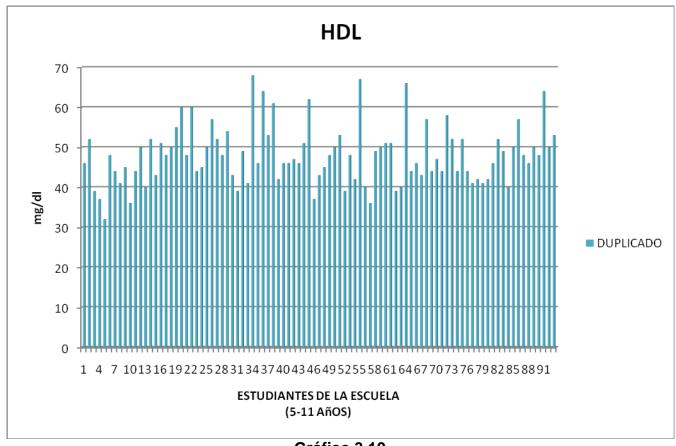


Gráfico 3.10

La variación entre las dos tomas es muy baja entre ± 0,1 o ± 0,2

Clase	Frecuencia
35	2
40	10
45	22
50	24
55	21
60	5
65	6
70	3

Tabla 3.7

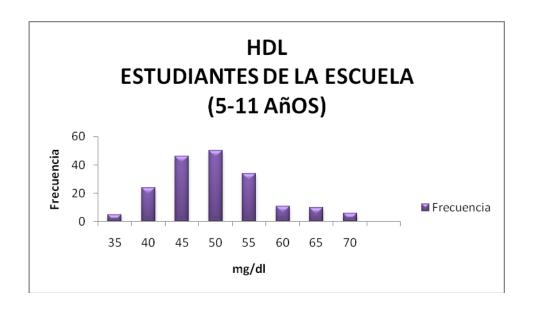


Gráfico 3.11

LDL

Parámetros estadísticos con relación al LDL de los estudiantes de la Escuela

	1ra TOMA	DUPLICADO
Media Aritmética	95,0967742	94,9784946
Desviación Estándar	19,3239345	18,4408446
Coeficiente de Variación	20,3202839	19,4158106

Tabla 3.8

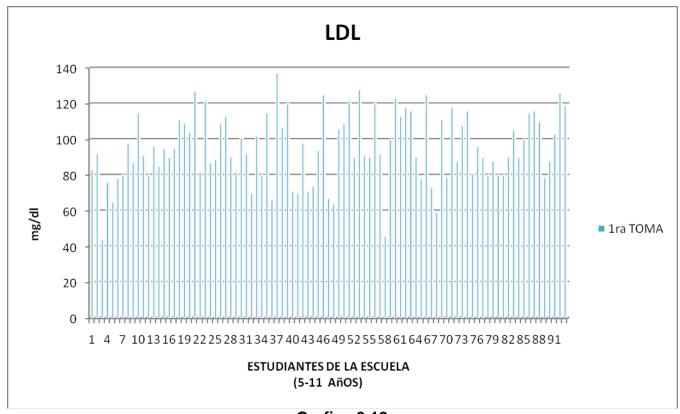


Grafico 3.12

Existen valores dentro de los valores normales sin olvidar que hay excepciones con valores altos. Es el responsable de la acumulación de grasas en las arterias y se conoce como colesterol malo.

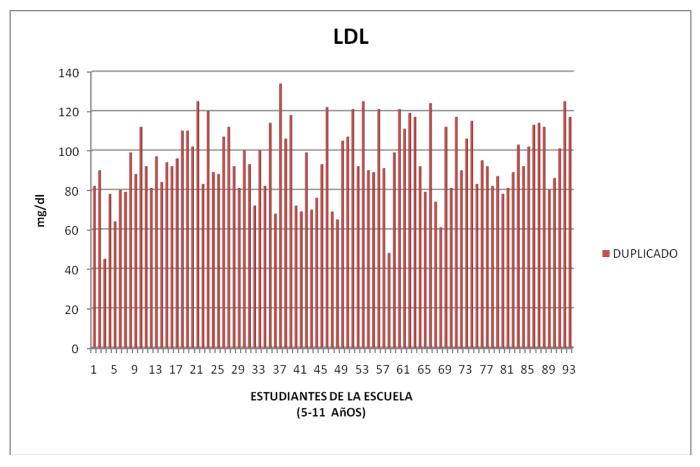


Gráfico 3.13

No existe una variación significativa en la primera y segunda toma ±0,1 o ± 0,2

Clase	Frecuencia
50	2
60	1
70	5
80	12
90	17
100	19
110	12
120	15
130	9
140	1

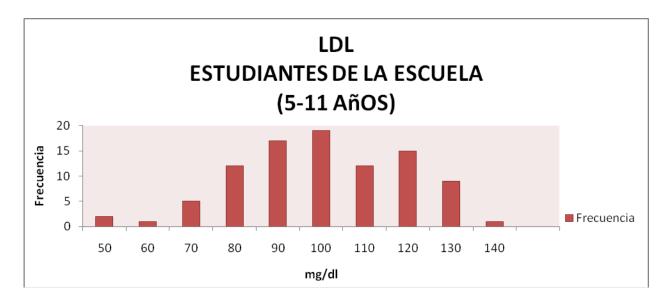
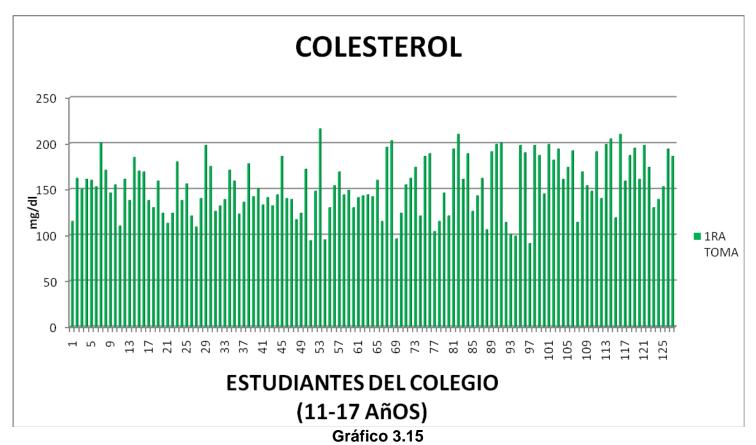


Tabla 3.9 Gráfico 3.14

COLEGIO


COLESTEROL

Parámetros estadísticos con relación al Colesterol de los estudiantes del Colegio

	1ra TOMA	DUPLICADO
Media Aritmética	154,291339	154,338583
Desviación Estándar	30,8406324	30,472267
Coeficiente de Variación	19,9885701	19,7437779

Tabla 3.11

Los valores de colesterol elevado en este grupo son muy escasos en comparación con el número de muestras que se encuentran con valores normales.

AUTORAS:

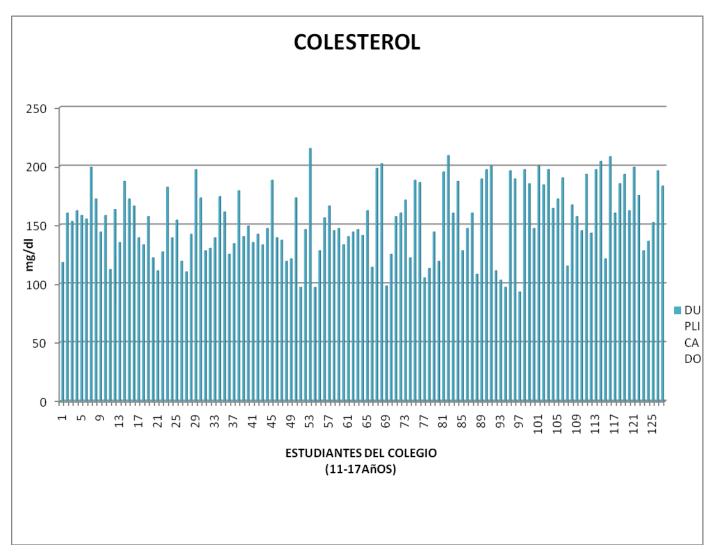


Gráfico 3.16

Su duplicado no muestra diferencia en los valores obtenidos con una variación del ± 1 o ± 2

Clase	Frecuencia
100	5
110	4
120	11
130	10
140	13
150	18
160	12
170	12
180	9
190	12
200	15
210	5
220	1

COLESTEROL ESTUDIANTES DEL COLEGIO (11-17 AÑOS)

20
15
10
5
10
100 110 120 130 140 150 160 170 180 190 200 210 220

mg/dl

Gráfico 3.17

Tabla 3.12

AUTORAS:

TRIGLICERIDOS

Parámetros estadísticos con relación a los Triglicéridos de los estudiantes del Colegio

	1ra TOMA	DUPLICADO
Media Aritmética	109,346457	109,19685
Desviación Estándar	22,9036553	21,9244878
Coeficiente de Variación	20,9459511	20,0779489

Tabla 3.13

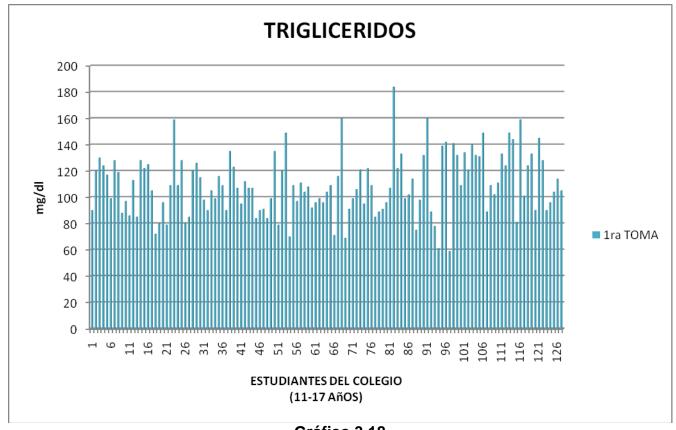


Gráfico 3.18

Los valores de triglicéridos están dentro de los valores normales sin olvidar un pequeño grupo con valores elevados que en la sangre están relacionados con un aumento en el riesgo de enfermedad cardíaca

AUTORAS:

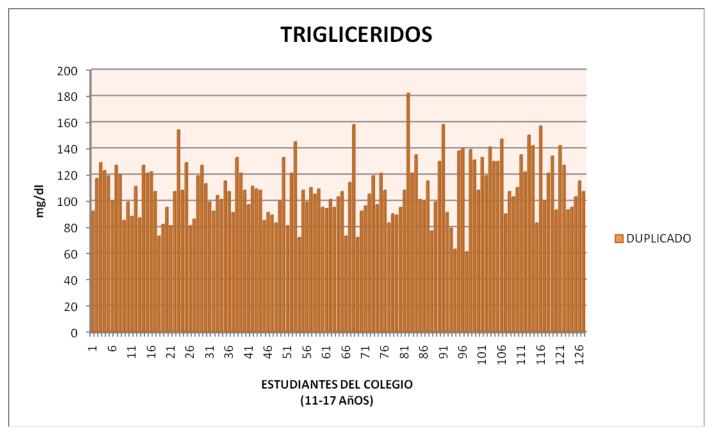


Gráfico 3.19

Su variación va desde ±1 o ± 2

Clase	Frecuencia
60	1
80	9
100	40
120	38
140	27
160	11
180	0
200	1

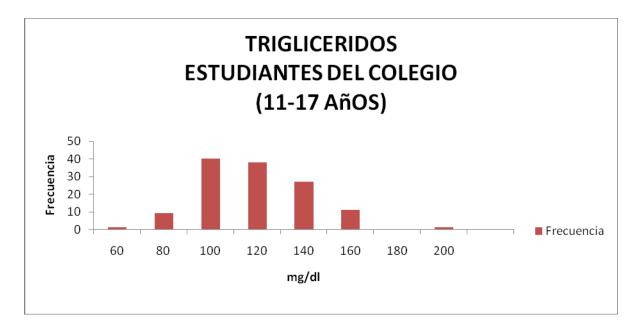


Tabla 3.14 Gráfico 3.20

AUTORAS:

HDL

Parámetros estadísticos con relación al HDL de los estudiantes del Colegio

	1ra TOMA	DUPLICADO
Media Aritmética	49,1246516	48,7422835
Desviación Estándar	9,77465044	9,08510659
Coeficiente de Variación	19,8976484	18,6390664

Tabla 3.15

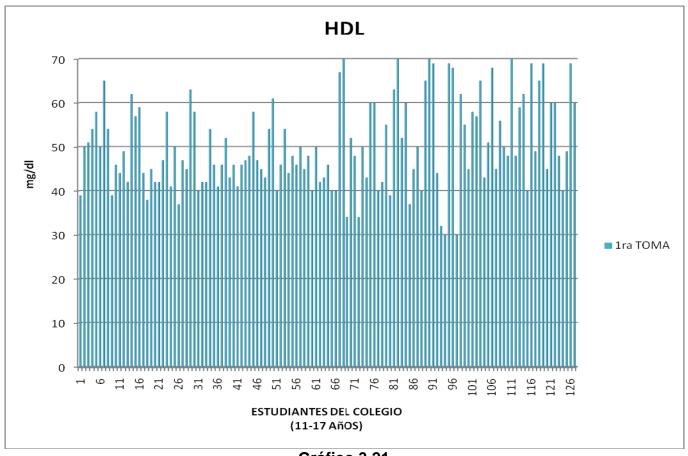


Gráfico 3.21

Sus valores están dentro del rango de referencia en el grupo de investigación.

