

FACULTAD DE ARQUITECTURA Y URBANISMO MAESTRÍA EN ORDENACIÓN TERRITORIAL

APROXIMACIÓN A LAS NECESIDADES ENERGÉTICAS DEL TERRITORIO:
ANÁLISIS DE FLUJOS DE MATERIAS Y ENERGÍA -METABOLISMO
TERRITORIAL- PARA LA SOSTENIBILIDAD Y EL BUEN VIVIR EN LA ZONA
6: AZUAY, CAÑAR Y MORONA SANTIAGO

TESIS DE GRADO PARA OPTAR POR EL TÍTULO DE MAGÍSTER EN ORDENACIÓN TERRITORIAL

AUTOR:

ING. ALVARO SANTIAGO LLORET VALDIVIESO

DIRECTOR:

MG. JAIME NORBERTO DOMÍNGUEZ DURÁN

CUENCA – ECUADOR 2015

Tree MXX CRAFTS ASSOCIATED ASSOCI

UNIVERSIDAD DE CUENCA

RESUMEN

La planificación territorial como instrumento de política pública para regular los usos de suelo y actuaciones sobre el territorio constituye una herramienta valiosa para la sostenibilidad del territorio a futuro; sin embargo quienes elaboran estos planes en nuestro medio generalmente se limitan a desarrollar propuestas instrumentales a partir de análisis mecánicos del sistema territorial (medio físico, población y sus actividades, canales de relación o infraestructuras, poblamiento, instituciones y marco normativo) sin integrar con visión y previsión los aspectos metabólicos y de balance de materia y energía que mantiene la población con su territorio.

En este contexto, el presente documento realiza una aproximación general que aborda aspectos importantes del metabolismo de la zona 6 de planificación. Se analizan los flujos totales estimados de consumo de energía de la población para alimentación, movilidad y vivienda; así como los requerimientos de agua y la generación de los siguientes efluentes: desechos sólidos, aguas servidas y emisiones del parque automotor a la atmósfera.

Los resultados del análisis presentan aportes interesantes sobre el nivel de autosuficiencia y el grado de dependencia interna y externa de la población de la zona seis de planificación. Se considera que el enfoque del trabajo y los resultados obtenidos han detectado problemáticas muy importantes en cuanto a garantizar la seguridad y soberanía alimentaria de la población; así como falencias en el adecuado aprovechamiento de los recursos.

Dada la significación de los temas tratados y sus resultados, es recomendable que las entidades responsables de la planificación territorial consideren fundamental su tratamiento; y, en conjunto con las universidades y otros actores profundicen los detalles de la problemática identificada, desarrollen acciones para afinar las propuestas y estrategias de planificación existentes y se pueda mejorar el camino hacia el buen vivir¹.

PALABRAS CLAVES: Metabolismo Territorial, Flujos materias y energías, planificación territorial, metabolismo zona y planificación.

Santiago Lloret Página 2

.

¹Entendido como un principio holístico de armonía y equilibrio.

Teel VIX. Crising accounts

UNIVERSIDAD DE CUENCA

ABSTRACT

Spatial planning as an instrument of public policy to regulate land uses and activities over the territory and It is a valuable tool for future sustainability; however who prepare these plans in our country (Ecuador) usually are limited in developing proposals from mechanical analysis (physical environment, population and its activities, relationship channels and infrastructure, population, institutions and regulatory framework) forward without integrating territorial system and forecasting and metabolic balance of matter and energy that keeps the population with its territory aspects.

In this context, this paper takes a comprehensive approach that addresses important aspects of metabolism planning in the zone 6. The total estimated energy flows of the population for food, housing and mobility are discussed; and water requirements and the generation of the following effluent: solid waste, wastewater and emissions into the atmosphere fleet.

The results of analysis show interesting contributions on self-reliance and degree of internal and external dependence in the zone 6. They have detected very important issues in ensuring food security and sovereignty of the population; as well as shortcomings in the proper utilization of resources.

For the significance of the issues and their results, it is recommended that the entities responsible for spatial planning considered essential treatment; and, together with universities and other actors deepen the details of the problems identified, develop actions to refine the proposals and existing strategies and planning can improve the path to the good life².

KEY WORDS: Territorial Metabolism, material and energy flows, territorial planning, metabolism and planning area.

²Understood as a holistic principle of harmony and balance..

TABLA DE CONTENIDO

RESUMEN	2
ABSTRACT	3
TABLA DE CONTENIDO	4
ÍNDICE DE ILUSTRACIONES	9
ÍNDICE DE CUADROS	. 10
CLÁUSULA DE DERECHOS DE AUTOR	. 12
CLÁUSULA DE PROPIEDAD INTELECTUAL	. 13
AGRADECIMIENTOS	. 14
APROXIMACIÓN A LAS NECESIDADES ENERGÉTICAS DEL TERRITORIO ANÁLISIS DE FLUJOS DE MATERIAS Y ENERGÍA -METABOLISMO TERRITORIAL- PARA LA SOSTENIBILIDAD Y EL BUEN VIVIR EN LA ZON 6: AZUAY, CAÑAR Y MORONA SANTIAGO.	Α
APROXIMACIÓN A LAS NECESIDADES ENERGÉTICAS DEL TERRITORIO ANÁLISIS DE FLUJOS DE MATERIAS Y ENERGÍA -METABOLISMO TERRITORIAL- PARA LA SOSTENIBILIDAD Y EL BUEN VIVIR EN LA ZON 6: AZUAY, CAÑAR Y MORONA SANTIAGO	Α
INTRODUCCIÓN	
PRESENTACIÓNEnfoque y objetivos	
CAPITULO I: FUNDAMENTOS TEÓRICOS Y METODOLÓGICOS	. 19
La Teoría de sistemas como herramienta conceptual de análisis	. 19
Energía	. 21
Metabolismo	. 24
El Ordenamiento Territorial, sostenibilidad y buen vivir	. 30
Modelo de Vaguada	. 31

Fundame	entos Metodológicos	35
Legislaci	ónón	38
0.1.1	Jerarquía de los cuerpos legislativos	
0.1.2	Principales cuerpos legislativos y de normativa vinculadas a los temas tra 39	
CAPÍTULO	O II: ESTIMACIÓN DE LAS PRINCIPALES DEMANDAS	
ENERGE1	TICAS Y APRECIACIÓN DE LA GENERACIÓN DE EFLUENTE	S DE
LA POBLA	ACIÓN EN LA ZONA SEIS DE PLANIFICACIÓN	42
Energía _l	para procesos vitales: agua y alimento	43
0.1.3	Agua para consumo humano	44
0.1.4	Alimentos para la población	45
Energía _l	para garantizar servicios básicos en la vivienda y trasporte	54
0.1.5	Electricidad	54
0.1.1	Gas licuado de petróleo	56
0.1.2	Combustibles fósiles para garantizar movilidad e intercambio de mercano	ías. 58
Energía ı	mitigable y aprovechable.	59
0.1.3	Emisiones a la atmósfera (vehículos de combustión y gas doméstico)	59
0.1.4	Generación de efluentes: aguas servidas y desechos sólidos domésticos.	60
CAPÍTULO	O III: METABOLISMO TERRITORIAL: ESTIMACIÓN DE LA	
DISPONIE	BILIDAD DE LOS RECURSOS Y DETERMINACIÓN DEL ESTA	DO
ACTUAL [DEL TERRITORIO DE LA ZONAL 6	62
Disponib	ilidad de agua para consumo humano	63
Balance	de Aguade	67
Disponib	ilidad de suelo para producción de alimentos	69
	del nivel de autosuficiencia y excedentes para suelo agrícola	
	, , , , , , , , , , , , , , , , , , ,	
•	s Energéticos complementarios	
0.1.5	Disponibilidad de Energía Eléctrica	
0.1.6	Balance de Electricidad	
0.1.7	Balance de hidrocarburos y sus derivados.	
0.1.8	Energía de las Emisiones: Capacidad de asimilación de CO ₂	
0.1.9	Energía de los residuos sólidos.	
Resumer	n general de las disponibilidades	89

CONCLUSIONES	90
SOBRE LOS OBJETIVOS DEL PRESENTE TRABAJO	90
SOBRE EL NIVEL DE AUTOSUFICIENCIA Y GRADO DE DEPENDENCIA	90
COMENTARIOS FINALES	91
GLOSARIO	93
APÉNDICES	98
Cálculos desarrollados para estimar la demanda de energía –alimento- de población.	
Energía eléctrica	105
Gas licuado de petróleo	107
Hidrocarburos	109
Calculo emisiones atmósfera por quema de combustibles fósiles	111
Efluentes: aguas servidas y desechos sólidos domésticos	113
Agua para consumo humano.	115
Territorio disponible para agricultura	116
Análisis de la estimación de has por la demanda de alimentos	119
Estimación del déficit hídrico.	122
Análisis consolidado general energía	123
ANEXOS	124
Cuadro Conversiones de Energía	124
Esquema de los principales cuerpos de legislación y normativa que se vin a la temática.	
Factores que influyen en la exactitud de la estimación de ingesta de nutrie	
Recomendaciones de ingesta alimentos: agua y macro nutrientes	131

Recomendaciones de rangos de distribución de la energia en el porcentaje de
los macro nutrientes (carbohidratos, proteína y grasa)
Porciones de alimentos según diferentes estados fisiológicos 133
Valor Nutricional de algunas preparaciones ecuatorianas
Recomendaciones referenciales de nutrientes
Distribución porcentual del consumo de energía para trasporte en el año 2013 a nivel país
Cuadros y tablas sobre residuos en el Ecuador138
Bloques petroleros en el Sur Oriente de Ecuador
Cuadro de dotaciones de agua recomendadas por la normativa 147
Rendimiento en carne de bovino142
Cuadros de precipitaciones mensuales en las provincias de Azuay, Cañar y Morona Santiago143
Hoja informativa para Ecuador FAO aquastat (2015)144
Cuadros comparativos de superficie de suelo disponible para agricultura y ganadería:
Aptitud agrícola generada por el MAGAP (2012) y la elaborada para el presente análisis en atención a tres criterios: pendiente, piso altitudinal y cobertura suelo
Disponibilidad de Agua en el Ecuador continental según SENAGUA (2011). 154
Balanza comercial en productos agrícolas 155
BIBLIOGRAFÍA
BIBLIOGRAFÍA CITADA EN LAS HOJAS DE CÁLCULO158
LECTUDAS COMPLEMENTADIAS

ÍNDICE DE ILUSTRACIONES

Ilustración 1.Esquema de aplicación de los principios de la teoría de sistemas	
nuestro trabajo	
Ilustración 2. Ciclo biológico de la energía	
Ilustración 3. Ciclo carbono	
Ilustración 4. Ciclo del carbono	
Ilustración 5.Energía, tipos, usos, fuentes y unidades de medida	
Ilustración 6. Huella ecológica.	
Ilustración 7. Sobre los cinco principales sub procesos de la dimensión tangible	del
metabolismo entre sociedad y naturaleza	
Ilustración 8. Estructura metabólica de la sociedad	. 27
Ilustración 9. Estructura metabólica tridimensional	
Ilustración 10. Enfoque del metabolismo en la zona 6 de planificación	
Ilustración 11. Enfoques metodológicos sobre el buen vivir	
llustración 12. Visión integrada del sistema de vaguada. En sombreado la influer	ncia
humana directa	. 32
Ilustración 13. Representación esquemática simplificada del modelo de vaguada p	ara
la zona 6	
Ilustración 14. Perfil latitudinal en dos sectores aledaños a las principales ciudades	de
la zona 6	. 34
llustración 15. Jerarquía de cuerpos legales conforme el Art. 425 de la Constitución.	
llustración 16. Gráficos de consumos históricos y porcentaje de distribución de ener	rgía
eléctrica de la zona 6	
Ilustración 17. Mapa de isoyetas para la zona 6	
Ilustración 18. Mapa de evapotranspiración para la zona 6	
Ilustración 19. Mapa de déficit hídrico la zona 6	
Ilustración 20. Mapa de déficit hídrico en la zona 6	
Ilustración 21. Mapas de aptitud agrícola de las provincias de la zona 6	
Ilustración 22. Mapas de pendientes en la zona 6	
Ilustración 23. Mapas de cobertura de suelo en la zona 6	. 71
Ilustración 24. Mapas de cobertura de suelo en la zona 6	. 72
Ilustración 25. Mapa que indica las áreas consideradas disponibles para producc	ción
de alimentos en la zona 6	
llustración 26. Superficies por categorías de uso de suelo agropecuario entre los ai	ños
2000 y 2013	
Ilustración 27. Estimación de Reservas de energía eléctrica nacional	. 81

ÍNDICE DE CUADROS

Cuadro 1. Cuadro estimado de la demanda de metros cúbicos de agua consu	mo
humano en la zona 6 de planificación para el año 2015 y 2030	.44
Cuadro 2. Proyecciones de la población para la zona 6 de planificación	45
Cuadro 3. Estimación de requerimientos energéticos de la población de la zona 6	de
planificación para el año 2015	47
Cuadro 4. Estimación de requerimientos energéticos de la población de la zona 6	de
planificación para el año 2030.	48
Cuadro 5. Estimación de una dieta tipo que satisface los requerimientos energétic	cos
de la población de la zona 6.	
Cuadro 6. Estimación de requerimientos de energía eléctrica de la zona 6	de
planificación para el año 2015 y 2030	54
Cuadro 7. Estimación de consumo de gas licuado de petróleo para cocción	de
alimentos en los hogares de la zona 6 de planificación para el año 2015 y 2030	56
Cuadro 8. Estimación consumo gas licuado petróleo para calentar agua en	los
hogares de la Azuay y Cañar para el año 2015 y 2030	. 57
Cuadro 9. Estimación total de consumo de gas licuado petróleo para los hogares	en
la zona 6 de planificación para el año 2015 y 2030	.57
Cuadro 10. Estimación consumo hidrocarburos en la zona 6 de planificación para	
año 2015 y 2030	. 58
Cuadro 11. Cuadro consolidado consumos de gasolina, diesel y GLP en la zona 6	de
planificación para el año 2015 y 2030	
Cuadro 12. Cuadro estimado de emisiones de CO2 a la atmósfera en la zona 6	de
planificación para el año 2015 y 2030	60
Cuadro 13. Cuadro estimado de generación de efluentes (aguas servidas y desech	าดร
sólidos domésticos) en la zona 6 de planificación para el año 2015 y 2030	61
Cuadro 14. Cuadro caracterización estimada de los desechos sólidos domésticos	en
la zona 6 de planificación para el año 2015 y 2030	61
Cuadro 15. Cuadro de déficit hídrico para la zona 6 de planificación	
Cuadro 16. Cuadro precipitaciones mensuales por provincia de la zona 6	67
Cuadro 17. Cuadro de áreas según rangos de pendiente en la zona 6	
Cuadro 18. Cuadro áreas para cultivos en la zona 6	
Cuadro 19. Cuadro áreas de pastizales en la zona 6	.73
Cuadro 20. Cuadro síntesis del área necesaria de suelo para satisfacer la demar	
alimentaria de la población de la zona 6	. 77
Cuadro 21. Cuadro disponibilidad de superficie para agricultura y ganadería en	la
zona 6	
Cuadro 22. Cuadro disponibilidad de disponibilidad de superficie agropecuaria er	า la
zona 6	
Cuadro 23. Infraestructuras y proyectos de generación de energía eléctrica en la zo	
6 de planificación hasta e laño 2022.	
Cuadro 24. Disponibilidad de energía eléctrica para la zona 6	
Cuadro 25. Participación porcentual de los diversos componentes en la zona 6	
Cuadro 26. Demandas de hidrocarburos para la zona 6	
Cuadro 27. Aproximación de hectáreas de plantación forestal para	

Cuadro 28.	Proyección en la Generación de desechos en la zona 6	87
Cuadro 29.	Aproximación de aprovechamiento de energía en la zona 6	88
Cuadro 30.	Cantidad de energía requerida por la población de la zona 6	89
Cuadro 31.	Sistematización de los principales cuerpos de legislación	128

CLÁUSULA DE DERECHOS DE AUTOR

Alvaro Santiago Lloret Valdivieso, autor de la tesis "APROXIMACIÓN A LAS NECESIDADES ENERGÉTICAS DEL TERRITORIO: ANALISIS DE FLUJOS DE MATERIAS T ENERGÍA – METABOLISMO TERRITORIAL- PARA LA SOSTENIBILIDAD Y EL BUEN VIVIR EN LA ZONA 6: AZUAY, CAÑAR Y MORONA SANTIAGO", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de (título que obtiene). El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Cuenca, 15 de noviembre 2015

Alvaro Santiago Lloret Valdivieso

C.I; 0102246295

CLÁUSULA DE PROPIEDAD INTELECTUAL

Universidad de Cuenca Clausula de propiedad intelectual

Alvaro Santiago Lloret Valdivieso, autor de la tesis "APROXIMACIÓN A LAS NECESIDADES ENERGÉTICAS DEL TERRITORIO: ANÁLISIS DE FLUJOS DE MATERIAS Y ENERGÍA – METABOLISMO TERRITORIAL- PARA LA SOSTENIBILIDAD Y EL BUEN VIVIR EN LA ZONA 6: AZUAY, CAÑAR Y MORONA SANTIAGO", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 15 de noviembre 2015

Alvaro Santiago Lloret Valdivieso

C.I: 0102246295

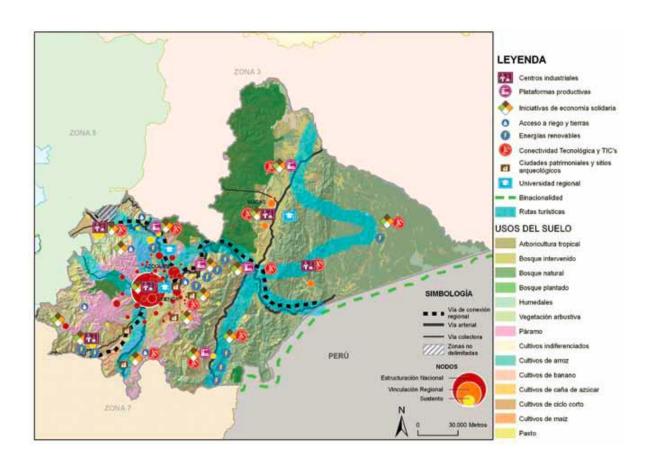
Tree MEE CERTS HERRORIES

UNIVERSIDAD DE CUENCA

AGRADECIMIENTOS

Debo expresar mi especial agradecimiento a:

Ing. Jaime Domíguez, mi Director, por su apoyo y colaboración.


Ing. Xavier Galarza, colega profesional quien como experto en la rama de la planificación territorial y cartografía digital colaboró en este trabajo.

María Augusta, mi hermana, por la revisión y edición del documento.

Representantes y funcionarios de las diversas entidades públicas, por su aporte y colaboración en la entrega de información.

APROXIMACIÓN A LAS NECESIDADES ENERGÉTICAS DEL TERRITORIO: ANÁLISIS DE FLUJOS DE MATERIAS Y ENERGÍA -METABOLISMO TERRITORIAL- PARA LA SOSTENIBILIDAD Y EL BUEN VIVIR EN LA ZONA 6: AZUAY, CAÑAR Y MORONA SANTIAGO.

Universidad de Cuenca
Facultad de Arquitectura y Urbanismo
Maestría en Ordenación
Territorial
TESIS DE GRADO PARA OPTAR POR
EL TÍTULO DE MAGÍSTER EN
ORDENACIÓN TERRITORIAL
DIRECTOR: Mg. Jaime Domínguez

Santiago Lloret Valdivieso 15/11/2015

THE PASS CRAFFE HELDEN'S

UNIVERSIDAD DE CUENCA

APROXIMACIÓN A LAS NECESIDADES ENERGÉTICAS DEL TERRITORIO: ANÁLISIS DE FLUJOS DE MATERIAS Y ENERGÍA -METABOLISMO TERRITORIAL- PARA LA SOSTENIBILIDAD Y EL BUEN VIVIR EN LA ZONA 6: AZUAY, CAÑAR Y MORONA SANTIAGO.

Portada: Mapa del Modelo Territorial Propuesto para la Zona de Planificación 6. Agenda Zonal 6 2009-2013. SENPLADES, Subsecretaría Zona 6. (2013).

Tree MXX CRAFTS ASSOCIATED ASSOCI

UNIVERSIDAD DE CUENCA

INTRODUCCIÓN

En la actualidad las políticas y normativas vigentes en nuestro país ponen énfasis en la planificación del territorio como instrumento fundamental para la adecuada organización y administración del Estado y las diversas regiones de su territorio. Ello ha propiciado el inicio de trabajos y estudios en este campo que por su temática relativamente nueva en su aplicación- y por su carácter holístico, requiere el desarrollo de mayores experticias en diversos tópicos, entre los cuales se incluyen aquellos referidos a los intercambios energéticos entre la población y el entorno, asunto sobre el cual intentaremos referirnos en el presente documento.

De los procesos metodológicos de planificación territorial que se aplican, estos generalmente se subdividen en tres grandes ámbitos: diagnóstico, planificación y gestión; y entre las opciones metodológicas que se utilizan está el análisis individual de los componentes del sistema para luego desplegar un análisis exhaustivo – diagnóstico integrado o de síntesis- sobre el cual se traza la estrategia de planificación final deseada.

Este tipo de análisis en muchas ocasiones deja sin mayor consideración aspectos importantes del "metabolismo" entre la población y el territorio. Así por ejemplo ciertas relaciones "metabólicas tangibles" como la demanda de energía y alimentos de la población o la generación de emanaciones y desechos, experimentan consideraciones ligeras en las propuestas finales de planificación que inhibe en muchos casos la incorporación de determinantes valiosas tales como la reserva de suelo para procurar garantizar el mayor nivel de autosuficiencia en seguridad y soberanía alimentaria, el desarrollo de políticas y planes para disminuir el grado de dependencia externa de recursos o el fomento de un uso sensato de los mismos.

En este campo resulta interesante considerar los aspectos metabólicos y de balance de energía que consume y demanda la población en el territorio como un componente estructural importante -que fundamentado en un enfoque holístico y conceptos de sostenibilidad, respeto a la naturaleza y soberanía alimentaria-; permita formular planes territoriales más próximos al buen vivir³.

Con estos antecedentes resulta conveniente iniciar un acercamiento a la temática del metabolismo intentando desarrollar un análisis general de las necesidades energéticas de la población que convive en el territorio de la regional 6 de planificación; con el fin de aportar criterios objetivos que permitan proponer, establecer y ejecutar alternativas prácticas de gestión e intervención.

³Entendido como un principio holístico de armonía y equilibrio.

Tree MXX CRAFTS ASSOCIATED ASSOCI

UNIVERSIDAD DE CUENCA

PRESENTACIÓN

Enfoque y objetivos

El presente trabajo pretende realizar una primera aproximación práctica de los principios del intercambio energético de la población -actual y futura- presente en los territorios de las provincias de Azuay, Cañar y Morona Santiago exponiendo sus necesidades básicas y la capacidad de éste para satisfacerlas.

Objetivo General.

Desarrollar los principios del intercambio de energía -metabolismo- que se manifiestan en el territorio de la zona seis de planificación, para que sirvan como criterios estructurales dentro de la actualización y/o revisión de los planes de ordenamiento territorial existentes orientado a mejorar la sostenibilidad y el buen vivir.

Objetivos Específicos.

- Revisar conceptos teóricos y metodológicos vinculados.
- > Revisar el marco legislativo vinculado.
- > Revisar las principales demandas energéticas de la población: análisis con visión holística y enfoque eco sistémico.
- Establecer los criterios principales para cuantificar los procesos del metabolismo territorial de la zona seis en relación a componentes como:
 - o Consumo de energía para: alimentación, movilidad, vivienda.
 - o Gestión del agua para el uso humano.
 - o Emisiones a la atmósfera.
 - Gestión de los desechos.
- Determinar el grado de dependencia interna y externa de la región para los aspectos tratados.

CAPITULO I: FUNDAMENTOS TEÓRICOS Y METODOLÓGICOS

Para contextualizar el presente trabajo resulta indispensable exponer de manera sucinta algunos conceptos y enfoques que se emplean para nuestro análisis del metabolismo territorial.

La Teoría de sistemas como herramienta conceptual de análisis

"La inteligencia consiste no sólo en el conocimiento, sino también en la destreza de aplicar los conocimientos en la práctica".

Aristóteles

En el campo de esta investigación aplicada, resulta útil considerar los conceptos de la teoría general de sistemas⁴como herramienta que permite optimizar el análisis de las variables propuestas, así como la síntesis de recomendaciones.

Esta teoría posee un carácter "genérico" de aplicación sobre diversos asuntos, donde se mantiene los núcleos teóricos a través de invariantes y permite el desarrollo de múltiples componentes -según sus particularidades-, pudiendo aplicarse la herramienta y/o mecanismo de análisis más adecuado para la circunstancia particular y simultáneamente continuar con el orden del trabajo.

Sobre esta teoría, Alemán y Pérez (1997) en su trabajo de investigación despliegan ciertos conceptos que consideramos pertinentes exponerlos para una mejor contextualización:

"La Teoría General de Sistemas plantea que un sistema es un arreglo de componentes sean estos físicos (colección de cosas); teóricos (teorías y planteamientos); matemáticos (modelación); etc. de tal manera que forman y actúan como una unidad, entidad o un todo".

⁴La Teoría General de Sistemas fue conceptualizada en la década de los años treinta por el austriaco Von Bertalanffy quien en 1969 publicó su libro "Teoría General de Sistemas", donde aplicando sus conceptos y enfoques integradores, explora y explica temas científicos complejos.

TOWN (MESS DE COMPANY)

UNIVERSIDAD DE CUENCA

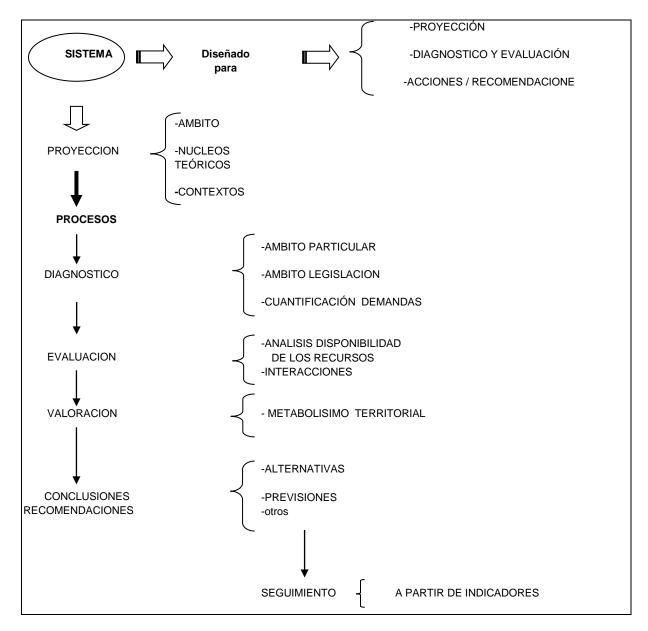


Ilustración 1.Esquema de aplicación de los principios de la teoría de sistemas a nuestro trabajo Fuente: Elaborado en base a la revisión de conceptos.

"Todo sistema tiene estructura (arreglo de componentes) y función (flujos que entran y salen). El objetivo principal de cualquier análisis de un sistema es definir la relación entre su estructura y su función. El sistema interactúa con el ambiente, procesando entradas y produciendo salidas. Al modificar la estructura la función puede cambiar. Si se conoce esta relación entre estructura y función, se puede diseñar sistemas más eficientes o mejorar los ya existentes".

"Un grupo de sistemas puede interactuar para formar uno mayor en el cual los sistemas que interactúan se convierten en subsistemas o componentes. De esta forma, un sistema puede tener subsistemas que a su vez posee otros subsistemas, lo cual genera jerarquías".

En cuanto al enfoque para la exploración, los autores señalan que: "Existen dos tipos de enfoque: la denominada "caja negra" que pone énfasis en las posibles modificaciones de estos sin entrar en detalles de su estructura y funcionamiento; y la denominada "caja blanca" la cual investiga y experimenta el funcionamiento y estructura del sistema, con el poder de modelar interacciones y posibles alteraciones del mismo".

En resumen, el aplicar el marco conceptual de la teoría de sistemas nos permite estructurar y desarrollar adecuadamente nuestra propuesta - análisis integrales o por componentes según las particularidades- y al mismo tiempo mantener los núcleos teóricos -invariantes- de nuestro sistema evitando desviaciones y/o erradas interpretaciones.

Energía

"Conservar, es usar bien"

Domingo Gómez Orea

Para desarrollar una mejor comprensión del concepto *energía* es conveniente partir del hecho de que es posible evidenciar sus efectos -en sus muy variadas manifestaciones-dentro de nuestro cotidiano vivir; así, está presente en los procesos metabólicos internos de los seres vivos que por la transformación de los alimentos permite su subsistencia biológica, crecimiento y desarrollo; en el hogar por ejemplo se aprovecha energía eléctrica para iluminación y operación de diversos electrodomésticos, del gas doméstico se obtiene calor para preparar los alimentos; en los sistemas sociales y culturales las personas emplean algún tipo de energía para satisfacer sus requerimientos como fuentes de combustibles fósiles para la movilidad de los vehículos a combustión, energía eléctrica para la producción de bienes y servicios, etc.

Ilustración 2. Ciclo biológico de la energía.

Fuente: http://www.saludmed.com/CsEjerci/Imagenes/CicloE1c.gif(accedida el 20 enero 2015)

En el ámbito biológico de nuestro planeta, la vida en todas sus formas es completamente dependiente de la energía. Los vegetales —denominados los productores primarios- inician la absorción del CO2 del aire con ayuda del agua, las sales procedentes del suelo y la energía luminosa del sol en un proceso denominado fotosíntesis, transformando los compuestos primarios en sustancias orgánicas (como hidratos de carbono) necesarios para sus procesos vitales.

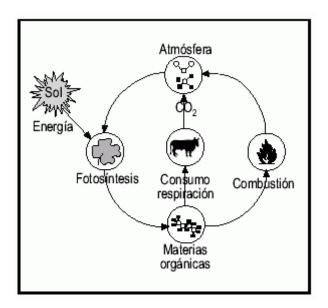


Ilustración 3. Ciclo carbono

Fuente: http://www2.inecc.gob.mx/publicaciones/libros/296/cap2.html(accedido el 25 enero 2015).

Los organismos animales⁵- consumidores primarios (herbívoros)- se nutren⁶ de esta forma de energía que a su vez pasa a los consumidores secundarios y terciarios (carnívoros y omnívoros); para finalmente culminar con los necrófagos o carroñeros antes de continuar su proceso de trasformación en el ciclo del carbono.

El ciclo de transformación de la energía radiante del sol.

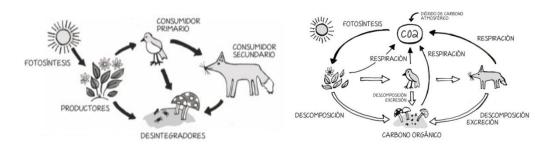


Ilustración 4. Ciclo del carbono

⁵Según el Diccionario de la Real Academia de la Lengua DRAE, animal se define como: "ser orgánico que vive, siente y se mueve por propio impulso".

⁶Se alimentan de los vegetales y los degradan. Al respirar también consumen oxígeno y emiten CO2.

Fuente: http://www.hicistelclick.com/desde-el-principio/organizacion-de-la-vida/ (accedido el 22 enero 2015).

Al ir un poco más allá y considerarlo dentro del campo de las ciencias, particularmente en el área de la "física clásica", la energía es considerada como la "capacidad para realizar un trabajo" y mantiene un principio fundamental de conservación que se expresa en el enunciado "la energía no se crea ni se destruye, sólo se transforma" . Esta propiedad de realizar un trabajo, que está asociada a los objetos y sustancias, puede manifestarse en el ámbito de los cambios físicos y los cambios químicos en dos tipos básicos 10: como energía potencial 11 presente en los enlaces químicos, en un gradiente de concentración, en un potencial eléctrico, etc.; y, como energía cinética 12 manifiesta en forma de calor, luz, etc.

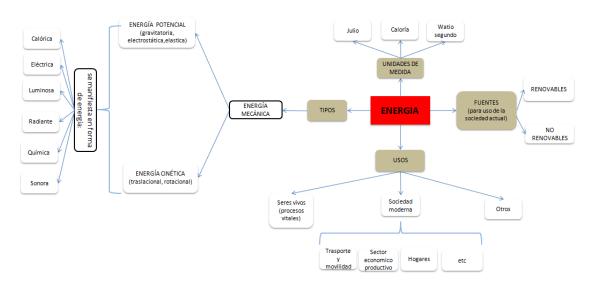


Ilustración 5.Energía, tipos, usos, fuentes y unidades de medida Fuente: Elaboración en atención a los conceptos revisados.

En el sistema internacional de unidades, la unidad para medir la energía es el *julio* que se define como la cantidad de trabajo realizado por una fuerza constante de un newton, para desplazar una masa de un kilogramo un metro de longitud en la misma dirección de la fuerza.

Otra unidad que aún se utiliza para poder expresar el poder energético de los alimentos es la caloría que se define como la cantidad de energía calorífica necesaria

⁷En el estudio de la mecánica.

⁸ Conforme consta en la definición del diccionario de la Real Academia de la Lengua Española DRAE.

⁹Actualmente se han desarrollado dos nuevas teorías: relatividad especial o general y mecánica cuántica, la primera compatibiliza los conceptos de ésta con la física clásica y lo amplía integrando la ley de conservación de la masa para fundirlo en un solo principio. La segunda considera que a nivel atómico, los cambios de movimiento ocurren en saltos discretos discontinuos. (Ver Resnick R, 2001.)

¹⁰Sus definiciones según el DRAE son:

Energía Potencial: Capacidad de un cuerpo para realizar trabajo en razón de su posición en un campo de fuerzas. Energía Cinética: La que posee un cuerpo por razón de su movimiento.