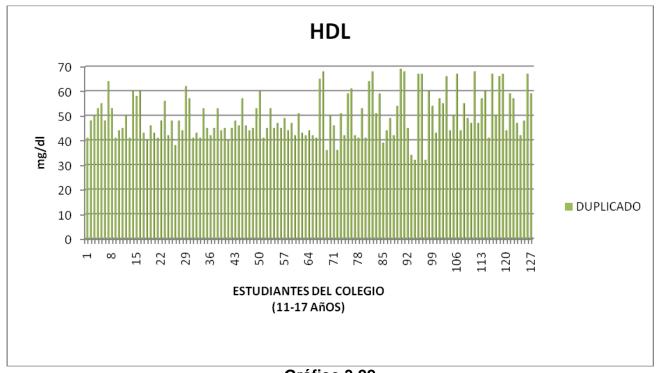


Gráfico 3.22

Su variación entre la primera toma y el duplicado son muy diminutas entre ± 0,1 o ± 0,2

Clase	Frecuencia
35	5
40	6
45	37
50	27
55	14
60	16
65	8
70	14

Tabla 3.16

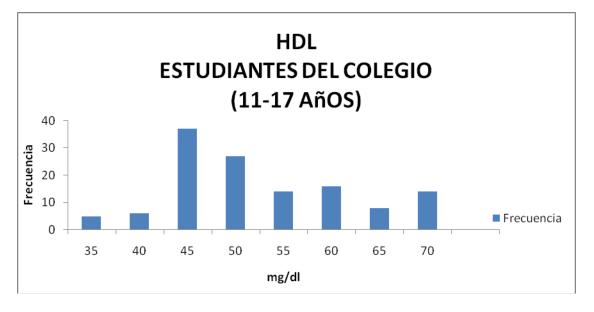


Gráfico 3.23

LDL

Parámetros estadísticos con relación al LDL de los estudiantes del Colegio

	1ra TOMA	DUPLICADO
Media Aritmética	101,393701	101,511811
Desviación Estándar	20,2943254	19,6387478
Coeficiente de Variación	20,015371	19,3462688

Tabla 3.17

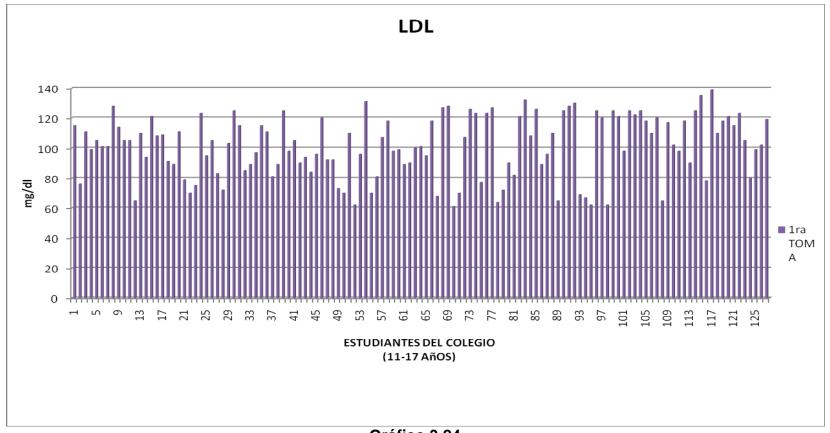


Gráfico 3.24

Sus valores están dentro de lo normal con ciertas excepciones. Sus cifras son más útiles que las de colesterol total para evaluar el riesgo de ECV.

AUTORAS: DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA

ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

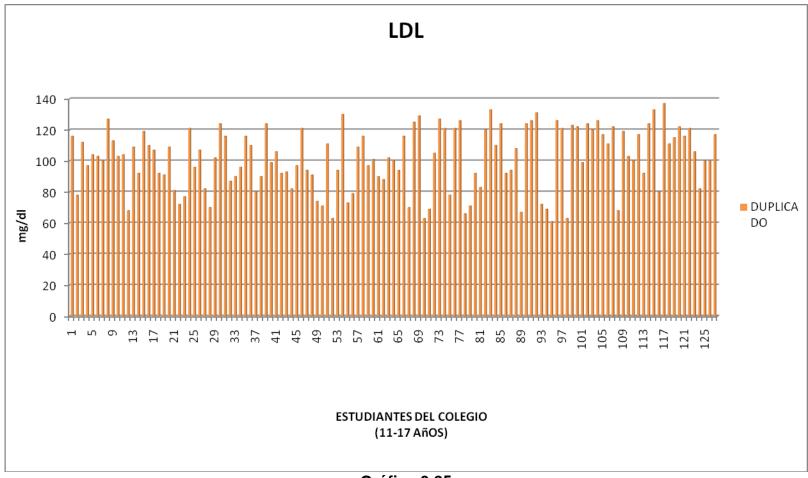
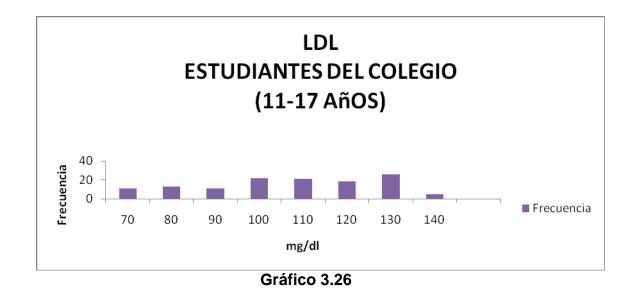


Gráfico 3.25


Existe una variación entre la primera y segunda toma de $\pm 0,1$ o $\pm 0,2$ sin alterar su resultado.

AUTORAS:

Clase	Frecuencia
70	11
80	13
90	11
100	22
110	21
120	18
130	26
140	5

Tabla 3.18

AUTORAS:

4. CONCLUSIONES

Se han tomado alrededor de 220 muestras, de las cuales 93 muestras corresponden a niños (5-11años) y 127 muestras corresponden a adolescentes (11-17 años), que fueron seleccionadas para la cuantificación en sangre del perfil lipídico a fin de comparar las concentraciones en distintas edades con una variación desde los cinco años hasta los diecisiete años. El presente trabajo nos ha permitido concluir lo siguiente:

- El estudio de Lipidograma realizado nos permite concluir que alrededor del 20% del total de las muestras (niños y adolescentes) analizadas presentan valores elevados.
- Del porcentaje total de muestras que presentan valores elevados el 70% corresponden a los adolescentes.
- En cuanto al colesterol, del total de niños analizados el 12% presenta niveles elevados mientras que en los adolescentes el porcentaje aumenta considerablemente ya que del total de adolescentes el 36% presenta niveles elevados.
- Los triglicéridos, en los niños, se presentan elevados en el 2% del total de las muestras; mientras que en los adolescentes el porcentaje corresponde al 18% en la totalidad de muestras. El 2% si es considerable ya que en niños ninguno debería tener valores altos.
- El valor de HDL se encuentra elevado en los niños en un 17% y en los adolescentes el valor se ve incrementado dándonos un porcentaje del 31% siendo un factor beneficioso para los mismos.
- El LDL tanto en los niños como en los adolescentes presentan porcentajes elevados, 19% y 46% respectivamente.

AUTORAS:

- El colesterol en los estudiantes de tercero de educación básica presenta un incremento del 12% en la totalidad de las muestras tomadas.
- El porcentaje de incremento de colesterol en los alumnos del tercero de bachillerato alcanza un 15% en muestras trabajadas.
- En los resultados de cuarto y quinto de educación básica se presentan porcentajes del 20% y 13% de incremento de HDL siendo un factor beneficioso.
- En los alumnos de primero, segundo y tercero de bachillerato se presentan valores elevados del 12%, 23%, 25% respectivamente en cuanto a valores de HDL, siendo favorables.
- Un valor de importancia poseen de LDL los alumnos del quinto de básica un 18% de incremento.
- Los alumnos del séptimo, noveno de educación básica y tercero de bachillerato tienen un elevado porcentaje del 14% en LDL del total de las muestras analizadas.
- Un porcentaje elevado de LDL se presentan en los alumnos de segundo de bachillerato un 32%.

5. RECOMENDACIONES

- Se recomienda analizar los resultados obtenidos, principalmente los del colegio, y programar un trabajo que abarque la educación y por ende incentivar el consumo de alimentos saludables y nutritivos.
- La puesta en práctica de la información recibida mediante talleres demostrativos y prácticos con lo que se lograría una mayor interacción con los participantes para lograr una mayor asimilación de los nuevos conceptos de alimentación que les fueron proporcionados.
- Mantener una dieta variada con abundancia de frutas, verduras y legumbres, para así reducir el riesgo de sobrepeso y de todas las enfermedades relacionadas con la ingesta excesiva de grasas y calorías.
- Promover el ejercicio físico regular a la edad de cada niño y adolescente.
- Se debería llevar un registro con los antecedentes familiares de cada niño y adolescente que presenta valores alterados para poder prevenir los riesgos de enfermedad coronaria, diabetes, hipertensión que se podría presentar en el futuro.

UNIVERSIDAD DE CUENCA

6. BIBLIOGRAFIA

- Biblioteca Nacional de Medicina, Instituto Nacional de Salud, Departamento de Salud y Servicios Humanos.
- **BRAIER**, *L.Fisiopatología y Clínica de la Nutrición*. Edición Panamericana Buenos Aires. Tercera Edición, pág. 369-373.
- **CLAUDIAN J.** Coordinadores. H Dupien, J-J Cuq, M-I Malewiak, C, Leynaud-Rouaud, A-M Berthier.: *Evolución de la alimentación humana. En la Alimentación Humana*. Ed Bellaterra, 1997.
- CONIGLIO, R.I. Acta Biog.Clin.Latinoam. XXIII (1989).
- CONNOR S. y col, The colesterol saturated fat index an indication of the hypercholesterolemic and atherogenic potential of food, Lancet, 1986, 1229 – 1232.
- Expert Panel of National Cholesterol Education Program-JAMA 285 (2001).
- Food and Nutrition Board of the National Research Council (1989)
- HARRIS William S., Omega 3 acids and serum lipoproteins: human studies, Am J. Clin. Nut, 65 (suplemento): 1645 S, 1997.
- http://www.youngwomenshealth.org/spcholesterol.html fecha de consulta noviembre 6 de 2009.
- Levi, R. I. Clin. Chem. (1981).
- MAZZEI María E. y col., Curso sobre Colesterol Connections Health Education Center of the Institute for Research & Education Health System, año 2002.

AUTORAS:

UNIVERSIDAD DE CUENCA

- MAZZEI María E. y col., NET_GESA (Nutrición Educación Terapéutica, Grupo Educador en Salud Alimentaria, Conectándonos con el colesterol, año 2002.
- NORDOY Arne y col, *Dietary lipids*, Vol. 10, N° 2, 149, 1990.
- SEIDEL, D. Ann. Clin. Biochem (1982).
- THE JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM; Vol. 90; No. 3 a Copyright © 2005 by the Endocrine Society.
- TORRESANI María Elena- SOMOZA María Inés Somoza, *Lineamientos para el cuidado nutricional*, Eudeba, 1999.
- **YOUNG**, D. S. "Effects of Drugs of Clinical Laboratory Tests", AACC Press, 4th ed., 2001.

7. ABREVIATURAS

HDL: Lipoproteínas de alta densidad.

LDL: Lipoproteínas de baja densidad.

TG: Triglicéridos.

AGS: Ácidos Grasos Saturados.

AGT: Ácidos Grasos Tras.

AGPI: Ácidos Grasos Poli Insaturados.

AGMI: Ácidos Grasos Mono Insaturados.

ECV: Enfermedad Cerebro Vascular.

mg: miligramos.

dl: decilitro.

ANEXO 1

TABLAS DE RESULTADOS DE LA ESCUELA Y EL COLEGIO

ESCUELA COLESTEROL

CÓDIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
1	5	129	132	2
2	5	147	145	2 2 2
3	6	115	116	2
4	6	105	107	2
5	6	112	110	2 2 2
6	5	130	128	2
7	5	142	141	2
8	5	130	129	2
9	6	163	165	2 2 2 2 2 2
10	5	127	128	2
11	6	122	125	2
12	6	148	147	2
13	5	125	126	2
14	6	150	152	2
15	6	134	133	2 2
16	5	148	149	
17	6	160	163	2 2
18	6	162	160	2
19	5	162	159	2
20	6	190	191	2 3
21	7	132	133	
22	6	184	182	3
23	6	133	134	
24	7	134	131	3
25	7	160	162	3
26	7	172	171	3
27	7	144	143	3
28	6	132	133	3
29	6	156	157	3
30	7	134	132	3

AUTORAS:

32 7 151 150 3 33 6 120 118 3 34 7 209 208 3 35 7 113 112 3 36 6 205 203 3 37 6 159 160 3 38 8 189 187 4 39 7 111 112 4 40 8 118 120 4 41 8 145 144 4 42 8 117 119 4 43 7 120 121 4 44 7 146 145 4 45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 49 8 160 162 4					
33 6 120 118 34 7 209 208 35 7 113 112 36 6 205 203 36 6 205 203 36 37 6 159 160 38 8 189 187 49 48 187 49 40 8 111 112 40 8 118 120 44 40 8 118 120 44 41 8 145 144 44 44 44 44 44 44 44 44 44 44 44 44 47 146 145 44 44 47 146 145 44 44 47 146 145 44 44 47 146 145 44 48 7 153 154 44 44 48 7 153 154 44 48 7 153 154 49 8 160	31		94	95	3
34 7 209 208 35 7 113 112 36 6 205 203 37 6 159 160 38 8 189 187 39 7 111 112 40 8 118 120 41 8 145 144 42 8 117 119 43 7 120 121 44 7 146 145 44 7 146 145 45 8 196 197 46 8 105 107 47 7 126 124 47 7 126 124 48 7 153 154 49 8 160 162 49 8 160 162 40 8 138 140 51 9 </th <th>32</th> <th>7</th> <th></th> <th></th> <th>3</th>	32	7			3
35 7 113 112 36 6 205 203 37 6 159 160 38 8 189 187 48 49 187 49 49 41 41 41 41 41 41 41 41 41 41 41 42 41 44 <t< th=""><th>33</th><th>6</th><th>120</th><th>118</th><th>3</th></t<>	33	6	120	118	3
36 6 205 203 3 37 6 159 160 3 38 8 189 187 4 39 7 111 112 4 40 8 118 120 4 41 8 145 144 4 42 8 117 119 4 43 7 120 121 4 44 7 146 145 4 45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 49 8 160 162 4 50 9 193 194 5 51 9 105 104 5	34	7	209	208	
38 8 189 187 4 39 7 111 112 4 40 8 118 120 4 41 8 145 144 4 42 8 117 119 4 43 7 120 121 4 44 7 146 145 4 45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 49 8 160 162 4 49 8 160 162 4 50 9 193 194 5 51 9 105 104 5 52 9 161 163 5	35	7	113	112	3
38 8 189 187 4 39 7 111 112 4 40 8 118 120 4 41 8 145 144 4 42 8 117 119 4 43 7 120 121 4 44 7 146 145 4 45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 49 8 160 162 4 49 8 160 162 4 50 9 193 194 5 51 9 105 104 5 52 9 161 163 5	36	6	205	203	3
39 7 111 112 40 8 118 120 4 41 8 145 144 4 4 44 44 44 44 44 45 44 47 146 145 4 44 45 8 196 197 4 46 8 105 107 4 46 8 105 107 4 4 44 7 126 124 4 <td< th=""><th>37</th><th>6</th><th>159</th><th>160</th><th>3</th></td<>	37	6	159	160	3
40 8 118 120 4 41 8 145 144 4 42 8 117 119 4 43 7 120 121 4 44 7 146 145 4 45 8 196 197 4 45 8 196 197 4 46 8 105 107 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 49 8 160 162 4 50 9 193 194 5 51 9 105 104 5 52 9 161 163 5 53 8 143 142 5	38		189	187	4
41 8 145 144 4 42 8 117 119 4 43 7 120 121 4 44 7 146 145 4 45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 49 8 160 162 4 49 8 160 162 4 50 9 193 194 5 51 9 105 104 5 51 9 105 104 5 52 9 161 163 5 53 8 143 142 5 54 8 138 140 5	39	7	111		4
42 8 117 119 4 43 7 120 121 4 44 7 146 145 4 45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 49 8 160 162 4 50 9 193 194 5 51 9 105 104 5 52 9 161 163 5 53 8 143 142 5 54 8 138 140 5 55 9 203 201 5 55 9 203 201 5 56 8 144 143 5	40	8	118		4
43 7 120 121 4 44 7 146 145 4 45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 49 8 160 162 4 50 9 193 194 9 51 9 105 104 9 51 9 105 104 9 52 9 161 163 9 53 8 143 142 9 54 8 138 140 9 55 9 203 201 9 55 9 203 201 9 57 8 98 99 9 58 9 166 167 9 59 9 179 1	41	8	145	144	4
44 7 146 145 4 45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 50 9 193 194 9 51 9 105 104 9 51 9 105 104 9 52 9 161 163 9 53 8 143 142 9 54 8 138 140 9 55 9 203 201 9 55 9 203 201 9 56 8 144 143 9 57 8 98 99 9 58 9 166 167 9 60	42	8	117		4
45 8 196 197 4 46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 50 9 193 194 9 51 9 105 104 9 52 9 161 163 9 53 8 143 142 9 54 8 138 140 9 55 9 203 201 9 55 9 203 201 9 56 8 144 143 9 57 8 98 99 9 58 9 166 167 9 59 9 179 177 9 60 8 164 165 9 61 9 160 158 9 62 9 159 1	43		120		4
46 8 105 107 4 47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 50 9 193 194 5 51 9 105 104 5 52 9 161 163 5 53 8 143 142 5 54 8 138 140 5 55 9 203 201 5 56 8 144 143 5 57 8 98 99 5 58 9 166 167 5 59 9 179 177 5 60 8 164 165 6 61 9 160 158 6 62 9 159 160 6 63 9 133 132 6 64 9 118 1	44	7	146	145	4
47 7 126 124 4 48 7 153 154 4 49 8 160 162 4 50 9 193 194 5 51 9 105 104 5 52 9 161 163 5 53 8 143 142 5 54 8 138 140 5 55 9 203 201 5 56 8 144 143 5 57 8 98 99 9 58 9 166 167 5 59 9 179 177 5 60 8 164 165 6 61 9 160 158 5 62 9 159 160 5 63 9 133 132 6 64 9 118 120 6 65 10 195	45				4
48 7 153 154 4 49 8 160 162 4 50 9 193 194 9 51 9 105 104 9 52 9 161 163 9 53 8 143 142 9 54 8 138 140 9 9 55 9 203 201 9	46		105	107	4
49 8 160 162 4 50 9 193 194 5 51 9 105 104 5 52 9 161 163 5 53 8 143 142 5 54 8 138 140 5 54 8 138 140 5 55 9 203 201 5 56 8 144 143 5 57 8 98 99 5 58 9 166 167 5 59 9 179 177 5 60 8 164 165 6 61 9 160 158 5 62 9 159 160 6 63 9 133 132 6 64 9 118 120 6 65	47	7	126	124	4
50 9 193 194 9 51 9 105 104 9 52 9 161 163 9 53 8 143 142 9 54 8 138 140 9 55 9 203 201 9 56 8 144 143 9 57 8 98 99 9 58 9 166 167 9 59 9 179 177 9 60 8 164 165 9 61 9 160 158 9 62 9 159 160 9 63 9 133 132 9 64 9 118 120 9 65 10 195 193 9 66 10 131 130 9	48	7	153	154	4
51 9 105 104 8 52 9 161 163 8 53 8 143 142 8 54 8 138 140 8 55 9 203 201 8 56 8 144 143 8 57 8 98 99 8 58 9 166 167 8 59 9 179 177 8 60 8 164 165 8 61 9 160 158 8 62 9 159 160 8 63 9 133 132 8 64 9 118 120 8 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 <td< th=""><th>49</th><th>8</th><th>160</th><th>162</th><th>4</th></td<>	49	8	160	162	4
52 9 161 163 8 53 8 143 142 8 54 8 138 140 8 55 9 203 201 8 56 8 144 143 8 57 8 98 99 8 58 9 166 167 8 59 9 179 177 8 60 8 164 165 8 61 9 160 158 8 62 9 159 160 8 63 9 133 132 8 64 9 118 120 8 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 <td< th=""><th>50</th><th>9</th><th>193</th><th>194</th><th>5</th></td<>	50	9	193	194	5
53 8 143 142 9 54 8 138 140 9 55 9 203 201 9 56 8 144 143 9 57 8 98 99 9 58 9 166 167 9 59 9 179 177 9 60 8 164 165 9 61 9 160 158 9 62 9 159 160 9 63 9 133 132 9 64 9 118 120 9 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	51	9	105	104	5
54 8 138 140 9 55 9 203 201 9 56 8 144 143 9 57 8 98 99 9 58 9 166 167 9 59 9 179 177 9 60 8 164 165 9 61 9 160 158 9 62 9 159 160 9 63 9 133 132 9 64 9 118 120 9 65 10 195 193 9 66 10 131 130 9 67 10 108 110 9 68 9 189 186 9 69 10 126 125 9	52	9	161	163	5
54 8 138 140 9 55 9 203 201 9 56 8 144 143 9 57 8 98 99 9 58 9 166 167 9 59 9 179 177 9 60 8 164 165 9 61 9 160 158 9 62 9 159 160 9 63 9 133 132 9 64 9 118 120 9 65 10 195 193 9 66 10 131 130 9 67 10 108 110 9 68 9 189 186 9 69 10 126 125 9			143		5
57 8 98 99 8 58 9 166 167 9 59 9 179 177 9 60 8 164 165 9 61 9 160 158 9 62 9 159 160 9 63 9 133 132 9 64 9 118 120 9 65 10 195 193 9 66 10 131 130 9 67 10 108 110 9 68 9 189 186 9 69 10 126 125 9	54	8	138	140	5
57 8 98 99 8 58 9 166 167 9 59 9 179 177 9 60 8 164 165 9 61 9 160 158 9 62 9 159 160 9 63 9 133 132 9 64 9 118 120 9 65 10 195 193 9 66 10 131 130 9 67 10 108 110 9 68 9 189 186 9 69 10 126 125 9	55	9	203	201	5
58 9 166 167 8 59 9 179 177 9 60 8 164 165 8 61 9 160 158 9 62 9 159 160 9 63 9 133 132 9 64 9 118 120 9 65 10 195 193 60 66 10 131 130 60 67 10 108 110 60 68 9 189 186 60 69 10 126 125 60	56	8	144	143	
60 8 164 165 8 61 9 160 158 9 62 9 159 160 8 63 9 133 132 8 64 9 118 120 8 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	57	8	98	99	5
60 8 164 165 8 61 9 160 158 8 62 9 159 160 8 63 9 133 132 8 64 9 118 120 8 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	58	9	166	167	5 5
61 9 160 158 8 62 9 159 160 8 63 9 133 132 8 64 9 118 120 8 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	59	9	179	177	
62 9 159 160 8 63 9 133 132 8 64 9 118 120 8 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	60	8	164	165	5
63 9 133 132 8 64 9 118 120 8 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	61	9	160	158	5
63 9 133 132 8 64 9 118 120 8 65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	62	9	159	160	5
65 10 195 193 6 66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6			133		5
66 10 131 130 6 67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	64	9	118	120	5
67 10 108 110 6 68 9 189 186 6 69 10 126 125 6	65	10	195	193	6
68 9 189 186 6 69 10 126 125 6	66	10	131		6
69 10 126 125 6	67	10	108	110	6
		9	189		6
70 9 166 164 6	69	10		125	6
	70	9	166	164	6
71 9 147 145 6	71	9	147	145	6

AUTORAS:

72	10	169	171	6
73	9	165	163	6
74	10	134	136	6
75	10	154	153	6
76	9	134	132	6
77	11	119	121	7
78	11	127	128	7
79	10	124	125	7
80	11	119	117	7
81	11	140	141	7
82	11	155	153	7
83	10	138	136	7
84	11	143	141	7
85	10	167	169	7
86	10	174	176	7
87	11	161	163	7
88	11	124	126	7
89	11	137	135	7
90	11	125	123	7
91	10	208	209	7
92	10	180	178	7
93	11	175	173	7

Tabla 1.1

TRIGLICERIDOS

CÓDIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
1	5	116	114	2
2	5	107	110	2
3	6	81	84	2
4	6	84	82	2
5	6	64	66	2
6	5	82	80	2
7	5	88	89	2
8	5	82	84	2
9	6	57	58	2
10	5	59	61	2
11	6	90	93	2
12	6	109	107	2
13	5	72	70	2
14	6	87	89	2
15	6	86	88	2
16	5	93	92	2
17	6	82	85	2
18	6	99	96	2
19	5	98	99	2
20	6	107	104	2
21	7	61	62	3
22	6	93	95	3
23	6	82	85	3
24	7	78	80	3
25	7	94	96	3
26	7	88	85	3
27	7	85	88	3
28	6	79	81	3
29	6	90	92	3
30	7	90	89	3
31	7	51	54	3
32	7	69	71	3

AUTORAS:

33	6	60	63	3
34	7	110	107	3
35	7	74	77	3
36	6	114	111	3
37	6	83	85	3
38	8	95	92	4
39	7	83	86	4
40	8	66	65	4
41	8	101	99	4
42	8	72	73	4
43	7	77	79	4
44	7	77	75	4
45	8	106	105	4
46	8	69	71	4
47	7	70	72	4
48	7	83	82	4
49	8	115	112	4
50	9	146	145	5
51	9	84	86	5
52	9	98	97	5
53	8	70	73	5
54	8	73	74	5
55	9	159	157	5
56	8	78	79	5
57	8	65	68	5
58	9	85	86	5
59	9	99	101	5
60	8	118	115	5
61	9	95	98	5
62	9	120	119	5
63	9	75	77	5
64	9	77	76	5
65	10	93	95	6
66	10	94	97	6
67	10	100	98	6
68	9	97	99	6
69	10	95	97	6
70	9	100	102	6
p				

AUTORAS:

	_	0.4	2.2	•
71	9	94	96	6
72	10	102	100	6
73	9	125	124	6
74	10	90	92	6
75	10	90	89	6
76	9	83	85	6
77	11	80	82	7
78	11	81	83	7
79	10	85	87	7
80	11	69	71	7
81	11	88	87	7
82	11	100	103	7
83	10	99	97	7
84	11	95	98	7
85	10	102	100	7
86	10	110	111	7
87	11	115	113	7
88	11	83	85	7
89	11	102	100	7
90	11	95	97	7
91	10	139	137	7
92	10	113	111	7
93	11	109	110	7