¹¹En campos gravitatorios, electrostática, elástica.

¹²En campos traslacional, rotacional.

THE VILL CRITIC RESEARCH

UNIVERSIDAD DE CUENCA

para elevar la temperatura de un gramo de agua pura en 1 °C (desde 14,5 °C a 15,5 °C), a una presión normal de una atmósfera.

Para el presente trabajo nos interesa su concepto fundamental de trasformación, que al ser medible en una escala en unidades de medida, es posible estimar sus valores en las diversas fuentes, así como las demandas o consumos de un determinado sistema.

Metabolismo

"Todo en el mundo es material y, de acuerdo con la ley universal, todo está en movimiento y constantemente está siendo transformado.".

George Gurdjieffi

En las ciencias naturales y la biología el término "metabolismo"¹³es muy familiar y se refiere a las transformaciones que experimentan las sustancias orgánicas dentro de los seres vivos para la obtención de energía. Este es un proceso dinámico de cambio e intercambio de sustancias y energía que como tal presenta una fase de ingreso de componentes, una fase de transformación y/o síntesis y culmina con una fase de excreción o residuos.

Este criterio de trasformación y cambio "metabólico" también se lo ha introducido en las ciencias sociales, es así que hoy en día se aplican conceptos como el metabolismo social, metabolismo urbano, metabolismo industrial y otros más.

El intercambio entre "lo social" y "lo natural" o expresado para nuestro ámbito entre "la población" y "el territorio", tiene sus primeros esquemas (desde un punto de vista de la cultura occidental) a partir de Marx y sus estudios sobre economía política; su publicación "El capital" en el año 1867 conceptualiza "el trabajo" como un proceso de trasformación y control metabólico del hombre con la naturaleza.

Desde entonces hasta la actualidad, el enfoque y alcance del concepto se mantiene en evolución; así su "redescubrimiento" finales de la década de los sesenta del siglo pasado estuvo concentrado en la cuantificación de los flujos de energía de los materiales, que nos han llevado al desarrollo hoy en día de interesantes metodologías para su valoración a diversas escalas —local, nacional, regional, global- y sobre

¹³ Etimológicamente la palabra metabolismo viene del griego "metabolé" que significa cambio, transformación, "arrojar más allá", "llevar más lejos".

¹⁴Señalado por Toledo, Víctor M. y González de Molina, M. "El metabolismo social: Las relaciones entre la sociedad y la Naturaleza". Página 6.

variados aspectos – salud y alimentación, desarrollo económico, etc.-. El cálculo de la "huella ecológica" ¹⁵por ejemplo, es una iniciativa actual muy difundida.



Ilustración 6. Huella ecológica. Fuente: Global Footprint Network (2014).

En la década de los setenta y ochenta, a la par del inicio de las primeras preocupaciones formales por el ambiente¹6varios pensadores ampliaron su enfoque. Joan Martínez Alier en 1984 propuso dentro de sus ideas en torno a una "ecología humana ampliada", el considerar las dimensiones socio políticas y de actitudes humanas¹7. Una reciente propuesta de Víctor Toledo (2013) en su ensayo "El metabolismo social: una nueva teoría socioecológica", incorpora un segundo enfoque al clásico análisis del metabolismo entre la naturaleza y la sociedad: la dimensión inmaterial -invisible o intangible- que influye permanentemente sobre la dimensión material visible o tangible.

El autor expresa que la dimensión tangible inicia con la apropiación¹⁸, por parte de los seres humanos, de materiales y energías de la naturaleza (inputs), y culmina cuando

Santiago Lloret Página 25

-

¹⁵Desarrollada por Mathis Wackernagel, William Rees y Phil Testemale en 1995; es una propuesta que intenta cuantificar la cantidad de recursos que disponemos y utilizamos proponiendo un sistema de "cuenta ecológica" referencial que permita avanzar hacia la sostenibilidad. Información más detallada se puede encontrar en ww.footprintnetwork.org.

¹⁶Los primeros reportes formales y de preocupación por el "medio ambiente" se pueden consultar en el Informe del Club de Roma titulado "Los Límites del Crecimiento" publicado en 1972. Dicho informe expresa que en un planeta limitado no es posible un continuo crecimiento económico. Estos límites pueden ser de dos tipos: de recursos naturales y de la capacidad de la tierra para absorber la polución sin mermar la calidad del medio ambiente. En el mismo año se proclama en Estocolmo la "Declaración de la Conferencia de las Naciones Unidas sobre el Medio Ambiente Humano". En 1987 por iniciativa de la ONU se presenta el informe socioeconómico "Nuestro Futuro Común", documento más popularmente conocido como "El informe Brundtland" donde se establece que "el desarrollo es sostenible si satisface las necesidades actuales sin comprometer la capacidad de futuras generaciones para satisfacer sus propias necesidades."

¹⁷ Urteaga, Luis (1985) en su artículo "La economía ecológica de Martínez Alier" desarrolla un interesante ensayo sobre la publicación de Juan Martínez Alier en relación a su libro "L'ecologismo i l'economía".

¹⁸ Conceptualmente el autor define tres formas básicas de apropiación: La primera, aquella que no realiza cambios sustanciales en las estructuras y paisajes de los ecosistemas que se apropia (caza, pesca, recolección, pastoreo, ciertas formas de extracción). Una segunda donde la acción humana desarticula o desorganiza los ecosistemas (agricultura, ganadería, forestal, acuacultura). Una tercera forma de apropiación se refiere a

Test MXX COURSE HECKNING

UNIVERSIDAD DE CUENCA

se depositan desechos, emanaciones o residuos en los espacios naturales (output). Este proceso contempla tres tipos de flujos generales: flujos de entrada, flujos interiores y flujos de salida. En detalle se distinguen cinco sub procesos definidos: apropiación (A), transformación (T), circulación (C), consumo (Co) y excreción (E).

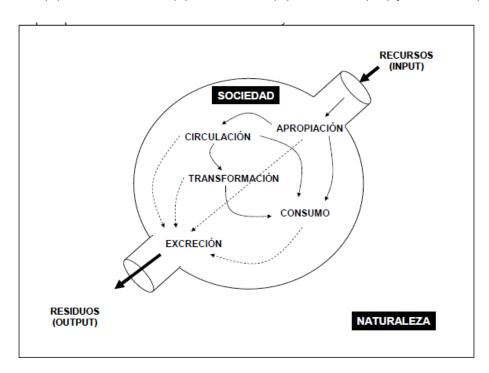


Ilustración 7. Sobre los cinco principales sub procesos de la dimensión tangible del metabolismo entre sociedad y naturaleza.

Fuente: Toledo V (2008).

Sobre la dimensión inmaterial, parte del criterio de que los seres humanos a más de sus funciones biológicas vitales de intercambio con el entorno natural (alimento, agua, generación de efluentes) y aquellas relacionadas con el trabajo (elaboración/construcción de todo tipo de artefactos e instalaciones), "También sueñan, imaginan, creen, conocen, inventan signos y lenguajes para comunicarse, establecen relaciones entre ellos, producen reglas, normas y leyes, diseñan tecnologías, hacen transacciones y construyen instituciones con diferentes fines y en distintas escalas. Y es esta parte intangible de la sociedad la que opera como un armazón para los procesos materiales del metabolismo".

Estas dos dimensiones se encuentran contenidas la una dentro de la otra y según avanza en su propuesta, con Gonzales de Molina la representa (ver Ilustración N°8)

aquella con fines de protección de especies, patrones y procesos, la "no acción" sobre la naturaleza por los servicios que brinda (conservación de la biodiversidad, captación agua, educación, paisaje, etc.).

Estas tres formas de apropiación permiten distinguir tres tipos de paisajes o mega ambientes (dimensión "natural"): el Medio Ambiente Utilizado (MAU), el Medio Ambiente Transformado (MAT) y el Medio Ambiente Conservado (MAC); así como "formas" de transición o paisajes intermedios entre ellos. Sobre éstos deberá incorporarse además la dimensión del ambiente "social" (MAS).

como la integración de dos cuerpos poliédricos: el uno contenido en el otro donde los cinco procesos materiales (letras) contienen en su interior al conjunto de dimensiones intangibles (números) y donde el reto es "encontrar las reglas que determinan las sinergias que se dan dentro y entre ambas dimensiones, más su interacción con el universo natural."

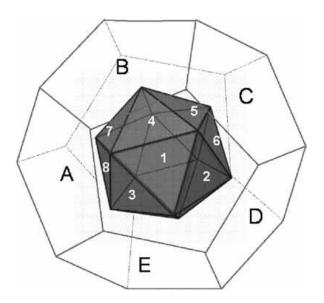


Ilustración 8. Estructura metabólica de la sociedad Fuente: Gonzales de Molina y Toledo (2011).

La segunda dimensión que presenta un carácter "no cuantificable "y sus interacciones con la primera, es un asunto -señala el autor- que requiere mayores estudios y profundizaciones; sin embargo instrumentaliza un camino a partir de proponer una matriz que considere tres variables: Definir la "dimensión", la "escala" y el "tiempo "del análisis.

Esta tridimensionalidad permitiría investigar el metabolismo, en su totalidad o uno de sus procesos o fracciones, por ejemplo en función de una escala espacial (localidad, comunidad, municipio, región, global, etc.); temporal (siglo pasado, próxima década, etc.) dimensión (agrario o rural, urbano, industrial) o los procesos metabólicos analizados (consumos, demandas, excreción, etc.).

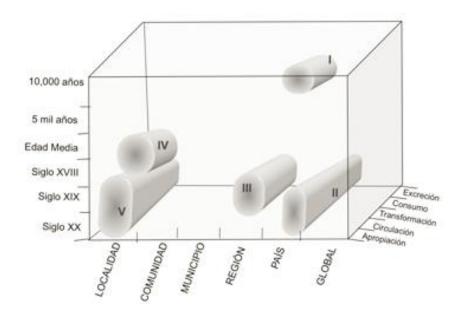


Ilustración 9. Estructura metabólica tridimensional Fuente: Gonzales de Molina y Toledo (2011).

En los procesos de análisis aplicado, el mismo autor señala que es importante considerar aspectos de escala 19 de trabajo, pues conforme se incrementa el área o sector investigado los análisis se vuelven más complejos y exigen mayores capacidades; así para un análisis regional demandaría el estudio integrado de los metabolismos agrarios, urbanos, industriales; considerando de cada uno sus criterios de apropiación, transformación, producción y demás. El autor señala que "Ello obliga o bien a incrementar el número, la variedad disciplinaria y la calidad de los investigadores, o bien a enfocar el análisis a uno o unos pocos productos del flujo total, por ejemplo agua, combustibles, alimentos, materias primas, etcétera". Concluye señalando el enorme valor que tiene la unidad de análisis regional que por su capacidad de agregación de diferentes escalas, permite entender las dinámicas metabólicas que de otra forma resultarían incomprensibles.

Santiago Lloret Página 28

-

¹⁹El autor define tres escalas principales: *Topológica*: identificable desde unos cuantos metros hasta varios kilómetros cuadrados (mapas de escala hasta 1:25.000) refleja esencialmente la heterogeneidad vertical (estratos de vegetación, de los suelos, etcétera). *Corológica*: que revela la heterogeneidad horizontal resultado del análisis de conjuntos o mosaicos de unidades topológicas; mapas de escala entre 1: 100.000 hasta 1:1.000.000 que sería equivalente a un nivel regional o de cuenca hidrológica. *Geósferica:* referida a procesos globales y expresada en mapas de varias decenas de millones de km cuadrados.

UNIESEA DE CUENCA

UNIVERSIDAD DE CUENCA

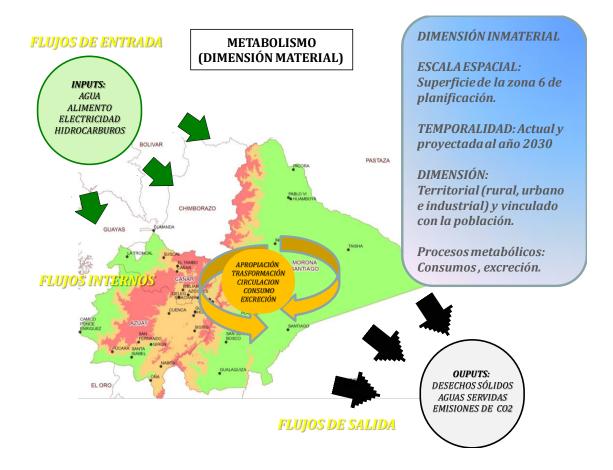


Ilustración 10. Enfoque del metabolismo en la zona 6 de planificación Fuente: Elaboración en atención de los conceptos revisados.

Estos conceptos coinciden con nuestra realidad en la zona 6 de planificación que contiene tres provincias, tres regiones naturales (costa, sierra y oriente); y que en su interior se manifiestan diversos pisos climáticos, variadas coberturas vegetales, diferentes demandas energéticas, distintos hábitos y costumbres, etc.

Con lo expuesto se puede concluir que los aspectos de análisis metabólico son de complejidad y limitaremos nuestro enfoque a los flujos totales de la región 6, centrándonos en la "dimensión material" para los componentes vitales de la población: agua y alimentos, así como ciertos componentes globales de energía (electricidad e hidrocarburos) todo esto en atención a la información que se disponga y/o se pueda recabar.

En la ilustración N° 10 se presenta una síntesis del enfoque propuesto de trabajo, mismo que pone énfasis en la dimensión material; los aspectos de comportamiento, actitud y demás manifestaciones de la población -correspondientes a la dimensión inmaterial- que merecen a nuestro criterio gran importancia, deberán ser profundizados en nuevas y futuras investigaciones.

POST PROMOTO DE CENTRA

UNIVERSIDAD DE CUENCA

El Ordenamiento Territorial, sostenibilidad y buen vivir.

"El Buen Vivir es la forma de vida que permite la felicidad y la permanencia de la diversidad cultural y ambiental; es armonía, igualdad, equidad y solidaridad. No es buscar la opulencia ni el crecimiento económico infinito"

Plan Nacional para el Buen Vivir, 2013 2017

Una definición acertada del concepto lo encontramos en el libro sobre Ordenamiento Territorial de Domingo Gómez Orea (2008) que expresa: "La Ordenación del Territorio es una función de la Administración Pública, de carácter integral, que corta horizontalmente a todas las componentes del sistema territorial, orientada a conseguir el desarrollo sostenible de la sociedad mediante la previsión de sistemas territoriales a diferentes niveles, armónicos, funcionales y equilibrados, capaces de proporcionar a la población una calidad de vida satisfactoria".

Este concepto puede ampliarse en cierta forma, cuando más allá de enfocarse en un desarrollo sostenible para mejorar la calidad de vida de la población, se oriente hacia el buen vivir o sumak kawsay. Al respecto Lozano, A. (2010) en su estudio sobre "ORDENAMIENTO TERRITORIAL Y BUEN VIVIR - SUMAK KAWSAY-. Retos del Estado Plurinacional Ecuatoriano"; presenta un interesante enfoque holístico e integrador cuando señala: "... Conviene dejar sentado que "SK o buen vivir", no es lo mismo que "bienestar", como algunos erróneamente lo quieren equiparar, del cual dista mucho, en la forma y en el fondo, ya que el SK implica un cambio radical en la visión antropocéntrica de mundo que busca el bienestar del individuo, por encima de todas las cosas; mientras el SK, parte de la premisa que el hombre es parte de la comunidad de seres humanos, donde conjuntamente con la comunidad de la naturaleza y la comunidad de las deidades, crían la vida, siendo el centro de su preocupación la crianza de la vida."

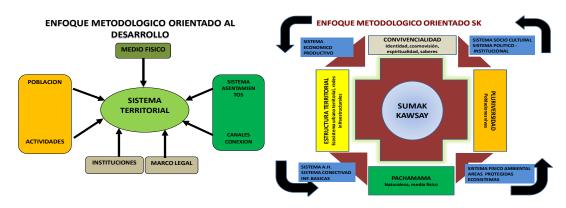


Ilustración 11. Enfoques metodológicos sobre el buen vivir Fuente: Lozano A. (2011).

Al desarrollar el concepto, la materialización y/o concreción de la planificación del territorio; se hace operativo mediante procesos metodológicos continuos que si bien pueden diferir en su estructura, según la propuesta adoptada, mantienen en general tres procesos: diagnostico, planificación y gestión.

El diagnóstico, que puede ser sectorial e integrado, se enfoca en conocer y entender el sistema territorial ²⁰o sumak kawsay.

En la fase de planificación se define el modelo territorial futuro o imagen objetivo, se genera la normativa reguladora del suelo y se definen los programas de intervención y gestión.

Es importante señalar la diferencia conceptual entre el enfoque orientado al desarrollo y el enfoque del sumak kawsay o buen vivir, pues si bien pueden compartir metodológicamente un mismo esquema, las visiones finales difieren completamente, el primero se fundamenta en que los recursos son para beneficio del hombre, mientras el segundo basa su visión final en la armonía de la vida.

La base conceptual enfocada al buen vivir, constituye para nuestro trabajo un núcleo teórico muy importante, que aunque explícitamente no se vea reflejado directamente en los análisis del presente trabajo, es fundamental al momento de decidir y/o direccionar ciertos criterios y/o enfoques de nuestro análisis.

Modelo de Vaguada

"FIAT PANIS" (HÁGASE EL PAN)

Leyenda en el logotipo de la FAO

El concepto *vaguada* resulta un término poco común en nuestro medio. Topográficamente el término se refiere a zonas de la superficie donde se acumulan las aguas procedentes de la escorrentía superficial²¹; sin embargo la definición señalada en *http://es.wikipedia.org/wiki/Vaguada* brinda una descripción comprensible del mismo: "En el campo de la geografía y más específicamente, en el de la Geomorfología, la palabra vaguada se refiere a la línea que une los puntos de menor altitud en un valle y corresponde al término geomorfológico de origen alemán Talweg (literalmente "camino del valle") y también Thalweg, que es el mismo término en inglés, y que se emplea a escala internacional para definir geográficamente el perfil longitudinal de un río desde su nacimiento hasta su desembocadura".

²⁰En la propuesta metodológica de Gómez, O. (2008) el autor define el término de *sistema territorial* como: una construcción social que representa el estilo de desarrollo de una sociedad; se forma mediante las actividades que la población practica sobre el medio físico y de las interacciones entre ellas a través de los calanes de relación que proporcionan funcionalidad al sistema. Los componentes del sistema territorial son: el *medio físico* o sistema natural tal como se encuentra; la *población* y las *actividades* que practica: de producción, consumo y relación social; el *poblamiento* o sistema de asentamientos poblacionales; los *canales de relación* o infraestructuras a través de las cuales estos intercambian personas, mercancías, energía e información; las *instituciones* que facilitan el funcionamiento social y el *marco normativo* o legal que regula tal funcionamiento.

²¹ De forma análoga, la vaguada es la línea de mínima pendiente si sube y de máxima pendiente si baja.

Montserrat (2008) ha desarrollado una propuesta sobre el modelo de Vaguada donde plantea una metodología funcional que interpreta el dinamismo ecológico en cada ladera de montaña o en su vaguada completa. Se centra en el estudio directo de los sistemas naturales existentes a partir de su funcionalidad geofísica y de los usos adecuados o "manera muy apropiada" que se le pueda dar, considerando en todo momento la interdependencia existente –visión holística del sistema-.

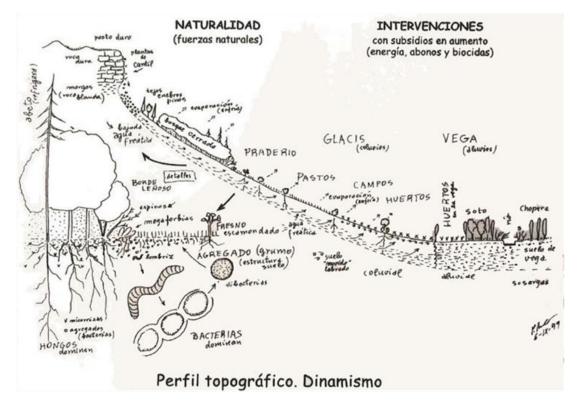


Ilustración 12. Visión integrada del sistema de vaguada. En sombreado la influencia humana directa

Fuente: Montserrat (2008).

Entre los condicionantes geofísicos de este modelo se considera con importancia el relieve, que fruto de la ley de la gravedad y otros factores como viento, agua, pendiente, etc.; erosionan las formaciones de montaña desde su cima. Montserrat define el sistema en cuatro zonas: la cresta o parte superior, una zona de ladera – coluvial-, una zona inferior intermedia con - escasa pendiente- y el valle aluvial. Este sistema presenta por ende cuatro sectores ecológicos diferenciados tanto por su funcionalidad como por sus usos y aprovechamientos que puedan y deban darse.

²² Monserrat, P. (2008). Ecología eficaz en la vida rural de montaña. Pág. 28.

Ilustración 13. Representación esquemática simplificada del modelo de vaguada para la zona 6 Fuente: Elaboración en atención a los conceptos revisados.

Este modelo básico general tiene sus particularidades para cada zona según los factores que puedan incidir; así entre los principales tenemos: su ubicación geográfica –clima, cobertura vegetal y biodiversidad principalmente-, su formación geológica y geomorfología; y, los usos productivos desarrollados.

El modelo de vaguada o "cuenca hídrica" ²³nos aporta en el análisis territorial la dimensión vertical que permite a su vez realizar un enfoque funcional y dinámico del territorio al relacionar el medio ecológico con el potencial agro productivo del territorio. Para nuestro enfoque se ha considerado los mismos criterios (ver ilustración N° 13) pero simplificado a tres cotas altitudinales e incorporado zonas de exclusión debido a su sensibilidad (páramos, bosques nativos, humedales, otros).

²³ Gómez, J.; Luis, E. y Puerto, A. señalan que el concepto de "El sistema vaguada como unidad de estudio en pastizales" también se lo puede aproximar al de "cuenca" pero con la acotación de que trata sobre una pequeña cuenca de un afluente de enésimo orden sin ramificaciones. En topografía el término se refiere a zonas de las superficies topográficas donde se acumulan las aguas procedentes de la escorrentía superficial. De forma análoga, la vaguada será la línea de mínima pendiente si sube y de máxima pendiente si baja.

THE VILL (THE PRODUCTS OF THE PARTY OF THE P

UNIVERSIDAD DE CUENCA

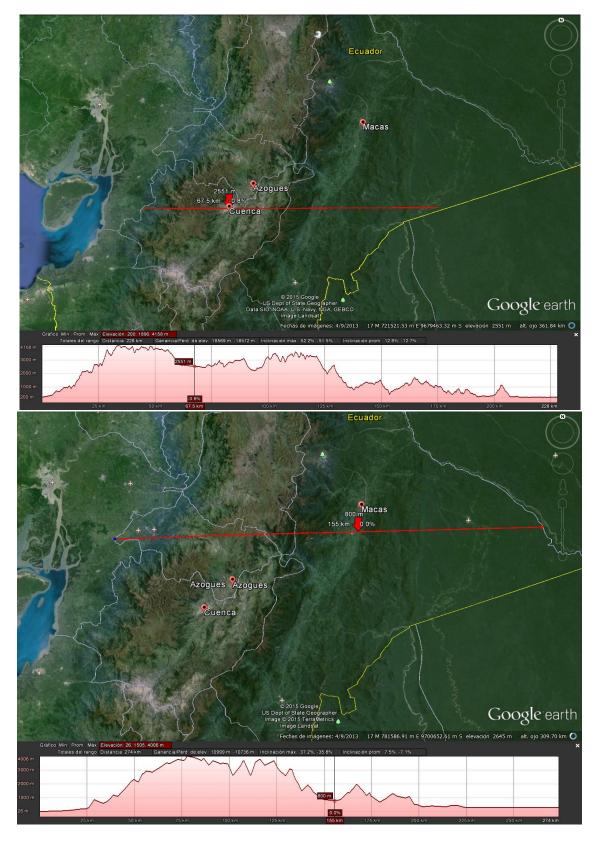


Ilustración 14. Perfil latitudinal en dos sectores aledaños a las principales ciudades de la zona 6 Fuente: Elaboración a partir imagen de Google Earth (accedida septiembre 2013).

THE VILL CRITIC RESEARCH

UNIVERSIDAD DE CUENCA

Fundamentos Metodológicos

Para el desarrollo de las tareas propuestas es necesario identificar y seleccionar instrumentos operativos que permitan generar los resultados propuestos en la presente investigación.

Se inició con la indagación para conocer sobre trabajos similares en nuestro medio sobre el tema, lamentablemente no se ubicaron estudios referentes específicos para nuestra tarea. Sin embargo de lo señalado, en cambio ubicamos diversos y valiosos estudios por sectores²⁴, recabándose publicaciones/reportes sobre temas de huella ecológica, huella hídrica, balances energéticos —en el ámbito de la electricidad e hidrocarburos principalmente-, nutrición, seguridad y soberanía alimentaria, reducción y mitigación del cambio climático, iniciativas sobre ciudades emergentes y sostenibles.

La mayoría de estos reportes y estudios reseñan sus procedimientos ²⁵, que mayoritariamente se basan en el análisis de variables estadísticas, el empleo de parámetros predefinidos –fruto de investigaciones y/o consensos de expertos- y el uso/generación de indicadores estandarizados.

Los destacables y considerados para nuestro trabajo son:

El "Reporte de la Huella Ecológica Ecuador 2008 y 2009" publicada por el Ministerio de Ambiente del Ecuador en el 2013, que aborda el consumo de recursos naturales de la población y los relaciona con la disponibilidad (biocapacidad²⁶) de los mismos en el territorio del Ecuador. Esta "huella", que reporta en hectáreas globales (hag) el consumo de recursos naturales, fue realizada en Ecuador considerando: tierras de cultivos, pastizales, bosques proveedores de madera, zonas de pesca, tierra urbanizada y superficie de bosques para absorción de carbono.

El análisis²⁷ reporta una tendencia creciente de la "huella ecológica" pues pasó de 1,53 hag en el año 2008 a 1,62 hag²⁸ en 2009 y señala que el incremento no mantiene una relación directa con factores demográficos²⁹ sino por un crecimiento de la demanda de recursos por persona, además su biocapacidad se encuentra sobrepasada un 33% en relación al promedio mundial, se indica que el "Ecuador es un país productor y exportador de materias primas, por lo tanto, está utilizando su Biocapacidad para abastecer de recursos a otros países con déficit ecológico", finalmente manifiesta un incremento de tierras de cultivo, pastizales e infraestructura, así como reducción de superficie forestal.

 ²⁴ Se procuró ubicar metodologías y procedimientos de carácter global y /o estandarizados que permitan a futuro comparar resultados y actualizarlos. Se investigó en organismos y/o entidades de reconocido prestigio.
 25 Fruto de esta tarea de investigación se dispone de una gran cantidad de documentos en formato digital, los cuales se encuentran organizados adecuadamente en carpetas por temas específicos.

²⁶En el reporte se la define como: "La Biocapacidad global es la habilidad de los ecosistemas del mundo para proveer de servicios ambientales y recursos naturales necesarios para la humanidad. Esto incluye, la producción de materiales biológicamente útiles y la absorción de residuos como emisiones de dióxido de carbono que son producto de la quema de combustible.

La Biocapacidad, también, se define como la capacidad regenerativa de la naturaleza. Es una medida del área de tierra y agua, biológicamente productiva, disponible para proveer recursos para el uso humano. En otras palabras, es la oferta de recursos o presupuesto ecológico."

²⁷ Página 7 del documento.

²⁸ El promedio mundial está establecido en 2,6 hag por persona.

 $^{^{29}}$ La población se incrementó 1,8 % en el período mientras que la huella per cápita aumentó 6,11 %.

OWESTIND BE CEPTED

UNIVERSIDAD DE CUENCA

En el anexo A se detallan los parámetros básicos para el cálculo en función de la demanda sobre rendimiento, el anexo B señala las fuentes de información base considerada.

En el campo de la nutrición y alimentación, son importantes los criterios y parámetros desarrollados por la FAO en su reporte del grupo de expertos sobre los requerimientos energéticos del ser humano ³⁰ FAO (2001), el cual nos brinda los rangos de necesidades vitales promedio por edad y sexo de la población.

El informe de la Encuesta Nacional de Salud y Nutrición de Ecuador ENSANUT (2012), nos entrega valiosa información actualizada sobre la realidad nutricional de nuestro país y nos brinda ciertas tendencias en los hábitos de consumo, referencias que nos permitirá estructurar con mayor aproximación una dieta tipo para nuestra evaluación.

Los estudios de laboratorio sobre el contenido de nutrientes de los alimentos del vecino país Perú (2009), contienen un detalle de los comestibles, que por su similitud con los que se consumen en nuestra región, fueron considerados para evaluar la cantidad requerida de los mismos.

Para agua existen interesantes propuestas metodológicas encaminadas a determinar su disponibilidad y calidad. Resulta llamativa la propuesta para determinar la "huella hídrica", que es un indicador del uso de agua dulce (uso directo e indirecto) de un consumidor en un determinado periodo y territorio. Este indicador multidimensional se compone de tres variables: huella hídrica verde: aguas de lluvia³¹ incorporadas en el producto; huella hídrica azul: agua superficial o subterránea incorporada en el producto; y huella hídrica gris: volumen de agua contaminada³². Es un proceso metodológico que demanda una información de línea base (cartografía, aspectos generales del territorio, otros), información hidro climática, información social y económica, información sectorial (agrícola, pecuaria, doméstico o residencial, industrial, etc.). Esta propuesta se apoya, según el sector, en algunos modelos matemáticos existentes, así por ejemplo el cálculo de huella hídrica agrícola considera el modelo CROPWAT de la FAO.

Es importante citar también la información que sobre agua se encuentra disponible a nivel mundial por la FAO en su base de datos e información estandarizada desarrollada dentro del proyecto AQUASTAT, la cual expone un sinnúmero de variables homologadas sobre el recurso a nivel de cada país.

Lamentablemente para Ecuador, hemos verificado que la información sobre el agua es de conocimiento muy limitado, aspecto que ha restringido nuestras pretensiones iniciales de análisis.

³⁰ Human energy requirements es el título de la publicación en idioma inglés.

³¹ Que no se convierten en escorrentía y son almacenados en los estratos permeables del suelo para satisfacer la demanda de la vegetación.

³² Agua dulce necesaria para asimilar la carga de contaminantes por parte de un cuerpo receptor.

Total MXX CERTIC MEDICATES

UNIVERSIDAD DE CUENCA

Sobre energía, el reporte del Balance Energético Nacional 2014 de Ecuador, es un estudio importante para comprender las dinámicas del sector, presenta información desagregada y detallada a partir de aplicar criterios metodológicos estandarizados y/o referentes de experiencias en otros países, expone las demandas y consumos por sector y fuente al año 2014 a nivel país y desagregado en algunos casos por provincia.

En el campo del suministro de energía eléctrica, los reportes estadísticos del Consejo Nacional de Electrificación³³ elaborados en base al análisis de reportes estadísticos y fórmulas matemáticas nos brindan clara y detallada información de la oferta actual, el consumo por sectores y las demandas proyectadas del suministro de electricidad para el país y la región 6 de planificación.

Finalmente para el componente de emisiones a la atmósfera, el World Resources Institute ³⁴, una organización mundial de investigación de los recursos, pone a disposición de los interesados en su página web sobre gases de efecto invernadero greenhouse gas protocol) varias herramientas de software estandarizados que realiza este tipo de mediciones.

Las fuentes estadísticas del Instituto Nacional de Estadísticas y Censos INEC, así como la cartografía digital proporcionada por SENPLADES y otras entidades, también fueron un valioso aporte.

Cabe señalar que durante el desarrollo de nuestro trabajo, ante la carencia de cierto tipo de información se debió considerar ciertas variantes metodológicas que nos permitan avanzar en las tareas inicialmente propuestas.

³³ Hoy Agencia de Regulación y Control de Electricidad.

³⁴ http://www.ghgprotocol.org/calculation-tools/all-tools

Legislación

"Cada uno de nosotros sólo será justo en la medida en que haga lo que le corresponde"

Sócrates

En el presente apartado se abordará de manera muy general el contexto legislativo en el cual se circunscriben los ámbitos del ordenamiento territorial, metabolismo y energía; se enumeran los principales cuerpos de legislación existentes aplicables a los temas tratados, ello con una finalidad informativa que de una u otra manera ubique al lector en el contexto.

La sistematización de la información se organizó a partir de una investigación en fuentes bibliográficas físicas y digitales. Posteriormente se efectuó una revisión de contenidos de cada texto legislativo para establecer la pertinencia de su vinculación con la temática abordada y finalmente se identificó la fecha de publicación en el Registro Oficial.

Es necesario aclarar que pese al esfuerzo de recopilación desarrollado, pueden existir otros cuerpos legales que posiblemente han sido obviados involuntariamente.

0.1.1 Jerarquía de los cuerpos legislativos

La Constitución de la República del Ecuador es la norma suprema y prevalece sobre cualquier otra del ordenamiento jurídico³⁵.

En cuanto al orden jerárquico de aplicación de las normas, la Constitución en su Art. 425 establece:

La Constitución; los tratados y convenios internacionales; las leyes orgánicas; las leyes ordinarias; las normas regionales y las ordenanzas distritales; los decretos y reglamentos; las ordenanzas; los acuerdos y las resoluciones; y los demás actos y decisiones de los poderes públicos.

En caso de conflicto entre normas de distinta jerarquía, la Corte Constitucional, las juezas y jueces, autoridades administrativas y servidoras y servidores públicos, lo resolverán mediante la aplicación de la norma jerárquica superior.

La jerarquía normativa considerará, en lo que corresponda, el principio de competencia, en especial la titularidad de las competencias exclusivas de los gobiernos autónomos descentralizados.

³⁵Dentro del Título IX Art. 424 de la Constitución.