Tabla 1.2

HDL

CÓDIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
1	5	45	46	2
2	5	53	52	2
3	6	38	39	2
4	6	38	37	2
5	6	33	32	2
6	5	49	48	2
7	5	43	44	2
8	5	42	41	2
9	6	46	45	2
10	5	35	36	2
11	6	45	44	2
12	6	51	50	2
13	5	39	40	2
14	6	53	52	2
15	6	42	43	2
16	5	52	51	2
17	6	49	48	2
18	6	51	50	2
19	5	56	55	2
20	6	61	60	2
21	7	49	48	3
22	6	61	60	3
23	6	45	44	3
24	7	44	45	3
25	7	51	50	3
26	7	58	57	3
27	7	53	52	3
28	6	49	48	3
29	6	55	54	3
30	7	42	43	3

AUTORAS:

31	7	37	39	3
32	7	48	49	3
33	6	40	41	3
34	7	70	68	3
35	7	45	46	3
36	6	65	64	3
37	6	52	53	3
38	8	62	61	4
39	7	40	42	4
40	8	48	46	4
41	8	47	46	4
42	8	46	47	4
43	7	45	46	4
44	7	52	51	4
45	8	63	62	4
46	8	34	37	4
47	7	45	43	4
48	7	46	45	4
49	8	49	48	4
50	9	52	50	5
51	9	52	53	5
52	9	37	39	5
53	8	49	48	5
54	8	41	42	5
55	9	69	67	5
56	8	41	40	5
57	8	34	36	5
58	9	51	49	5
59	9	52	50	5
60	8	50	51	5
61	9	52	51	5
62	9	37	39	5
63	9	39	40	5
64	9	67	66	5

AUTORAS:

65	10	45	44	6
66	10	45	46	6
67	10	45	43	6
68	9	58	57	6
69	10	45	44	6
70	9	48	47	6
71	9	43	44	6
72	10	60	58	6
73	9	50	52	6
74	10	45	44	6
75	10	54	52	6
76	9	45	44	6
77	11	39	41	7
78	11	40	42	7
79	10	42	41	7
80	11	39	42	7
81	11	48	46	7
82	11	50	52	7
83	10	48	49	7
84	11	42	40	7
85	10	51	50	7
86	10	58	57	7
87	11	49	48	7
88	11	45	46	7
89	11	49	50	7
90	11	49	48	7
91	10	65	64	7
92	10	52	50	7
93	11	55	53	7

Tabla 1.3

LDL

CÓDIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
1	5	83	82	2
2	5	92	90	2
3	6	44	45	2
4	6	76	78	2 2
5	6	65	64	2
6	5	78	80	2 2
7	5	80	79	2
8	5	98	99	2
9	6	87	88	2
10	5	115	112	2
11	6	91	92	2
12	6	80	81	2 2
13	5	96	97	2
14	6	85	84	2 2
15	6	95	94	
16	5	90	92	2 2
17	6	95	96	2
18	6	111	110	2
19	5	109	110	2
20	6	104	102	3 3
21	7	127	125	3
22	6	82	83	3
23	6	122	120	3
24	7	87	89	3
25	7	89	88	3
26	7	109	107	
27	7	113	112	3
28	6	90	92	3
29	6	82	81	3
30	7	101	100	3
31	7	92	93	3
32	7	70	72	3
33	6	102	100	3

AUTORAS:

34	7	80	82	3
35	7	115	114	3
36	6	66	68	3
37	6	137	134	3
38	8	107	106	4
39	7	120	118	4
40	8	71	72	4
41	8	70	69	4
42	8	98	99	4
43	7	71	70	4
44	7	74	76	4
45	8	94	93	4
46	8	125	122	4
47	7	67	69	4
48	7	64	65	4
49	8	106	105	4
50	9	109	107	5
51	9	122	121	5
52	9	90	92	5
53	8	128	125	5
54	8	91	90	5
55	9	90	89	5
56	8	120	121	5
57	8	92	91	5
58	9	46	48	5
59	9	100	99	5
60	8	123	121	5
61	9	113	111	5
62	9	118	119	5
63	9	116	117	5
64	9	90	92	5
65	10	78	79	6
66	10	125	124	6
67	10	73	74	6
68	9	59	61	6
69	10	111	112	6
70	9	79	81	6

AUTORAS:

71	9	118	117	6
72	10	88	90	6
73	9	108	106	6
74	10	116	115	6
75	10	81	83	6
76	9	96	95	6
77	11	90	92	7
78	11	80	82	7
79	10	88	87	7
80	11	80	78	7
81	11	80	81	7
82	11	90	89	7
83	10	105	103	7
84	11	90	92	7
85	10	100	102	7
86	10	115	113	7
87	11	116	114	7
88	11	110	112	7
89	11	79	80	7
90	11	88	86	7
91	10	103	101	7
92	10	126	125	7
93	11	119	117	7

Tabla 1.4

COLEGIO

COLESTEROL

CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
94	12	115	118	8
95	12	162	160	8
96	12	150	153	8
97	11	161	162	8
98	11	160	158	8
99	12	153	155	8
100	11	201	199	8
101	12	171	172	8
102	11	146	144	8
103	11	155	158	8
104	12	110	112	8
105	11	161	163	8
106	12	138	135	8
107	12	185	187	8
108	11	170	172	8
109	11	169	166	8
110	12	138	139	8
111	12	130	133	8
112	12	159	157	8
113	12	124	122	8
114	13	113	111	9
115	13	124	127	9
116	12	180	182	9
117	13	138	139	9
118	13	156	154	9
119	12	121	119	9
120	13	109	110	9
121	12	140	142	9
122	15	198	197	9
123	13	175	173	9
124	12	126	128	9
125	12	132	130	9

AUTORAS:

	Т	Т		
126	12	139	139	9
127	13	171	174	9
128	14	159	161	10
129	13	123	125	10
130	12	136	134	10
131	13	178	179	10
132	14	142	140	10
133	14	151	149	10
134	14	133	135	10
135	14	141	142	10
136	13	132	133	10
137	14	144	147	10
138	15	186	188	10
139	13	140	139	10
140	13	139	137	10
141	14	117	119	10
142	14	124	121	10
143	14	172	173	10
144	14	94	97	10
145	13	148	146	10
146	14	216	215	10
147	13	95	97	10
148	13	130	128	10
149	14	154	156	10
150	14	169	166	10
151	13	144	145	10
152	13	149	147	10
153	14	130	133	10
154	14	141	140	10
155	14	143	144	10
156	15	144	146	10
157	13	142	141	10
158	13	160	162	10
159	13	115	114	10
160	14	196	198	10
161	13	203	202	10
162	14	96	98	1B
163	15	124	125	1B

AUTORAS:

164	15	155	157	1B
165	14	162	160	1B
166	15	174	171	1B
167	16	121	122	1B
168	15	186	188	1B
169	15	189	186	1B
170	14	104	105	1B
171	16	115	113	1B
172	14	146	144	1B
173	14	121	119	1B
174	16	194	195	1B
175	16	210	209	1B
176	15	161	160	1B
177	15	189	187	1B
178	15	126	128	1B
179	14	143	147	1B
180	14	162	160	1B
181	15	106	108	1B
182	15	191	189	1B
183	15	199	197	1B
184	15	201	200	1B
185	14	114	111	1B
186	15	101	103	1B
187	16	99	97	2B
188	16	198	196	2B
189	16	190	189	2B
190	16	91	93	2B
191	15	198	197	2B
192	16	187	185	2B
193	15	145	147	2B
194	15	199	200	2B
195	15	182	184	2B
196	16	194	197	2B
197	16	161	164	2B
198	16	174	172	2B
199	16	192	190	2B
200	15	114	115	2B
201	16	169	167	2B

AUTORAS:

202	15	154	157	2B
203	16	148	145	2B
204	15	191	193	2B
205	16	140	143	2B
206	16	199	197	2B
207	17	205	204	3B
208	16	119	121	3B
209	17	210	208	3B
210	16	159	160	3B
211	16	187	185	3B
212	16	195	193	3B
213	17	161	162	3B
214	17	198	199	3B
215	16	174	175	3B
216	16	130	128	3B
217	16	139	136	3B
218	17	153	152	3B
219	17	194	196	3B
220	17	186	183	3B

Tabla 1.5

TRIGLICERIDOS

CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
94	12	90	92	8
95	12	120	117	8
96	12	130	129	8
97	11	124	123	8
98	11	117	119	8
99	12	99	100	8
100	11	128	127	8
101	12	119	120	8
102	11	88	85	8
103	11	97	99	8
104	12	86	88	8
105	11	113	111	8
106	12	85	87	8
107	12	128	127	8
108	11	122	121	8
109	11	125	122	8
110	12	105	107	8
111	12	72	73	8
112	12	80	82	8
113	12	96	95	8
114	13	79	81	9
115	13	109	107	9
116	12	159	154	9
117	13	109	108	9
118	13	128	129	9
119	12	80	81	9
120	13	85	86	9
121	12	120	119	9
122	15	126	127	9
123	13	115	113	9
124	12	98	99	9
125	12	90	92	9
126	12	105	104	9
127	13	99	101	9
128	14	116	115	10

AUTORAS:

400	40	400	407	40
129	13	109	107	10
130	12	90	91	10
131	13	135	133	10
132	14	123	121	10
133	14	107	108	10
134	14	95	97	10
135	14	112	111	10
136	13	107	109	10
137	14	107	108	10
138	15	84	85	10
139	13	90	91	10
140	13	91	89	10
141	14	84	83	10
142	14	99	100	10
143	14	135	133	10
144	14	79	81	10
145	13	120	121	10
146	14	149	145	10
147	13	70	72	10
148	13	109	108	10
149	14	97	99	10
150	14	111	110	10
151	13	104	105	10
152	13	108	109	10
153	14	92	95	10
154	14	96	94	10
155	14	99	101	10
156	15	96	95	10
157	13	104	103	10
158	13	109	107	10
159	13	71	73	10
160	14	116	114	10
161	13	160	158	10
162	14	69	72	1B
163	15	91	92	1B
164	15	99	96	1B
165	14	106	105	1B
166	15	121	119	1B
-				

AUTORAS:

168	167	16	95	97	1B
169 15 109 108 1B 170 14 85 83 1B 171 16 89 90 1B 172 14 91 89 1B 173 14 96 95 1B 174 16 107 108 1B 175 16 184 182 1B 176 15 122 121 1B 177 15 133 135 1B 178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B<					
170 14 85 83 1B 171 16 89 90 1B 172 14 91 89 1B 173 14 96 95 1B 174 16 107 108 1B 175 16 184 182 1B 176 15 122 121 1B 177 15 133 135 1B 178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 184 15 160 158 1B 185 14 89 91 1B<					
171 16 89 90 1B 172 14 91 89 1B 173 14 96 95 1B 174 16 107 108 1B 175 16 184 182 1B 176 15 122 121 1B 177 15 133 135 1B 177 15 133 135 1B 178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B<					
172 14 91 89 1B 173 14 96 95 1B 174 16 107 108 1B 175 16 184 182 1B 176 15 122 121 1B 177 15 133 135 1B 178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B<					
173 14 96 95 1B 174 16 107 108 1B 175 16 184 182 1B 176 15 122 121 1B 177 15 133 135 1B 178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2					
174 16 107 108 1B 175 16 184 182 1B 176 15 122 121 1B 177 15 133 135 1B 178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 190 16 59 61 2					
175 16 184 182 1B 176 15 122 121 1B 177 15 133 135 1B 178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 190 16 59 61 2B 191 15 141 139 2					
176 15 122 121 18 177 15 133 135 18 178 15 99 101 18 179 14 102 100 18 180 14 114 115 18 181 15 75 77 18 182 15 98 99 18 183 15 132 130 18 184 15 160 158 18 185 14 89 91 18 186 15 78 79 18 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2					
177 15 133 135 1B 178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2					
178 15 99 101 1B 179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B<					
179 14 102 100 1B 180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119					
180 14 114 115 1B 181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141					
181 15 75 77 1B 182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130					
182 15 98 99 1B 183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
183 15 132 130 1B 184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201					
184 15 160 158 1B 185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202					
185 14 89 91 1B 186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203					
186 15 78 79 1B 187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
187 16 61 63 2B 188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
188 16 139 138 2B 189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
189 16 142 140 2B 190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
190 16 59 61 2B 191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
191 15 141 139 2B 192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
192 16 132 131 2B 193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B	190		59		2B
193 15 109 108 2B 194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
194 15 134 133 2B 195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B			132		2B
195 15 121 119 2B 196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
196 16 140 141 2B 197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B					
197 16 132 130 2B 198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B	195	15	121	119	2B
198 16 131 130 2B 199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B	196	16	140	141	2B
199 16 149 147 2B 200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B	197	16	132	130	2B
200 15 89 90 2B 201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B	198	16	131	130	2B
201 16 109 107 2B 202 15 102 103 2B 203 16 111 110 2B	199	16	149	147	2B
202 15 102 103 2B 203 16 111 110 2B	200	15	89	90	2B
203 16 111 110 2B	201	16	109	107	2B
	202	15	102	103	2B
204 15 133 135 2B	203	16	111	110	2B
	204	15	133	135	2B

AUTORAS:

205	16	124	122	2B
206	16	149	150	2B
207	17	144	142	3B
208	16	81	83	3B
209	17	159	157	3B
210	16	101	100	3B
211	16	124	121	3B
212	16	133	134	3B
213	17	90	93	3B
214	17	145	142	3B
215	16	128	127	3B
216	16	90	93	3B
217	16	96	95	3B
218	17	104	103	3B
219	17	114	115	3B
220	17	105	107	3B

Tabla 1.6

HDL

CODIGO

Tabla

1^{RA} TOMA **EDAD** DUPLICADO **GRADO**

94	12	115	116	8
95	12	76	78	8
96	12	111	112	8
97	11	99	97	8
98	11	105	104	8
99	12	101	103	8
100	11	101	100	8
101	12	128	127	8
102	11	114	113	8
103	11	105	103	8
104	12	105	104	8
105	11	65	68	8
106	12	110	109	8
107	12	94	92	8
108	11	121	119	8
109	11	108	110	8
110	12	109	107	8
111	12	91	92	8
112	12	89	91	8
113	12	111	109	8
114	13	79	81	9
115	13	70	72	9
116	12	75	77	9
117	13	123	121	9
118	13	95	96	9
119	12	105	107	9
120	13	83	82	9
121	12	72	70	9
122	15	103	102	9
123	13	125	124	9
124	12	115	116	9
125	12	85	87	9

AUTORAS: DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN 1.7

400	40	00	00	
126	12	89	90	9
127	13	97	96	9
128	14	115	116	10
129	13	111	110	10
130	12	81	80	10
131	13	89	90	10
132	14	125	124	10
133	14	98	99	10
134	14	105	106	10
135	14	90	92	10
136	13	94	93	10
137	14	84	82	10
138	15	96	97	10
139	13	120	121	10
140	13	92	94	10
141	14	92	91	10
142	14	73	74	10
143	14	70	71	10
144	14	110	111	10
145	13	62	63	10
146	14	96	94	10
147	13	131	130	10
148	13	70	73	10
149	14	81	79	10
150	14	107	109	10
151	13	118	116	10
152	13	98	97	10
153	14	99	101	10
154	14	89	90	10
155	14	90	88	10
156	15	100	102	10
157	13	101	100	10
158	13	95	94	10
159	13	118	116	10
160	14	68	70	10
161	13	127	125	10
162	14	128	129	1B
163	15	61	63	1B
164	15	70	69	1B
165	14	107	105	1B
-				

AUTORAS:

				T .=
166	15	126	127	1B
167	16	123	121	1B
168	15	77	78	1B
169	15	123	121	1B
170	14	127	126	1B
171	16	64	66	1B
172	14	72	71	1B
173	14	90	92	1B
174	16	82	83	1B
175	16	121	120	1B
176	15	132	133	1B
177	15	108	110	1B
178	15	126	124	1B
179	14	89	92	1B
180	14	96	94	1B
181	15	110	108	1B
182	15	65	67	1B
183	15	125	124	1B
184	15	128	126	1B
185	14	130	131	1B
186	15	69	72	1B
187	16	67	69	2B
188	16	62	61	2B
189	16	125	126	2B
190	16	120	121	2B
191	15	62	63	2B
192	16	125	123	2B
193	15	121	122	2B
194	15	98	99	2B
195	15	125	124	2B
196	16	122	120	2B
197	16	125	126	2B
198	16	118	117	2B
199	16	110	111	2B
200	15	120	122	2B
201	16	65	68	2B
202	15	117	119	2B
203	16	102	103	2B
204	15	98	100	2B
205	16	118	117	2B
L				I

AUTORAS:

206	16	90	92	2B
207	17	125	124	3B
208	16	135	133	3B
209	17	78	80	3B
210	16	139	137	3B
211	16	110	111	3B
212	16	118	115	3B
213	17	121	122	3B
214	17	115	116	3B
215	16	123	121	3B
216	16	105	106	3B
217	16	80	82	3B
218	17	99	100	3B
219	17	102	100	3B
220	17	119	117	3B

ANEXO 2

ANALISIS DEL PERFIL LIPIDICO REALIZADO A CADA UNO DE LOS PARALELOS TANTO DE LA ESCUELA COMO DE EL COLEGIO

SEGUNDO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
1	5	129	132	2
2	5	147	145	2
3	6	115	116	2
4	6	105	107	2
5	6	112	110	2
6	5	130	128	2
7	5	142	141	2
8	5	130	129	2
9	6	163	165	2
10	5	127	128	2
11	6	122	125	2
12	6	148	147	2
13	5	125	126	2
14	6	150	152	2
15	6	134	133	2
16	5	148	149	2
17	6	160	163	2
18	6	162	160	2
19	5	162	159	2
20	6	190	191	2

Se puede observar que los valores de estos niños están dentro del rango normal para su edad tanto en la primera toma como en la segunda.

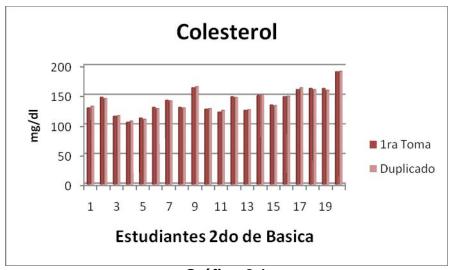


Gráfico 2.1

Tabla 2.1

COLESTEROL TERCERO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
21	7	132	133	3
22	6	184	182	3
23	6	133	134	3
24	7	134	131	3
25	7	160	162	3
26	7	172	171	3
27	7	144	143	3
28	6	132	133	3
29	6	156	157	3
30	7	134	132	3
31	7	94	95	3
32	7	151	150	3
33	6	120	118	3
34	7	209	208	3
35	7	113	112	3
36	6	205	203	3
37	6	159	160	3

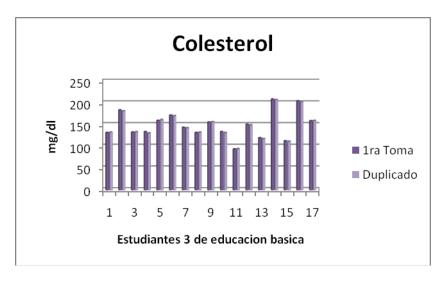


Gráfico 2.2
La mayoría de estos alumnos tienen valores normales a excepción de uno que tiene un valor elevado para su edad.

Tabla 2.2

COLESTEROL

CUARTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
38	8	189	187	4
39	7	111	112	4
40	8	118	120	4
41	8	145	144	4
42	8	117	119	4
43	7	120	121	4
44	7	146	145	4
45	8	196	197	4
46	8	105	107	4
47	7	126	124	4
48	7	153	154	4
49	8	160	162	4

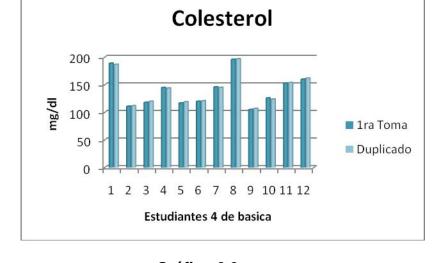
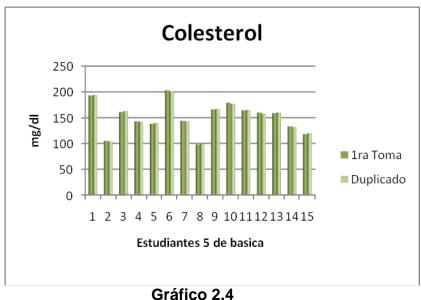


Gráfico 2.3

Sus valores están dentro de su rango de referencia

COLESTEROL

AUTORAS: DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN


Tabla 2.3

QUINTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
50	9	193	194	5
51	9	105	104	5
52	9	161	163	5
53	8	143	142	5
54	8	138	140	5
55	9	203	201	5
56	8	144	143	5
57	8	98	99	5
58	9	166	167	5
59	9	179	177	5
60	8	164	165	5
61	9	160	158	5
62	9	159	160	5
63	9	133	132	5
64	9	118	120	5

Tabla 2.4

Existen valores que se deben de considerar para poder tener un buen estado de salud y más en niños en esta edad.

COLESTEROL

SEXTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
65	10	195	193	6
66	10	131	130	6
67	10	108	110	6
68	9	189	186	6
69	10	126	125	6
70	9	166	164	6
71	9	147	145	6
72	10	169	171	6
73	9	165	163	6
74	10	134	136	6
75	10	154	153	6
76	9	134	132	6

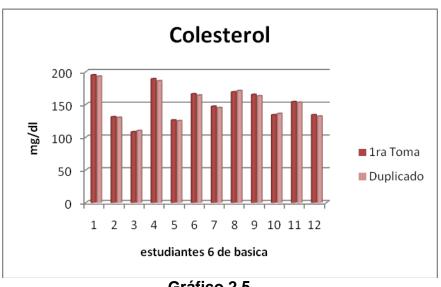
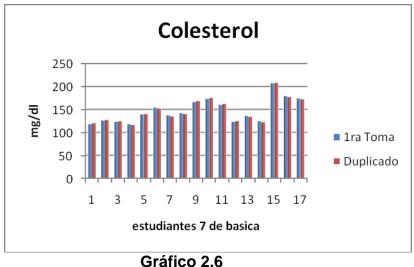


Gráfico 2.5

Tabla 2.5


Sus valores están en un rango normal, las personas con bajo riesgo coronario pueden comer cantidades razonables de alimentos ricos en colesterol.

COLESTEROL

SEPTIMO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
77	11	119	121	7
78	11	127	128	7
79	10	124	125	7
80	11	119	117	7
81	11	140	141	7
82	11	155	153	7
83	10	138	136	7
84	11	143	141	7
85	10	167	169	7
86	10	174	176	7
87	11	161	163	7
88	11	124	126	7
89	11	137	135	7
90	11	125	123	7
91	10	208	209	7
92	10	180	178	7
93	11	175	173	7

El consumo elevado de colesterol aumenta el riesgo de Enfermedad cerebro vascular tomando en cuenta que en este grupo existe un valor muy considerable de colesterol elevado.

Tabla 2.6

COLESTEROL

OCTAVO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
94	12	115	118	8
95	12	162	160	8
96	12	150	153	8
97	11	161	162	8
98	11	160	158	8
99	12	153	155	8
100	11	201	199	8
101	12	171	172	8
102	11	146	144	8
103	11	155	158	8
104	12	110	112	8
105	11	161	163	8
106	12	138	135	8
107	12	185	187	8
108	11	170	172	8
109	11	169	166	8
110	12	138	139	8
111	12	130	133	8
112	12	159	157	8
113	12	124	122	8

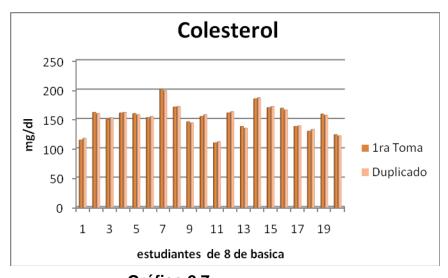


Gráfico 2.7
Sus valores son muy buenos en comparación con la demás población estudiada están en el rango normal

Tabla 2.7

COLESTEROL

NOVENO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
114	13	113	111	9
115	13	124	127	9
116	12	180	182	9
117	13	138	139	9
118	13	156	154	9
119	12	121	119	9
120	13	109	110	9
121	12	140	142	9
122	15	198	197	9
123	13	175	173	9
124	12	126	128	9
125	12	132	130	9
126	12	139	139	9
127	13	171	174	9

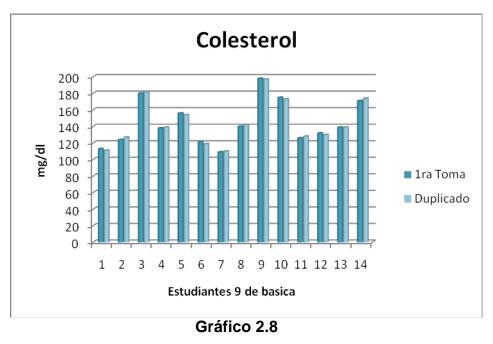


Tabla 2.8

Sus valores están en el rango normal tomando en cuenta que se trata de adolescentes que no tienen una dieta balanceada.

COLESTEROL

DECIMO DE BASICA

CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
128	14	159	161	10
129	13	123	125	10
130	12	136	134	10
131	13	178	179	10
132	14	142	140	10
133	14	151	149	10
134	14	133	135	10
135	14	141	142	10
136	13	132	133	10
137	14	144	147	10
138	15	186	188	10
139	13	140	139	10
140	13	139	137	10
141	14	117	119	10
142	14	124	121	10
143	14	172	173	10
144	14	94	97	10
145	13	148	146	10
146	14	216	215	10
147	13	95	97	10
148	13	130	128	10
149	14	154	156	10
150	14	169	166	10
151	13	144	145	10
152	13	149	147	10
153	14	130	133	10

154	14	141	140	10
155	14	143	144	10
156	15	144	146	10
157	13	142	141	10
158	13	160	162	10
159	13	115	114	10
160	14	196	198	10
161	13	203	202	10

Tabla 2.9

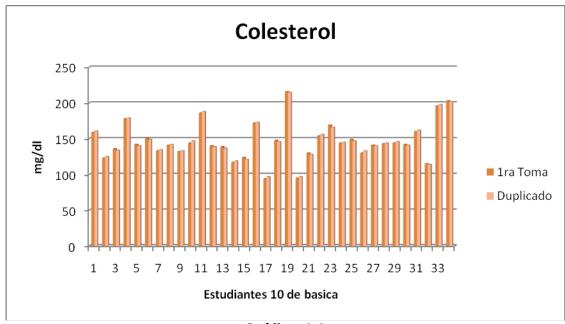


Gráfico 2.9

Existe un valor elevado que es de importancia en este grupo de investigación que merece atención en su alimentación.