Jerarquía cuerpos legales conforme el Art. 425 de la Constitución

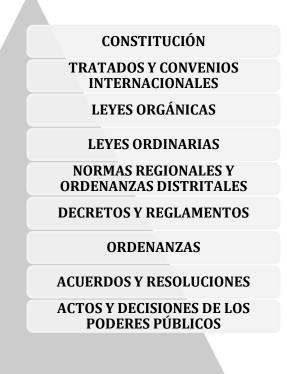


Ilustración 15. Jerarquía de cuerpos legales conforme el Art. 425 de la Constitución.

Fuente: Elaboración en atención a la Constitución.

0.1.2 Principales cuerpos legislativos y de normativa vinculadas a los temas tratados

En nuestro país existe una gran complejidad de cuerpos legislativos que además se encuentran dispersos en diferentes sectores y esferas de la administración pública y el sistema jurídico nacional. Un primer acercamiento llevó a sistematizar y organizar desde el nivel jerárquico superior por cuatro ámbitos particulares: legislación general, planificación territorial, energía y sustentabilidad (metabolismo), ver el detalle en el anexo N°2.

A continuación comentaremos brevemente aquellos considerados pertinentes para nuestra tarea:

Constitución Política de la República del Ecuador (2008)

Es la norma suprema del estado ecuatoriano y define con propiedad aspectos de sustentabilidad, planificación territorial, conservación, eficiencia energética y adecuado uso de los recursos. Presenta además un novedoso y - desde nuestro criterio- muy acertado principio sobre el buen vivir y sobre los derechos de la naturaleza. Al ser de jerarquía suprema, establece la visión y misión de un Estado Constitucional, los objetivos del régimen de desarrollo y por tanto la fuente que orienta los enfoques de las demás normativas identificadas.

Convenio Internacional s/n Marco de Cooperación de las Naciones Unidas en Ecuador (2014)

Acuerdo marco que regula la cooperación de las diversas agencias de la Naciones Unidas ONU en Ecuador para los próximos cuatro años. Este acuerdo pretende alinearse con las prioridades nacionales que se encuentran claramente definidas en el plan nacional del buen vivir 2013 2017. Define cinco grandes áreas programáticas, de las cuales la cuarta centra actuaciones vinculadas con promover los derechos de la naturaleza, creación de condiciones para un desarrollo sostenible y mejorar la resilencia y la gestión de riesgos frente a efectos del cambio climático y los desastres de origen natural y antrópica. En esta meta participan agencias como FAO, OIM, UNUDI, ONU-Hábitat, PMA, PNUD, PNUMA, UNFPA, UNICEF.

El convenio es importante ya que define concertadamente los organismos y las actuaciones que se pretenden obtener.

• Código Orgánico de Organización Territorial, Autonomía y Descentralización (2010).

Ley orgánica que define y regula aspectos de la organización administrativa del territorio y la planificación y ordenamiento del mismo. Para la organización administrativa define los roles y funciones de los diferentes niveles de gobierno así como su régimen de competencias. En el ámbito de la planificación del territorio define los criterios y objetivos de la planificación territorial, así como los procedimientos para su aprobación que además deberá ser participativa. También emite directrices para ciertas actuaciones tendientes al uso y ocupación del suelo (áreas de protección, fraccionamientos, particiones servidumbres, impuestos, avalúos, etc.).

Ley Orgánica de Recursos Hídricos (2014)

Ley que define los diversos ámbitos y alcances para el recurso agua considerado un recurso público no privatizable. Define los principios de rectoría, planificación, gestión y administración, usos y criterios para obtener su autorización.

Es proactiva en cuanto a considerar los derechos de la naturaleza y la conservación del agua (caudal ecológico, preservación del ciclo hidrológico, protección de cuencas hídricas, restauración y recuperación).

Es un cuerpo legislativo de reciente promulgación y todas las instancias administrativas vinculadas con el tema se encuentran en proceso de adecuación.

Ley Orgánica del régimen de soberanía alimentaria (2009)

Regula los ámbitos de las políticas públicas agroalimentarias en base a los derechos del buen vivir, fomenta la producción suficiente para garantizar la autosuficiencia de alimentos sanos y nutritivos. Es de carácter integral e intersectorial, aborda aspectos de acceso a los factores de producción (agua, tierra), protección de la agrobiodiversidad, investigación y asistencia técnica, fomento a la producción, capital

Tree NEE CLEARS ASSESSED

UNIVERSIDAD DE CUENCA

e incentivos, comercialización, sanidad e inocuidad alimentaria, consumo y nutrición, participación social para la soberanía alimentaria.

Ley Orgánica del servicio público de Energía Eléctrica (2015)

Encaminada a garantizar el servicio público de energía eléctrica, considera el principio de sostenibilidad ambiental. Fomenta políticas de eficiencia energética y promueve el uso de fuentes energéticas renovables.

Ley de gestión ambiental codificada (2004)

Señala los principios y directrices de la política ambiental nacional, determinando obligaciones y responsabilidades, niveles de participación de los sectores público y privado en la gestión ambiental y señala los límites permisibles, controles y sanciones en esta materia.

Tiene su pertinencia pues se orienta según los principios del desarrollo sustentable establecidos en la declaración de Río en 1992.

• Plan Nacional del Buen Vivir 2013-2017 (2013)

Corresponde al Plan Nacional de Desarrollo de la nación para el próximo quinquenio, define las directrices y objetivos nacionales del sector público, se encuentra articulado con la estrategia territorial nacional. Es un documento que lo consideramos muy importante, pues define con claridad las metas y alcances de las actuaciones en todos los ámbitos. Es por tanto la herramienta que pretende materializar las políticas públicas para lograr el buen vivir. El documento establece 12 objetivos estratégicos con sus correspondientes líneas de actuación, aspectos de sostenibilidad, energía, alimentación y aprovechamiento de los recursos.

THE MAKE CHIEF PROPERTY OF THE PARTY OF THE

UNIVERSIDAD DE CUENCA

CAPÍTULO II: ESTIMACIÓN DE LAS PRINCIPALES DEMANDAS ENERGETICAS Y APRECIACIÓN DE LA GENERACIÓN DE EFLUENTES DE LA POBLACIÓN EN LA ZONA SEIS DE PLANIFICACIÓN.

"Quien tenga casa, comida y vestido lo demás es ostento".

Santo Tomás de Aquino

Previo a continuar con el presente apartado es necesario señalar que todos los análisis, a excepción de un componente para determinar la cantidad de alimentos, se realizan en función de estimar oferta y demanda. Las demandas serán a partir de promedios históricos y /o proyectados del "consumo³⁶", mientras que la oferta en todos los análisis se realizará mediante estimaciones tendientes a satisfacer la "demanda".

El concepto del término "demanda" desde un enfoque de las ciencias económicas, el diccionario de la Real Academia de la Lengua española –DRAE- lo define como: *Cuantía global de bienes y servicios realizados o previstos por una colectividad;* para nuestro análisis corresponderá a la cantidad de agua³⁷, alimentos y energía (eléctrica, derivados de hidrocarburos, gas) que se consumen en un determinado período de tiempo, así como la cantidad de territorio para equilibrar las emisiones de carbono y gestionar sobre aspectos de cambio climático.

En cuanto al concepto de "necesidad", el mismo está presente en el análisis de nutrientes que demanda la población, interpretado como la cantidad mínima necesaria para satisfacer las necesidades básicas vitales de los individuos, según su edad, sexo, tipología antropométrica, nivel de actividad (basal) y condiciones ambientales del sitio (clima), en acuerdo con las acepciones del diccionario DRAE: Aquello a lo cual es imposible sustraerse, faltar o resistir, Carencia de las cosas que son menester para la conservación de la vida; y Dicho de una cosa: De la que no se puede prescindir y sobre el cual existen estudios científicos detallados que sustentan los valores considerados.

³⁶ Que según DRAE lo define como: Acción y efecto de consumir (comestibles u otros bienes; gastar energía).

³⁷ Para asuntos de recurso hídricos, el glosario hidrológico internacional (UNESCO 2012) señala la "demanda de agua" como: Cantidades de agua previstas para su distribución a los usuarios en períodos de tiempo determinados para usos específicos y a un precio dado. El glosario de términos de AQUASTAT de la FAO lo contextualiza dentro del apartado de la "gestión de la demanda de recurso hídricos" señalándolo como: Programas adoptados para realizar una gestión eficaz del uso de los recursos hídricos, con la finalidad de alcanzar los objetivos generales de eficiencia económica, conservación medioambiental y satisfacción de las comunidades y los consumidores.

Se aclara además, que al tratarse de una aproximación, la limitada disponibilidad de información para algunos componentes analizados, como las demandas y consumos son dependientes de diversas variables y en ciertos casos pueden llegar a ser muy subjetivos; se ha procurado racionar los excesos en atención a parámetros de dotaciones y/o demandas referenciales apegados a los criterios de sustentabilidad y el Buen Vivir que se conceptualizaron en los apartados anteriores.

Energía para procesos vitales: agua y alimento.

Agua y alimento constituyen sin lugar a duda los principales insumos que demanda la población en cualquier territorio, resultan ser dos componentes vitales que mantienen una íntima relación.

Su importancia es tal, que las Naciones Unidas ONU dispone de un organismo especializado dedicado exclusivamente para el tema: la "Organización de las Naciones Unidad para la Alimentación y la Agricultura³⁸FAO"³⁹, que desde su fundación en 1943 tiene como esencia "Alcanzar la seguridad alimentaria para todos y asegurar que las personas tengan acceso a alimentos de buena calidad que les permitan llevar una vida activa y saludable"⁴⁰; cuyas publicaciones han constituido un valioso puntal para el presente capítulo.

Este apartado no centrará la atención en aspectos nutricionales y/o de malnutrición de la población de nuestra región⁴¹, tema sobre el cual correspondería a futuro realizar un análisis muy particular ⁴², pues al momento se encuentra fuera del alcance y profundidad de nuestra tarea, que más bien intentará una aproximación de las demandas de agua para consumo humano y de energía –alimentos- que necesita la población para su subsistencia, calculada esta última en función de los requerimientos promedio basados en una alimentación equilibrada ⁴³ a partir de las "necesidades" vitales del ser humano, sobre las cuales se dispone de información científica detallada⁴⁴.

³⁸Nombre oficial en español desde que fue aprobado durante el trigésimo séptimo período de sesiones. Roma, 25 junio-2 julio, 2011.

³⁹ Conocida mundialmente como "FAO" por sus siglas del término en idioma inglés: "Food and Agriculture Organization".

⁴⁰http://www.fao.org/about/es/

⁴¹Existen reportes e investigaciones que denotan aspectos relacionados con desnutrición infantil, obesidad y carencias de ciertas elementos a nivel de país (ver FAO, 2013 y FAO, 2014); Ministerio de Coordinación de Desarrollo Social del Ecuador. FAO, AECID, 2014). Correspondería a futuro realizar un análisis muy particular pues al momento se encuentra fuera del alcance y profundidad de nuestro tema.

⁴² El Tomo I de la Encuesta Nacional de Salud y Nutrición de la población ecuatoriana de cero a 59 anos. ENSANUT-ECU 2011, es el referente más actual para el tema.

⁴³ El glosario de términos de nutrición de la FAO (2014) define una alimentación equilibrada como: *Dieta que proporciona una cantidad y variedad de alimentos suficientes para satisfacer las necesidades de nutrientes de las personas de modo que puedan llevar una vida sana y activa.*

⁴⁴ El estudio del grupo de expertos de FAO tiene elaborado el reporte de los requerimientos humanos de energía (<u>Human energy requirements</u>, FAO 2001) que detalla los valores a considerar para los diversos grupos de edad y sexo de la población, que fueron calculados en base a criterios muy elaborados de nutrición.

0.1.3 Agua para consumo humano

Debemos recalcar que los valores obtenidos constituyen una aproximación global general de la demanda básica, pues carecemos de datos más elaborados para la región, lejos estamos de conocer los detalles que para el sector y territorio debería disponer los gobiernos municipales⁴⁵, como prestadores de este servicio, la revisión de los documentos de los Planes de Ordenamiento Territorial que hemos consultado presentan una ligera profundización⁴⁶.

Proyecci	ón demar	nda de me	etros cúbicos Zona 6	de Agua c	le la Pobl	ación de la
		2015			2030	
	Población estimado 2015	Dotación referente (I/hab/día)	Total consumo estimado de agua (I/día)	Proyectado 2030	Dotación referente (I/hab/día)	Total proyección consumo estimado de agua (l/día)
AZUAY	810.412	160-230	177.785.240,6	1.020.376	160-230	224.501.100,7
CAÑAR	258.450	220 - 230	57.537.315,6	326.212	220 - 230	72.622.707,5
MORONA SANTIAGO	175.074	200 - 230	40.063.891,2	236.817	200 - 230	54.193.043,8
TOTAL ZONA						
6	1.243.936		275.386.447,4	1.583.405		351.316.852,0
			Total consumo estimado de agua (m3/año)			Total proyección consumo estimado de agua (m3/año) 128.230.651,0

Cuadro 1. Cuadro estimado de la demanda de metros cúbicos de agua consumo humano en la zona 6 de planificación para el año 2015 y 2030.

Fuente: Elaborado a partir de estimaciones y parámetros INEN (2014).

El análisis de la demanda potencial de agua que requiere la población se estimó considerando el número de habitantes de los cantones que conforman la zona seis de planificación⁴⁷ y los parámetros de la norma técnica ecuatoriana para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones

⁴⁵ El Artículo 264 de la Constitución, que establece las competencias exclusivas del nivel de gobierno municipal, señala en su numeral 4. *Prestar los servicios públicos de agua potable, alcantarillado, depuración de aguas residuales, manejo de desechos sólidos, actividades de saneamiento ambiental y aquellos que establezca la ley*.

⁴⁶ La excepción podría aplicarse para la ciudad de Cuenca, que conocemos dispone de estudios más detallados sobre algunos tópicos tales como las pérdidas en la distribución del recurso, consumos promedios por sector, tratamiento de efluentes y demás. Sin embargo muy poco de aquello se encuentra incorporado en el documento del PDOT cantonal revisado.

 $^{^{47}}$ Según cuadros de proyección poblacional elaborados por el INEC a partir del censo de población y vivienda del año 2010 (tasa de crecimiento entre 1,86 a 2,71).

Test MXX COURSE HECKNING

UNIVERSIDAD DE CUENCA

mayores a 1.000 habitantes del INEN (1992). El cuadro N° 16 presenta el resultado del análisis, el detalle completo se encuentra en el apéndice N° 7.

Sobre las demandas de otros sectores como el agrícola, ganadero, industrial ⁴⁸, aspectos de caudales ecológicos y de asimilación de carga contaminante, caudales y usos no consuntivos ⁴⁹, así como estrategias de reserva o cosecha de agua para control/regulación de caudales, suministro en épocas de estiajes y/o situaciones de emergencia; no ha sido posible encontrar información de tal forma que es un tema que nos queda pendiente para profundizarlo a futuro.

0.1.4 Alimentos para la población

La estimación de las toneladas de alimento que se necesitan en la región para satisfacer las necesidades básicas vitales de la población presente en la zona 6 de planificación inicia con una estimación de crecimiento poblacional hasta la presente fecha y pensada hacia el año 2030, para ello se consideró la proyección del universo de individuos por grupos de edades y por género según el censo de población y vivienda 2010 elaborado por el Instituto Nacional de Estadísticas y Censo INEC:

Proyecci	ones Poblacionales	para la Zona 6
_	POBLACIÓN ZONA 6 2015	POBLACIÓN ZONA 6 2030
Edad		
< 1 año	26.494	25.806
1 - 4	107.204	104.359
5 - 9	132.257	132.201
10 - 14	127.543	133.450
15 - 19	122.905	135.141
20 - 24	116.766	133.635
25 - 29	105.114	130.545
30 - 34	89.565	127.255
35 - 39	74.776	121.632
40 - 44	63.712	109.724
45 - 49	56.105	93.124
50 - 54	49.551	76.484
55 - 59	42.547	63.513
60 - 64	35.625	54.090
65 - 69	29.711	45.714
70 - 74	24.002	36.577
75 - 79	17.779	27.201
80 y Más	22.280	32.954
Total	1.243.936	1.583.405

Cuadro 2. Proyecciones de la población para la zona 6 de planificación Fuente: INEC, en base al Censo de población y Vivienda 2010

El cálculo reporta una población estimada para el año 2015 de 1'243.836 habitantes y señala un incremento poblacional de un 27, 29 % (tasa de crecimiento entre 1,86 a 2,71) para el año 2030 donde se contará con 1'583.405 habitantes.

⁴⁸ El Artículo 263 de la Constitución, sobre las competencias exclusivas del nivel de gobierno provincial, señala en sus numerales: ... 3. Ejecutar, en coordinación con el gobierno regional, obras en cuencas y micro cuencas... 5. Planificar, construir, operar y mantener sistemas de riego. 6. Fomentar la actividad agropecuaria. 7. Fomentar las actividades productivas provinciales.

⁴⁹ Usos que no consumen agua y están disponibles para reutilizarse.

Total PER CENTER HERMAN

UNIVERSIDAD DE CUENCA

Con estas proyecciones de universo poblacional, se realizó un cálculo para estimar la necesidad diaria de nutrientes por cada sexo y por cada grupo de edad disponibles conforme los valores promedios referenciales ⁵⁰ extraídos de las tablas de requerimientos energéticos de la FAO (2001). En cuanto a las variables antropométricas (peso, longitud y talla), que también son necesarias para la estimación, se aplicaron los promedios de peso de los valores que constan en las tablas.

A manera de contrastar el análisis de los estándares de la FAO, que podríamos considerarlos como rangos "ideales" a nivel global, también se realizó la estimación teniendo en cuenta los parámetros de valores obtenidos del trabajo de campo de la Encuesta Nacional de Salud y Nutrición de la población Ecuatoriana ENSANUT, realizado por el Ministerio de Salud y publicados en el año 2014. La principal diferencia se observa en el ámbito antropométrico, pues las tallas y pesos de la población encuestada son inferiores a las tallas y pesos promedios del estudio de la FAO, que redundan en las demandas energéticas de los individuos; así para la FAO la necesidad diaria promedio se establece en 1971,79 Kcal/d mientras ENSANUT nos genera 1787,42 Kcal/d. Esta diferencia de alrededor del 9,35 % menor en el estudio nacional, lo podríamos atribuir a las deficiencias nutricionales que existen en edades tempranas que se limitan para un óptimo desarrollo del adulto. Los cuadros siguientes exponen la síntesis de los resultados⁵¹:

⁵⁰ Sobre los requerimientos humanos de energía, algunos rangos se adecuaron conforme las categorías generadas por el INEC, 2010 y los criterios establecidos por la FAO, 2001.

⁵¹El detalle de los cálculos y criterios aplicados se efectuaron en tablas dinámicas de Excel que se adjuntan al presente documento, cuyos cuadros más significativos pueden ser revisados en el apéndice N°1.

	TOTAL EST	IMADO DE REQUERII	MIENTOS DE ENE	ERGÍA 2015
	TOTAL POBLACIÓN ZONA 6	FAO TOTAL REQUERIMIENTO ENERGÍA (KJ/Kg/d)	FAO TOTAL REQUERIMIENTO ENERGÍA (Kcal/d)	ENSANUT TOTAL REQUERIMIENTO ENERGÍA (Kcal/d)
Edad				
< 1 año	26.494	69.290.225	16.562.765	15.790.424
1 - 4	107.204	504.625.688	120.633.084	127.787.168
5 - 9	132.257	908.434.622	217.118.718	213.330.541
10 – 14	127.543	1.091.410.600	261.050.750	249.481.269
15 – 19	122.905	1.404.268.815	299.166.104	250.963.569
20 – 24	116.766	1.133.123.400	271.604.250	238.166.430
25 – 29	105.114	1.018.052.400	244.001.700	214.073.724
30 – 34	89.565	823.966.600	198.214.050	178.247.058
35 – 39	74.776	685.105.900	164.820.050	147.009.879
40 – 44	63.712	582.138.800	140.054.600	124.976.348
45 – 49	56.105	512.155.000	123.219.250	109.970.245
50 – 54	49.551	452.436.800	108.851.250	89.211.910
55 – 59	42.547	388.719.500	93.520.700	76.644.294
60 – 64	35.625	284.896.200	68.054.500	64.188.242
65 – 69	29.711	237.532.400	56.737.800	53.506.158
70 – 74	24.002	191.723.900	45.789.350	43.161.292
75 – 79	17.779	141.894.700	33.883.950	31.924.638
80 y Más	22.280	177.854.600	42.472.500	40.021.056
Total	1.243.936	10.607.630.150	2.505.755.372	2.268.454.245

	FAO (KJ/d)	FAO (Kcal/d)	ENSANUT (Kcal/d)
PROMEDIO DIARIO DE REQUERIMIENTOS POBLACIÓN:	8293,70	1971,79	1787,42

Cuadro 3. Estimación de requerimientos energéticos de la población de la zona 6 de planificación para el año 2015.

Fuente: Elaboración a partir de datos de INEC, FAO, ENSANUT.

	TOTAL ESTIMADO 2030	DE REQUERIMIE	NTOS DE ENER	GÍA AL AÑO
	TOTAL POBLACIÓN ZONA 6	TOTAL REQUERIMIENTO ENERGÍA (KJ/Kg/d)	TOTAL REQUERIMIENTO ENERGÍA (Kcal/d)	ENSANUT TOTAL REQUERIMIENTO ENERGÍA (Kcal/d)
Edad				
< 1 año	25.806	67.490.331	16.132.529	15.380.376
1 - 4	104.359	491.207.689	117.425.428	124.395.928
5 - 9	132.201	907.709.173	216.945.466	213.240.213
10 – 14	133.450	1.141.630.000	273.060.500	261.010.350
15 - 19	135.141	1.544.021.200	328.945.511	275.945.262
20 - 24	133.635	1.299.264.600	311.452.650	272.972.598
25 - 29	130.545	1.269.671.400	304.363.350	266.734.122
30 - 34	127.255	1.181.259.300	284.125.400	255.322.634
35 - 39	121.632	1.128.799.100	271.508.250	241.666.723
40 - 44	109.724	1.016.119.300	244.413.550	217.624.801
45 - 49	93.124	858.953.600	206.622.200	184.094.396
50 - 54	76.484	702.183.600	168.923.200	138.395.464
55 - 59	63.513	580.869.000	139.747.050	114.520.986
60 - 64	54.090	432.102.600	103.200.500	97.282.276
65 - 69	45.714	364.782.000	87.106.200	82.061.796
70 - 74	36.577	291.557.200	69.608.600	65.539.570
75 - 79	27.201	216.512.400	51.679.800	48.621.618
80 y Más	32.954	261.479.000	62.380.700	58.589.476
Total	1.583.405	13.755.611.493	3.257.640.883	2.933.398.589

	FAO (KJ/d)	FAO (Kcal/d)	ENSANUT (Kcal/d)
PROMEDIO DIARIO DE REQUERIMIENTOS POBLACIÓN:	8293,70	1971,79	1787,42

Cuadro 4. Estimación de requerimientos energéticos de la población de la zona 6 de planificación para el año 2030.

Fuente: Elaboración a partir de datos de INEC, FAO, ENSANUT.

Finalmente se procedió a elaborar una dieta nutricional con las necesidades de la FAO 52 bajo la modalidad "al tanteo" 53 , considerando criterios de una nutrición

⁵²Se consideraron los valores referenciales de la FAO por ser parámetros internacionales. ENSANUT presenta la realidad nacional que entendemos incluye aspectos de malnutrición en niñez y adolescencia que ha influido sobre las condiciones antropométricas de los adultos.

Tree PEE CERTS Jesusons

UNIVERSIDAD DE CUENCA

balanceada ⁵⁴ solamente para los macro nutrientes fundamentales de una dieta: proteína, fibra, carbohidratos y grasa ⁵⁵ conforme ciertos hábitos alimenticios presentes en la población ⁵⁶ que constan en la encuesta ENSANUT(2014).Para el contenido de nutrientes por comestible, se emplearon las tablas peruanas ⁵⁷ de composición de alimentos del Instituto Nacional de Salud de Perú preparadas por Reyes M, Gómez P, Espinoza B, et. al. (2009).

Si bien la ubicación geográfica de los asentamientos define ciertos hábitos y costumbres alimenticias particulares⁵⁸, por tratarse de una primera aproximación, los mismos se han obviado⁵⁹. Para considerar la participación de los alimentos en la formulación, nos basamos en un supuesto empírico de pensar en la alta disponibilidad de alimentos presentes en la dieta fundamentada en la evidencia visual de la gran variedad de alimentos en mercados y centros de comercio de las principales ciudades de la región 6.

La proporción de los alimentos en la dieta se realizó por dos criterios: primero de manera proporcional en cuanto a la cantidad considerada como ideal dentro de una dieta por los siguientes grupos de alimentos: a) granos, cereales y legumbres; b) oleaginosas y grasas; c) carnes, lácteos y huevos; d) frutas y verduras; e) azúcares. El segundo criterio se basó en asignar partes proporcionales iguales de peso dentro del grupo de alimentos⁶¹. Para ciertos productos se consideraron los rangos de consumo obtenidos en el trabajo de ENSANUT (2014).

Se atribuye además que la dieta aplica para todos los rangos de peso, edad y sexo, pues es evidente que en una familia los alimentos preparados diariamente en el hogar que se distribuyen para todos sus miembros, simplemente varían las cantidades de la ración según el individuo que nos brinda una proporcionalidad en el suministro de energía.

⁵³Consiste en ajustar los valores en las raciones en función de la demanda de energía deseada y las proporciones de los diversos tipos de alimentos según su composición (proteína, fibra, carbohidratos, etc.). ⁵⁴En los anexos N° 2 al 7 se incorporan ciertos criterios generales de nutrición.

⁵⁵ No se han considerado micronutrientes (minerales como calcio, yodo, zinc, etc.) ni otros compuestos particulares como vitaminas y demás.

⁵⁶ El estudio de ENSANUT señala (pág. 281) que a nivel mundial, existe un estado de transición nutricional(países de ingresos medios y bajos en especial), que alteran los hábitos alimenticios y la composición de la dieta, cambiando por ejemplo de dietas con alto contenido de carbohidratos complejos y fibra, por dietas ricas en grasa, grasas saturadas y azúcares simples. Esta tendencia se acentúa por aspectos de urbanización de la población, globalización del sistema alimentario e incremento de la densidad energética en los alimentos procesados asociados al sobrepeso y obesidad. Esta tendencia incide negativamente sobre la salud de las personas, siendo muy importante considerar una dieta balaceada y equilibrada.

⁵⁷Dentro del proyecto ENSAUT también existe cierta información al respecto pero lamentablemente no se encuentra publicada. Esta consta en documentos físicos y bases de datos en las dependencias del Ministerio de Salud en la ciudad de Quito.

⁵⁸ También puede incidir la temporada del año en la cual están disponibles ciertos alimentos.

 $^{^{59}}$ Se puede profundizar estas variables en futuras investigaciones. $^{60}\mbox{Ver}$ anexo N° 5.

⁶¹ Asumimos un consumo aleatorio diario de un tipo de alimento del mismo grupo por cada día, de ahí se justifica la proporcionalidad que nos permite realizar la aproximación.

DIETA PROMEDIO (UN ADULTO)

PROMEDIO APROXIMADO DE REQUERIMIENTOS: Ref. FAO 8293,7 Kj (1.971 Kcal); Ref. ENSANUT 1787,42 Kcal.

	ı													Ī
	INGREDIENTE	g	ENEF	RGIA	ENE	RGIA	PROT	Cruda	GRA	SA	Carboh s	nidrato	F	IBRA
		9	Kjulio alim	Kjulio dieta	Kcal alim	Kcal dieta	% alim	% dieta	% alim	% dieta	% alim	% dieta	% ali m	% dieta
	A h.l	ı	ı	1 1		ı		L .			ı	ı	ı	
	Arroz blanco común	45	1500	675,0	358	161,1	7,8	3,5	0,7	0,3	77,6	34,9	0,4	0,18
	Trigo (pan de labranza)	40	1374	549,6	328	131,2	9,6	3,8	0,3	0,1	71,8	28,7	1,2	0,48
	Trigo (harina fortificada)	15	1480	222,0	354	53,1	10,5	1,6	2	0,3	73,6	11,0	1,5	0,225
ALES	Avena (hojuela cruda)	15	1364	204,6	326	48,9	13,3	2,0	4	0,6	61,6	9,2	1,7	0,255
CEREALES	Cebada (machica)	15	1279	191,9	306	45,9	8,6	1,3	0,7	0,1	67,3	10,1	6,6	0,99
	Amaranto (kiwicha, semilla comestible)	15	1434	215,1	343	51,5	12,8	1,9	6,6	1,0	59,8	9,0	2,5	0,375
	Quinua	15	1434	215,1	343	51,5	13,6	2,0	5,8	0,9	60,7	9,1	1,9	0,285
	Maíz (blanco crudo)	40	1428	571,2	341	136,4	5,9	2,4	4	1,6	72,9	29,2	1,9	0,76
TOTAL	,	200, 0		2844, 5		679,5	·	18,5		4,9		141, 3	·	3,6
		10												
	Fréjol bayo Arveja seca sin	10	1385	138,5	331	33,1	19	1,9	0,9	0,1	38,3	3,8	3,6	0,36
SAS	cáscara Haba secas		1469	146,9	351	35,1	21,7	2,2	3,2	0,3	35,6	3,6	4,5	0,45
Š	con cáscara	10	1423	142,3	340	34,0	23,8	2,4	1,5	0,2	60,1	6,0	6,4	0,64
LEGUMINOSAS	Chocho (tarhui- tarwi)	10	632	63,2	151	15,1	11,6	1,2	8,6	0,9	6,7	0,7	5,3	0,53
<u>"</u>	Lenteja chicas	10	1418	141,8	339	33,9	22,6	2,3	1	0,1	30,5	3,1	3,2	0,32
	Garbanzo	10	1515	151,5	362	36,2	19,2	1,9	6,1	0,6	42,7	4,3	2,6	0,26
TOTAL		60,0		784,2		187,4		11,8		2,1		21,4		2,6
(0	Aceituna (PC)	5	1247	62,4	298	14,9	0,8	0,0	32,1	1,6	7,3	0,4	1,4	0,07
OLEAGINOSAS	Maní crudo, pelado con película	5	2339	117,0	559	28,0	24,1	1,2	48,2	2,4	9,2	0,5	5,2	0,26
LEAG	almendras	5	2431	121,6	581	29,1	21,9	1,1	50,6	2,5	9,6	0,5	3,8	0,19
0	nueces	5	2736	136,8	654	32,7	15,2	0,8	65,2	3,3	7	0,4	5,9	0,295
TOTAL		20,0		437,7		104,6		3,1		9,8		1,7		0,8
TUBËR CULO S,	Papa amarilla sin cascara	25	431	107,8	103	25,8	2	0,5	0,4	0,1	22,9	5,7	0,7	0,175
E S	Plátano maduro (PC)	25	469	117,3	112	28,0	1,2	0,3	0,2	0,1	27	6,8	0,3	0,075

]	25					_			Ī			ĺ	
	Yuca		703	175,8	168	42,0	1,5	0,4	0,2	0,1	40,2	10,1		0
	Melloco	5	259	13,0	62	3,1	1,1	0,1	0,1	0,0	14,3	0,7	0,8	0,04
	Camote amarillo	5	485	24,3	116	5,8	1,2	0,1	0,2	0,0	24,6	1,2	1	0,05
	Banano de seda	10	347	34,7	83	8,3	1,5	0,2	0,3	0,0	18,4	1,8	0,4	0,04
	Oca	5	255	12,8	61	3,1	1	0,1	0,6	0,0	13,3	0,7	1	0,05
	Zanahoria blanca	5	406	20,3	97	4,9	0,7	0,0	0,3	0,0	22,9	1,1	1,1	0,055
TOTAL		105, 0		505,7		120,9		1,5		0,3		28,1		0,5
			1						ı	•	ı			,
	Manzana Nacional (PC)	15	226	33,9	54	8,1	0,3	0,0	0,1	0,0	13,3	2,0	0,8	0,12
	Durazno (PC)	15	268	40,2	64	9,6	0,6	0,1	0,1	0,0	15,6	2,3	0,6	0,09
	Capulí (PC)	15	264	39,6	63	9,5	0,7	0,1	0,4	0,1	15,9	2,4	0,6	0,09
	Chirimoya (PC)	15	364	54,6	87	13,1	1,2	0,2	0,2	0,0	20,3	3,0	1,5	0,225
	Granadilla (PC)	15	335	50,3	80	12,0	2,2	0,3	2	0,3	15,6	2,3	3,5	0,525
တ	Pera chilena (PC)	15	205	30,8	49	7,4	0,3	0,0	0,1	0,0	10,1	1,5	1	0,15
FRUTAS	Tomate árbol	15	180	27,0	43	6,5	1,6	0,2	0,2	0,0	10,8	1,6		0
<u>u</u>	Aguacate (PC)	15	548	82,2	131	19,7	1,7	0,3	12,5	1,9	0	0,0	5,8	0,87
	Guayaba (PC)	15	234	35,1	56	8,4	0,5	0,1	0,1	0,0	9,5	1,4	5,7	0,855
	Limón (jugo)	15	126	18,9	30	4,5	0,5	0,1	0,2	0,0	9,3	1,4	0	0
	Naranja (PC)	15	167	25,1	40	6,0	0,6	0,1	0,2	0,0	7,7	1,2	0,4	0,06
	Papaya (PC)	15	134	20,1	32	4,8	0,4	0,1	0,1	0,0	6,4	1,0	0,5	0,075
	Piña (PC)	15	159	23,9	38	5,7	0,4	0,1	0,2	0,0	8,4	1,3	0,5	0,075
TOTAL		195, 0		481,5		115,1		1,7		2,5		21,4		3,1
	Sandía (PC)	15	100	15,0	24	3,6	0,7	0,1	0,1	0,0	5,5	0,8	0,2	0,03
	Melón	15	96	14,4	23	3,5	0,5	0,1	0,1	0,0	5	0,8	0,2	0,03
	Brócoli	15	167	25,1	40	6,0	4,9	0,7	0,9	0,1	3,1	0,5	1,6	0,24
	Coliflor (sin tallo y sin hojas)	15	117	17,6	28	4,2	2,2	0,3	0,6	0,1	1,9	0,3	1,8	0,27
IRAS	Apio sin hoja	15	88	13,2	21	3,2	0,7	0,1	0,2	0,0	3,2	0,5	1	0,15
VERDURAS	Tomate (PC)	15	79	11,9	19	2,9	0,8	0,1	0,2	0,0	3,1	0,5	1,2	0,18
>	Lechuga (redonda)	15	50	7,5	12	1,8	1,3	0,2	0,2	0,0	0,8	0,1	1,3	0,195
	Acelgas (hojas sin tallo)	15	113	17,0	27	4,1	2,2	0,3	0,3	0,0	3,7	0,6	0,8	0,12
	Espinaca (hojas)	15	134	20,1	32	4,8	2,8	0,4	0,9	0,1	2,7	0,4	1,5	0,225
	Zanahoria amarilla sin cáscara	15	172	25,8	41	6,2	0,6	0,1	0,5	0,1	6,4	1,0	1,2	0,18