AUTORAS:

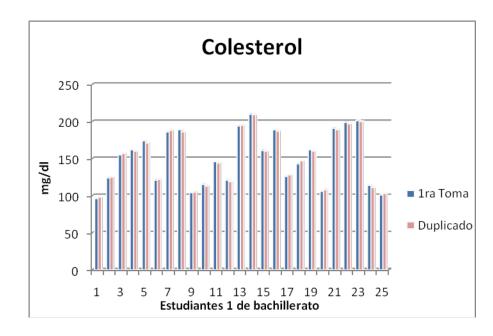
CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
162	14	96	98	1B
163	15	124	125	1B
164	15	155	157	1B
165	14	162	160	1B
166	15	174	171	1B
167	16	121	122	1B
168	15	186	188	1B
169	15	189	186	1B
170	14	104	105	1B
171	16	115	113	1B
172	14	146	144	1B
173	14	121	119	1B
174	16	194	195	1B
175	16	210	209	1B
176	15	161	160	1B
177	15	189	187	1B
178	15	126	128	1B
179	14	143	147	1B
180	14	162	160	1B
181	15	106	108	1B
182	15	191	189	1B
183	15	199	197	1B
184	15	201	200	1B
185	14	114	111	1B
186	15	101	103	1B

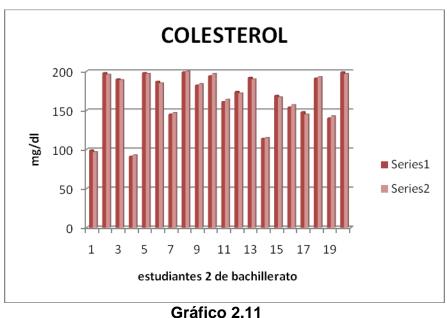
Tabla 2.10

AUTORAS: DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

COLESTEROL

PRIMERO DE BACHILLERATO



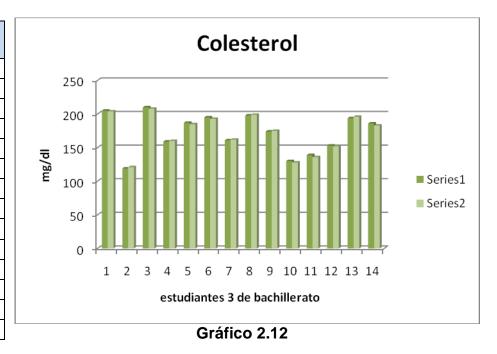

Gráfico 2.10

Es muy importante e indispensable distinguir entre una grasa que podríamos considerar recomendable y no recomendable para mantener valores normales y una vida saludable.

COLESTEROL SEGUNDO DE BACHILLERATO

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
187	16	99	97	2B
188	16	198	196	2B
189	16	190	189	2B
190	16	91	93	2B
191	15	198	197	2B
192	16	187	185	2B
193	15	145	147	2B
194	15	199	200	2B
195	15	182	184	2B
196	16	194	197	2B
197	16	161	164	2B
198	16	174	172	2B
199	16	192	190	2B
200	15	114	115	2B
201	16	169	167	2B
202	15	154	157	2B
203	16	148	145	2B
204	15	191	193	2B
205	16	140	143	2B
206	16	199	197	2B

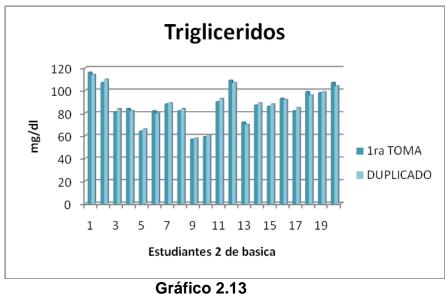
Cuando la ingestión de grasa supera la cantidad necesitada se produce un aumento de peso y por lo tanto un aumento de los valores.


Tabla 2.11

COLESTEROL

TERCERO DE BACHILLERATO

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
207	17	205	204	3B
208	16	119	121	3B
209	17	210	208	3B
210	16	159	160	3B
211	16	187	185	3B
212	16	195	193	3B
213	17	161	162	3B
214	17	198	199	3B
215	16	174	175	3B
216	16	130	128	3B
217	16	139	136	3B
218	17	153	152	3B
219	17	194	196	3B
220	17	186	183	3B


Tabla 2.12

Lo que podemos observar que existe un aumento en los valores por acumulación de grasa en el tejido adiposo que puede conducir a la obesidad o al riesgo de adquirir numerosas enfermedades.

TRIGLICERIDOS SEGUNDO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
1	5	116	114	2
2	5	107	110	2
3	6	81	84	2
4	6	84	82	2
5	6	64	66	2
6	5	82	80	2
7	5	88	89	2
8	5	82	84	2
9	6	57	58	2
10	5	59	61	2
11	6	90	93	2
12	6	109	107	2
13	5	72	70	2
14	6	87	89	2
15	6	86	88	2
16	5	93	92	2
17	6	82	85	2
18	6	99	96	2
19	5	98	99	2
20	6	107	104	2

Los valores están dentro del rango normal el mismo que nos indica que tienen una dieta balanceada

Tabla 2.13

TRIGLICERIDOS TERCERO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
0.4	7	TOMA	00	0
21	7	61	62	3
22	6	93	95	3
23	6	82	85	3
24	7	78	80	3
25	7	94	96	3
26	7	88	85	3
27	7	85	88	3
28	6	79	81	3
29	6	90	92	3
30	7	90	89	3
31	7	51	54	3
32	7	69	71	3
33	6	60	63	3
34	7	110	107	3
35	7	74	77	3
36	6	114	111	3
37	6	83	85	3

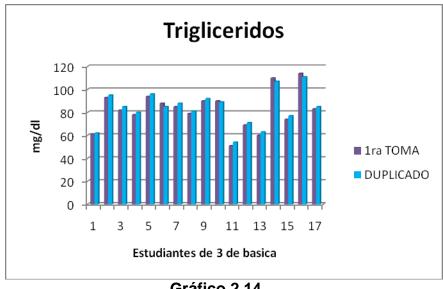


Gráfico 2.14

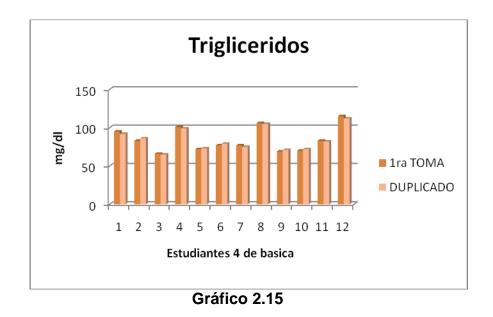

La importancia de llevar una vida saludable se ve reflejada en los valores que se ven en el grafico.

Tabla 2.14

TRIGLICERIDOS CUARTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
38	8	95	92	4
39	7	83	86	4
40	8	66	65	4
41	8	101	99	4
42	8	72	73	4
43	7	77	79	4
44	7	77	75	4
45	8	106	105	4
46	8	69	71	4
47	7	70	72	4
48	7	83	82	4
49	8	115	112	4

Tabla 2.15

Sus valores están dentro del rango normal para la edad de estos niños

TRIGLICERIDOS

QUINTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
50	9	146	145	5
51	9	84	86	5
52	9	98	97	5
53	8	70	73	5
54	8	73	74	5
55	9	159	157	5
56	8	78	79	5
57	8	65	68	5
58	9	85	86	5
59	9	99	101	5
60	8	118	115	5
61	9	95	98	5
62	9	120	119	5
63	9	75	77	5
64	9	77	76	5

Tabla 2.16

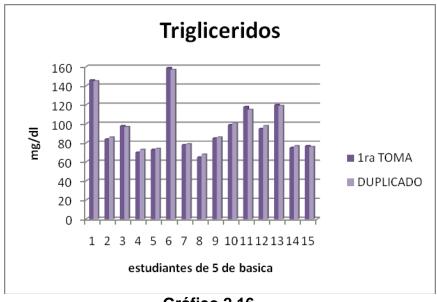


Gráfico 2.16

Los valores están elevados considerando el rango de referencia para la edad de estos niños verificando que existen problemas en su nutrición y salud.

TRIGLICERIDOS

SEXTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
65	10	93	95	6
66	10	94	97	6
67	10	100	98	6
68	9	97	99	6
69	10	95	97	6
70	9	100	102	6
71	9	94	96	6
72	10	102	100	6
73	9	125	124	6
74	10	90	92	6
75	10	90	89	6
76	9	83	85	6

Tabla 2.17

Sus valores están en lo normal del cual la importancia de una buena alimentación.

TRIGLICERIDOS SEPTIMO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
77	11	80	82	7
78	11	81	83	7
79	10	85	87	7
80	11	69	71	7
81	11	88	87	7
82	11	100	103	7
83	10	99	97	7
84	11	95	98	7
85	10	102	100	7
86	10	110	111	7
87	11	115	113	7
88	11	83	85	7
89	11	102	100	7
90	11	95	97	7
91	10	139	137	7
92	10	113	111	7
93	11	109	110	7

Trigliceridos

140
120
100
80
60
40
20
0
1 2 3 4 5 6 7 8 9 1011121314151617
Estudiantes de 7 de basica

Gráfico 2.18

Tabla 2.18

Sus valores están dentro de lo normal a excepción de una persona que tiene un valor elevado para su edad.

TRIGLICERIDOS

OCTAVO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
CODICO	LUAU	TOMA	DOI LIGADO	CNADO
94	12	90	92	8
95	12	120	117	8
96	12	130	129	8
97	11	124	123	8
98	11	117	119	8
99	12	99	100	8
100	11	128	127	8
101	12	119	120	8
102	11	88	85	8
103	11	97	99	8
104	12	86	88	8
105	11	113	111	8
106	12	85	87	8
107	12	128	127	8
108	11	122	121	8
109	11	125	122	8
110	12	105	107	8
111	12	72	73	8
112	12	80	82	8
113	12	96	95	8

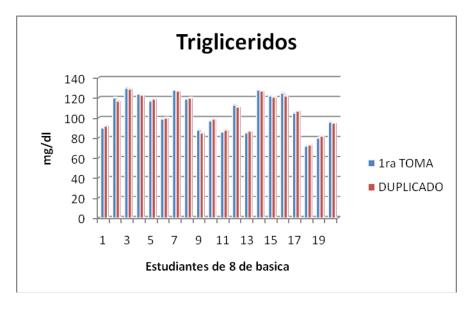


Gráfico 2.19

La importancia de una buena o mala alimentación se refleja en estos resultados

AUTORAS:

Tabla 2.19

TRIGLICERIDOS

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
114	13	79	81	9
115	13	109	107	9
116	12	159	154	9
117	13	109	108	9
118	13	128	129	9
119	12	80	81	9
120	13	85	86	9
121	12	120	119	9
122	15	126	127	9
123	13	115	113	9
124	12	98	99	9
125	12	90	92	9
126	12	105	104	9
127	13	99	101	9

NOVENO DE BASICA

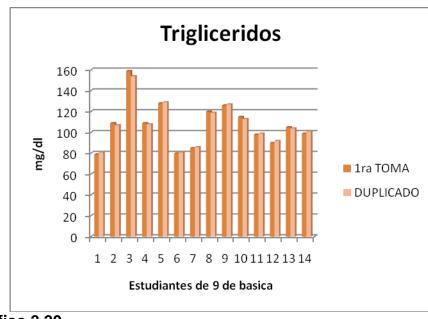


Gráfico 2.20

Tabla 2.20

Los malos hábitos y la vida sedentaria influyen a llevar una vida con problemas de enfermedades relacionadas.

UNIVERSIDAD DE CUENCA

TRIGLICERIDOS

DECIMO DE BASICA

CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
128	14	116	115	10
129	13	109	107	10
130	12	90	91	10
131	13	135	133	10
132	14	123	121	10
133	14	107	108	10
134	14	95	97	10
135	14	112	111	10
136	13	107	109	10
137	14	107	108	10
138	15	84	85	10
139	13	90	91	10
140	13	91	89	10
141	14	84	83	10
142	14	99	100	10
143	14	135	133	10
144	14	79	81	10
145	13	120	121	10
146	14	149	145	10
147	13	70	72	10
148	13	109	108	10
149	14	97	99	10

UNIVERSIDAD DE CUENCA

150	14	111	110	10
151	13	104	105	10
152	13	108	109	10
153	14	92	95	10
154	14	96	94	10
155	14	99	101	10
156	15	96	95	10
157	13	104	103	10
158	13	109	107	10
159	13	71	73	10
160	14	116	114	10
161	13	160	158	10

Tabla 2.21

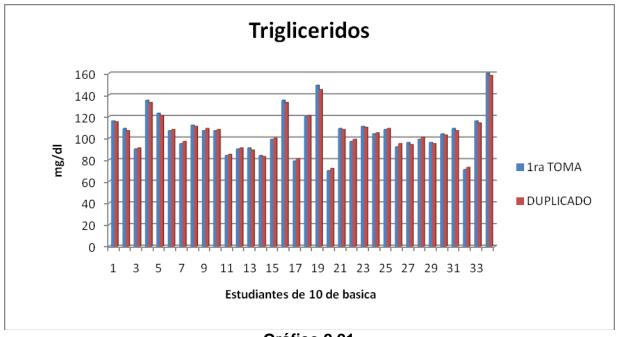


Gráfico 2.21

Existen valores elevados de triglicéridos que merecen importancia sobre todo en aquellos que estén muy elevados.