	Vainitas (parte	15												
	comestible – PC-)	15	155	23,3	37	5,6	2,4	0,4	0,3	0,0	4,7	0,7	32	4,8
	Cebolla blanca	15						·						
	(-PC-)		134	20,1	32	4,8	0,9	0,1	0,1	0,0	6	0,9	0,4	0,06
	Pimiento	15	146	21,9	35	5,3	1,5	0,2	0,5	0,1	5,7	0,9	1,2	0,18
	Col blanca (PC)	15	96	14,4	23	3,5	1,3	0,2	0,3	0,0	2,5	0,4	0,8	0,12
	Gor Biarioa (i. G)	15	- 00	, .		0,0	1,0	0,2	0,0	0,0	2,0	0,1	0,0	0,12
	Zapallo macre	225,	109	16,4	26	3,9	0,7	0,1	0,2	0,0	6,4	1,0	1	0,15
TOTAL		225, 0		263,4		63,0		3,5		0,8		9,1		6,9
	Carne pollo	30									_		_	_
	pulpa		498	149,4	119	35,7	21,4	6,4	3,1	0,9	0	0,0	0	0
	Trucha fresca	15	472	70,8	113	17,0	19,5	2,9	3,1	0,5		0,0		0
NES	Pescado bonito (PC)	15	577	86,6	138	20,7	23,4	3,5	4,2	0,6	0	0,0		0
CARNES	Camarones frescos (PC)	15	326	48,9	78	11,7	17,8	2,7	0,2	0,0	0,9	0,1		0
	Carne res pulpa	15	439	65,9	105	15,8	21,3	3,2	1,6	0,2	0	0,0		0
	Carne cerdo sin hueso	15	828	124,2	198	29,7	14,4	2,2	15,1	2,3	0,1	0,0		0
TOTAL		105, 0		545,7		130,5		20,9		4,6		0,2		0,0
TOTAL		U		040,7		100,0		20,0		7,0		0,2		0,0
			1	1		l			ı	l		1		
HUEVOS	Huevo de gallina	47	590	277,3	141	66,3	13,5	6,3	8,4	3,9	1,8	0,8	0	0
UE\	Ŭ		000	277,0		00,0	10,0	0,0	0,4	0,0	1,0	0,0	J	0
I	Huevo de codorniz													
TOTAL		47,0		277,3		66,3		6,3		3,9		0,8		0,0
								,						
S Y SOS	Leche fresca de vaca	125	264	330,0	63	78,8	3,1	3,9	3,5	4,4	4,9	6,1	0	0
LÁCTEOS ' DERIVADO:	Yogurt de leche entera	65	255	165,8	61	39,7	3,5	2,3	3,3	2,1	4,7	3,1	0	0
ÁC	Queso fresco	35	200	100,0	01	00,7	0,0	2,0	0,0	2,1	7,7	0,1		0
	de vaca		1105	386,8	264	92,4	17,5	6,1	20,1	7,0	3,3	1,2		0
TOTAL		225, 0		882,5		210,8		12,3		13,6		10,3		0,0
	A ''		1			1			1	1		1		
	Aceite vegetal palma	13	3699	480,9	884	114,9	0	0,0	100	13,0	0	0,0	0	0
S	Aceite vegetal girasol	0,5	3699	18,5	884	4,4	0	0,0	100	0,5	0	0,0	0	0
HE HE	Aceite vegetal	0,5				,						,	_	
ACE	maíz		3699	18,5	884	4,4	0	0,0	100	0,5	0	0,0	0	0
GRASAS Y ACEITES	Aceite vegetal oliva	0,5	3699	18,5	884	4,4	0	0,0	100	0,5	0	0,0	0	0
tAS,	Mantequilla	1	3050	30,5	729	7,3	2	0,0	82	0,8	0	0,0	0	0
GF	Margarina vegetal con sal	1	3012	30,1	720	7,2	0,6	0,0	81	0,8	0,3	0,0	0	0
	vogotal coll sal	0,5	5012	JU, 1	120	1,4	0,0	0,0	01	0,0	0,0	0,0	U	U
	Manteca cerdo	0,5	3799	19,0	908	4,5	0	0,0	99,9	0,5	0	0,0	0	0
TOTAL		17,0		616,0		147,2		0,0		16,6		0,0		0,0

	gaseosa		172	0,0	41	0,0	0	0,0	0	0,0	11	0,0	0,1	0
Ø	Cerveza		151	0,0	36	0,0	0,3	0,0	0	0,0	5,1	0,0	0	0
DA	Energizante			0,0		0,0		0,0		0,0		0,0		0
BEBIDAS AZUCARADAS	Chocolate simple (con azúcar)	2	1038	20,8	248	5,0	3,8	0,1	16,8	0,3	75,1	1,5	1	0,02
IDAS A	Café (sin azúcar) 99,1 % agua	2	8	0,2	2	0,0	0,9	0,0	0	0,0	0,6	0,0	0	0
SEB!	Té hojas secas	2	1289	25,8	308	6,2	8	0,2	4	0,1	71,4	1,4	6	0,12
ш	Jugo artificial			0,0		0,0		0,0		0,0		0,0		0
	Azúcar refinada	35	1619	566,7	384	134,4	0	0,0	0	0,0	99,2	34,7	0	0
TOTAL		41,0		613,4		145,6		0,3		0,4		37,7		0,1
	Π													
GRAN TOTAL	12	240,0	8:	251,7	1	970,7		79,9		59,5	:	272,0		17,6
	PC	Ene provie	NTAJ rgía die ene frut erduras.	ALI ta as y			N LA	RACIÓ Energía de proviene azúcar	N ieta de	Ene	rgía de l		ı	
	Energía de la c proviene carr lácteos, huev 21%	Ene provid ve lieta nes, os.	rgía die ene frut rduras. 9%	ta as y			N LA	RACIÓ Energía di proviene	N ieta de	Ener F cere		e de gumin rculos.		
	Energía de la c proviene carr lácteos, huev 21%	Ene provid ve lieta nes, os	rgía die ene frut rduras. 9% de la d	ta as y			N LA	RACIÓ Energía di proviene azúcar	N ieta de	Ener F cere	rgía de l provienc eales+le s+ tube	e de gumin rculos.		
	Energía de la c proviene carr lácteos, huev 21%	Ene provide ve lieta nes, os	rgía die ene frut rduras. 9%	ta as y			N LA	RACIÓ Energía di proviene azúcar	N ieta de	Ener F cere	rgía de l provienc eales+le s+ tube	e de gumin rculos.		

Cuadro 5. Estimación de una dieta tipo que satisface los requerimientos energéticos de la población de la zona 6.

Fuente: Elaboración a partir del procesamiento de datos de INEC, FAO, ENSANUT.

Es importante recalcar que los valores obtenidos son referenciales y se generaron en atención a ciertos parámetros y criterios ajustados por el autor conforme las fuentes de información consultada; los detalles de los criterios y sustentos aplicados se encuentra en los apéndices del presente informe y en los comentarios de las celdas de las tablas en formato electrónico que complementan el presente trabajo.

Energía para garantizar servicios básicos en la vivienda y trasporte.

0.1.5 Electricidad.-

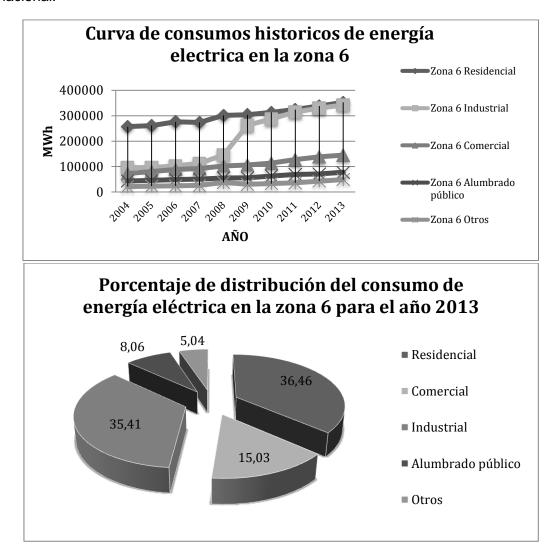
El actual gobierno tiene elaborado un Plan Maestro de Electrificación 2013- 2022 que analiza con detalle este sector de la energía. Considera en sus planes el incremento de generación hidroeléctrica⁶² (gran parte del potencial se ubica en la zona seis de planificación); así como el crecimiento de la demanda en diversos sectores que incluye la construcción del tranvía de Cuenca, la refinería del pacífico, el metro de Quito, entre otros. Esta fuente de información ha permitido desarrollar con cierto detalle nuestra tarea.

Para calcular las demandas de energía eléctrica que se consumen en el hogar, la industria y las ciudades, se procedió a revisar la información que el Consejo Nacional de Electrificación CONELEC y el Ministerio Coordinador de Sectores Estratégicos mantienen en sus reportes y estudios anuales y plurianuales. Del tratamiento de esta información se obtuvo la cantidad referencial de energía en Mega watios de electricidad que demanda el territorio 63. En el siguiente cuadro se presenta el consolidado de consumo estimado actual y su proyección al horizonte de nuestro análisis para el año 2030:

PROYECCIÓN DEMANDA DE ENERGÍA ELEC PLANIFICACIÓN (MWh)	TRICA EN LA Z	ONA 6 DE
	AÑO 2015	AÑO 2030
Crecimiento del año (%) EE Azogues	4,3 110000,0	4,4 205059,3
Crecimiento del año (%)	4,1	4,2
EE Centro Sur	945000,0	1754742,1
Zona 6 cargas singulares Industria (minería) Zona 6 introducción vehículos eléctricos		240462,0 249,0
Zona 6 cargas singulares Tranvía	77000 0	53079,0
Zona 6 cocinas inducción Zona 6 calentamiento agua	77280,0 805,0	643473,4 1198,4
Zona 6 AHORROS (cambio refrigeradoras)	(8237,0)	(11278,0)
Zona 6 AHORROS (cambio luminarias)	(4875,0)	(6500,0)
Zona 6 AHORROS (optimización industrias)	(9888,0)	(19775,0)
TOTAL Zona 6	1.110.085,0	2.860.710,2

Cuadro 6. Estimación de requerimientos de energía eléctrica de la zona 6 de planificación para el año 2015 y 2030.

 $^{^{62}}$ Permitirá disminuir la generación termoeléctrica entre los años 2013 y 2015, llegando a niveles mínimos a partir del inicio de operación de las grandes centrales hidroeléctricas, alrededor del 2016, para luego incrementarse gradualmente hasta el 2021.


⁶³ A partir de las empresas eléctricas que abastecen la región: Empresa Eléctrica Azogues y Empresa Eléctrica Centro Sur.

Fuente: Elaboración a partir de estudios de CONELEC publicados en el año 2013.

Los porcentajes de crecimiento de la demanda de energía eléctrica se aplicaron en atención a los estudios de gestión y demanda 2013-2022 del CONELEC (2013), mismos que incluyen aspectos de optimización del gasto de energía, las nuevas cargas singulares del territorio y el cambio de matriz energética por sustitución de generación de electricidad con hidrocarburos por generación hidroeléctrica⁶⁴.

La revisión de los consumos históricos indica que para el año 2013 la zona seis de planificación participo del 6% del consumo total nacional y que el sector industrial presenta crecimientos históricos significativos 65 con una interesante proyección de crecimiento por nuevos proyectos industriales conforme la planificación productiva nacional.

 $^{^{64}\}mbox{Según}$ el informe de CONELEC (2013) en el $\,$ año 2013 el 53,89 % de la generación de electricidad fue de fuentes No renovables. Pág. 95.

 $^{^{65}}$ El crecimiento es significativo en la Centro Sur, se debe indicar que en la EE Azogues se da un salto en el crecimiento para el año 2010 en adelante que lo atribuimos fue por el ingreso de la compra de energía de la fábrica de cemento Guapán que antes lo compraba al sistema nacional.

Ilustración 16. Gráficos de consumos históricos y porcentaje de distribución de energía eléctrica de la zona 6

Fuente: Elaboración a partir de información CONELEC 2013.

0.1.1 Gas licuado de petróleo.

En cuanto al consumo de gas doméstico, se han considerado estimaciones de utilización por períodos y porcentajes según el cambio de matriz energética y conforme los datos que expone el Plan Maestro de Electrificación 2013-2022 y los reportes estadísticos de población y vivienda del INEC (2010).

El plan de electrificación señala que a partir del año 2017 un 80% de los hogares a nivel nacional adoptarán el sistema de cocción por inducción electromagnética y a partir del 2020 se tendrá una cobertura del 90% ⁶⁶. El resultado consolidado ⁶⁷ se presenta en el siguiente cuadro:

ESTIMACIÓN DE CONSUMO DE GAS LICUADO DE PETRÓLEO PARA COCCION DE ALIMENTOS EN LOS HOGARES (TONELADAS METRICAS -t-)								
		AÑO 2015	AÑO 2030					
Población Azuay		810.412,00	1.020.376,0					
Promedio personas por hogar (INEC 2010)	3,77							
Número de Hogares Azuay		214.963,40	270.656,8					
% hogares usan gas (según censo INEC 2010 y proyección CONELEC 2030)		0,93	0,1					
Hogares que usan gas		200.130,92	27.065,7					
Población Cañar		258.450,00	326.212,0					
Promedio personas por hogar (INEC 2010)	3,83							
Número de Hogares Cañar		67.480,42	85.172,8					
% hogares usan gas (según censo INEC 2010 y proyección CONELEC 2030)		0,92	0,1					
Hogares que usan gas		61.879,54	8.517,3					
Población Morona Santiago		175.074,00	236.817,0					
Promedio personas por hogar (INEC 2010)	4,39							
Número de Hogares Morona Santiago		39.880,18	53.944,6					
% hogares usan gas (según censo INEC 2010 y proyección CONELEC 2030)		0,71	0,1					
Hogares que usan gas		28.235,17	5.394,5					
Promedio de consumo gas/hogar/mes (Kg)	16,8							
Consumo promedio gas/mes ZONA 6 (t)		4.876,13	688,4					
TOTAL consumo promedio gas/ año ZONA 6 (t)		58.513,52	8.261,0					

Cuadro 7. Estimación de consumo de gas licuado de petróleo para cocción de alimentos en los hogares de la zona 6 de planificación para el año 2015 y 2030.

⁶⁶Según señala el Plan Maestro de Electrificación 2013-2022 en su volumen 2 sobre el Estudio de Gestión y Demanda Eléctrica, pág. 72.

⁶⁷Los detalles y criterios de los cálculos realizados constan en los apéndices.

PEOC INTEL CREEK PROSPACE

UNIVERSIDAD DE CUENCA

Fuente: Elaboración a partir de proyecciones del INEC y estudios de CONELEC 2013.

A la demanda de gas en Azuay y Cañar para cocción de alimentos se le agregó su uso en el calentamiento de agua (calefones). Se calculó a partir del reporte de consumos de gas licuado de petróleo para las provincias de la zona 6 que se encuentra en el reporte de Balance Energético Nacional (2014):

ESTIMACIÓN DE CONSUMO DE GAS LICUADO DE PETRÓLEO PARA CALENTAR AGUA EN LOS HOGARES (TONELADAS)					
	AÑO 2015	AÑO 2030			
Estimado consumo gas/hogar/mes para calentar agua Azuay (Kg) 16	3.362.199,47	454.703,36			
Estimado consumo gas/hogar/mes para calentar agua Cañar (Kg) 16	1.039.576,32	143.090,38			
Consumo promedio gas/mes para calentar agua ZONA 6 (t)	4.401,78	597,79			
TOTAL consumo promedio gas/ año para calentar agua en el hogar ZONA 6 (t)	52.821,31	7.173,52			

Cuadro 8. Estimación consumo gas licuado petróleo para calentar agua en los hogares de la Azuay y Cañar para el año 2015 y 2030.

Fuente: Elaboración a partir de proyecciones del INEC y estudios de CONELEC 2013.

El consumo consolidado de gas se estima en:

ESTIMACIÓN CONSUMO TOTAL GAS LICUADO DE PETRÓLEO PARA HOGAR (TONELADAS)				
	AÑO 2015	AÑO 2030		
TOTAL consumo promedio gas/ cocción/año ZONA 6	58.513,5	8.261,0		
TOTAL consumo promedio gas/ calentar agua/año ZONA 6	52.821,3	7.173,5		
TOTAL GENERAL consumo promedio gas/ año /hogar ZONA 6	111.334,8	15.434,6		

Cuadro 9. Estimación total de consumo de gas licuado petróleo para los hogares en la zona 6 de planificación para el año 2015 y 2030.

Fuente: Elaboración a partir de proyecciones del INEC y estudios de CONELEC 2013.

En los apéndices N° 2 y 3 se adjuntan las tablas dinámicas en formato Excel con el detalle de los cálculos y criterios aplicados.

Tree: PEE CERTIE HELIANTE

UNIVERSIDAD DE CUENCA

0.1.2 Combustibles fósiles para garantizar movilidad e intercambio de mercancías.

En este apartado nos referiremos a la energía que se consume para transporte terrestre⁶⁸ y en particular la que consumen los vehículos a motor para el traslado de bienes y personas⁶⁹ en la zona 6 de planificación.

Inicialmente se consideró realizar la estimación en función de la cantidad de vehículos registrados en el territorio (37% para transporte de carga, 7% para transporte de pasajeros en autos y jeeps⁷⁰) y el consumo medio de combustible; pero por la dificultad de contar con información objetiva se optó por analizar las ventas totales de los derivados de combustibles realizados en la zona 6 que constan en el informe de balance de energía nacional del año 2013.

Según el informe de Balance de Energía de Ecuador71, el sector del transporte representó el 49% del consumo total de energía del país en el año 2013 (ver reporte gráficos en el Anexo N° 8). Esta demanda fundamentalmente se cubre con derivados de petróleo principalmente gasolinas (súper y extra⁷²) y diesel oil (tipo 1,2 y Premium ⁷³) quienes aportan el 45 % y 43 % respectivamente del total de consumo de hidrocarburos nacional. Tan solo el 0,01 % proviene de la electricidad.

Al revisar los reportes estadísticos y tasas de crecimiento anual de consumos que constan en el informe, se obtuvo para la zona 6 de planificación la siguiente estimación^{74:}

ESTIMACIÓN CONSUMO HIDROCARBUROS PARA TRANSPORTACIÓN (BARRILES DE PETRÓLEO –bbl-)					
AÑO 2015 AÑO 2030					
Zona 6 Gasolina extra	1.598.484,00	4.835.593,82			
Zona 6 Gasolina súper	255.769,00	672.325,73			
Zona 6 Diesel oil 1	306,00	4.881,11			
Zona 6 Diesel oil 2	356.873,00	1.140.755,21			
Zona 6 Diesel oil premium	1.593.232,00	4.307.526,50			

Cuadro 10. Estimación consumo hidrocarburos en la zona 6 de planificación para el año 2015 y 2030.

Fuente: Elaboración a partir del reporte de Balance de Energía Ecuador del año 2014.

⁶⁸Los otros medios no los consideramos para el presente análisis sin embargo citamos su porcentaje de participación: el transporte aéreo es tan solo el 5,9 % a nivel Nacional, el marítimo y fluvial el 9,2 % y el ferroviario 0,8 %. (citado en el reporte de INER 2010 sobre transporte).

⁶⁹La movilidad terrestre también puede darse caminando y con el empleo de otros medios de transporte no motorizado como la bicicleta.

⁷⁰Según señala el Instituto Nacional de Eficiencia Energética y Energías Renovables INER (2010). No se encuentran disponibles los detalles del estudio, tan solo un documento de síntesis informativa denominado dossier de transporte.

⁷¹Estudio desarrollado y publicado en el año 2014 por el Ministerio Coordinador de Sectores Estratégicos.

⁷² La norma técnica ecuatoriana NTE INEN 935:2012 (octava revisión) establece las categorías y los requisitos.

⁷³ La norma técnica ecuatoriana NTE INEN 1489:2012 (séptima revisión) establece las categorías y los requisitos de los mismos.

⁷⁴ Los detalles cálculos se encuentran en el apéndice N°4.

THE OWNERS OF THE PARTY OF THE

UNIVERSIDAD DE CUENCA

Energía mitigable y aprovechable.

Este apartado pretende estimar los flujos metabólicos de salida para desechos sólidos, aguas servidas y emisiones originadas por la quema de los hidrocarburos. La perspectiva de análisis se basa en los enunciados que intentan definir una nueva forma de convivencia ciudadana a partir del principio del "Buen Vivir", donde se establece la correspondencia de las personas y colectividades para producir, intercambiar y consumir bienes y servicios con responsabilidad social y ambiental⁷⁵, así nos interesa cuantificar los flujos de salida bajo la premisa de cuanta energía se podría reutilizar⁷⁶ y/o también aproximarnos a determinar las áreas -al interior del territorio- necesarias para su fijación y/o tratamiento.

0.1.3 Emisiones a la atmósfera (vehículos de combustión y gas doméstico)

Es política de Estado⁷⁷ el desarrollar actuaciones para la adaptación y mitigación al cambio climático y al momento⁷⁸ las entidades y organismos del sector público deben promover la incorporación progresiva de criterios y acciones tendientes a su tratamiento.

Al ser los derivados de hidrocarburos, un componente global importante dentro del análisis del metabolismo que nos ocupa, es importante considerar su aporte en carbono.

	AÑO 2015	AÑO 2030
Zona 6 Gasolinas		
Zona o Gasonnas	1.854.253,00	5.507.919,55
Zona 6 Diesel		
Zona o biosci	1.950.411,00	5.453.162,82
,	,	

ESTIMACIÓN CONSUMO TOTAL GAS LICUADO DE PETRÓLEO PARA EL HOGAR (t)

	AÑO 2015	AÑO 2030
TOTAL GENERAL consumo promedio gas/ año /hogar ZONA 6	111.334,8	15.434,6

Cuadro 11. Cuadro consolidado consumos de gasolina, diesel y GLP en la zona 6 de planificación para el año 2015 y 2030.

Fuente: Elaboración a partir de estudio de Balance Energía Ecuador del año 2014.

⁷⁵ Así lo establece el Art. 278 de la Constitución.

⁷⁶Enfoque ausente en los Planes de Ordenamiento Territorial de la zona 6 que fueron revisados.

⁷⁷Decreto Ejecutivo N° 1815 publicado en el Registro Oficial Edición Especial N° 636 del 17 de julio de 2009.

⁷⁸ Decreto ejecutivo N° 495 publicado en el Registro Oficial 304, 20-X-2010 que reforma al DE 1815.

Para este cálculo se ha considerado fundamentalmente el aporte de CO₂ generado por el consumo de los derivados⁷⁹ de hidrocarburos a partir del empleo del programa de cálculo de emisiones "Transport tool V2-5-1_0" disponible en la web del World Resources Institute⁸⁰. El análisis aplica para los valores estimados de gasolina, diesel y gas licuado de petróleo obtenidos para la zona 6 del reporte de de balance de energía nacional con los siguientes resultados:

ESTIMADO DE EMISIONES DE CO ₂ A LA ATMOSFERA EN LA ZONA 6 (t)				
	AÑO 2015	AÑO 2030		
Gasolinas	669.657,66	1.989.167,90		
Diesel	829.903,78	2.320.331,68		
Gas licuado petróleo	331.013,14	45.889,44		

Cuadro 12. Cuadro estimado de emisiones de CO2 a la atmósfera en la zona 6 de planificación para el año 2015 y 2030.

Fuente: Elaboración a partir de estudio de Balance Energía Ecuador del año 2014.

El detalle del cálculo consta en el apéndice N° 5.

0.1.4 Generación de efluentes: aguas servidas y desechos sólidos domésticos

Para los dos componentes se aplicó un criterio básico de estimación, considerando la relación entre la población y los rangos de generación de efluentes y desechos.

Para el tema de efluentes se aborda la cantidad estimada que retornaría al medio luego de su uso y que debería, más allá de su obligado tratamiento, ser reutilizada. En cuanto a los desechos domésticos, estos son estimados a partir de consultar el estudio de la Organización Panamericana de la Salud OPS (2002) sobre los residuos sólidos en Ecuador.

 $^{^{79}}$ Existen otros compuestos, como el CH4 y NO2, sin embargo el CO $_2$ contribuye con más del 95 % a las emisiones.

⁸⁰http://www.ghgprotocol.org/calculation-tools/all-tools

Proyección Generació	on Efluentes de la Poblac	ción de la Zona 6			
	2015	2030			
	EFLUENTES				
	(m3/año)				
AZUAY	51.913.290	65.554.321			
CAÑAR	16.800.896	21.205.831			
MORONA SANTIAGO	11.698.656	15.824.369			
TOTAL ZONA 6 EFULENTES	80.412.843	102.584.521			
Proyección Generación Desechos de la Población de la Zona 6					
	2015	2030			
	DESECHOS SÓLIDOS DON	IÉSTICOS (Ton/año)			
AZUAY	198.154,3	249.492,7			
CAÑAR	42.450,4	53.580,3			
MORONA SANTIAGO	28.755,9	38.897,2			
TOTAL ZONA 6 DESECHOS	269.360,7	341.970,2			

Cuadro 13. Cuadro estimado de generación de efluentes (aguas servidas y desechos sólidos domésticos) en la zona 6 de planificación para el año 2015 y 2030.

Fuente: Elaboración a partir de estimaciones y parámetros INEN, OPS/OMS 2002, PDOT Cuenca 2001.

Caracterización de los desechos sólidos domésticos (t/año)				
TOTAL ESTIMADO DE GENERACIÓN EN LA ZONA 6		Año 2030		
%	269.361	341.970		
71,14%	191.623	243.278		
9,60%	25.859	32.829		
4,50%	12.121	15.389		
3,70%	9.966	12.653		
0,70%	1.886	2.394		
10,36%	27.906	35.428		
100,00%	269.361	341.970		
	71,14% 9,60% 4,50% 3,70% 0,70% 10,36%	ACIÓN EN LA ZONA 6 % 269.361 71,14% 191.623 9,60% 25.859 4,50% 12.121 3,70% 9.966 0,70% 1.886 10,36% 27.906		

^{*}Los porcentajes de composición se basan en los rangos señalados en reporte del análisis Sectorial de Residuos Sólidos Ecuador OPS/OMS 2002. (La suma de los valores en el reporte señala 89,9 %, se completo el resultado con "otros" hasta lograr 100%)

Cuadro 14. Cuadro caracterización estimada de los desechos sólidos domésticos en la zona 6 de planificación para el año 2015 y 2030.

Fuente: Elaboración a partir de estimaciones y parámetros INEN, OPS/OMS 2002, PDOT Cuenca 2001.

En el anexo N° 9 se exponen algunos cuadros con parámetros que fueron considerados para el análisis, mientras que en el apéndice N° 6 se detallan los cálculos efectuados.

THE VILL CRAFFS HELDON'S

UNIVERSIDAD DE CUENCA

CAPÍTULO III: METABOLISMO TERRITORIAL: ESTIMACIÓN DE LA DISPONIBILIDAD DE LOS RECURSOS Y DETERMINACIÓN DEL ESTADO ACTUAL DEL TERRITORIO DE LA ZONAL 6.

"La relación entre las sociedades humanas y la naturaleza no puede ser comprendida sin entender la historia de los seres humanos y sus conflictos"

Joan Martínez Alier (1998)

Sin menguar la importancia de los diversos elementos que conforman el sistema territorial⁸¹, consideramos que agua y suelo son fundamentales: el agua como recurso vital⁸² pues en sus proximidades se han ubicado y desarrollado grandes civilizaciones desde tiempos remotos; y, el suelo como estructura del territorio, finito en extensión y limitado en cuanto a sus posibles usos.

En este capítulo centraremos la atención en analizar la disponibilidad de los dos componentes arriba citados, y también en aquellos que por su significancia de participación en el componente energético hemos propuesto conveniente su análisis en esta primera aproximación.

Para el agua analizaremos las demandas básicas de la población y nos referiremos de manera muy general -por la limitada información disponible- a considerar su disponibilidad dentro del territorio.

Para el suelo, nos concretaremos en su extensión y potencialidad de uso conforme ciertas consideraciones de clima y topografía que hemos establecido.

En fuentes de gas y derivados de hidrocarburos, el territorio es completamente dependiente, ya que al momento no se han identificado yacimientos ni reservas dentro

⁸¹ Ver pie de página N° 16.

⁸²Pedro Arrojo (2007) en una conferencia sobre el tema planteó un singular enfoque, señaló que se debe ampliar la concepción del agua, pues no debe ser considerado como un recurso aislado que parte de una red de distribución, sino que debe ser incorporada dentro de un contexto holístico con una estrategia de gestión eco sistémica, debiendo su gestión ser sustentable a partir de ordenar el territorio de manera inteligente. Estableció cuatro enfoques: agua vida, agua ciudadanía, agua economía y agua delito. El agua vida, considerada como un derecho humano inalienable y además vinculada con la existencia de la vida sobre el territorio. El agua ciudadanía, considerando el agua como un reto político y no económico, que debe priorizarla como una fuente pública gratuita (con respeto y propiedad) y potable sobre otro tipo de obra pública. El agua economía, considerada con racionalidad de mercado, que debe establecer tarifas con bloques crecientes: quien más consume, más paga; planteamiento contrario a la economía de mercado que fomenta el consumo: quien más compra, menor precio. El agua delito, entendido como el principio que permita juzgar, sancionar y dar seguimiento a todas las actividades que atentan su adecuada gestión como contaminación de ríos, pozos de agua ilegales, etc.

del territorio y recién en el año 2012 el gobierno central inició un proceso de licitación para la delegación de las actividades de exploración y explotación de petróleo crudo; la licitación se denomina "Ronda sur oriente" y considera áreas dentro de la zona seis⁸³. En el anexo N° 10 se adjunta el respectivo mapa.

En lo que respecta a energía eléctrica, se presentará un análisis para la zona 6 en torno a su oferta y demanda.

Finalmente en el ámbito de mitigación y aprovechamiento de energía a partir de los desechos, se presentará una estimación de las áreas necesarias para su fijación así como una aproximación a su potencial de aprovechamiento.

Disponibilidad de agua para consumo humano.

Este apartado se ceñirá al tema de las aguas superficiales ya que sobre aguas subterráneas no se ha ubicado información para la zona 6⁸⁴.

Una primera información sobre la disponibilidad de agua en nuestro país lo tenemos en la página web de la FAO dentro del proyecto *Aquastat* (2015), donde se presenta una reseña general sobre el recurso agua a nivel nacional (ver anexo N° 14). La misma indica una buena reserva de este elemento vital para la población, sin embargo también pone en evidencia deficiencias en cuanto a un uso adecuado y el tratamiento de aguas residuales⁸⁵.

El informe del Diagnóstico de la Información Estadística del Agua en Ecuador (CEPAL 2012), que considera además información de la Secretaría Nacional del Agua SENAGUA, entidad estatal rectora del recurso; analiza el registro⁸⁶ público de usuarios de agua (autorización de uso y aprovechamiento del año 2011) y determina que el uso consuntivo predominante en el país es agrícola con el 80% del caudal utilizado; el uso doméstico es del 13% y el uso el industrial asciende a un 7%. En lo referente a la utilización no consuntiva del agua, la generación hidroeléctrica es el sector de mayor demanda con un 53% del volumen concesionado.

Este mismo informe, en relación a la disponibilidad de agua superficial, cita información del Plan Nacional de los Recursos Hidráulicos del año 1987 (ver anexo N° 17), donde señala una reserva de agua en condiciones de régimen natural ⁸⁷ de 289.480 Hm³/año (21.067 m3/habitante/año⁸⁸).

En cuanto a la información sobre el recurso agua en el país, el informe señala que su conocimiento es limitado, pues el sistema de monitoreo hidrometeorológico es

⁸³ En febrero 2014 se encontraban en revisión cuatro ofertas presentadas para los bloques 29, 79 y 83.

⁸⁴De las consultas y revisión de fuentes bibliográficas, conocemos de la existencia de un mapa hidrológico nacional de aguas subterráneas elaborado por el INAMHI y DGGM a escala 1. 1.000.000, el mismo fue publicado en 1983 y ofrecería una visión general y sintética de la distribución del recurso hídrico subterráneo en el país. Según consta en el reporte sobre agua en el Ecuador (CEPAL 2012, pag.12), al momento SENAGUA y la Escuela Superior Politécnica del Litoral ESPOL han acordado emprender la elaboración del Mapa Hidrogeológico en escala 1:250.000.

⁸⁵ Estos ámbitos no son objeto directo de nuestro análisis, pero resulta importante resaltarlos.

⁸⁶⁸⁶Este registro en muchos casos presenta divergencias con la disponibilidad real del recurso.

⁸⁷ La disponibilidad de régimen natural se indica es sin obras artificiales de regulación y con una garantía del 90 %.

⁸⁸ No se especifica que población considera, presumimos será la de aquella época.

deficitario^{89;} no existe una red de datos sobre la calidad del agua, ni tampoco sobre los recursos de agua subterránea. El informe concluye señalando: "La demanda hídrica en el país no está bien explicitada ni definida; aparece como un requerimiento difuso y sólo ubicado en determinados parámetros hídricos".

En cuanto a la disponibilidad del recurso para la zona seis debemos señalar que tampoco se cuenta con información detallada⁹⁰, sin embargo se logró ubicar cierta información cartográfica digital⁹¹, que es la que empleamos.

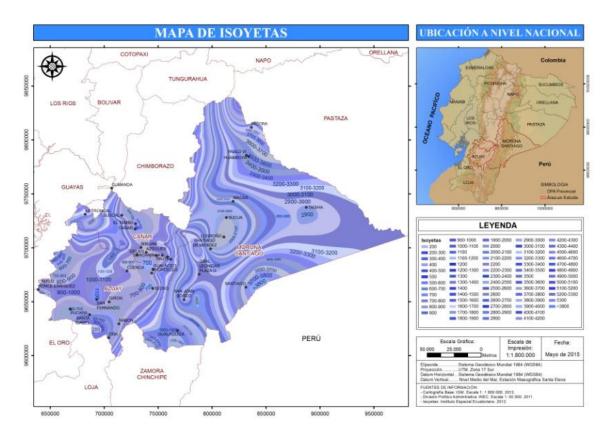


Ilustración 17. Mapa de isoyetas para la zona 6 Fuente: Elaborado a partir de información cartográfica IGM, INEC, IEE. (2015).

Las fuentes cartográficas digitales utilizadas fueron las elaboradas por el Instituto Espacial Ecuatoriano ⁹² (2012), de las cuales se generó información anual de

⁸⁹En cobertura, periodicidad y calidad de la información.

⁹⁰Se revisó también los Planes de Desarrollo y Ordenamiento Territorial de las tres provincias que conforman la zona 6 de planificación, donde se encuentra información muy general con ciertos datos sobre precipitaciones y algunos mapas ilustrativos, pese a que tienen la competencia para administrar el riego.

⁹¹ Si existen contados anuarios hidrológicos y meteorológicos publicados por el Instituto Nacional de Meteorología e Hidrología INAMHI que exponen los reportes de los datos generados por las estaciones meteorológicas que se encuentran distribuidas y operativas en el territorio nacional, que entendemos son parte de los insumo para la generación de la cartografía digital temática que hemos empleado.

⁹²Esta entidad se constituyó en el julio de 2012 y reemplazó al CLIRSE.

TOWN (MESS DE COMPANY)

UNIVERSIDAD DE CUENCA

precipitaciones para la zona 6 (ver ilustración N°17); un mapa de la evapotranspiración potencial y finalmente un mapa del déficit hídrico (ilustración N° 19) predominante.

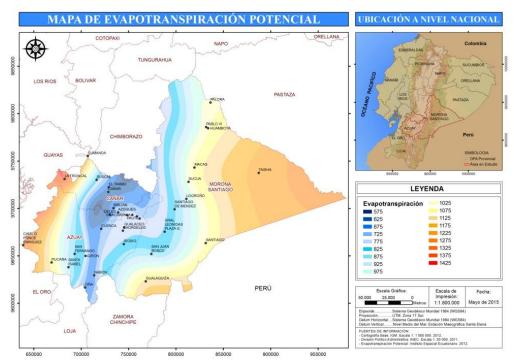
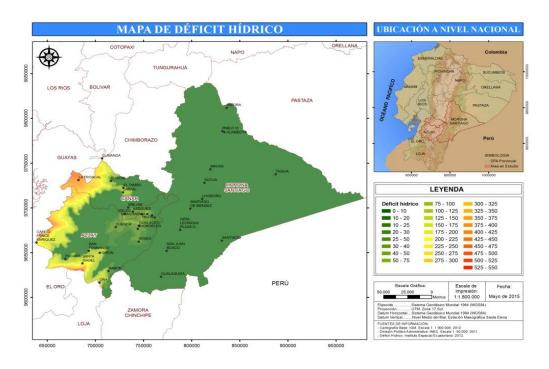



Ilustración 18. Mapa de evapotranspiración para la zona 6 Fuente: Elaborado a partir de información cartográfica IGM, INEC, IEE.

El mapa sobre el déficit hídrico -según consta en la información- fue generado a partir de la mediana de precipitación, la evaporación potencial ETP y la capacidad máxima de retención de agua en el suelo.

THE STATE CHARGO PERSONNELL CONTROL OF CHARGO

UNIVERSIDAD DE CUENCA

Ilustración 19. Mapa de déficit hídrico la zona 6 Fuente: Elaborado a partir de información cartográfica IGM, INEC, IEE.

Los resultados globales indican un déficit en la disponibilidad de agua en el territorio (ver cuadro 17), que si bien pueden parecer valores poco significativos (el 90,46 % del área presenta un déficit anual en un rango entre 0 y 100 mm), al efectuar una estimación con todos los intervalos de rangos generados en la cartografía (ver apéndice N° 10), se evidencia un déficit total de mil doscientos dos millones de metros cúbicos al año.

El siguiente cuadro presenta un resume de las superficies con déficit de agua:

ÁREAS CON DÉFICI	IT HÍDRICO	EN LA ZONA 6	
Rangos de déficit anual (mm)		Hectáreas	%
0-100		3210964,06	90,46
100-200		171992,33	4,85
200-300		93972,32	2,65
300-400		50335,91	1,42
400-500		21616,71	0,61
mayor 500		723,46	0,02
	TOTAL	3549604,79	100
DÉFICIT HÍDR	RICO EN LA	ZONA 6	
Déficit anual (mm)		millones m3	
0-100			399,2
100-200			278,1
200-300			244,7
300-400			179,3
400-500			96,5
mayor 500			3,9
TOTAL			1.201,7

Cuadro 15. Cuadro de déficit hídrico para la zona 6 de planificación. Fuente: Elaborado a partir de información cartográfica IGM, INEC, IEE.

Si bien al momento no se puede aseverar que exista un déficit en el suministro de agua para consumo humano, es evidente que este se manifiesta a nivel general del territorio.

Tree NEE CLEARS ASSESSED

UNIVERSIDAD DE CUENCA

Balance de Agua

En cuanto a la disponibilidad de agua para satisfacer la demanda básica de la población, las estimaciones de este trabajo consideran un requerimiento de 80,8 m3por persona/año, que para la totalidad de la población en el 2015 nos refiere un volumen de 100,52 millones de m3/año (8,38 millones de m3/mes); y de 128,23 millones de m3/año para el 2030 (10,69millones de m3/mes).

	Precipitación media mensual en las provincias de la zona 6						
	Azuay	Cañar Z1 Azogues	Cañar Z2 Cañar	Cañar Z3 La Troncal	Morona Santiago Z1 Palora	Morona Santiago Z2 Macas	Morona Santiago Z3 Méndez
MES	PRECIPITACIÓN (mm)	ZONA 1: Azogues, Biblián y Déleg	ZONA 2: Cañar, Suscal y El Tambo	ZONA 3: La Troncal	PALORA	MACAS	MENDEZ
enero	100,23	61	38,5	375,3	413,5	151,5	184,9
febrero	127,94	97,9	53,1	382,3	409,0	197,1	167,8
marzo	133,53	111,5	66,3	497,3	424,9	234,4	227
abril	123,93	113,9	64,6	231	565,4	266,7	267,7
mayo	78,72	71,1	41,5	69,5	543,9	264,2	262,3
junio	55,41	44,4	26,5	15	533,2	250,6	273,6
julio	46,03	48,6	20	7,3	404,1	200	223,2
agosto	34,11	32	16,7	8,2	331,0	158,2	200,7
septiembre	43,04	40,6	25,2	20,7	384,9	190,7	213,7
octubre	61,81	85,2	42,2	17,1	497,9	188,8	229,4
noviembre	58,97	102,3	43	25,4	476,9	178,7	161,1
diciembre	75,91	86,1	34,2	35,4	464,9	171,1	177,3

Cuadro 16. Cuadro precipitaciones mensuales por provincia de la zona 6
Fuente: Elaborado a partir de información señalada en los Planes de Desarrollo y Ordenamiento
Territorial Provinciales (2015).

Al no poder ubicar información detallada sobre la disponibilidad del recurso para la región, pero considerando la información disponible sobre precipitaciones mensuales (ver cuadro N° 24), y tomando en cuenta que la demanda por mes de la población es menor a un milímetro por metro cuadrado (m/m²) (0,000000236 litros/m²/mes); se puede concluir, que se satisface la necesidad anual de agua de la población para los años 2015 y 2030.

Sin embargo es importante aclarar que esta estimación tiene sus limitaciones al ser de carácter general y no considerar aspectos de la demanda y disponibilidad de agua en relación con la infraestructura y la distribución espacial de la población sobre el territorio (núcleos poblados). Aspectos de infraestructuras de captación y distribución del agua, cantidad, calidad y disponibilidad por conflictos de uso del agua por ejemplo no se encuentran considerados.

En cuanto a la disponibilidad para los demás usos, con la información indagada no ha sido posible profundizar el tema⁹³; sin embargo de lo obtenido se evidencia un déficit en el balance hídrico del territorio de la zonal 6, que alerta y exige que se adopten acciones inmediatas para gestionarlo, pues es un componente vital muy sensible a los efectos del cambio climático⁹⁴.

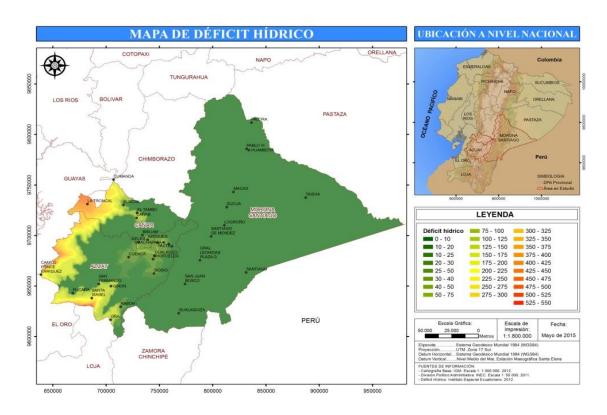


Ilustración 20. Mapa de déficit hídrico en la zona 6 Fuente: Elaborado a partir de información cartográfica IGM, INEC, IEE.

Resultaría imprescindible por ejemplo información mensual sobre el agua para las diversas zonas del territorio a fin de determinar la disponibilidad en el suministro para

⁹³Al momento sobrepasa el ámbito del presente trabajo, pues demandaría un análisis muy particular considerando aspectos de clima, evapotranspiración de los cultivos según su locación en el territorio, tipo de suelo, entre otros.

⁹⁴Varios estudios aseveran esta realidad. Por ejemplo en el Plan Nacional para el Buen Vivir (Senplades 2013 - pag.70-) se indica que el clima actual del Ecuador es diferente al de 1963, la temperatura media anual se ha incrementado 0,8 °C desde esa fecha y que el cambio climático en Ecuador continuará a largo plazo. Las tendencias de sus efectos aún son poco definidas pero de la aplicación de modelos climáticos se prevén una disminución de los páramos húmedos y bosques alto andinos, señala que los impactos previsibles se relacionan con la disminución de los suministros de agua en los Andes norte y Amazonía, inundaciones en la costa central y norte, cambios generalizados en la capacidad productiva, expansión de enfermedades tropicales y pestes, cambios en el stock biológico y el balance de servicios ambientales.

cultivos y pastizales⁹⁵ permitiendo además el adecuado desarrollo e implementación – de una manera integral⁹⁶- de los planes e infraestructuras de riego.

Disponibilidad de suelo para producción de alimentos

En términos ambientales y geográficos, nuestro país presenta un sinnúmero de particularidades, destacan su posición latitudinal en la mitad del planeta; la presencia de la Cordillera de los Andes que divide longitudinalmente el territorio formando tres regiones: costa, sierra y oriente; su vulcanismo antiguo y moderno que definen en gran medida los tipos de suelo; su integración con parte de la gran selva amazónica; en sus costas la proximidad a la confluencia de dos corrientes marinas: la "cálida" corriente ecuatorial y la "fría" corriente de Humbolt; entre otros son sin lugar a dudas aspectos importantes que definen el clima y las potencialidades del territorio. Lo indicado nos refiere que realizar una estimación minuciosa del potencial agropecuario precisaría de análisis muy profundos y detallados.

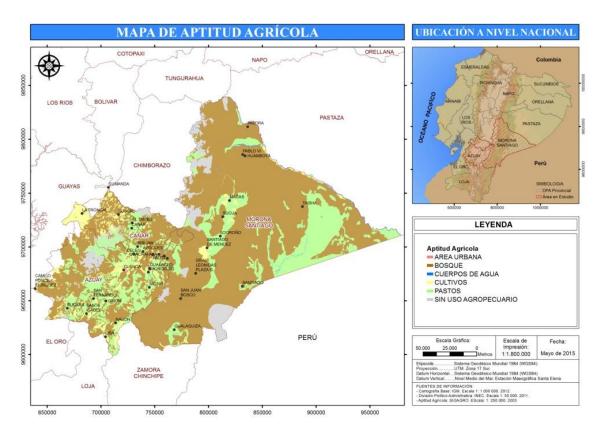


Ilustración 21. Mapas de aptitud agrícola de las provincias de la zona 6 Fuente: Elaborado a partir de información cartográfica IGM, MAGAP.

⁹⁵Según la información que consta en el Diagnóstico de la Información Estadística del Agua en Ecuador CEPAL (2012), a nivel nacional el potencial de riego del país es de 3,1 millones de hectáreas, sin embargo al año 2011, según el reporte de la Subsecretaría de Riego y Drenaje del MAGAP, el área regada fue de 942 mil hectáreas (Pág. 14 del reporte).

⁹⁶Los planes de riego no deben ser aislados en su concepción, deberían estar articulados con la planificación territorial en sus diversos niveles considerando aspectos de vocación del suelo, demanda de alimentos, logística básica, encadenamiento productivo, asesoría técnica y desarrollo de capacidades del agricultor, etc.

Con la aclaración del limitante arriba expuesto, para realizar nuestra estimación de la disponibilidad de suelo agrícola y ganadero, se ha sintetizado tres criterios⁹⁷ que los consideramos estructurales y que nos pueden esbozar un acercamiento a la potencialidad del territorio, estos son: pendientes, cobertura de suelo y rangos de altura (piso altitudinal).

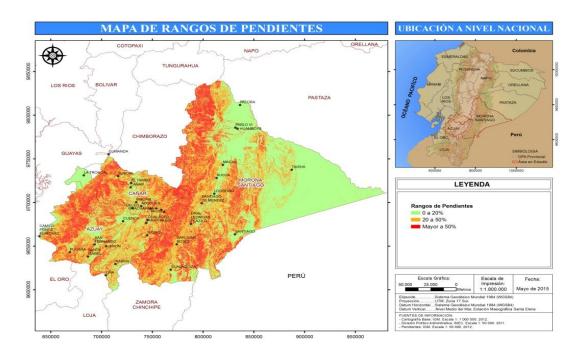


Ilustración 22. Mapas de pendientes en la zona 6 Fuente: Elaborado a partir de información cartográfica IGM, MAGAP.

El primero relacionado con la topografía, que nos establece limitaciones propias para el desarrollo de actividades agrícolas y de labranza tecnificada, así como para propender a un adecuado cuidado del suelo –evitar y prevenir la erosión-; al respecto hemos definido tres rangos: mecanizable y relativamente mecanizable (0 a 20 %), con limitaciones moderadas (20 a 50 %) y con limitaciones severas (mayor a 50%).

Pendiente	На	%
0 a 20 %	1 488 343,30	41,95
20 a 50 %	1 255 448,42	35,38
Mayor a 50 %	804 261,90	22,67
Total	3 548 053,62	100

⁹⁷Cabe indicar que no se han considerado en el análisis las figuras legales de protección del territorio, algunas por su poca representatividad en el porcentaje total de superficies y otras porque ya se las considera dentro de criterios de sensibilidad por cobertura vegetal (bosques, páramos y humedales). Así las áreas de bancos de arena y cuerpos de agua representan apenas el 0,64 % del territorio; las áreas declaradas de bosque y vegetación protectora así como las del sistema nacional de áreas protegidas se encuentran consideradas –en un porcentaje mayoritario- dentro de las áreas definidas como sensibles.

Santiago Lloret Página 70

_

Cuadro 17. Cuadro de áreas según rangos de pendiente en la zona 6. Fuente: Elaborado a partir de información cartográfica MAGAP y otros.

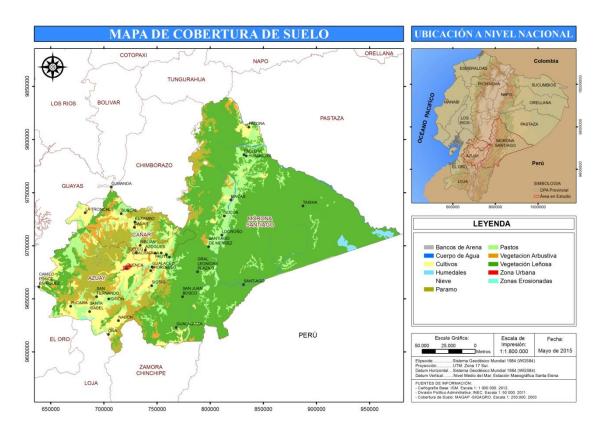


Ilustración 23. Mapas de cobertura de suelo en la zona 6 Fuente: Elaborado a partir de información cartográfica IGM, MAGAP.

Para el aspecto de cobertura de suelo se han restringido las áreas consideradas de alta sensibilidad ambiental, en este sentido se ha reservado las zonas de páramo⁹⁸ y humedales (sobre los 3200 msnm) y las superficies con bosques nativos y cuerpos de agua. También se excluyeron las áreas de nieve, perímetros urbanos y zonas erosionadas.

⁹⁸ Es necesario aclarar que si bien a nivel nacional el páramo se lo considera a partir de los 3200 msnm, en el austro estas áreas se encuentran desde altitudes de 3000 msnm.

THE PERSONS NAMED IN COLUMN 2 CORP.

UNIVERSIDAD DE CUENCA

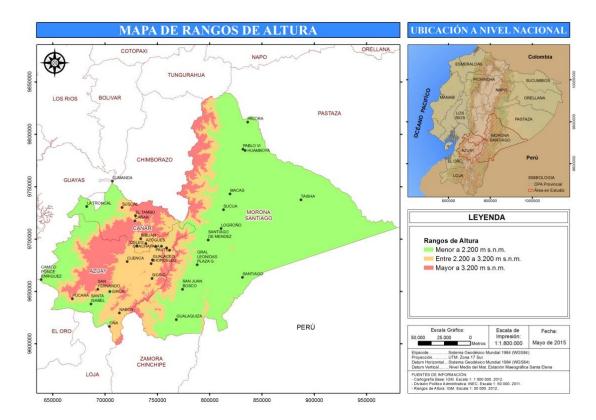


Ilustración 24. Mapas de cobertura de suelo en la zona 6 Fuente: Elaborado a partir de información cartográfica IGM, MAGAP.

En cuanto al piso altitudinal se consideraron tres rangos:

- 1. Menos a 2200 msnm correspondiente a las zonas bajas de cultivos tropicales que se encuentran a los costados de la cordillera real.
- 2. Entre 2200 a 3200 msnm correspondiente a las zonas templadas del callejón interandino.
- Sobre los 3200 msnm correspondiente a zonas sensibles prestadoras de servicios ambientales vitales como páramos captadores de agua y humedales; que por condiciones de clima y suelos tampoco presentan potencialidad agro productiva.

El resultado final de nuestra estimación brinda las siguientes áreas:

	Áı	reas disp	onibles	para cı	ıltivo	s en la :	zona 6
Total Ha por zona	Pendiente	Piso Altitudinal	Cobertur a	На	%	Zona térmica	Comentario
	Mayor a 50 %	Mayor a		2.749,0	0,77		Limitado potencial productivo por condiciones ambientales
18.964,6	20 a 50 %	3.200 m	Cultivos	9.862,1	2,75	frío	extremas (baja temperatura, altas precipitaciones). Zona de
	0 a 20 %	3.11.111.		6.353,4	1,77		sensibilidad ambiental contigua a páramos.
	Mayor a 50 %	Entre 2.200		34.969,3	9,76		Limitaciones severas
188.626, 9	20 a 50 %	a 3.200 m	Cultivos	89.745,9	25,06	templado	Limitaciones moderadas
	0 a 20 %	5.11.111.		63.911,8	17,84		Mecanizable y relativamente mecanizable
	Mayor a 50 %	Menor a		22.998,2	6,42		Limitaciones severas
150.577, 4	20 a 50 %	2.200 m	Cultivos	43.602,5	12,17	cálido	Limitaciones moderadas
	0 a 20 %	3.11.111.		83.976,7	23,45		Mecanizable y relativamente mecanizable
358.168, 8		TOTAL		358.168, 8	100		

Cuadro 18. Cuadro áreas para cultivos en la zona 6. Fuente: Elaborado a partir de información cartográfica MAGAP y otros.

	Á	reas disp	onibles o	le pasti	zales	en la zo	na 6
Total Ha por zona	Pendiente	Piso Altitudinal	Cobertura	На	%	Zona térmica	Comentario
	Mayor a 50 %	Mayor a		11.151,9	2,41		Limitado potencial productivo por condiciones ambientales extremas (baja
40.736,5	20 a 50 %	3.200 m s.n.m.	Pastos	20.401,3	4,41	frío	temperatura, altas precipitaciones) además zona de sensibilidad
	0 a 20 %			9.183,3	1,99		ambiental contigua a páramos.
	Mayor a 50 %	F., t., 2, 200, -		37.802,4	8,18		Limitaciones severas
148.261, 6	20 a 50 %	Entre 2.200 a 3.200 m s.n.m.	Pastos	76.343,2	16,52	templado	Limitaciones moderadas
	0 a 20 %			34.115,9	7,38		Mecanizable y relativamente mecanizable
	Mayor a 50 %			43.563,1	9,43		Limitaciones severas
273.097, 2	20 a 50 %	Menor a 2.200 m s.n.m.	Pastos	70.207,4	15,19	cálido	Limitaciones moderadas
	0 a 20 %			159.326, 8	34,48		Mecanizable y relativamente mecanizable
462.095, 3		TOTAL		462.095, 3	100		
J		TOTAL		<u> </u>	100		

Cuadro 19. Cuadro áreas de pastizales en la zona 6.

Fuente: Elaborado a partir de información cartográfica MAGAP y otros.

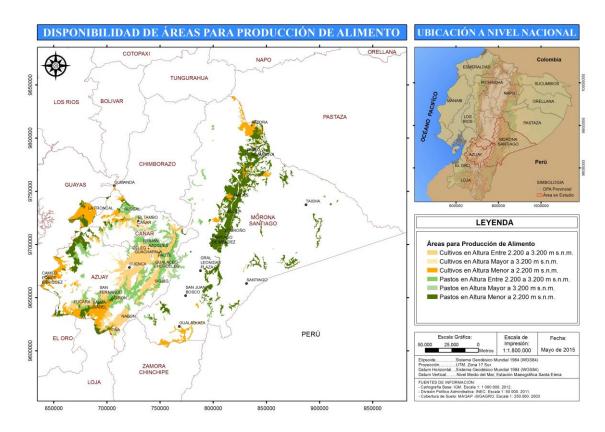


Ilustración 25. Mapa que indica las áreas consideradas disponibles para producción de alimentos en la zona 6

Fuente: Elaborado a partir de información cartográfica IGM, MAGAP.

Balance del nivel de autosuficiencia y excedentes para suelo agrícola

Al analizar comparativamente el uso de suelo agropecuario entre los años 2000 y 2013 (ver ilustración N° 25), nos llamó la atención dos aspectos: el primero relacionado con la ampliación de la frontera agropecuaria que entendemos se encuentra incidiendo en una disminución de las áreas de bosques, páramos y demás zonas sensibles; y, segundo: la disminución de áreas de cultivos transitorios y barbechos 100.

⁹⁹No debemos confundir los valores con el análisis que realizamos en cuanto al potencial de uso de suelo o las hectáreas estimadas para actividades agrícolas y ganaderas. Pues estos datos refieren al uso actual del suelo según el censo del año 2000 y a las encuestas de producción agropecuaria de los años 2012 y 2013.

¹⁰⁰Siendo conocedores de la realidad en el agro, presumimos que se encuentran en descanso o se convirtieron en pastizales para actividad ganadera, pues cada día es más difícil contar con personas para trabajar el campo, esto debido entre otros factores a: la migración campo ciudad, la falta de tecnificación en las faenas productivas, los bajos rendimientos en la producción y la incertidumbre en los precios que se paga al productor por su cosecha, problemas psicosociales (alcoholismo y falta de educación en la ruralidad).

Este primer análisis denota desde ya un control ineficiente del uso del suelo a través de una limitada planificación del territorio 101, y un deficiente desarrollo de políticas agrarias.

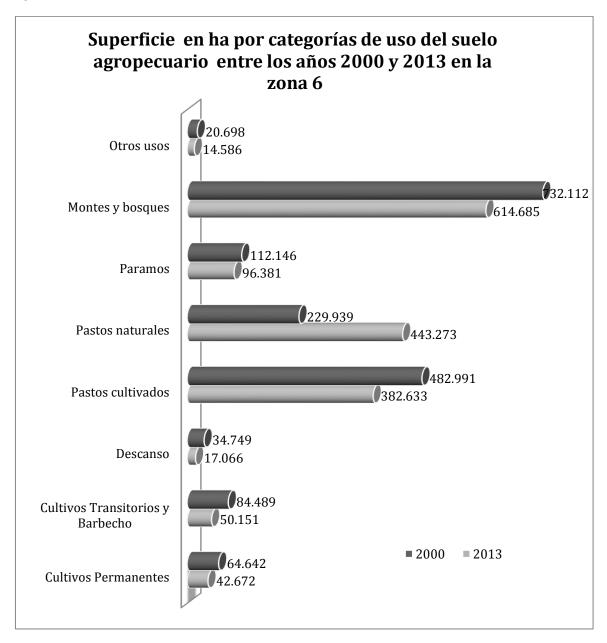


Ilustración 26. Superficies por categorías de uso de suelo agropecuario entre los años 2000 y 2013

Fuente: A partir de reportes estadísticos del MAGAP 2000 y 2013.

Centrados en nuestro análisis de estimar la disponibilidad de superficie para la producción de alimento, con la valoración de las demandas energéticas de la

¹⁰¹ En el año 2010 inician los planes de ordenamiento territorial, además hasta la fecha no se cuenta con un catastro rural completo y detallado que constituye información fundamental para una adecuada planificación.

THE WAX COMPANIES PROMPTING

UNIVERSIDAD DE CUENCA

población, conforme una dieta "tipo" que se elaboró (ver cuadro N°6) para satisfacer las demandas nutricionales y que además consideró aquellos alimentos que habitualmente consume la población ecuatoriana; se procedió a realizar la estimación de la disponibilidad de alimentos en el territorio. Para el cálculo nos basamos en el rendimiento promedio por hectárea de las parcelas, contrastado con la disponibilidad de superficie existente en el territorio para cultivos y pastizales.

Se elaboró una programación anual del uso del suelo con las siguientes consideraciones: ciclo anual de ocupación del suelo para: cultivos de carácter perenne, cultivos anuales y pastizales para ganadería y producción de leche; y, dos periodos de siembras al año para cultivos de ciclo corto.

Para conocer el rendimiento por hectárea se empleó mayoritariamente¹⁰³ los reportes del censo nacional agropecuario del año 2000, por ser hasta la fecha la fuente más completa de información disponible¹⁰⁴.

El resultado se expone en el siguiente cuadro:

TERRITORIO ESTIMADO PARA PRODUCCIÓN DE ALIMENTO DE LA POBLACIÓN EN LA ZONA 6 EN ATENCIÓN A LOS RENDIMIENTOS POR HECTÁREA DEL CENSO AGROPECUARIO 2000

(ha/año)

		Estimación 2015		Estimad	ión 2030
Producto	Consideraciones para cálculos	Ha/día requeridas	GLOBAL Ha/año requeridas	Has/día requeridas	GLOBAL Ha/año requeridas
CEREALES	Cultivos transitorios, 180 días para poder utilizar nuevamente el suelo (incluye ciclo del cultivo, barbecho y tareas complementarias como preparación suelo)	485,36	87.364,4	617,81	111.206,1
LEGUMINOSA S	Cultivos transitorios, 180 días para poder utilizar nuevamente el suelo (incluye ciclo del cultivo, barbecho y tareas complementarias como preparación suelo)	182,16	32.789,3	231,87	41.737,5
OLEAGINOSA S	Cultivos transitorios, 180 días para poder utilizar nuevamente el suelo (incluye ciclo del cultivo, barbecho y tareas complementarias como preparación suelo)	21,45	3.860,5	27,30	4.914,0
RAICES, TUBÉRCULOS , PLÁTANOS	Cultivos transitorios, 180 días para poder utilizar nuevamente el suelo, se exceptúan plátano, banano, yuca que se los considera como uso permanente del	170,02	30.603,0	216,41	38.954,5

¹⁰²En el sentido de satisfacer equilibradamente las demandas nutricionales de la población y considerando la capacidad para su producción dentro del territorio regional y nacional. Existen ciertas excepciones que se indican en la parte pertinente.

¹⁰³En el detalle del cálculo que se encuentra en los apéndices constan las demás fuentes consultadas.

¹⁰⁴Se revisó información de los reportes de las encuestas de superficie y producción agropecuaria continua – ESPAC- de los años 2010, 2011, 2012, 2013, pero ciertos valores presentaban fuertes diferencias y tampoco se ubicó información para todos los cultivos, optando por emplear los reportes del censo agropecuario del año 2000.

	suelo y están en los casilleros de frutas.				
FRUTAS (FRUTAS Y VERDURA)	Cultivos permanentes, 365 días para obtener una nueva producción.	665,35	242.853,1	846,92	309.127,5
VERDURAS (FRUTAS Y VERDURAS)	Cultivos transitorios, 180 días para poder utilizar nuevamente el suelo (incluye ciclo del cultivo, barbecho y tareas complementarias como preparación suelo)	271,28	48.830,3	345,31	62.156,0
CARNES (excepto vacuno)	Se realiza la estimación a partir de la tasa de conversión de alimento (concentrado) en carne por especie. Se consideran aportes básicos en concentrado de maíz (80 %) y soya (20%) con ciclos de 180 días.	249,52	44.913,3	317,61	57170,1
CARNES (vacuno)	Se considera que el total de carne de vacuno requerida proviene de la zona de pastizales de clima cálido (no se considera la carne del ganado vacuno que podría provenir del descarte lechero)		65.235,1		83.037,8
HUEVOS	Se realiza la estimación a partir de la tasa de conversión de alimento (concentrado) en huevos. Se consideran aportes básicos en concentrado de maíz (80 %) y soya (20%) con ciclos de 180 días.	104,27	18.768,0	295,34	53.160,8
LÁCTEOS Y DERIVADOS	Se considera una producción diaria permanente de las hectáreas de pastos en base a: rendimiento de 10 litros/vaca y 1,47 bovino por ha/pastizal. El rendimiento en leche de los derivados 0,15 % en queso y 100 % para yogurt.	35.823,10	35.823,1	45599,19	45.599,2
GRASAS Y ACEITES	Cultivos permanentes, 365 días para obtener una nueva producción.	7,58	2.765,4	9,64	3.520,1
BEBIDAS AZUCARADAS (caña azúcar, cacao, café)	Cultivos permanentes, 365 días para obtener una nueva producción.	21,77	7.945,3	27,71	10.113,5
	TOTAL	594.850,2		786.455,4	

Cuadro 20. Cuadro síntesis del área necesaria de suelo para satisfacer la demanda alimentaria de la población de la zona 6

Fuente: A partir de estimaciones y cálculos realizados.

El análisis comparativo se lo realizó en función de los resultados obtenidos en la estimación de superficie disponible para cultivos¹⁰⁵ y pastizales y para producción de leche y carne conforme se detalla en el siguiente cuadro:

¹⁰⁵ Las superficies agrícolas de clima templado y cálido casi son equiparables (52,6 % y 42,04 %).

THE STATE CHARGO CONTROL OF THE PARTY OF THE

UNIVERSIDAD DE CUENCA

CULTIVOS	На		%
Mayor a 3.200 m s.n.m.		18964,56	5,29
Entre 2.200 a 3.200 m s.n.m.		188626,91	52,66
Menor a 2.200 m s.n.m.		150577,36	42,04
TOTAL CULTIVOS		358168,83	100
PASTOS	На		%
Mayor a 2.200 (leche y derivados)	18899	98,10	40,90
Menor a 2.200 m s.n.m. (ganado de			
carne)	27309	7,18	59,10
TOTAL PASTIZALES	46209	5,28	100

Cuadro 21. Cuadro disponibilidad de superficie para agricultura y ganadería en la zona 6

Fuente: Generado a partir de las estimaciones y cálculos realizados.

El resultado final del análisis (ver ilustración N° 23) expone un déficit significativo de superficie para cultivos que se ubica en el 31,2 % para el año 2015 y en un 48,2 % para el año 2030.