TRIGLICERIDOS PRIMERO DE BACHILLERATO

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
162	14	69	72	1B
163	15	91	92	1B
164	15	99	96	1B
165	14	106	105	1B
166	15	121	119	1B
167	16	95	97	1B
168	15	122	121	1B
169	15	109	108	1B
170	14	85	83	1B
171	16	89	90	1B
172	14	91	89	1B
173	14	96	95	1B
174	16	107	108	1B
175	16	184	182	1B
176	15	122	121	1B
177	15	133	135	1B
178	15	99	101	1B
179	14	102	100	1B
180	14	114	115	1B
181	15	75	77	1B

UNIVERSIDAD DE CUENCA

182	15	98	99	1B
183	15	132	130	1B
184	15	160	158	1B
185	14	89	91	1B
186	15	78	79	1B

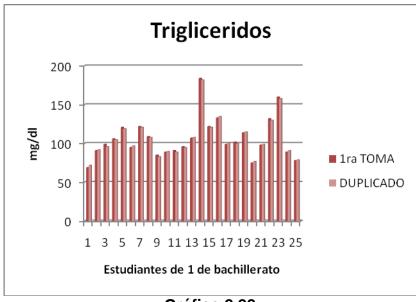


Gráfico 2.22

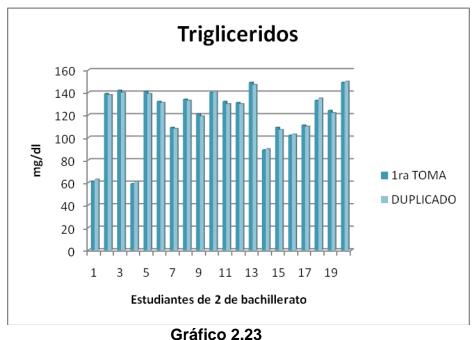
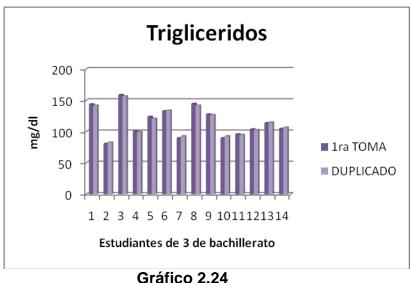

Existen valores normales que son excelentes pero también hay valores altos que necesitan ser tomados atención para una mejor salud.

Tabla 2.22

TRIGLICERIDOS SEGUNDO DE BACHILLERATO

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
187	16	61	63	2B
188	16	139	138	2B
189	16	142	140	2B
190	16	59	61	2B
191	15	141	139	2B
192	16	132	131	2B
193	15	109	108	2B
194	15	134	133	2B
195	15	121	119	2B
196	16	140	141	2B
197	16	132	130	2B
198	16	131	130	2B
199	16	149	147	2B
200	15	89	90	2B
201	16	109	107	2B
202	15	102	103	2B
203	16	111	110	2B
204	15	133	135	2B
205	16	124	122	2B
206	16	149	150	2B

Es importante tener una vida saludable y una buena alimentación para mantener bien los niveles de lípidos.


Tabla 2.23

TRIGLICERIDOS

TERCERO DE BACHILLERATO

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
207	17	144	142	3B
208	16	81	83	3B
209	17	159	157	3B
210	16	101	100	3B
211	16	124	121	3B
212	16	133	134	3B
213	17	90	93	3B
214	17	145	142	3B
215	16	128	127	3B
216	16	90	93	3B
217	16	96	95	3B
218	17	104	103	3B
219	17	114	115	3B
220	17	105	107	3B

Tabla 2.24

Algunos valores necesitan atención ya que son adolescentes que con el tiempo pueden incrementar estos valores y sufrir enfermedades.

SEGUNDO DE BASICA

CODIGO	EDAD	1RA TOMA	DUPLICADO	GRADO
1	5	45	46	2
2	5	53	52	2
3	6	38	39	2
4	6	38	37	2
5	6	33	32	2
6	5	49	48	2
7	5	43	44	2
8	5	42	41	2
9	6	46	45	2
10	5	35	36	2
11	6	45	44	2
12	6	51	50	2
13	5	39	40	2
14	6	53	52	2
15	6	42	43	2
16	5	52	51	2
17	6	49	48	2
18	6	51	50	2
19	5	56	55	2
20	6	61	60	2

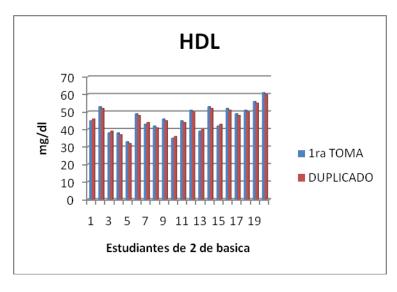


Gráfico 2.25

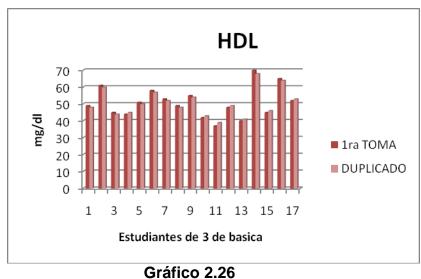

Se presentan buenos valores en este grupo de investigación

Tabla 2.25

HDL **TERCERO DE BASICA**

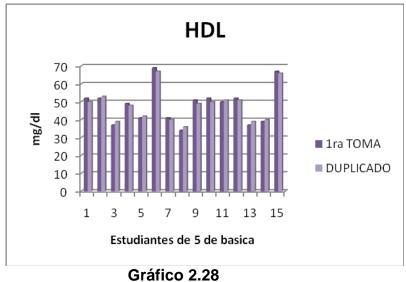
CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
21	7	49	48	3
22	6	61	60	3
23	6	45	44	3
24	7	44	45	3
25	7	51	50	3
26	7	58	57	3
27	7	53	52	3
28	6	49	48	3
29	6	55	54	3
30	7	42	43	3
31	7	37	39	3
32	7	48	49	3
33	6	40	41	3
34	7	70	68	3
35	7	45	46	3
36	6	65	64	3
37	6	52	53	3

La presencia de este tipo de lípido ayuda a disminuir los problemas de enfermedades coronarias

Tabla 2.26

CUARTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
38	8	62	61	4
39	7	40	42	4
40	8	48	46	4
41	8	47	46	4
42	8	46	47	4
43	7	45	46	4
44	7	52	51	4
45	8	63	62	4
46	8	34	37	4
47	7	45	43	4
48	7	46	45	4
49	8	49	48	4


Tabla 2.27

Es indispensable llevar una buena alimentación para obtener valores buenos que ayuden a mantener una buena salud.

QUINTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
50	9	52	50	5
51	9	52	53	5
52	9	37	39	5
53	8	49	48	5
54	8	41	42	5
55	9	69	67	5
56	8	41	40	5
57	8	34	36	5
58	9	51	49	5
59	9	52	50	5
60	8	50	51	5
61	9	52	51	5
62	9	37	39	5
63	9	39	40	5
64	9	67	66	5

Tabla 2.28

Los valores son muy satisfactorios para niños de esta edad

SEXTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
65	10	45	44	6
66	10	45	46	6
67	10	45	43	6
68	9	58	57	6
69	10	45	44	6
70	9	48	47	6
71	9	43	44	6
72	10	60	58	6
73	9	50	52	6
74	10	45	44	6
75	10	54	52	6
76	9	45	44	6

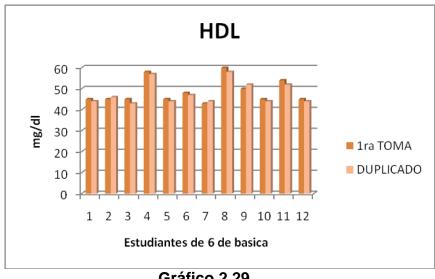


Gráfico 2.29

Tabla 2.29

Existen valores normales que ayudan a mantener un buen estado de salud y a disminuir el riesgo de enfermedades

SEPTIMO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
77	11	39	41	7
78	11	40	42	7
79	10	42	41	7
80	11	39	42	7
81	11	48	46	7
82	11	50	52	7
83	10	48	49	7
84	11	42	40	7
85	10	51	50	7
86	10	58	57	7
87	11	49	48	7
88	11	45	46	7
89	11	49	50	7
90	11	49	48	7
91	10	65	64	7
92	10	52	50	7
93	11	55	53	7

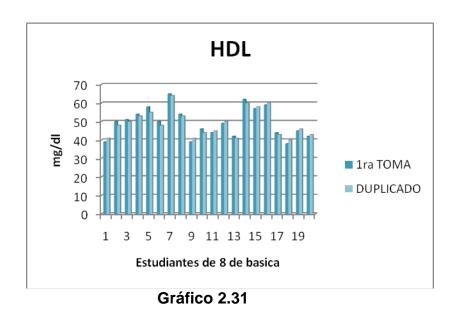

Valores por debajo de lo normal pueden aumentar el riesgo de alguna enfermedad tomando en cuenta que su disminución puede tener consecuencias

Tabla 2.30

HDL OCTAVO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
94	12	39	41	8
95	12	50	48	8
96	12	51	50	8
97	11	54	53	8
98	11	58	55	8
99	12	50	48	8
100	11	65	64	8
101	12	54	53	8
102	11	39	41	8
103	11	46	44	8
104	12	44	45	8
105	11	49	50	8
106	12	42	41	8
107	12	62	60	8
108	11	57	58	8
109	11	59	60	8
110	12	44	43	8
111	12	38	40	8
112	12	45	46	8
113	12	42	43	8

Los valores normales presentes son buenos para esta población es decir tienen una buena alimentación

Tabla 2.31

NOVENO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
114	13	42	41	9
115	13	47	48	9
116	12	58	56	9
117	13	41	42	9
118	13	50	48	9
119	12	37	38	9
120	13	47	48	9
121	12	45	44	9
122	15	63	62	9
123	13	58	57	9
124	12	40	41	9
125	12	42	43	9
126	12	42	41	9
127	13	54	53	9

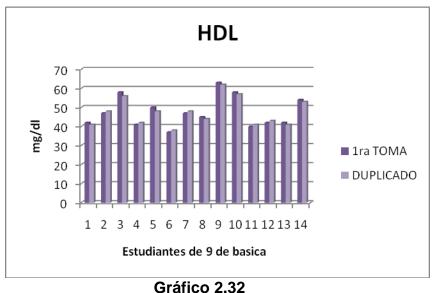


Tabla 2.32

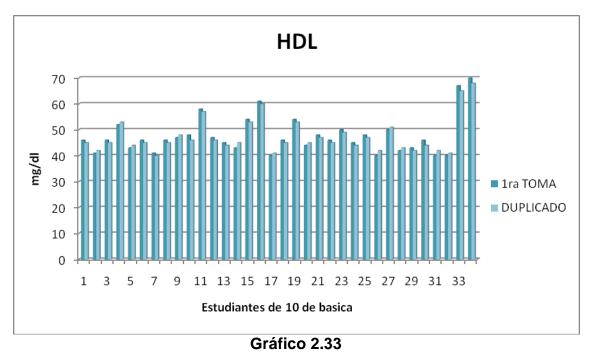
Los valores están dentro de lo normal es decir reduce el riesgo de adquirir cualquier enfermedad

UNIVERSIDAD DE CUENCA

HDL DÉCIMO DE BASICA

CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
128	14	46	45	10
129	13	41	42	10
130	12	46	45	10
131	13	52	53	10
132	14	43	44	10
133	14	46	45	10
134	14	41	40	10
135	14	46	45	10
136	13	47	48	10
137	14	48	46	10
138	15	58	57	10
139	13	47	46	10
140	13	45	44	10
141	14	43	45	10
142	14	54	53	10
143	14	61	60	10
144	14	40	41	10
145	13	46	45	10
146	14	54	53	10
147	13	44	45	10
148	13	48	47	10
149	14	46	45	10
150	14	50	49	10
151	13	45	44	10

AUTORAS:



UNIVERSIDAD DE CUENCA

152	13	48	47	10
153	14	40	42	10
154	14	50	51	10
155	14	42	43	10
156	15	43	42	10
157	13	46	44	10
158	13	40	42	10
159	13	40	41	10
160	14	67	65	10
161	13	70	68	10

Tabla 2.33

Existen valores normales en este grupo el cual ayuda a tener una mejor calidad de vida

Tabla 2.34

1^{RA}TOMA CODIGO EDAD **DUPLICADO GRADO** 1B 1B

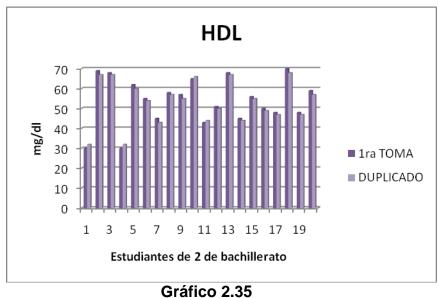
HDL

1B

PRIMERO DE BACHILLERATO

Gráfico 2.34

Una dieta organizada construye a llevar una mejor vida saludable

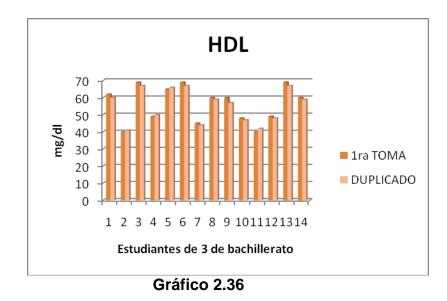

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

HDL **SEGUNDO DE BACHILLERATO**

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
187	16	30	32	2B
188	16	69	67	2B
189	16	68	67	2B
190	16	30	32	2B
191	15	62	60	2B
192	16	55	54	2B
193	15	45	43	2B
194	15	58	57	2B
195	15	57	55	2B
196	16	65	66	2B
197	16	43	44	2B
198	16	51	50	2B
199	16	68	67	2B
200	15	45	44	2B
201	16	56	55	2B
202	15	50	49	2B
203	16	48	47	2B
204	15	70	68	2B
205	16	48	47	2B
206	16	59	57	2B