DISPO	NIBILIDA	D ESTIM	RIO PARA 6 (Ha/año		JCCIÓ	N DE		
		año 2015			año 2030		año 2015	año 2030
	Ha/año requeridas	Has Disponibles	Déficit /superávit Ha/año	Ha/año requeridas	Has Disponibles	Déficit /superávit Ha/año	% Déficit /superá vit	% Déficit /superáv it
CULTIVOS	520.692,6	358.168,8	-162.523,7	692.060,2	358.168,8	-333.891,4	31,2	48,2
PASTOS (para leche y								
derivados)	35.823,1	188.998,1	153.175,0	45.599,2	188.998,1	143.398,9	427,6	314,5
PASTOS (para carne)	65.235,1	273.097,2	207.862,1	83.037,8	273.097,2	190.059,4	318,6	228,9

Cuadro 22. Cuadro disponibilidad de disponibilidad de superficie agropecuaria en la zona 6

Fuente: Elaborado a partir de la información generada.

En cuanto a la disponibilidad de superficie de pastizales destinados para producción de leche y derivados, el superávit es en cambio muy significativo ya que se ubica en porcentajes sobre el 427 % para el año 2015 (314 % para el año 2030); y, en

THE TAX COUNTY PROGRAMS

UNIVERSIDAD DE CUENCA

pastizales destinados para producción de bovinos de carne en 318,6 % para el año 2015 (228 % para el año 2030).

Esta primera aproximación, que en su base de cálculos podemos ajustar y/o actualizar la información conforme se disponga de mayores detalles como por ejemplo cambios de usos del suelo, mejora en los rendimientos agropecuarios, cambios en los hábitos de consumo, y demás variables, indica un desbalance importante en cuanto al adecuado uso que se debe dar del territorio.

Aspectos Energéticos complementarios.

Analizadas las demandas para cubrir las necesidades vitales de agua y alimento de la población, es importante también adentrarnos algo más en los temas de energía, enfocándonos ahora en aquellos flujos que por su significativa participación en el componente energético del metabolismo general del territorio, se han convertido en componentes importantes para la población dentro del territorio.

Realizaremos una aproximación sobre la disponibilidad y balance final del territorio para electricidad y derivados de hidrocarburos, también intentaremos cuantificar el potencial de reutilización energética de los desechos municipales y finalmente, considerando los fundamentos del buen vivir, nos aproximaremos a cuantificar las áreas necesarias del territorio para compensar las emisiones de CO₂ generadas por el consumo de los derivados de hidrocarburos.

0.1.5 Disponibilidad de Energía Eléctrica

La zona seis cuenta con una importante infraestructura y proyectos de generación hidroeléctrica (ver Cuadro 20) que a la fecha incluye la mayor central hidroeléctrica del país: la central Molino que tiene una potencia efectiva de 1100 MW¹⁰⁷ y que genera una energía media de 5865 GWh/año, superando con creces la demanda estimada actual de nuestra zona que es de 1.110,85 GWh/año (2860,7GWh/año en 2030); sin embargo al ser la electricidad un sector estratégico administrado por el gobierno central, está sujeto al balance de energía nacional y por tanto es susceptible de variaciones.

INFRAES	TRUCTURA EXIST	TENTE EN GENE	ERACIÓN (2	012)
EMPRESA/INSTITUCIÓN	CENTRAL	TIPO	POTENCIA EFECTIVA MW	ENERGÍA NETA GWH/año
CELEC EP	Paute	Hidroeléctrica	1100	5865,0
CELEC EP	Mazar	Hidroeléctrica	163	908,4
Elecaustro	Ocaña	Hidroeléctrica	26	203
Elecaustro	Saucay	Hidroeléctrica	24	141,42
Elecaustro	Saymirin	Hidroeléctrica	14,4	96,26
Elecaustro	El descanso	Térmica MCI	17,2	67,5

¹⁰⁶ Fruto del actual estado de la sociedad y su cultura.

¹⁰⁷La misma es parte del proyecto de generación hidroeléctrica "Paute integral" que a futuro generaría un total de 2314 MW, con Mazar, Cardenillo y Sopladora.

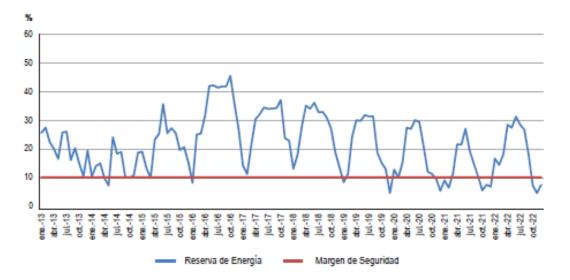
EE Centro Sur	Central Térmica Taisha	Térmica turbo vapor	0,24	0,3
		TOTAL	1344,84	7281,92
P	LAN DE EXPANSIO	ÓN EN GENER	ACIÓN ¹⁰⁸	
EMPRESA/INSTITUCIÓN	CENTRAL	TIPO	POTENCIA EFECTIVA MW	ENERGÍA NETA GWH/año
CELEC EP-Hidroazogues	Dudas Mazar	Hidroeléctrica	21	125,0
Elecaustro	Saymirin V	Hidroeléctrica	7	32,0
CELEC EP-Hidropaute	Paute Sopladora	Hidroeléctrica	487	2800
Hidrosanbartolo (privado)	San Bartolo	Hidroeléctrica	48	315
CELEC EP-Enerjubones Elecaustro	Minas-San Francisco	Hidroeléctrica	276	1290
	Soldados-Minas-Yanuncay	Hidroeléctrica	27,8	190,0
CELEC EP-Hidropaute	Paute Cardenillo	Hidroeléctrica	564	3356,0
			1430,80	8108,00

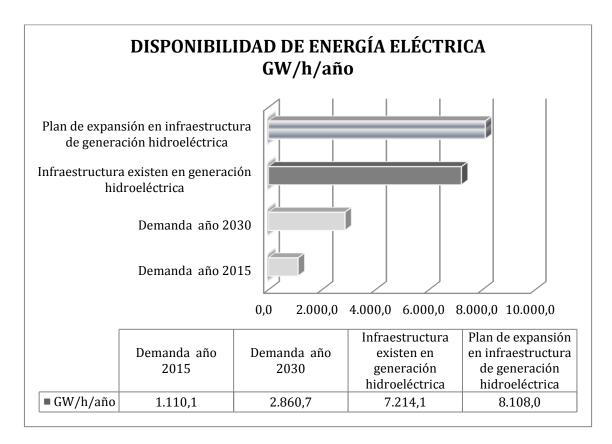
Cuadro 23. Infraestructuras y proyectos de generación de energía eléctrica en la zona 6 de planificación hasta e laño 2022.

Fuente: Elaborado a partir de estimaciones y estudios de CONELEC 2013.

Al respecto el Plan Maestro de Electrificación 2013-2022 señala en sus proyecciones, considerando un adecuado desarrollo de los proyectos planificados y manteniendo el uso de centrales de generación de energía eléctrica por plantas térmicas; que se mantendrán reservas de energía para un escenario de hidrología seca en algunos meses de ciertos períodos, bajo el umbral del 10% del margen de seguridad.

 $^{^{108} \}mbox{Elecaustro}$ lleva adelante dos proyectos adicionales que no constan en los estudios de CONELEC: Eólico minas Huascachaca de 50 MW y Ocaña II de 29 MW.

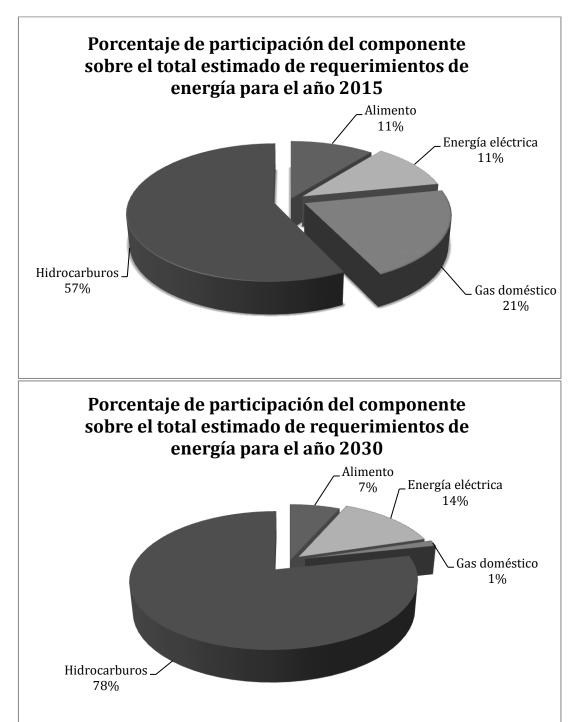



FIG. No. 2.18: RESERVA DE ENERGÍA, HIDROLOGÍA SECA
Ilustración 27. Estimación de Reservas de energía eléctrica nacional
Fuente: Estudios de CONELEC del año 2013.

0.1.6 Balance de Electricidad

Comparando con los valores de estimación de la demanda, se observa que la región cuenta con una adecuada disponibilidad de energía eléctrica, pues de la actual capacidad de generación que existe en la región, hoy tan solo se emplea el 15,4 % de la energía y para el año 2030 estimamos se ubicará en el 39,7 %. Además si se aprovecha el potencial identificado para nuevas infraestructuras de generación hidroeléctrica existente en la zona (8108 GWH/año), se puede prácticamente duplicar la actual capacidad de generación hasta 15.389,92 GWH/año de producción.

Esta actual capacidad y potencialidad del territorio de la zona 6 en aspectos de generación de energía hidroeléctrica nos indican su importancia para la región y el país, y por tanto precisan desde ya, el desarrollo actuaciones para su adecuada conservación y la maximización de su aprovechamiento.


Cuadro 24. Disponibilidad de energía eléctrica para la zona 6 Fuente: A partir de información de CONELEC publicada año 2013

0.1.7 Balance de hidrocarburos y sus derivados.

El aspecto de los hidrocarburos y sus derivados presentan particularidades importantes para nuestra población y territorio, analizando su porcentaje de participación del total de energía en relación a las demás variables consideradas, se observa que su demanda energética participa del 57 % del total del metabolismo total de energía para el año 2015¹⁰⁹, y su porcentaje se incrementa al 78 % al año 2030, es decir que su participación no solo es muy significativa, sino que además se incrementa cerca de un 20 % en la proyección para el año 2030.

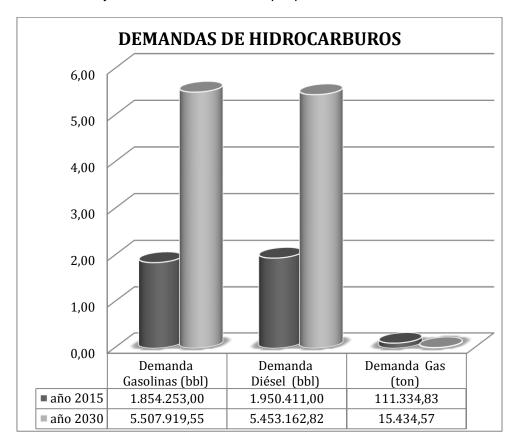
 $^{^{109}}$ A nivel nacional el sector de la transportación es el mayor consumidor de hidrocarburos con el 49% del consumo nacional total (ver anexo $N^{\circ}8)$

Cuadro 25. Participación porcentual de los diversos componentes en la zona 6 Fuente: Elaborado a partir de la información del Balance Energético Nacional 2014 estimaciones realizadas.

Una segunda particularidad se relaciona con su carácter de ser recursos no renovables¹¹⁰, que además no se encuentran identificadas al interior del territorio, al

Santiago Lloret Página 83

_


¹¹⁰ Un reciente análisis sobre la "Proyección de reservas petroleras y de gas en América Latina, del onshore al offshore", publicado por Juan Felipe Echeverry en la Revista Negocios y Petróleos en su edición de abril de 2015 señala que: "Ecuador tiene reservas de petróleo para menos de 20 años (incluida la explotación del eje de

THE DESIGNATION OF THE PROPERTY OF THE PROPERT

UNIVERSIDAD DE CUENCA

momento su disponibilidad propia es relativa en función de la ronda de licitación de bloques para exploración petrolera denominada Ronda Sur Oriente que cuenta con ciertas áreas que intersecta con la zona seis de planificación ¹¹¹, por tanto la región no cuenta con reservas probadas a su interior del territorio siendo completamente dependiente de hidrocarburos y sus derivados.

Esta dependencia externa del 100 % del componente, indica una necesidad de racionalizar su uso y considerar alternativas que puedan sustituirlos.

Cuadro 26. Demandas de hidrocarburos para la zona 6
Fuente: Elaborado a partir de la información del Balance Energético Nacional 2014

0.1.8 Energía de las Emisiones: Capacidad de asimilación de CO₂.

Las emisiones de CO₂ contribuyen con más del 95 % de los gases de efecto invernadero y es importante que el territorio de la zona 6 mantenga un

los campos Ishpingo, Tambococha y Tiputini, ITT) y las políticas implementadas para ampliar sus reservas aún no dan resultados. El país posee actualmente una reserva cerca a los 3.200 millones de barriles según datos del Ministerio de Recursos No Renovables. Esta cifra significa que la explotación petrolera podría extenderse por cerca de 18 años con un promedio de producción de unos 180 millones de barriles anuales, cifra promedio que el país ha registrado en los últimos 5 años".

¹¹¹ Licitación que se encuentra en fase de contratación por parte del gobierno central por intermedio del Ministerio de Recursos Naturales No Renovables (hoy Ministerio de Hidrocarburos).

THE STATE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY.

UNIVERSIDAD DE CUENCA

equilibrio interno que permita no superar la concentración de gases de efecto invernadero.

Partiendo de aprovechar el potencial forestal 112 que tiene el territorio de la zona 6, hemos procedido partiendo de la estimación de las toneladas de CO_2 que se generan por el uso de combustibles fósiles en la región, a estimar las áreas de superficie de plantaciones forestales que deberían implementarse en el territorio zonal (excluyendo sectores sensibles como páramos y bosques nativos, según señala la cartografía existente, en la zona seis existen una diversidad de áreas para su implementación).

Para este análisis se aplicó el concepto de "carbono neutral" que el Ministerio del Ambiente en su portal web¹¹³lo explica como:

"El término "Carbono Neutral" se refiere al estado en el que las emisiones netas de gases efecto invernadero expedidas al ambiente equivalen a cero. El objetivo final es no afectar la concentración natural de gases efecto invernadero que existe en la atmósfera. Debido a que el CO2 es el principal gas de efecto invernadero, el término "CO2 Neutral" o "Carbono Neutral" a menudo se equipara con "clima neutral".

Ser "carbono neutral" significa que el resultado final de una actividad, un proceso o un proyecto tal como la producción de un bien, la provisión de un servicio o su consumo no haya emitido más gases efecto invernadero a la atmósfera que los que hayan podido capturar o remover."

Al aplicar el criterio de captura de CO₂ con el desarrollo de plantaciones forestales, y ante la ausencia de información detallada al respecto sobre Ecuador¹¹⁴, se ha optado por considerar la fijación del CO₂ en una plantación forestal de eucalipto, que si bien es una especie exótica para nuestro medio, esta ya se encuentra presente en la región interandina desde hace varias décadas y además según la literatura es una de las especies con mayor capacidad para la fijación de carbono. Al adoptar un rendimiento medio de fijación de 26,61 t de CO₂/ha/año¹¹⁵, estimamos se requieren 68.792,7 ha para el año 2015 y 163.674,9 has de bosques plantados para el año 2030.

¹¹²El territorio nacional mantiene esa vocación, así varios autores, entre ellos Nieto, C (2013), recalcan que el potencial del territorio Ecuatoriano es forestal o agroforestal, por aspectos de topografía, clima y radiación solar principalmente.

¹¹³http://suia.ambiente.gob.ec/que-es-carbono, acceso el 25/mayo/2015.

¹¹⁴No se ubicó información nacional detallada (por piso climático, tipo de especie y demás). El reporte sobre la evaluación de los Recursos Forestales Mundiales -FRA 2015 de la FAO- no tiene detalles completos sobre Ecuador, pese a que el formulario fue completado por funcionarios del Ministerio del Ambiente de Ecuador.

¹¹⁵ Según lo determinó Gamarra (2001) en una plantación de eucalipto glóbulos en Perú. Otros autores como Norverto, C. (2008) ha determinado 43,58 T de CO2 en plantaciones de eucalipto en Argentina.

EMISIONES ESTIMADAS DE CO2 A LA ATMOS	FERA EN LA	ZONA 6 (t)
	AÑO 2015	AÑO 2030
Emisiones que se generan en la zona 6 de planificación (derivados de hidrocarburos y gas licuado de petróleo)	1.830.574,58	4.355.389,02
HECTÁREAS ESTIMADAS PARA CARBONO N	IEUTRO EN L	A ZONA 6
26,61	AÑO 2015	AÑO 2030
Plantación de eucalipto(26,61 T CO2/ha/año)	68.792,7	163.674,9

Cuadro 27. Aproximación de hectáreas de plantación forestal para carbono neutro en la zona 6

Fuente: Elaborado a partir de la información generada

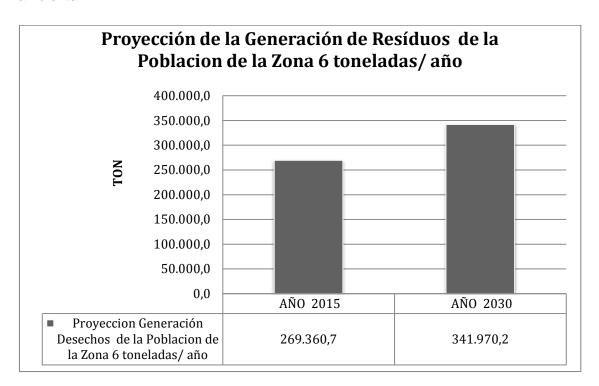
Este pequeño acercamiento al concepto de "carbono neutro", ver cuadro N° 30, nos señala que se debe considerar plantar una significativa extensión de territorio para su gestión.

0.1.9 Energía de los residuos sólidos.

El aprovechamiento energético de los residuos es un tema que se lo debería considerar como básico entre los ámbitos de la planificación del territorio. La obligatoriedad del aprovechamiento de los residuos sólidos no peligrosos recientemente incorpora disposiciones¹¹⁶ para impulsar programas eficientes a través del reciclaje, compostaje, incineración con fines de generación energética o cualquier otra modalidad que conlleve beneficios sanitarios, ambientales y/o económicos.

Al revisar la información estadística a nivel nacional sobre el comportamiento ambiental en hogares generada por el INEC (2014), esta señala que el 61, 68 % del total de los hogares no clasifica residuos, tan solo lo hace el 22,7 % de las familias. En la regional 6, el reporte señala que a nivel de las cinco ciudades principales, Cuenca es el centro poblado donde más se clasifica residuos¹¹⁷con un 43,15%. Esta información indica que la cultura del reciclaje y aprovechamiento de los desechos en país y la región aún es limitado.

 $^{^{116}\}text{Texto}$ Unificado de la legislación ambiental secundaria. Parágrafo VI, Art. 73 del libro VI (Acuerdo Ministerio del Ambiente N° 061 publicado en el Registro Oficial Edición Especial N° 316 del 04 mayo 2015).


¹¹⁷El cantón mantiene una Ordenanza Municipal obligatoria para la gestión y clasificación de los desechos desde el año 2003.

Trees (MES. COURTS) Jecusones UNIVERSIDAD DE CUDICA

UNIVERSIDAD DE CUENCA

En torno al manejo de residuos, este aún es deficiente ya que tan solo se realiza la recolección¹¹⁸ para su traslado a rellenos sanitarios. Según señala la Agenda Zonal Seis (2014), solamente cinco distritos ¹¹⁹ cuentan con rellenos sanitarios para la disposición final de desechos sólidos: los distritos Cuenca-norte, Cuenca-sur y Santa Isabel en la provincia del Azuay; y los distritos Azogues – Biblián – Déleg – Cañar - Suscal y El Tambo en la provincia de Cañar.

Al momento solo existe una iniciativa de reciclaje de gran alcance desarrollada por la Empresa Pública Municipal de Aseo de Cuenca EMAC, quienes llevan adelante un proyecto para el aprovechamiento del gas que se genera en el relleno sanitario de Pichacay¹²⁰, el cual tentativamente iniciaría operaciones en agosto del presente año¹²¹ y produciría 2 MWH de electricidad para abastecer un equivalente de 8000 viviendas¹²².Por lo demás pequeños proyectos privados de reciclaje se llevan a cabo inducidos lamentablemente por un interés económico antes que de conciencia ambiental.

Cuadro 28. Proyección en la Generación de desechos en la zona 6 Fuente: Elaborado a partir de la información generada

¹¹⁸Existen ciertas iniciativas de reciclaje, enfocadas por temas operativos para aumentar la vida útil de los sitios de disposición final, más no por aspectos de responsabilidad y buen vivir, pero desconocemos el grado de participación en el porcentaje de los desechos, pero lamentablemente no ubicamos reportes estadísticos detallados por parte de los gestores públicos y/o privados.

¹¹⁹Administrativamente, el Ejecutivo para garantizar una adecuada prestación de los servicios sociales y públicos, subdividió administrativamente el territorio en distritos y circuitos que según Decreto Ejecutivo 557-2012 de mayo 28 del 2012 la Zona 6 se subdivide en 17 distritos y 120 circuitos.

¹²⁰ Lugar de almacenamiento de los residuos sólidos domésticos de la ciudad de Cuenca.

¹²¹ Según se señala en una nota de prensa de la EMAC de mayo de este año.

 $^{^{122}}$ Según consta en una presentación de la EMAC preparada para un taller sobre los usos energéticos de la biomasa.

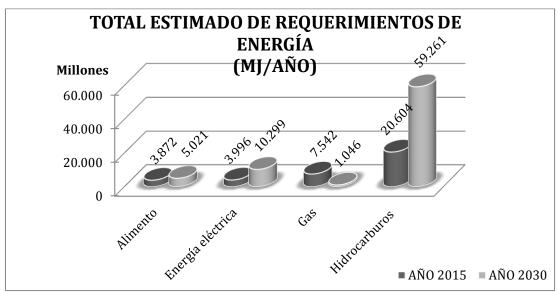
Estableciendo una aproximación en cuanto a la energía que se podría obtener a partir de los desechos¹²³, basados en un valor teórico referencial de poder calorífico de los residuos de 9,3 MJ/kg¹²⁴, se obtuvo valores significativos de rendimiento energético a ser aprovechado; así para el año 2015 resulta alrededor de 2.491 millones de MJ/año y para el 2030 podrían generarse 3.163,2 millones de MJ/año.

Aproximad	ción a la producci	ón de energía a partir de	los desechos de la
	Pok	olación de la Zona 6	
	Toneladas/ año	Poder calorífico MJ/ kg	millones de MJ/año
AÑO 2015	269.360,7	9,3	2.491,6
AÑO 2030	341.970,2	9,3	3.163,2

Cuadro 29. Aproximación de aprovechamiento de energía en la zona 6 Fuente: Elaborado a partir de la información generada

En conclusión se observa que el potencial de aprovechamiento energético de residuos actualmente está desperdiciado.

¹²³Para el sector agrícola, pecuario y forestal el Instituto Nacional de Pre inversión en su publicación "Atlas Bioenergético de la República del Ecuador" (2014) presenta un análisis sobre su potencial de aprovechamiento Bio energético a nivel país.


¹²⁴Según lo señalan Diego Moratorio, Ignacio Rocco, Marcelo Castelli en su estudio sobre Conversión de Residuos Sólidos Urbanos en Energía (2012).

Tree NEE CLEARS ASSESSED

UNIVERSIDAD DE CUENCA

Resumen general de las disponibilidades

Sintetizando los aspectos de energía, al convertir las estimaciones de las demandas básicas de la población en unidades de energía (ver cuadro N° 25) se observa que éstas mantienen un incremento sostenido conforme su crecimiento, salvo el gas que por la política de cambio de matriz energética del país, se espera disminuya.

Cuadro 30. Cantidad de energía requerida por la población de la zona 6. Fuente: A partir de las estimaciones y cálculos realizados.

Test MXX CREEK HOUSEN

UNIVERSIDAD DE CUENCA

CONCLUSIONES

SOBRE LOS OBJETIVOS DEL PRESENTE TRABAJO.-

Los objetivos para desarrollar los principios de intercambio de energía (metabolismo) que se manifiestan en un territorio se han cumplido satisfactoriamente, salvo aquellos que por la limitada disponibilidad de información se presentaron con resultados aproximados.

Los resultados obtenidos se enmarcan dentro de las líneas de investigación propuestas. El amplio trabajo metodológico de investigación aplicado ha permitido exponer información interesante y de importancia para el ordenamiento del territorio.

SOBRE EL NIVEL DE AUTOSUFICIENCIA Y GRADO DE DEPENDENCIA

Sintetizando los análisis realizados, se puede expresar lo siguiente:

En cuanto a la disponibilidad de territorio para garantizar la dotación de alimentos a la población, -de áreas consideradas aptas y disponibles para agricultura- el territorio es desprovisto en un 32% (faltan 162.523 Hectáreas) de la superficie total requerida para el año 2015 y lo será en un 48,2 % (333.891 Hectáreas) para el año 2030. Sin embargo existe un excedente significativo en áreas de pastizales para cría de ganado vacuno productor de leche (153.175 Has en 2015 /143.398 Has en 2030) y para cría y engorde de ganado vacuno de carne (207.862 Ha en 2015/ 190.059 para 2030).

En cuanto al agua para consumo humano, la misma se la puede considerar relativamente abundante, pero su disponibilidad general dentro del territorio para los demás usos se encuentra con limitantes, pues el balance hídrico anual presenta un déficit de 1.202 millones de m³ al año, aspecto que alerta para el desarrollo de acciones que mejoren su gestión.

En lo referente a electricidad el territorio es autosuficiente y presenta excedentes muy significativos en hidroelectricidad (para el año 2015 solo ocupa el 15,4 % de la energía eléctrica generada y para el año 2030 demandará el 39,7 %¹²⁵); sin embargo siempre se deberá tener en cuenta su dependencia directa al sistema nacional interconectado, por lo tanto si existiese una demanda no cubierta a nivel nacional, esta afectaría a la región.

Una ventaja adicional en el campo de la electricidad es el potencial con que dispone el territorio para eventualmente duplicar su capacidad de generación hidroeléctrica en los próximos años.

En tema de hidrocarburos y gas licuado de petróleo es completa su dependencia externa, su consumo actual y proyectado es altamente significativo y además presenta una fuerte tendencia de crecimiento en la demanda a futuro. Actualmente

Santiago Lloret Página 90

.

 $^{^{125}\,\}mathrm{Si}$ se realizan todos los proyectos de expansión de hidroelectricidad planificados este porcentaje disminuiría al 18,7 %.

Total PER CENTER HERMAN

UNIVERSIDAD DE CUENCA

participan del 57 % del total del metabolismo de energía calculado para el año 2015, su incremento en el consumo estimado para el 2030 está bordeando un 20 % que le daría una participación del 78 % del total metabólico para esa fecha.

Sobre el aprovechamiento de los desechos sólidos y carbono neutral, es un tópico descuidado a nivel regional que debería ser impulsado por aspectos conceptuales y de buen vivir, además que generan ventajas para la población y el territorio.

COMENTARIOS FINALES.-

Esta aproximación general ha brindado resultados sobre ciertas realidades manifiestas en el territorio pero ignoradas dentro de las propuestas de ordenamiento territorial elaboradas en la región. Amerita pues, por su importancia que a nivel de la academia y el sector responsable de la planificación se profundice en los temas tratados y se incorporen estos criterios en las metodologías de ordenación del territorio, en síntesis final podemos expresar:

- Existe desbalance territorial en aspectos de seguridad y soberanía alimentaria: por una parte el territorio no es capaz de satisfacer los alimentos que demanda la población y por otra mantiene un excedente significativo en territorio ganadero. El aspecto común para los dos segmentos es la subutilización del territorio por las bajas de productividad y rendimiento que se obtienen y la ausencia de planificación en cuanto a producción y mercados.
- El agua requiere una particular consideración, pues si bien es la base fundamental del potencial de generación hidroeléctrica actual y futura de la región y el país; a nivel zonal presenta un déficit en disponibilidad y obliga a planificar el territorio considerándolo dentro de los usos de suelo que se definan. Es imprescindible poder generar información a detalle sobre el balance hídrico mensual para las diversas zonas del territorio, ya que esta circunstancia permitiría en conjunto con el catastro rural y el asesoramiento técnico, planificar y organizar el potencial del sector agro productivo: sistemas de riego, zonificación agro productiva, emprendimientos agro productivos y generación de cadenas de valor, etc.; y, propender a garantizar una adecuada seguridad y soberanía alimentaria de la población disponiendo de mejor manera los excedentes.
- En cuanto a la generación hidroeléctrica, resulta imperativo desarrollar políticas regionales, que articuladas al enfoque nacional de este sector estratégico, permitan aprovechar al máximo su generación y prolongarlo en el tiempo, pues es necesario financiar verdaderos planes regionales de manejo de las cuencas hidrográficas que al momento no existen. Es prioritario armonizar los verdaderos y potenciales usos del suelo, desarrollar la vocación forestal que tiene el territorio, con las áreas de captación de agua (páramos, humedales y bosques nativos), generando equilibrios que permitan su estabilidad a mediano y largo plazo.
- Sobre el aprovechamiento de energía a partir de los residuos, es evidente su falta de desarrollo, limitados incentivos y baja inversión, es recomendable mayor investigación por parte de las universidades, gobiernos locales y demás sectores estratégicos.

THE MAKE CHIEF RESIDENCE CHIEFER

UNIVERSIDAD DE CUENCA

- La captura de carbono es parte de una estrategia mundial que en la región debe aplicarse. Se recomienda su desarrollo en el área forestal, pues además permitiría generar una nueva rama productiva para la región; sin embargo es importante profundizar en las especies que se deberían instaurar. Resulta interesante pensar y llevar a cabo por ejemplo proyectos forestales de maderas finas que abastezcan la demanda de la industria local (cedro, nogal, etc.). El empleo de tecnología de riego localizado para proyectos de plantaciones forestales es otro aspecto interesante a considerar.
- En cuanto a disponibilidad de información, su deficiencia es evidente, salvo el sector eléctrico, el de estadísticas básicas poblacionales y el sector de la salud, los demás son muy deficitarios. Resulta pues muy importante fortalecer el desarrollo de variables e indicadores que permitan un adecuado seguimiento.
- Disminuir los niveles de dependencia requiere el desarrollo y aplicación de indicadores claves para el monitoreo y seguimiento de las variables analizadas. Es otro aspecto muy deseable que fácilmente se lo podría incorporar en la actualización de los planes de Desarrollo y Ordenamiento territorial.

THE PARK DESIGNED HOUSENESS

UNIVERSIDAD DE CUENCA

GLOSARIO

Agua de retorno.-

Según el glosario de AQUASTAT/FAO: La parte del agua que se ha extraído de su fuente que no se ha consumido y vuelve de nuevo a su fuente o a otra masa de agua superficial o subterránea. El agua de retorno se puede dividir en flujo no recuperable (flujo para lavados de sales, agua subterránea no rentable económicamente, flujo de calidad insuficiente) y flujo recuperable (flujo a ríos o infiltración en acuíferos).

Agua dulce.-

Según el glosario de AQUASTAT/FAO: El agua que se encuentra en la superficie de la tierra en glaciares, lagos y ríos (es decir, agua superficial), y subterránea en acuíferos (es decir, agua subterránea). Su factor clave es una baja concentración de sales disueltas. El término excluye el agua de lluvia, el agua almacenada en el suelo (humedad del suelo), agua residual no tratada, agua de mar y agua salobre.

Agua (dulce) secundaria.-

Según el glosario de AQUASTAT/FAO: Agua subterránea o superficial que se ha extraído anteriormente y se ha devuelto a los ríos o a los acuíferos. Se refiere a vertidos de agua residual (tratada o no tratada) y agua de drenaje agrícola extraído para la agricultura pero que no se ha consumido y ha sido devuelta al sistema. Se puede reutilizar y por lo tanto se considera una fuente de agua secundaria. No se puede hacer una distinción entre agua dulce primaria y secundaria en la mayoría de los casos, pero es teóricamente importante contabilizarla para los flujos de retorno.

Aguas no contabilizadas.-

Según el glosario de AQUASTAT/FAO: Discrepancia entre los caudales de agua que salen de las estructuras de y la suma total de todas las aguas recibidas por los consumidores; hace referencia principalmente a las pérdidas, aunque también a errores importantes de medición y a desvíos desconocidos o ilegales. El concepto se utiliza más comúnmente en el sector del agua potable.

Agua residual.-

Según el glosario de AQUASTAT/FAO: Agua que no tiene valor inmediato para el fin para el que se utilizó ni para el propósito para el que se produjo debido a su calidad, cantidad o al momento en que se dispone de ella. No obstante, las aguas residuales de un usuario pueden servir de suministro para otro usuario en otro lugar. Las aguas de refrigeración no se consideran aguas residuales.

Agua, uso del .-

Según el glosario de AQUASTAT/FAO: Cualquier aplicación o utilización deliberada del agua para un fin determinado. Es importante diferenciar entre uso consuntivo (ver definición anterior) y uso no consuntivo. Algunos usos no consuntivos importantes son la navegación, la recreación y la asimilación y dispersión de residuos. La generación de energía hidroeléctrica y la refrigeración de estaciones eléctricas no son un usuario consuntivo neto de agua importante, pero sí tienen un gran impacto en el ciclo hidrológico, y liberan agua en momentos y a temperaturas que implican costes para otros usuarios. Los reservorios también producen pérdidas por evaporación.

Agua, uso consuntivo.-

Según el glosario de AQUASTAT/FAO: La parte del agua que ha sido retirada de su fuente para usarse en un sector determinado (por ejemplo, propósitos agrícolas, industriales o municipales) que no estará disponible para reutilizarse debido a que ha sido evaporada, transpirada, incorporada en productos, drenada directamente al mar o a zonas de evaporación, o retirada de otras formas de los recursos hídricos de agua dulce. Es lo contrario al uso no-consuntivo del agua.

Agua, uso no - consuntivo.-

Según el glosario de AQUASTAT/FAO: Uso del agua que no consume agua. Aunque haya sido extraída, la mayor parte del agua vuelve al sistema. Ejemplo de usos noconsuntivos del agua son la navegación, la pesca de captura, el uso recreativo o el uso cultural. La mayoría de los usos de agua en la corriente son no-consuntivos. La energía hidroeléctrica también se considera que tiene un uso consuntivo muy bajo de agua, excepto en aquellos casos en los que se ha construido una presa artificial aguas arriba, porque esto aumenta considerablemente la superficie del cuerpo de agua y de esta manera se incrementa la evaporación.

Antropometría.-

Según el diccionario de la Real Academia de la Lengua Española –DRAE-: Tratado de las proporciones y medidas del cuerpo humano.

Caracterizar.-

Según DRAE en su definición numero 1. Determinar los atributos peculiares de alguien o de algo, de modo que claramente se distinga de los demás.

Consuntivo.-

Según DRAE: Que tiene virtud de consumir.

Holismo.-

Según DRAE: Doctrina que propugna la concepción de cada realidad como un todo distinto de la suma de las partes que lo componen.

Invariante.-

Según DRAE: 1. f. Matemáticas. Magnitud o expresión matemática que no cambia de valor al sufrir determinadas transformaciones; por ejemplo, la distancia entre dos puntos de un sólido que se mueve pero no se deforma.

Isoyeta.-

Según DRAE: 1. f. Meteorología. Curva para la representación cartográfica de los puntos de la Tierra con el mismo índice de pluviosidad media anual.

Metabolismo.-

"Conjunto de reacciones químicas que efectúan constantemente las células de los seres vivos con el fin de sintetizar sustancias complejas a partir de otras más simples, o degradar aquellas para obtener estas."

Metabolismo social.-

Víctor M. Toledo en su ensayo "El metabolismo social: una nueva teoría socio ecológica (2013)" expresa que el término fue empleado por Marx en dos principales sentidos: como una analogía o metáfora biológica para ilustrar la circulación de las mercancías, y de manera más general como un "intercambio entre hombre y tierra", o un "intercambio entre sociedad y naturaleza".

Metabolismo urbano.-

Metabolismo urbano es el intercambio de materia, energía e información que se establece entre el asentamiento urbano y su entorno natural o contexto geográfico.

Motor.-

Según DRAE, en su segunda acepción 2. m. Máquina destinada a producir movimiento a expensas de otra fuente de energía.

Movilidad.-

Según Domingo Gómez Orea, en su libro sobre ordenamiento territorial (2008), lo señala como un componente del sistema territorial que propone y lo define como: "

Seguridad alimentaria.-

Según la FAO: "Existe seguridad alimentaria cuando todas las personas tienen en todo momento acceso físico, social y económico a suficientes alimentos inocuos y nutritivos para satisfacer sus necesidades alimenticias y sus preferencias en cuanto a los alimentos a fin de llevar una vida activa y sana".

Suelo.-

Según DRAE: "Superficie de la Tierra"; Referido al territorio "Porción de la superficie terrestre perteneciente a una nación, región, provincia, etc."

Subsuelo.-

Según DRAE: Parte profunda del terreno a la cual no llegan los aprovechamientos superficiales de los predios y en donde las leyes consideran estatuido el dominio público, facultando a la autoridad gubernativa para otorgar concesiones mineras.

Uso del suelo.-

En planificación territorial, es un término empleado cuando se califica¹²⁶ el suelo y refiere a la asignación de los determinados usos que se asignan a las unidades de suelo (parcelas). Se trata de la forma de organizar y controlar las actividades en el territorio.

Competencia.-

Según el Diccionario Jurídico Elemental de Guillermo Cabanellas, competencia es la "capacidad para conocer una autoridad sobre una materia o asunto".

Según -DRAE-, en su reforma de enmienda, señala que es el "Ámbito legal de atribuciones que corresponden a una entidad pública o a una autoridad judicial o administrativa".

Confort.-

Según DRAE, expresa: "Aquello que produce bienestar y comodidades".

Tangible.-

Según -DRAE-: Que se puede percibir de manera precisa.

¹²⁶Entre el producto resultado de la planificación territorial, cuando se sugieren un modelo de territorio, en principio se establece una estructura general que clasifica el suelo, luego se determinan sus usos.

INVESTING OF CORPS

UNIVERSIDAD DE CUENCA

Topografía.-

Según -DRAE-: 1. f. Arte de describir y delinear detalladamente la superficie de un terreno. 2. f. Conjunto de particularidades que presenta un terreno en su configuración superficial.

Vulcanismo.-

Según -DRAE-: 1. m. Geol. Sistema que atribuye la formación del globo a la acción del fuego interior.

Resilencia.-

Según -DRAE-: 1. f. Psicol. Capacidad humana de asumir con flexibilidad situaciones límite y sobreponerse a ellas.

APÉNDICES

Cálculos desarrollados para estimar la demanda de energía –alimento- de la población.

Proyecciones Poblacionales Totales Provinciales 2010 - 2050

Fuente: INEC, en base al Censo de población y

Vivienda 2010

								y Desa		
Provincias	Edad	2010	2015	2020	2025	2030	2035	2040	2045	2050
	Total	739.52 0	810.41 2	881.39 4	26	1.020.3 76	1.087.2 34	1.151.062	1.210.7 59	1.265.3 95
	< 1 año	15.918	15.976	15.800	15.74 2 63.05	15.794	15.870	15.904	15.924	15.928
	1 - 4	62.845	64.319	63.446	7 79.48	63.074	63.371	63.616	63.719	63.761
	5 - 9	77.495	78.951	80.520	1 80.83	79.041	79.118	79.497	79.784	79.907
	10 - 14	76.450	77.787	79.255	8 80.57	79.801	79.359	79.434	79.813	80.100
	15 - 19	74.710	77.696	79.071	9 81.47	82.226	81.176	80.726	80.797	81.176
	20 - 24	69.871	76.926	80.034	7 81.72	83.042	84.775	83.688	83.225	83.289
	25 - 29		71.245		1 79.26	83.216	84.826	86.621		85.033
AZUAY	30 - 34		61.572		0 72.83	82.542		85.707		86.405
	35 - 39		51.661		63.35	80.398	83.755	85.313		88.880
	40 - 44		43.878		52.95		81.805	85.242		88.565
	45 - 49 50 - 54		38.501 34.039		6 44.31 7	53.007	74.868 64.088	82.721 75.005		87.854 86.412
	55 - 59		29.289		38.16	43.917	52.530	63.520		82.170
	60 - 64		24.462		32.94	37.337		51.405		72.716
	65 - 69		20.223		27.42 0	31.680	35.941			59.824
	70 - 74		16.192		21.65 4	25.493		33.564		46.247
	75 - 79	10.809	12.065	13.953	16.17 7	18.928			29.575	34.091
	80 y Más	15.941	15.630	17.043	19.54 5	22.810	26.806	31.722	37.253	43.037
				281.39	304.0	326.21	347.69		387.74	405.78
	Total	4	0	6	53	2	7	368.287	4	6
CAÑAR	< 1 año	5.579	5.582	5.551	5.517 22.87	5.480	5.425	5.361	5.302	5.237
	1 - 4	22.411	23.019	23.032	5	22.746	22.572	22.331	22.084	21.842

	1	ī								
	5 - 9	27.483	28.768	29.485	29.46 9 29.44	29.267	29.113	28.904	28.600	28.294
	10 - 14	26.643	27.448	28.736	8 28.37	29.434	29.268	29.126	28.917	28.613
	15 - 19	24.681	26.291	27.102	9 26.61	29.046	29.035	28.894	28.765	28.560
	20 - 24	20.934	24.212	25.791	6 25.63	27.876	28.492	28.482	28.349	28.226
	25 - 29	16.834	20.769	24.049	8 24.38	26.461	27.722	28.321	28.312	28.182
	30 - 34	13.850	17.013	21.022	0 21.42	26.026	26.837	28.117	28.770	28.768
	35 - 39	12.102	14.077	17.315	5 17.50	24.898	26.601	27.400	28.715	29.450
	40 - 44	11.036	12.207	14.217	8 14.21	21.693	25.265	27.023	27.816	29.156
	45 - 49	10.047	10.984	12.179	8 12.04	17.538	21.769	25.398	27.194	27.986
	50 - 54	8.935	9.881	10.830	1 10.63	14.081	17.409	21.642	25.284	27.090
	55 - 59	7.914	8.716	9.672	1	11.846	13.878	17.169	21.340	24.943
	60 - 64	7.093	7.595	8.405	9.360	10.313	11.525	13.513	16.717	20.776
	65 - 69	6.194	6.672	7.181	7.982	8.916	9.842	11.018	12.934	16.001
	70 - 74	5.015	5.660	6.114	6.613	7.368	8.250	9.122	10.223	12.005
	75 - 79 80 y	3.772	4.282	4.862	5.278	5.734	6.416	7.210	7.988	8.962
	Más	5.291	5.274	5.853	6.675	7.489	8.278	9.256	10.434	11.695
	Total	153.16 3	175.07 4	196.53 5	217.1 73	236.81 7	255.65 3	273.570	290.31 8	305.49 5
	< 1 año	4.960	4.936	4.842	4 705	4.500	4.005			3.947
				7.072	4.705 19 17	4.532	4.385	4.248	4.102	3.947
	1 - 4	19.581	19.866	19.619	19.17 1	18.539	4.385 17.904	4.248 17.342	4.102 16.785	16.192
	1 - 4		19.866 24.538		19.17 1 24.47 6					
		22.578		19.619	19.17 1 24.47	18.539	17.904	17.342	16.785	16.192
	5 - 9	22.578	24.538	19.619 24.799	19.17 1 24.47 6 24.52 7	18.539 23.893	17.904 23.094	17.342 22.325	16.785 21.648	16.192 20.950
Monova	5 - 9 10 - 14	22.578 19.496	24.538 22.308	19.619 24.799 24.241	19.17 1 24.47 6 24.52 7 23.52 7	18.539 23.893 24.215	17.904 23.094 23.643	17.342 22.325 22.874	16.785 21.648 22.126	16.192 20.950 21.454
MORONA SANTIAGO	5 - 9 10 - 14 15 - 19	22.578 19.496 16.198	24.538 22.308 18.918	19.619 24.799 24.241 21.653	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4	18.539 23.893 24.215 23.869	17.904 23.094 23.643 23.597	17.342 22.325 22.874 23.046	16.785 21.648 22.126 22.302	16.192 20.950 21.454 21.577
	5 - 9 10 - 14 15 - 19 20 - 24	22.578 19.496 16.198 13.163	24.538 22.308 18.918 15.628	19.619 24.799 24.241 21.653 18.258	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4 18.22 4	18.539 23.893 24.215 23.869 22.717	17.904 23.094 23.643 23.597 23.142	17.342 22.325 22.874 23.046 22.905	16.785 21.648 22.126 22.302 22.367	16.192 20.950 21.454 21.577 21.656
	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29	22.578 19.496 16.198 13.163 10.731 8.860 7.505	24.538 22.308 18.918 15.628 13.100 10.980 9.038	19.619 24.799 24.241 21.653 18.258 15.569 13.406 11.230	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4 18.22 4 15.95 0	18.539 23.893 24.215 23.869 22.717 20.868	17.904 23.094 23.643 23.597 23.142 22.694	17.342 22.325 22.874 23.046 22.905 23.144	16.785 21.648 22.126 22.302 22.367 22.897 23.719 23.940	16.192 20.950 21.454 21.577 21.656 22.357 23.432 24.284
	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34	22.578 19.496 16.198 13.163 10.731 8.860	24.538 22.308 18.918 15.628 13.100 10.980	19.619 24.799 24.241 21.653 18.258 15.569 13.406	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4 18.22 4 15.95 0 13.72 5	18.539 23.893 24.215 23.869 22.717 20.868 18.687	17.904 23.094 23.643 23.597 23.142 22.694 21.415	17.342 22.325 22.874 23.046 22.905 23.144 23.318	16.785 21.648 22.126 22.302 22.367 22.897 23.719	16.192 20.950 21.454 21.577 21.656 22.357 23.432
	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39	22.578 19.496 16.198 13.163 10.731 8.860 7.505	24.538 22.308 18.918 15.628 13.100 10.980 9.038	19.619 24.799 24.241 21.653 18.258 15.569 13.406 11.230	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4 18.22 4 15.95 0 13.72 5 11.41	18.539 23.893 24.215 23.869 22.717 20.868 18.687 16.336	17.904 23.094 23.643 23.597 23.142 22.694 21.415 19.162	17.342 22.325 22.874 23.046 22.905 23.144 23.318 21.947	16.785 21.648 22.126 22.302 22.367 22.897 23.719 23.940	16.192 20.950 21.454 21.577 21.656 22.357 23.432 24.284
	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44	22.578 19.496 16.198 13.163 10.731 8.860 7.505 6.528	24.538 22.308 18.918 15.628 13.100 10.980 9.038 7.627	19.619 24.799 24.241 21.653 18.258 15.569 13.406 11.230 9.194	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4 18.22 4 15.95 0 13.72 5 11.41	18.539 23.893 24.215 23.869 22.717 20.868 18.687 16.336 13.961	17.904 23.094 23.643 23.597 23.142 22.694 21.415 19.162 16.659	17.342 22.325 22.874 23.046 22.905 23.144 23.318 21.947 19.530	16.785 21.648 22.126 22.302 22.367 22.897 23.719 23.940 22.382	16.192 20.950 21.454 21.577 21.656 22.357 23.432 24.284 24.451
	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49	22.578 19.496 16.198 13.163 10.731 8.860 7.505 6.528 5.593	24.538 22.308 18.918 15.628 13.100 10.980 9.038 7.627 6.620	19.619 24.799 24.241 21.653 18.258 15.569 13.406 11.230 9.194 7.739	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4 18.22 4 15.95 0 13.72 5 11.41 4 9.323	18.539 23.893 24.215 23.869 22.717 20.868 18.687 16.336 13.961 11.586	17.904 23.094 23.643 23.597 23.142 22.694 21.415 19.162 16.659 14.180	17.342 22.325 22.874 23.046 22.905 23.144 23.318 21.947 19.530 16.951	16.785 21.648 22.126 22.302 22.367 22.897 23.719 23.940 22.382 19.890	16.192 20.950 21.454 21.577 21.656 22.357 23.432 24.284 24.451 22.789
	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54	22.578 19.496 16.198 13.163 10.731 8.860 7.505 6.528 5.593 4.585	24.538 22.308 18.918 15.628 13.100 10.980 9.038 7.627 6.620 5.631	19.619 24.799 24.241 21.653 18.258 15.569 13.406 11.230 9.194 7.739 6.663	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4 18.22 4 15.95 0 13.72 5 11.41 4 9.323 7.793	18.539 23.893 24.215 23.869 22.717 20.868 18.687 16.336 13.961 11.586 9.396	17.904 23.094 23.643 23.597 23.142 22.694 21.415 19.162 16.659 14.180 11.696	17.342 22.325 22.874 23.046 22.905 23.144 23.318 21.947 19.530 16.951 14.333	16.785 21.648 22.126 22.302 22.367 22.897 23.719 23.940 22.382 19.890 17.152	16.192 20.950 21.454 21.577 21.656 22.357 23.432 24.284 24.451 22.789 20.127
	5 - 9 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 35 - 39 40 - 44 45 - 49 50 - 54 55 - 59	22.578 19.496 16.198 13.163 10.731 8.860 7.505 6.528 5.593 4.585 3.687	24.538 22.308 18.918 15.628 13.100 10.980 9.038 7.627 6.620 5.631 4.542	19.619 24.799 24.241 21.653 18.258 15.569 13.406 11.230 9.194 7.739 6.663 5.600	19.17 1 24.47 6 24.52 7 23.52 7 20.90 4 18.22 4 15.95 0 13.72 5 11.41 4 9.323 7.793 6.624	18.539 23.893 24.215 23.869 22.717 20.868 18.687 16.336 13.961 11.586 9.396 7.750	17.904 23.094 23.643 23.597 23.142 22.694 21.415 19.162 16.659 14.180 11.696 9.357	17.342 22.325 22.874 23.046 22.905 23.144 23.318 21.947 19.530 16.951 14.333 11.665	16.785 21.648 22.126 22.302 22.367 22.897 23.719 23.940 22.382 19.890 17.152 14.313	16.192 20.950 21.454 21.577 21.656 22.357 23.432 24.284 24.451 22.789 20.127 17.138

75 - 79	1.112	1.432	1.800	2.131	2.539	3.177	3.993	4.792	5.706
80 y									
Más	1.419	1.376	1.658	2.124	2.655	3.275	4.125	5.279	6.630

Proyecciones Poblacionales Totales Provinciales 2010 - 2050

	POBL 2015	ACIO	N MASCUI	LINA						
Edad	AZ UA Y	CA ÑA R	MORO NA SANTIA GO	TOTAL POBLA CIÓN MASCU LINA ZONA 6	FAO REQUERI MIENTO DIARIO DE ENERGÍA (Promedi o del rango de edad) (KJ/d)	FAO REQUERI MIENTO DIARIO DE ENERGÍA (Promedio del rango de edad) (Kcal/d)	ENSANU I REQUERI MIENTO DIARIO DE ENERGÍA (Promedio del rango de edad) (Kcal/d)	FAO TOTAL REQUERI MIENTO ENERGÍA (KJ/Kg/d)	FAO TOTAL REQUERI MIENTO ENERGÍA (Kcal/d)	ENSANU T TOTAL REQUERI MIENTO ENERGÍA (Kcal/d)
< 1	7.98	2.85						36.337.15		
año	8	8	2.528	13.374	2.717	649	596	8	8.685.299	7.970.904
1 -	32.2	11.7	2.020			0.0	000	265.669.0	63.518.36	64.588.52
4	32	91	10.162	54.185	4903	1172,25	1.192	55	6	0
5 -	40.2	14.6				,		481.294.0	115.023.5	108.625.8
9	17	47	12.480	67.344	7.147	1708	1.613	99	52	72
10 -	39.4	13.9						587.914.6	140.841.0	129.082.7
14	30	02	11.274	64.606	9.100	2180	1.998	00	80	88
15 -	39.2	13.1						831.007.8	161.866.8	134.775.1
19	46	83	9.708	62.137	13.374	2605	2.169	11	85	53
20 -	38.5	11.8						621.764.2	149.575.3	128.224.2
24	82	78	8.197	58.657	10.600	2550	2.186	00	50	02
25 -	35.0	9.81						547.956.4	131.819.7	113.003.0
29	42	0	6.842	51.694	10.600	2550	2.186	00	00	84
30 -	29.1	7.61						432.571.8	103.902.0	92.706.07
34	93	5	5.601	42.409	10.200	2.450	2.186	00	50	4
35 -	23.4	6.00	4 400	00.000	40.000	0.450	0.440	346.075.8	83.126.05	72.913.42
39	25	5	4.499	33.929	10.200	2.450	2.149	00	0 700 00	1
40 - 44	19.1	5.09	2 772	20.060	10 200	2.450	2 1 1 0	286.293.6	68.766.60	60.318.13
44 45 -	99 16.5	6 4.60	3.773	28.068	10.200	2.450	2.149	00 249.543.0	0 59.939.25	2 52.575.28
49	33	4.00	3.326	24.465	10.200	2.450	2.149	00	09.939.23	52.575.26
50 -	14.5	4.18	0.020	24.400	10.200	2.400	2.143	220.983.0	53.079.25	43.200.01
54	96	9	2.880	21.665	10.200	2.450	1.994	00	0	0
55 -	12.6	3.74			. 5.200	00		191.005.2	45.878.70	37.339.64
59	31	8	2.347	18.726	10.200	2.450	1.994	00	0	4
60 -	10.5	3.29						133.603.0	32.221.90	31.341.69
64	86	7	1.835	15.718	8.500	2.050	1994	00	0	2
65 -	8.69	2.91						110.772.0	26.715.60	25.985.80
69	7	4	1.421	13.032	8.500	2.050	1994	00	0	8
70 -	6.81	2.46						87.915.50	21.203.15	20.623.94
74	6	4	1.063	10.343	8.500	2.050	1994	0	0	2
75 -	4.97			_				63.979.50	15.430.35	15.008.83
79	1	7	709	7.527	8.500	2.050	1994	0	0	8
80 y	6.51	2.24	74.4	0.474	0.500	0.050	4004	80.529.00	19.421.70	18.891.15
Más	4	6	714	9.474	8.500	2.050	1994	0	0	6
Total	385. 898	122. 096	89.359	597.353						

PROMEDIO : 9.008 2.131 1.918

Fuente: INEC, en base al Censo de población y Vivienda 2010

POBL	.ACION	FEMENII	NA 2015						
AZU AY	CAÑ AR	MORO NA SANTI AGO	TOTAL POBLA CIÓN FEMENI NA ZONA 6	FAO REQUERIM IENTO DIARIO DE ENERGÍA (Promedio del rango de edad) (KJ/d)	FAO REQUERIM IENTO DIARIO DE ENERGÍA (Promedio del rango de edad) (Kcal/d)	ENSANUT REQUERIM IENTO DIARIO DE ENERGÍA (Promedio del rango de edad) (Kcal/d)	FAO TOTAL REQUERIM IENTO ENERGÍA (KJ/Kg/d)	FAO TOTAL REQUERIM IENTO ENERGÍA (Kcal/d)	ENSANUT TOTAL REQUERIM IENTO ENERGÍA (Kcal/d)
7.98	2.72								
8 32.0	4 11.2	2.408	13.120	2.512	600	596	32.953.067 238.956.63	7.877.467	7.819.520
87 38.7	28 14.1	9.704	53.019	4.507	1.077	1.192	3 427.140.52	57.114.718 102.095.16	63.198.648 104.704.66
34	21	12.058	64.913	6.580	1.573	1.613	3	6	9
38.3 57	13.5 46	11.034	62.937	8.000	1.910	1.913	503.496.00	120.209.67 0	120.398.48 1
38.4	13.1						573.261.00	137.299.21	116.188.41
50 38.3	08 12.3	9.210	60.768	9.434	2.259	1.912	5 511.359.20	9 122.028.90	6 109.942.22
44	34	7.431	58.109	8.800	2.100	1.892	0	0	8
36.2 03	10.9 59	6.258	53.420	8.800	2.100	1.892	470.096.00 0	112.182.00 0	101.070.64 0
32.3	9.39	0.236	33.420	0.000	2.100	1.092	391.394.80	U	U
79	8	5.379	47.156	8.300	2.000	1.814	0	94.312.000	85.540.984
28.2 36	8.07 2	4.539	40.847	8.300	2.000	1.814	339.030.10	81.694.000	74.096.458
24.6	7.11						295.845.20		
79 21.9	1 6.37	3.854	35.644	8.300	2.000	1.814	0 262.612.00	71.288.000	64.658.216
68	8	3.294	31.640	8.300	2.000	1.814	0	63.280.000	57.394.960
19.4 43	5.69 2	2.751	27.886	8.300	2.000	1.650	231.453.80	55.772.000	46.011.900
16.6	4.96	2.701	27.000	0.500	2.000	1.000	197.714.30	55.772.000	40.011.500
58 13.8	8	2.195	23.821	8.300	2.000	1.650	0	47.642.000	39.304.650
76	4.29 8	1.733	19.907	7.600	1.800	1.650	151.293.20 0	35.832.600	32.846.550
11.5	3.75	4.005	40.070	7.000	4 000	4.050	126.760.40	00 000 000	07.500.050
26 9.37	8 3.19	1.395	16.679	7.600	1.800	1.650	0 103.808.40	30.022.200	27.520.350
6	6	1.087	13.659	7.600	1.800	1.650	0	24.586.200	22.537.350
7.09 4	2.43 5	723	10.252	7.600	1.800	1.650	77.915.200	18.453.600	16.915.800
9.11	3.02	725	10.232	7.000	1.000	1.050	77.913.200	10.433.000	10.913.000
6	8	662	12.806	7.600	1.800	1.650	97.325.600	23.050.800	21.129.900
424. 514	136. 354	85.715							
514	334	00.710							
			PROMEDI O:	7.580	1.812	1.656			

PROMEDI O: 7.580 1.812 1.656

	POBL 2030	ACION	N MASCI	ULINA						
Edad	AZU AY	CA ÑA R	MOR ONA SANTI AGO	TOTAL POBL ACIÓN MASC ULINA ZONA 6	REQUERI MIENTO DIARIO DE ENERGÍA (KJ/Kg/d)	REQUERI MIENTO DIARIO DE ENERGÍA (Kcal/d)	TOTAL REQUERI MIENTO ENERGÍA (KJ/Kg/d)	TOTAL REQUERI MIENTO ENERGÍA (Kcal/d)	FAO TOTAL REQUERI MIENTO ENERGÍA (Kcal/d)	ENSANUT TOTAL REQUERI MIENTO ENERGÍA (Kcal/d)
	7 00	2.00						25 206 20		
< 1 año	7.89 7	2.80	2.321	12.024	2.717	649	596	35.386.20	0 450 003	7.762.304
1 -	31.5	11.6	2.321	13.024	2.717	049	590	8 258.294.9	8.458.003 61.755.30	62.795.75
4	32	61	9.488	52.681	4903	1172,25	1.192	43	01.733.30	02.795.75
5 -	39.4	14.9	12.22	32.001	4903	1172,23	1.132	476.791.6	113.947.5	107.609.6
9	93	97	4	66.714	7.147	1708	1.613	15	12	82
10 -	39.8	15.0	12.41	30.7 14	7.177	1700	1.010	612.430.0	146.714.0	134.465.4
14	30	58	2	67.300	9.100	2180	1.998	00	00	00
15 -	41.1	14.8	12.36					913.564.2	177.947.5	148.164.3
19	09	37	4	68.310	13.374	2605	2.169	78	50	90
20 -	42.3	14.1	11.96					725.962.2	174.641.8	149.712.5
24	66	57	4	68.487	10.600	2550	2.186	00	50	82
25 -	42.5	13.4	11.08					711.821.8	171.240.1	146.796.4
29	91	80	2	67.153	10.600	2550	2.186	00	50	58
30 -	42.4	13.3	10.09					671.282.4	161.239.4	143.865.0
34	10	06	6	65.812	10.200	2.450	2.186	00	00	32
35 -	41.1	12.6						640.203.0	153.774.2	134.881.9
39	80	27	8.958	62.765	10.200	2.450	2.149	00	50	85
40 -	37.2	10.6						565.885.8	135.923.5	119.224.3
44	06	54	7.619	55.479	10.200	2.450	2.149	00	50	71
45 -	30.9	8.14						461.815.2	110.926.2	97.298.12
49	11	4	6.221	45.276	10.200	2.450	2.149	00	00	4
50 -	24.3	6.17	4.054	05.450	40.000	0.450	4 00 4	361.651.2	86.867.20	70.699.26
54	27	8	4.951	35.456	10.200	2.450	1.994	00	0	4
55 -	19.2	5.00	4 0 4 7	20.260	10 200	2.450	1.004	288.343.8	69.259.05	56.368.38
59 60 -	15 15.7	7 4.27	4.047	28.269	10.200	2.450	1.994	00 198.509.0	0 47.875.70	6 46.567.87
64	39	4.27 5	3.340	23 354	9 500	2 050	1004	196.509.0	47.875.70	40.307.87
65 -	13.0	3.63	3.340	23.354	8.500	2.050	1994	163.914.0	39.532.20	38.452.29
69 69	41	3.03 6	2.607	19.284	8.500	2.050	1994	00	39.332.20	30.432.29
70 -	10.2	2.96	2.001	13.204	0.000	2.000	1004	128.180.0	30.914.00	30.069.52
74	76	5	1.839	15.080	8.500	2.050	1994	00	0	0
75 -	7.39		1.500	10.000	0.000	2.000	1004	92.412.00	22.287.60	21.678.76
79	5	7	1.210	10.872	8.500	2.050	1994	0	0	8
80 y	8.21				2.2.2			104.159.0	25.120.70	24.434.47
Más	2	0	1.212	12.254	8.500	2.050	1994	00	0	6
	494.	158.	123.9							
Total	730	885	55							