Existen estudiantes que tienen valores por debajo de lo normal el cual incrementa el mayor riesgo de contraer enfermedades coronarias


Tabla 2.35

HDL TERCERO DE BACHILLERATO

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
207	17	62	60	3B
208	16	40	41	3B
209	17	69	67	3B
210	16	49	50	3B
211	16	65	66	3B
212	16	69	67	3B
213	17	45	44	3B
214	17	60	59	3B
215	16	60	57	3B
216	16	48	47	3B
217	16	40	42	3B
218	17	49	48	3B
219	17	69	67	3B
220	17	60	59	3B

Tabla 2.36

Valores por de debajo a lo normal van encaminados a sufrir enfermedades

LDL SEGUNDO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
1	5	83	82	2
2	5	92	90	2
3	6	44	45	2
4	6	76	78	2
5	6	65	64	2
6	5	78	80	2
7	5	80	79	2
8	5	98	99	2
9	6	87	88	2
10	5	115	112	2
11	6	91	92	2
12	6	80	81	2
13	5	96	97	2
14	6	85	84	2
15	6	95	94	2
16	5	90	92	2
17	6	95	96	2
18	6	111	110	2
19	5	109	110	2
20	6	104	102	2

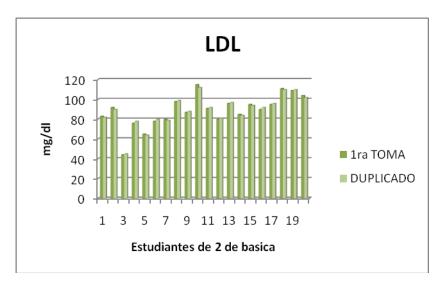


Gráfico 2.37

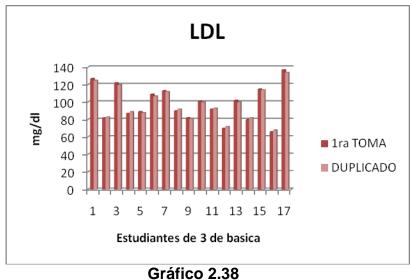
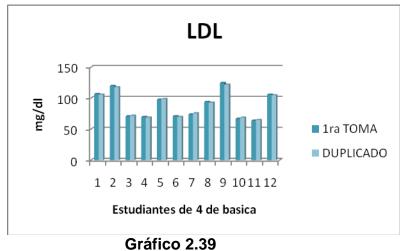

La mayoría tiene valores normales el cual es bueno para la salud

Tabla 2.37

LDL **TERCERO DE BASICA**

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
21	7	127	125	3
22	6	82	83	3
23	6	122	120	3
24	7	87	89	3
25	7	89	88	3
26	7	109	107	3
27	7	113	112	3
28	6	90	92	3
29	6	82	81	3
30	7	101	100	3
31	7	92	93	3
32	7	70	72	3
33	6	102	100	3
34	7	80	82	3
35	7	115	114	3
36	6	66	68	3
37	6	137	134	3

Existen valores elevados los que merecen ser tomados en cuenta para una mejor salud


Tabla 2.38

LDL **CUARTO DE BASICA**

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
38	8	107	106	4
39	7	120	118	4
40	8	71	72	4
41	8	70	69	4
42	8	98	99	4
43	7	71	70	4
44	7	74	76	4
45	8	94	93	4
46	8	125	122	4
47	7	67	69	4
48	7	64	65	4
49	8	106	105	4

Tabla 2.39

Valores normales dentro de lo normal se puede observar en este grupo

LDL QUINTO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
50	9	109	107	5
51	9	122	121	5
52	9	90	92	5
53	8	128	125	5
54	8	91	90	5
55	9	90	89	5
56	8	120	121	5
57	8	92	91	5
58	9	46	48	5
59	9	100	99	5
60	8	123	121	5
61	9	113	111	5
62	9	118	119	5
63	9	116	117	5
64	9	90	92	5

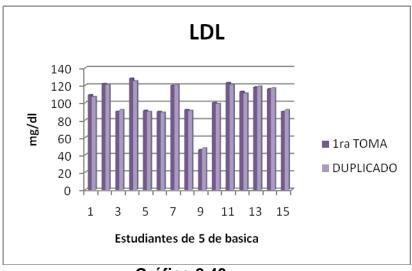
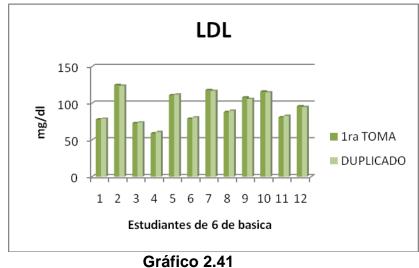


Gráfico 2.40

Los resultados están dentro de lo normal con ciertas excepciones que hay un valor muy bajo con llevando a riesgos


Tabla 2.40

LDL **SEXTO DE BASICA**

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
65	10	78	79	6
66	10	125	124	6
67	10	73	74	6
68	9	59	61	6
69	10	111	112	6
70	9	79	81	6
71	9	118	117	6
72	10	88	90	6
73	9	108	106	6
74	10	116	115	6
75	10	81	83	6
76	9	96	95	6

Tabla 2.41

Sus valores están dentro de lo normal

LDL **SEPTIMO DE BASICA**

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
77	11	90	92	7
78	11	80	82	7
79	10	88	87	7
80	11	80	78	7
81	11	80	81	7
82	11	90	89	7
83	10	105	103	7
84	11	90	92	7
85	10	100	102	7
86	10	115	113	7
87	11	116	114	7
88	11	110	112	7
89	11	79	80	7
90	11	88	86	7
91	10	103	101	7
92	10	126	125	7

LDL 140 120 100 mg/dl ■ 1ra TOMA ■ DUPLICADO 7 9 11 13 15 17 Estudiantes de 7 de basica

Gráfico 2.42

La dieta adecuada se ve reflejada con resultados de valores referenciales óptimos

Tabla 2.42

LDL OCTAVO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
94	12	115	116	8
95	12	76	78	8
96	12	111	112	8
97	11	99	97	8
98	11	105	104	8
99	12	101	103	8
100	11	101	100	8
101	12	128	127	8
102	11	114	113	8
103	11	105	103	8
104	12	105	104	8
105	11	65	68	8
106	12	110	109	8
107	12	94	92	8
108	11	121	119	8
109	11	108	110	8
110	12	109	107	8
111	12	91	92	8
112	12	89	91	8
113	12	111	109	8

Tabla 2.43

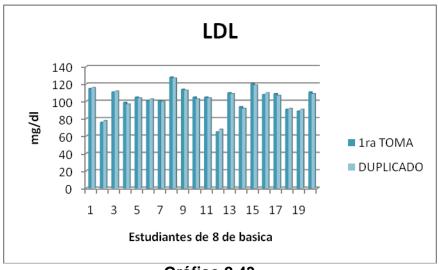


Gráfico 2.43

Los resultados están dentro del rango normal conjunto con una buena alimentación

AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

LDL

NOVENO DE BASICA

CODIGO	EDAD	1 ^{RA}	DUPLICADO	GRADO
		TOMA		
114	13	79	81	9
115	13	70	72	9
116	12	75	77	9
117	13	123	121	9
118	13	95	96	9
119	12	105	107	9
120	13	83	82	9
121	12	72	70	9
122	15	103	102	9
123	13	125	124	9
124	12	115	116	9
125	12	85	87	9
126	12	89	90	9
127	13	97	96	9

Gráfico 2.44

Existen unos buenos resultados de valores normales en este grupo adjuntando un buen estado de salud

Tabla 2.44

UNIVERSIDAD DE CUENCA

LDL DECIMO DE BASICA

CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
128	14	115	116	10
129	13	111	110	10
130	12	81	80	10
131	13	89	90	10
132	14	125	124	10
133	14	98	99	10
134	14	105	106	10
135	14	90	92	10
136	13	94	93	10
137	14	84	82	10
138	15	96	97	10
139	13	120	121	10
140	13	92	94	10
141	14	92	91	10
142	14	73	74	10
143	14	70	71	10
144	14	110	111	10
145	13	62	63	10
146	14	96	94	10
147	13	131	130	10
148	13	70	73	10
149	14	81	79	10
150	14	107	109	10

AUTORAS: DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

UNIVERSIDAD DE CUENCA

151	13	118	116	10
152	13	98	97	10
153	14	99	101	10
154	14	89	90	10
155	14	90	88	10
156	15	100	102	10
157	13	101	100	10
158	13	95	94	10
159	13	118	116	10
160	14	68	70	10
161	13	127	125	10

Tabla 2.45

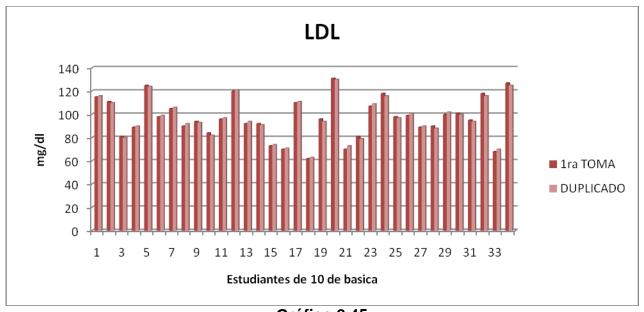


Gráfico 2.45

Sus valores son buenos en algún caso está bajo el cual requiere atención

LDL

PRIMERO DE BACHILLERATO

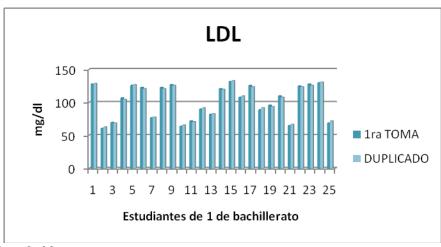
CÓDIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
162	14	128	129	1B
163	15	61	63	1B
164	15	70	69	1B
165	14	107	105	1B
166	15	126	127	1B
167	16	123	121	1B
168	15	77	78	1B
169	15	123	121	1B
170	14	127	126	1B
171	16	64	66	1B
172	14	72	71	1B
173	14	90	92	1B
174	16	82	83	1B
175	16	121	120	1B
176	15	132	133	1B
177	15	108	110	1B
178	15	126	124	1B
179	14	89	92	1B
180	14	96	94	1B
181	15	110	108	1B

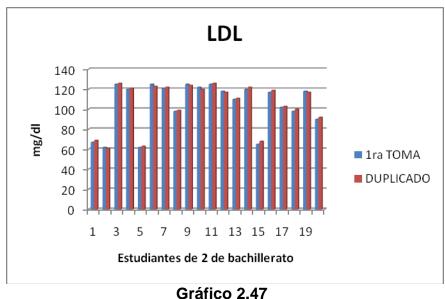
AUTORAS:

DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

182	15	65	67	1B
183	15	125	124	1B
184	15	128	126	1B
185	14	130	131	1B
186	15	69	72	1B

Tabla 2.46




Gráfico 2.46

Un buen estado de salud se refleja en el resultado de estas pruebas con valores normales

LDL **SEGUNDO DE BACHILLERATO**

CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
187	16	67	69	2B
188	16	62	61	2B
189	16	125	126	2B
190	16	120	121	2B
191	15	62	63	2B
192	16	125	123	2B
193	15	121	122	2B
194	15	98	99	2B
195	15	125	124	2B
196	16	122	120	2B
197	16	125	126	2B
198	16	118	117	2B
199	16	110	111	2B
200	15	120	122	2B
201	16	65	68	2B
202	15	117	119	2B
203	16	102	103	2B
204	15	98	100	2B
205	16	118	117	2B
206	16	90	92	2B

Con valores por debajo de lo normal se puede llegar al riesgo de enfermedades coronarias

Tabla 2.47

AUTORAS: DIANA SOFIA DÉLEG MONTERO ANA ROSA DELGADO YANZA JESSICA ESTEFANIA ORELLANA ROMÁN

LDL TERCERO DE BACHILLERATO

CODIGO	EDAD	1 ^{RA} TOMA	DUPLICADO	GRADO
207	17	125	124	3B
208	16	135	133	3B
209	17	78	80	3B
210	16	139	137	3B
211	16	110	111	3B
212	16	118	115	3B
213	17	121	122	3B
214	17	115	116	3B
215	16	123	121	3B
216	16	105	106	3B
217	16	80	82	3B
218	17	99	100	3B
219	17	102	100	3B
220	17	119	117	3B

Tabla 2.48

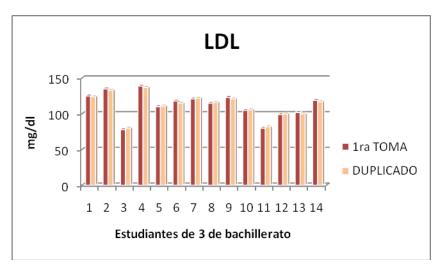


Gráfico 2.48

Los valores están dentro de lo normal para este grupo de adolescentes que a veces no cuentan con una buena alimentación