PROMEDIO 9.008 2.131 1.918

AZU CAÑ NA NA NA NA AR NA AR AR	POBL	.ACION	FEMENII	NA 2030						
7		-	NA SANTI	POBLA CIÓN FEMENI NA	IENTO DIARIO DE ENERGÍA	IENTO DIARIO DE ENERGÍA	REQUERIM IENTO ENERGÍA	REQUERIM IENTO ENERGÍA	TOTAL REQUERIM IENTO ENERGÍA	TOTAL REQUERIM IENTO ENERGÍA
31.5	7.89	2.67								
42 85 9.051 51.678 4.507 1.077 1.192 6 55.670.126 61.600.176 39.5 14.2 430.917.55 102.997.95 105.630.53 48 70 11.669 65.487 6.580 1.573 1.613 7 4 1 39.9 14.3 1 529.200.00 126.346.50 126.544.95 1 71 76 11.803 66.150 8.000 1.910 1.913 0 0 0 0 0 0 126.544.95 1 1 17 09 11.505 66.831 9.434 2.259 1.912 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 3			2.211	12.782	2.512	600	596		7.674.526	7.618.072
39.5 14.2 48 70 11.669 65.487 6.580 1.573 1.613 7 4 1 39.9 14.3 71 76 11.803 66.150 8.000 1.910 1.913 0 0 0 0 41.1 14.2 40.6 13.7 76 19 10.753 65.148 8.800 2.100 1.892 0 0 0 6 40.6 12.9 40.6 12.7 32 20 8.591 61.443 8.300 2.000 1.814 0 0 0 2 39.2 12.2 39.2 12.2 39.3 6.342 54.245 8.300 2.000 1.814 0 0 0 98.400.430 33.0 9.39 89 4 5.365 47.848 8.300 2.000 1.814 0 0 95.696.000 86.796.272 28.6 7.90 89 3 3.4445 41.028 8.300 2.000 1.814 0 0 95.696.000 86.796.272 28.7 90 3.703 35.244 8.300 2.000 1.814 0 0 95.696.000 86.796.272 28.7 90 3.703 35.244 8.300 2.000 1.814 0 0 95.696.000 86.796.272 28.7 90 3.7 35.244 8.300 2.000 1.814 0 0 95.696.000 86.796.272 28.7 90 3.7 35.244 8.300 2.000 1.814 0 0 0 95.696.000 86.796.272 28.7 90 3.7 35.244 8.300 2.000 1.814 0 0 0 95.696.000 86.796.272 28.7 90 3.7 35.244 8.300 2.000 1.814 0 0 0 95.696.000 86.796.272 28.7 90 3.7 35.244 8.300 2.000 1.814 0 0 0 95.696.000 86.796.272 28.7 90 3.7 35.244 8.300 2.000 1.814 0 0 0 95.696.000 86.796.272 28.7 90 3.7 35.244 8.300 2.000 1.814 0 0 0 95.696.000 86.796.272 39.5 3.7 3 35.244 8.300 2.000 1.850 0 70.488.000 58.152.600 29.5 3.7 3 35.244 8.300 2.000 1.650 0 82.056.000 67.696.200 21.5 6.03 98 8 3.1 0 30.736 7.600 1.800 1.650 0 38.694.600 35.470.050 15.2 4.40 33 7 1.329 16.329 7.600 1.800 1.650 0 38.694.600 35.470.050 15.2 4.40 33 7 1.329 16.329 7.600 1.800 1.650 0 39.932.200 26.942.850 14.5 4.65 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2			0.054	F4 070	4.507	4.077	4.400		55.070.400	04 000 470
48 70 11.669 65.487 6.580 1.573 1.613 7 4 1 39.9 14.3 529.200.00 126.346.50 126.544.95 71 76 11.803 66.150 8.000 1.910 1.913 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			9.051	51.678	4.507	1.077	1.192			
39.9 14.3			11 660	65 197	6 590	1 572	1 612			
71 76 11.803 66.150 8.000 1.910 1.913 0 0 0 0 41.1 14.2			11.009	03.407	0.560	1.575	1.013			
41.1 14.2			11.803	66.150	8.000	1.910	1.913			
17 09 11.505 66.831 9.434 2.259 1.912 2 1 2 40.6 13.7 76 19 10.753 65.148 8.800 2.100 1.892 0 0 0 6 40.6 12.9 557.849.60 133.123.20 119.937.66 25 81 9.786 63.392 8.800 2.100 1.892 0 0 0 4 40.1 12.7 32 20 8.591 61.443 8.300 2.000 1.814 0 0 0 2 39.2 12.2 488.596.10 117.734.00 106.784.73 18 71 7.378 58.867 8.300 2.000 1.814 0 0 0 8 36.8 11.0 450.233.50 108.490.00 64 39 6.342 54.245 8.300 2.000 1.814 0 95.696.00 86.796.272 886 7.90 39.73 89 4 5.365 47.848 8.300 2.000 1.814 0 95.696.00 86.796.272 28.6 7.90 340.532.40 80 3 4.445 41.028 8.300 2.000 1.650 0 95.696.000 67.696.200 24.7 6.83 29.2 52.520 02 9 3.703 35.244 8.300 2.000 1.650 0 70.488.000 58.152.600 21.5 6.03 293.593.60 98 8 3.100 30.736 7.600 1.800 1.650 0 70.488.00 50.714.400 18.6 5.28 39 0 2.511 26.430 7.600 1.800 1.650 0 38.694.600 35.470.050 15.2 4.40 16.52 0 38.694.600 35.470.050 15.3 4.40 16.52 0 38.694.600 35.470.050 15.5 4.40 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 15.5 4.40 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 15.5 4.40 16.53 0 0 39.932.200 26.942.850 14.5 4.65 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2			11.000	00.100	0.000	1.010	1.010	_	_	
76 19 10.753 65.148 8.800 2.100 1.892 0 0 6 40.6 12.9 557.849.60 133.123.20 119.937.66 25 81 9.786 63.392 8.800 2.100 1.892 0 0 4 40.1 12.7 509.976.90 122.886.00 111.457.60 0 2 39.2 12.2 488.596.10 117.734.00 106.784.73 18 71 7.378 58.867 8.300 2.000 1.814 0 0 0 8 36.8 11.0 450.233.50 108.490.00 0 0 8 36.810.0 0 0 98.400.430 397.138.40 0 0 98.400.430 397.138.40 0 98.696.000 86.796.272 340.532.40 340.532.40 80.30 34.445 41.028 8.300 2.000 1.814 0 95.696.000 86.796.272 340.532.40 80.30 340.532.40 340.532.40 80.30 2.000 1.650 0 82.056.000 67.696.200 225.525.20 0 292.			11.505	66.831	9.434	2.259	1.912			
40.6 12.9	40.6	13.7						573.302.40	136.810.80	123.260.01
25 81 9.786 63.392 8.800 2.100 1.892 0 0 4 40.1 12.7 509.976.90 122.886.00 111.457.60 32 20 8.591 61.443 8.300 2.000 1.814 0 0 2 39.2 12.2 18 71 7.378 58.867 8.300 2.000 1.814 0 0 0 8 36.8 11.0 450.233.50 108.490.00 6 450.233.50 108.490.00 6 8 64 39 6.342 54.245 8.300 2.000 1.814 0 0 98.400.430 33.0 9.39 39 4 5.365 47.848 8.300 2.000 1.814 0 95.696.000 86.796.272 28.6 7.90 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.40 340.532.50 340.532.50 340.532.50 340.532.50 <td< td=""><td>76</td><td>19</td><td>10.753</td><td>65.148</td><td>8.800</td><td>2.100</td><td>1.892</td><td>0</td><td>0</td><td>6</td></td<>	76	19	10.753	65.148	8.800	2.100	1.892	0	0	6
40.1 12.7 509.976.90 122.886.00 111.457.60 32 20 8.591 61.443 8.300 2.000 1.814 0 0 2 39.2 12.2 488.596.10 117.734.00 106.784.73 18 71 7.378 58.867 8.300 2.000 1.814 0 0 0 8 36.8 11.0 450.233.50 108.490.00 0 8 450.233.50 108.490.00 0 98.400.430 33.0 9.39 39.7138.40 99.8400.430 397.138.40 0 95.696.000 86.796.272 86.790 340.532.40 0 95.696.000 86.796.272 86.790 340.532.40 0 92.525.20 0 82.056.000 67.696.200 24.7 6.83 292.525.20 0 70.488.000 58.152.600 292.525.20 0 70.488.000 58.152.600 233.593.60 0 70.488.000 58.152.600 233.593.60 0 70.488.000 58.152.600 200.868.00 39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000<	40.6	12.9						557.849.60	133.123.20	119.937.66
32 20 8.591 61.443 8.300 2.000 1.814 0 0 2 2 488.596.10 117.734.00 106.784.73 18 71 7.378 58.867 8.300 2.000 1.814 0 0 8 8 36.8 11.0 450.233.50 108.490.00 64 39 6.342 54.245 8.300 2.000 1.814 0 0 98.400.430 33.0 9.39 397.138.40 99.667.272 86.6 7.90 340.532.40 8.300 2.000 1.814 0 95.696.000 67.696.200 24.7 6.83 292.525.20 02 9 3.703 35.244 8.300 2.000 1.650 0 82.056.000 67.696.200 21.5 6.03 98 8 3.100 30.736 7.600 1.800 1.650 0 70.488.000 50.714.400 18.6 5.28 39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000 43.609.500 15.2 4.40 163.377.20 163.377.20 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 124.100.40 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2			9.786	63.392	8.800	2.100	1.892	0	0	4
39.2 12.2										
18 71 7.378 58.867 8.300 2.000 1.814 0 0 0 8 36.8 11.0 450.233.50 108.490.00 6 450.233.50 108.490.00 6 64 39 6.342 54.245 8.300 2.000 1.814 0 0 98.400.430 33.0 9.39 89 4 5.365 47.848 8.300 2.000 1.814 0 95.696.000 86.796.272 28.6 7.90 340.532.40 340.532.40 86.796.272 340.532.40 86.796.200 67.696.200 24.7 6.83 292.525.20 0 82.056.000 67.696.200 67.696.200 24.7 6.83 292.525.20 0 70.488.000 58.152.600 233.593.60 233.593.60 55.324.800 50.714.400 18.6 5.28 200.868.00 50.714.400 18.6 5.28 200.868.00 47.574.000 43.609.500 15.2 4.40 163.377.20 47.574.000 43.609.500 124.100.40 33.77.20 124.100.40 33.77 1.329 16.329 <			8.591	61.443	8.300	2.000	1.814	_	_	
36.8 11.0			7 070	E0 007	0.000	2.000	4.044			
64 39 6.342 54.245 8.300 2.000 1.814 0 0 98.400.430 33.0 9.39 89 4 5.365 47.848 8.300 2.000 1.814 0 95.696.000 86.796.272 28.6 7.90 340.532.40 80 3 4.445 41.028 8.300 2.000 1.650 0 82.056.000 67.696.200 24.7 6.83 292.525.20 02 9 3.703 35.244 8.300 2.000 1.650 0 70.488.000 58.152.600 21.5 6.03 233.593.60 98 8 3.100 30.736 7.600 1.800 1.650 0 55.324.800 50.714.400 18.6 5.28 200.868.00 39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000 43.609.500 15.2 4.40 163.377.20 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 124.100.40 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000			7.378	58.867	8.300	2.000	1.814	_		8
33.0 9.39 89			6 3/12	54 245	8 300	2 000	1 814			98 400 430
89 4 5.365 47.848 8.300 2.000 1.814 0 95.696.000 86.796.272 28.6 7.90 340.532.40 340.532.40 86.796.272 340.532.40 86.796.272 80 3 4.445 41.028 8.300 2.000 1.650 0 82.056.000 67.696.200 24.7 6.83 292.525.20 0 70.488.000 58.152.600 21.5 6.03 233.593.60 0 70.488.000 58.152.600 21.5 6.03 233.593.60 0 55.324.800 50.714.400 18.6 5.28 200.868.00 0 55.324.800 50.714.400 18.6 5.28 200.868.00 0 47.574.000 43.609.500 15.2 4.40 163.377.20 0 47.574.000 43.609.500 11.5 3.46 1.800 1.650 0 38.694.600 35.470.050 14.5 4.65 157.320.00 0 29.392.200 26.942.850 14.5 4.66 327 2 2 <t< td=""><td></td><td></td><td>0.542</td><td>34.243</td><td>0.500</td><td>2.000</td><td>1.014</td><td>_</td><td>O</td><td>30.400.430</td></t<>			0.542	34.243	0.500	2.000	1.014	_	O	30.400.430
28.6 7.90 80 3 4.445 41.028 8.300 2.000 1.650 0 82.056.000 67.696.200 24.7 6.83 02 9 3.703 35.244 8.300 2.000 1.650 0 70.488.000 58.152.600 21.5 6.03 98 8 3.100 30.736 7.600 1.800 1.650 0 55.324.800 50.714.400 18.6 5.28 39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000 43.609.500 15.2 4.40 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000			5.365	47.848	8.300	2.000	1.814		95.696.000	86.796.272
24.7 6.83 292.525.20 02 9 3.703 35.244 8.300 2.000 1.650 0 70.488.000 58.152.600 21.5 6.03 233.593.60 0 55.324.800 50.714.400 18.6 5.28 200.868.00 200.868.00 200.868.00 39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000 43.609.500 15.2 4.40 163.377.20 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 124.100.40 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 157.320.00 0 37.260.000 34.155.000 525 167 112.86 646 327 2 2 4.840 4.860		7.90								
02 9 3.703 35.244 8.300 2.000 1.650 0 70.488.000 58.152.600 21.5 6.03 233.593.60 233.593.60 0 55.324.800 50.714.400 18.6 5.28 200.868.00 200.868.00 200.868.00 0 47.574.000 43.609.500 15.2 4.40 1.800 1.650 0 47.574.000 43.609.500 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 157.320.00 37.260.000 34.155.000 525. 167. 112.86 646 327 2 2 4.040 4.050 4.050	80	3	4.445	41.028	8.300	2.000	1.650	0	82.056.000	67.696.200
21.5 6.03 98 8 3.100 30.736 7.600 1.800 1.650 0 55.324.800 50.714.400 18.6 5.28 39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000 43.609.500 15.2 4.40 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2	24.7	6.83						292.525.20		
98 8 3.100 30.736 7.600 1.800 1.650 0 55.324.800 50.714.400 18.6 5.28 200.868.00 39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000 43.609.500 15.2 4.40 163.377.20 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 124.100.40 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2	02	9	3.703	35.244	8.300	2.000	1.650	0	70.488.000	58.152.600
18.6 5.28 200.868.00 39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000 43.609.500 15.2 4.40 163.377.20 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 124.100.40 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2								233.593.60		
39 0 2.511 26.430 7.600 1.800 1.650 0 47.574.000 43.609.500 15.2 4.40 163.377.20 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 124.100.40 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2			3.100	30.736	7.600	1.800	1.650	_	55.324.800	50.714.400
15.2 4.40 17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2			0.511	26.420	7.600	1 000	1.650		47 F74 000	42 COO EOO
17 3 1.877 21.497 7.600 1.800 1.650 0 38.694.600 35.470.050 11.5 3.46 124.100.40 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2			2.511	26.430	7.600	1.800	1.650		47.574.000	43.609.500
11.5 3.46 33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2			1 277	21 407	7 600	1 800	1 650		38 694 600	35 470 050
33 7 1.329 16.329 7.600 1.800 1.650 0 29.392.200 26.942.850 14.5 4.65 157.320.00 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2		_	1.077	21.431	7.000	1.000	1.000	_	30.094.000	33.470.030
14.5 4.65 98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2			1.329	16.329	7.600	1.800	1.650		29.392.200	26.942.850
98 9 1.443 20.700 7.600 1.800 1.650 0 37.260.000 34.155.000 525. 167. 112.86 646 327 2										
646 327 2			1.443	20.700	7.600	1.800	1.650		37.260.000	34.155.000
646 327 2	525	167	112 86							
PROMEDI 7.500 4.040 4.050										
7 500 4 040 4 050	5-10	521	2							
7 500 4 040 4 050				PROMEDI			ı			
					7.580	1.812	1.656			

Energía eléctrica

FUENTE: Tabla 72 del reporte estadístico del CONELEC (2013): **CONSUMO**

ENERGÍA (MWh)

		2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
		19599	20673	21515	21933,	22882	23526,	23838,	25055,9	25772,	26700,
	Residencial	,5	,11	,97	6	,17	58	63	2	28	89
		4699,	4865,	5031,	5504,1	5844,	6223,2	6731,9			8472,2
	Comercial	49	82	87	4	69	1	2	7242,37	7923,6	1
EE Azoguos		1543,	1831,	2039,	2134,8	2180,		49499,	51081,2	51913,	51891,
EE Azogues	Industrial	19	66	94	6	8	37546	51	7	68	67
	Alumbrado	4379,	4514,	4937,	5443,0	5852,	6390,9	6203,0		7579,2	7862,9
	público	68	89	78	1	83	7	9	6315,22	6	2
		2048,	2115,	2125,	2264,0	2267,	2435,0	2359,3		2792,1	3414,5
	Otros	49	85	86	9	71	6	8	2609,49	8	1
		32270	34001	35651	37279,	39028	76121,	88632,	92304,2		98342,
		,35	,33	,42	7	,2	82	53	7	95981	2

		23769	24072	25470	25216	27843	28052	28989	299715,	31278	32588
	Residencial	5,69	7,55	2,32	9,02	6,24	1,18	4,1	4	5,68	9,02
		68026	75783	83552	87007,	96578	10028	10679	120674,	13043	13688
	Comercial	,04	,72	,13	08	,53	7,65	7,95	4	1,14	4,29
EE Centro Sur		94291		10124	11012	14366	22470	23788	263582,	27788	29051
EE Cellio Sui	Industrial	,76	94556	9,68	4,26	8,89	3,39	7,21	29	5,91	4,03
	Alumbrado	38893	40970	44180	45289,	49042	49622,	56416,		63298,	70092,
	público	,42	,88	,79	08	,02	31	38	62602,4	87	49
		19335	20960	22048	23738,	35259	27892,	30628,	33515,4	39916,	45353,
	Otros	,52	,06	,02	77	,16	68	75	6	39	41
		45824	47299	50573	51832	60298	68302	72162	780089,	82431	86873
		2,43	8,21	2,94	8,21	4,84	7,21	4,39	95	7,99	3,24

REPORTES HISTÓRICOS DE CONSUMO DE ENERGÍA ELECTRICA EN LA ZONA 6 DE PLANIFICACIÓN (MWh)

		2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
		25729	26140	27621	27410	30131	30404	31373	324771,	33855	35258
	Residencial	5,19	0,66	8,29	2,62	8,41	7,76	2,73	32	7,96	9,91
		72725	80649		92511,	10242	10651	11352	127916,	13835	14535
	Comercial	,53	,54	88584	22	3,22	0,86	9,87	77	4,74	6,5
7ana 6		95834	96387	10328	11225	14584	26224	28738	314663,	32979	34240
Zona 6	Industrial	,95	,66	9,62	9,12	9,69	9,39	6,72	56	9,59	5,7
	Alumbrado	43273	45485	49118	50732,	54894	56013,	62619,	68917,6	70878,	77955,
	público	,1	,77	,57	09	,85	28	47	2	13	41
		21384	23075	24173	26002,	37526	30327,	32988,	36124,9	42708,	48767,
	Otros	,01	,91	,88	86	,87	74	13	5	57	92
		49051	50700	54138	55560	64201	75914	81025		92029	96707
	TOTAL	3	0	4	8	3	9	7	872394	9	5
	TOTAL NACIONAL	86933 41,17	90443 77,66	95497 75,84	10063 952,53	11146 678,5	12740 798,89	13769 731,41	14.931. 124,52	15847 991,51	16742 937,76

			PRO	YECC	IÓN C	LIEN	TES T	OTAL	ES EI	N LA Z	ONA	6 DE F	LANIF	ICACI	ÓN				
	20	20	201	201	201	201	201	201	202	202	202	202	202	202	202	202	202	202	203
	12	13	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0
Crecimiento (%)	3, 14	3, 04	2,9 6	2,8 4	2,7 1	2,7 0	2,7 3	2,7 5	2,7 5	2,7 2	2,6 3	2,82	2,82	2,82	2,82	2,82	2,82	2,82	2,82
0.000 (70)	32	33	Ū	•	•	ŭ	Ü	Ū	ŭ	_	ŭ	381	392	403	414	426	438	450	463
EE Azogues	.6 03	.0 52	33. 495	33. 931	34. 361	34. 791	35. 225	35. 711	36. 198	36. 673	37. 122	67,1 5	41,7 3	46,5 7	82,5 0	50,4 3	51,2 3	85,8 4	55,2 1
	1,	1,	1,3	931	1,2	1,2	1,2	1,3	1,3	1,3	1,2	5	3	,	U	3	3	4	
Crecimiento (%)	44	38	4	1,3	7	5	5	8	7	1	2	1,32	1,32	1,32	1,32	1,32	1,32	1,32	1,32
	32 1.	33 0.	339	348	358	367	377	388	399	410	421	427	432	438	444	450	455	461	468
EE Centro Sur	68	76	.73	.81	.10	.81	.89	.30	.25	.31	.46	023,	656,	363,	145,	004,	940,	954,	048,
	2	2	9	5	3	6	8	0	3	4	4	49	32	45	86	55	52	79	39
	35 4.	36 3.	373	382	392	402	413	424	435	446	458								
TOTAL Zona 6	28	81	.23	.74	.46	.60	.12	.01	.45	.98	.58								
	5	4	4	6	4	7	3	1	1	7	6								
			,																
F	PROY 20	ECC 20	ON D 201	EMAN 201	IDA E 201	201	201	4 ELE 201	202	202	202	ONA 6 202	DE PL 202	.ANIFIC	202	N (MW 202	h) 202	202	203
AÑO	12	13	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0
	6,	4,	4,5	4,3	4,1	4,0	4,1	4,1	4,1	4,1	4,3								
Crecimiento (%)	07	61	3	4	6	9	1	4	5	5	5	4,43	4,43	4,43	4,43	4,43	4,43	4,43	4,43
	97	10 2.	106	110	115	119	124	129	134	139	145	151	158	165	172	180	188	196	205
EE Azogues	.0	00	.00	.00	.00	.00	.00	.00	.00	.00	.00	419,	123,	123,	434,	068,	040,	365,	059,
	00	0	0	0	0	0	0	0	0	0	0	55	30	85	33	47	60	67	31
Crecimiento (%)	5, 62	4, 3	4,2 1	4,0 5	3,9 4	3,9	3,9 3	3,9 8	4,0 2	4,0 3	4,2 9	4,21	4,21	4,21	4,21	4,21	4,21	4,21	4,21
	83	86	000	0.45	004	4.0	4.0			4.0	4.0	404	407	4.40	4.40	455	404	400	475
EE Centro Sur	0. 00	7. 00	906	945	.00	1.0 25.	1.0 68.	1.1 12.	1.1 59.	1.2 09.	1.2 62.	131 508	137 040	142 804	148 811	155 070	161 593	168 391	175 474
	0	0	0	0	0	000	000	000	000	000	000	4,31	1,54	5,61	4,40	9,90	8,40	0,65	2,05
Zona 6 cargas singulares					240	240	240	240	240	240	240								
Industria					.46	.46	.46	.46	.46	.46	.46	240.	240.	240.	240.	240.	240.	240.	240.
(minería)					2	2	2	2	2	2	2	462	462	462	462	462	462	462	462
Zona 6 introducción																			
vehículos																			
eléctricos Zona 6 cargas					249	249	249	249	249	249	249	249	249	249	249	249	249	249	249
singulares					35.	35.	35.	35.	53.	53.	53.	53.0	53.0	53.0	53.0	53.0	53.0	53.0	53.0
Tranvía					411 173	627 338	849 361	849 385	079 411	079 421	079 432	79 454	79 477	79 501	79 527	79 554	79 582	79 612	79 643
Zona 6 cocinas inducción				77.	.04	.40	.52	.71	.22	.78	.22	267,	435,	784,	375,	271,	539,	248,	473,
Zona 6				280	0	0	0	8	6	2	4	42	06	25	25	39	23	73	41
calentamiento												846,	889,	934,	982,	103	108	114	119
agua				805	805	805	805	805	805	805	805	06	20	55	22	2,31	4,96	0,29	8,44
Zona 6 AHORROS																			
(cambio				8.2	11.	11.	11.	11.	11.	11.	11.	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2
refrigeradoras) Zona 6				37	278	278	278	278	278	278	278	78	78	78	78	78	78	78	78
AHORROS																			
(cambio				4.8	6.5 00	6.5 00	6.5 00	6.5 00	6.5 00	6.5 00	6.5 00	6.50	6.50 0	6.50 0	6.50 0	6.50 0	6.50 0	6.50 0	6.50
luminarias) Zona 6				75	UU	UU	UU	UU	UU	UU	UU	U	U	U	U	U	U	U	0
AHORROS				c -								40-	4	4	40-	4~-	4	4	
(optimización industrias)				9.8 88	19. 775	19. 775	19. 775	19. 775	19. 775	19. 775	19. 775	19.7 75							
,																			
TOTAL Zona 6	92 7.	96 9.	1.0 12.	1.1 10.	1.5 11.	1.7 21.	1.7 93.	1.8 66.	1.9 61.	2.0 26.	2.0 96.	2.17 7.85	2.26 3.08	2.35 2.12	2.44 5.14	2.54 2.31	2.64 3.84	2.74 9.90	2.86 0.71
	00	00	000	085	414	990	332	530	268	824	266	4	6	5	3	9	0.04	2	00

0 0

Gas licuado de petróleo

En el estudio proyección electricidad 2013 2022 vol. 2 existen análisis: consumo estimado de 1,12 cilindros de 15kg por mes pág. 73 en 2017 estiman 80 % migración gas a inducción pág. 75 1 cilindro de 15 kg (45,67 GJ/kg de poder calórico del GLP con factor de conversión de 3,6 GJ/MWh) equivale a 190,29 kph. Se asume demanda promedio mensual por cocina de 100 kWh pág. 74

	A Ñ		201	201	20	20	20	20	20	20	20	20	20	20	20	20	202	203
	0	2010	5	6	17	18	19	20	21	22	23	24	25	26	20 27	28	9	203 0
					83	85	86	88	89	90	92	93	95	96	97	99	1.0	1.0
		739.	810	824	8.8	3.0	7.2	1.3	5.5	9.5	3.6	7.6	1.5	5.4	9.2	3.0	06.	20.
Población Azuay		520, 0	.41 2.0	.64 6.0	59, 0	70, 0	39, 0	94, 0	03, 0	85, 0	10, 0	00, 0	26, 0	01, 0	24, 0	05, 0	726 .0	376 ,0
1 Oblacion Azaay	3,	O	2,0	0,0	Ü	Ü	Ū	Ü	Ü	Ū	Ū	Ü	Ü	Ü	O	Ü	,0	,0
	7																	
Promedio personas por hogar	7				22	22	23	23	23	24	24	24	25	25	25	26		
		196.	214	218	2.5	6.2	0.0	3.7	7.5	1.2	4.9	8.7	2.3	6.0	25 9.7	3.3	267	270
		159,	.96	.73	09,	78,	36,	91,	34,	69,	89,	00,	94,	74,	41,	96,	.03	.65
Número de Hogares Azuay		2	3,4	9,0	0	5	9	5	0	2	4	3	2	5	1	6	6,1	6,8
% uso gas		0,9	0,9	0,9	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
		182.	200	203	44.	45.	46.	23.	23.	24.	24.	24.	25.	25.	25.	26.	26.	27.
Hogares que usan gas		624, 2	.13 0,9	.64 6.0	50 1,8	25 5,7	00 7,4	37 9,2	75 3,4	12 6.9	49 8,9	87 0,0	23 9,4	60 7,5	97 4,1	33 9,7	703 .6	065 ,7
riogares que usari gas			0,9	0,0	26	27	27	28	28	29	29	29	30	30	31	31	,0	,,
		235.	258	263	7.6	2.2	6.8	1.3	5.9	0.5	5.0	9.5	4.0	8.5	2.9	7.4	321	326
		814,	.45	.04	43,	36,	19,	96,	60,	07,	40,	55,	53,	28,	88,	12,	.82	.21
Población Cañar	2	0	0,0	8,0	0	0	0	0	0	0	0	0	0	0	0	0	0,0	2,0
	3, 8																	
Promedio personas por hogar	3																	
			67.	68.	69.	71.	72.	73.	74.	75.	77.	78.	79.	80.	81.	82.	84.	85.
Número de Hogares Cañar		61.5 70,2	480 ,4	680 ,9	88 0,7	07 9,9	27 6,5	47 1.5	66 3,2	85 0.4	03 3,9	21 2,8	38 7,2	55 5,6	72 0.1	87 5,2	026 ,1	172 ,8
_		0,9	0,9	0,9	0,7	0,2	0,3	0,1	0,1	0,4	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
% uso gas		0,9	61.	62.	13.	14.	14.	7.3	7.4	7.5	7.7	7.8	7.9	8.0	8.1	8.2	8.4	8.5
		56.4	879	980	97	21	45	47,	66.	85.	03.	21,	38,	55,	72,	87.	02,	17,
Hogares que usan gas		59,9	,5	,4	6,1	6,0	5,3	2	3	0	4	3	7	6	0	5	6	3
				.=-	18	18	19	19	20	20	20	21	21	22	22	22		
		153. 163.	175 .07	179 .40	3.7 28,	8.0 28,	2.3	6.5 35.	0.7 37,	4.9 00.	9.0 35,	3.1 26,	7.1 73,	1.1 76,	5.1 41.	9.0 72.	.96	236 .81
Población Morona Santiago		0	4,0	6.0	20,	20,	01,	0	0	00,	0	20,	0	0	0	0	4,0	7,0
	4,		, -	-,-													,-	,-
	3																	
Promedio personas por hogar	9		39.	40.	41.	42.	43.	44.	45.	46.	47.	48.	49.	50.	51.	52.	53.	53.
Número de Hogares Morona		34.8	880	867	85	83	80	76	4 3.	67	61	4 6.	46	38	28	18	067	944
Santiago		89,1	,2	,0	1,5	1,0	4,3	8,8	6,0	4,3	6,2	8,1	9,9	1,8	5,0	0,4	,0	,6
% uso gas		0,7	0,7	0,7	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
3			28.	28.	8.3	8.5	8.7	4.4	4.5	4.6	4.7	4.8	4.9	5.0	5.1	5.2	5.3	5.3
		24.7	235	933	70,	66,	60,	76,	72,	67,	61,	54,	47,	38,	28,	18,	06,	94,
Hogares que usan gas		01,5	,2	,8	3	2	9	9	6	4	6	8	0	2	5	0	7	5

Promedio de consumo gas/hogar/mes (Kg)	1 6, 8																	
Consumo promedio gas/mes		4.40	4.8	4.9	1.1	1.1	1.1		00	0.4	00	00	0.4	0.5	0.5	00	070	000
ZONA 6 (Ton)		4.43 1,6	76, 1	65, 4	23, 1	43, 0	63, 0	59 1.4	60 1.3	61 1.2	62 1.0	63 0.8	64 0.5	65 0.2	65 9.8	66 9,4	678 .9	688 ,4
TOTAL consumo promedio		.,0	58.	59.	13.	13.	13.	7.0	7.2	7.3	7.4	7.5	7.6	7.8	7.9	8.0	8.1	8.2
gas/ año		53.1	513	584	47	71	95	97,	15,	34,	51,	69,	86,	02,	17,	32,	47,	61,
ZONA 6 (ton)		79,2	,5	,9	6,6	6,4	5,5	0	7	1	9	3	0	2	8	8	2	0
			3.3	3.4	74	76	77	39	39	40	41	41	42	43	43	44		
Estimado consumo	1	3.06	62.	21.	7.6	0.2	2.9	2.7	9.0	5.3	1.5	7.8	4.0	0.2	6.3	2.5	448	454
gas/hogar/mes calentar agua	6, 8	8.08	199	252	30, 3	95, 8	23, 9	69, 7	57, 0	32, 3	82, 2	16, 4	22, 2	05, 2	65, 1	06, 2	.62 0.6	.70 3.4
Azuay (Kg)	0	6,1	,5	,8 1.0	-	23	24	12	12	3 12	12	13	13	_	•	_	0,6	3,4
Estimado consumo	1	948.	1.0 39.	58.	23 4.7	23 8.8	2.8	3.4	5.4	74	9.4	1.3	3.3	13 5.3	13 7.2	13 9.2	141	143
gas/hogar/mes calentar aqua	6.	546. 526.	576	071	99.	28,	49,	32,	34,	28.	17,	97,	70,	33,	89.	30.	.16	.09
Cañar (Kg)	8	4	.3	,1	1	4	0	2	2	7	0	5	5	4	8	3	3.9	0.4
			4.4	4.4			1.0										-,-	-, -
Consumo promedio gas/mes		4.01	01,	79,	98	99	15,	51	52	53	54	54	55	56	57	58	589	597
calentar agua ZONA 6 (Ton)		6,6	8	3	2,4	9,1	8	6,2	4,5	2,8	1,0	9,2	7,4	5,5	3,7	1,7	,8	,8
TOTAL consumo promedio			52.	53.	11.	11.	12.	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7.0	7.1
gas/ año		48.1	821	751	78	98	18	94,	93,	93,	92,	90,	88,	86,	83,	80,	77,	73,
ZONA 6 (ton)		99,3	,3	,9	9,2	9,5	9,3	4	9	1	0	6	7	5	9	8	4	5
TOTAL GENERAL consumo		101.	111	113	25.	25.	26.	13.	13.	13.	13.	14.	14.	14.	14.	15.	15.	15.
promedio gas/ año /hogar		378,	.33	.33	26	70	14	29	50	72	94	15	37	58	80	01	224	434
ZONA 6 (ton)		5	4,8	6,8	5,8	5,9	4,7	1,4	9,6	7,2	3,9	9,9	4,7	8,6	1,6	3,6	,7	,6

ESTIMACIÓN CONSUMO GAS LICUADO DE PETRÓLEO P LOS HOGARES (TON)	ARA C	COCCION ALIN	IENTOS EN
		AÑO 2015	AÑO 2030
Población Azuay		810.412,00	1.020.376,0
Promedio personas por hogar	3,77		
Número de Hogares Azuay		214.963,40	270.656,8
% uso gas		0,93	0,1
Hogares que usan gas		200.130,92	27.065,7
Población Cañar		258.450,00	326.212,0
Promedio personas por hogar	3,83		
Número de Hogares Cañar		67.480,42	85.172,8
% uso gas		0,92	0,1
Hogares que usan gas		61.879,54	8.517,3
Población Morona Santiago		175.074,00	236.817,0
Promedio personas por hogar	4,39		
Número de Hogares Morona Santiago		39.880,18	53.944,6
% uso gas		0,71	0,1
Hogares que usan gas		28.235,17	5.394,5
Promedio de consumo gas/hogar/mes (Kg)	16,8		
Consumo promedio gas/mes ZONA 6 (Kg)		4.876,13	688,4
TOTAL consumo promedio gas/ año			
ZONA 6		58.513,52	8.261,0
ESTIMACIÓN CONSUMO GAS LICUADO DE PETRÓLEO P HOGARES (TON)	ARA C	ALENTAR AG	UA EN LOS
		AÑO 2015	AÑO 2030
Estimado consumo gas/hogar/mes calentar agua Azuay (Kg)	16,8	3.362.199,47	454.703,36
Estimado consumo gas/hogar/mes calentar agua Cañar (Kg)	16,8	1.039.576,32	143.090,38
Consumo promedio gas/mes calentar agua ZONA 6 (Ton)		4.401,78	597,79
TOTAL consumo promedio gas/ año calentar agua hogar ZONA 6 (ton)		52.821,31	7.173,52

Hidrocarburos

Fuente: Balance energía 2014. Ministerio Coordinador

COMBUSTIBLES (I de petróleo -bbl-)	oarri	equiva	lente																	
AÑO		2012	201 3	201 4	201 5	201 6	201 7	201 8	201 9	202 0	202 1	202 2	202 3	202 4	202 5	202 6	202 7	202 8	202 9	203
Crecimiento promedio (%) Gas Natural Azuay Gas Natural Cañar Gas Natural Morona Santiago	0	654.7 54,0	944. 777, 0	944. 777, 0	944. 777, 0	944. 777, 0	944. 777, 0	944. 777, 0	944 777 (
Crecimiento oromedio (%) Gas Licuado Petróleo Azuay	3	642.4	672. 141,	694. 993, 8	718. 623,															
Gas Licuado Petróleo Cañar Gas Licuado		26,0	0,0	0	6															
Petróleo Morona Santiago	6	0,0	1.71 6,0	1.77 4,3	1.83 4,7															
Crecimiento promedio (%)	, 4	1.215	126	1.34	1.42	1.52	1.61	1.72	1.83	1.94	2.07	2.20	2.34	2.49	2.65	2.82	3.00	3.20	3.40	3.6
Gasolina extra Azuay		.128,	205	2.82 9,7 294.	8.77 0,8 313.	0.21 2,1 333.	7.50 5,7 354.	1.02 6,1 377.	1.17 1,8 401.	8.36 6,8 426.	3.06 2,2 454.	5.73 8,2 483.	6.90 5,5 514.	7.10 7,4 547.	6.92 2,3 582.	6.96 5,3 619.	7.89 1,1 659.	0.39 6,1 701.	5.22 1,5 746.	3.1 5, 793
Gasolina extra Cañar		255.3 64,0	276 539	237, 5 155.	068, 7 165.	105, 1 175.	423, 8 186.	106, 9 198.	241, 8 211.	921, 3 225.	244, 2 239.	315, 9 254.	248, 1 271.	159, 9 288.	178, 2 306.	437, 6 326.	081, 6 347.	262, 8 369.	143, 6 393.	896
Gasolina extra Morona Santiago		127.9 92,0	145 791	121,	049, 4	612, 6	851, 8	810,	534, 1	072, 3	477, 0	803, 5	110,	462, 0	923, 6	566, 7	467, 0	704, 8	365, 9	54
Crecimiento promedio (%)	6 , 4		166.	176.	188.	200.	213.	226.	241.	256.	273.	290.	309.	329.	350.	372.	396.	421.	448.	47
Gasolina súper Azuay		182.6 73,0	287,	929, 4	252, 8	301,	120,	760, 0	272,	714,	143,	625, 0	225, 0	015, 4	072, 4 105.	477, 0 111.	315, 5 119.	679, 7 126.	667, 2 134.	38
Gasolina súper Cañar Gasolina súper Morona Santiago	4	52.85 9,0 20.23 7,0	49.9 67,0 17.9 38,0	53.1 64,9 19.0 86,0	56.5 67,4 20.3 07,5	60.1 87,8 21.6 07,2	64.0 39,8 22.9 90,1	68.1 38,3 24.4 61,4	72.4 99,2 26.0 27,0	77.1 39,1 27.6 92,7	82.0 76,0 29.4 65,0	87.3 28,9 31.3 50,8	92.9 17,9 33.3 57,3	98.8 64,7 35.4 92,1	192, 0 37.7 63,6	924, 3 40.1 80,5	087, 5 42.7 52,0	709, 1 45.4 88,2	818, 4 48.3 99,4	51 97
Crecimiento (%) Kerosene y jet fuel Azuay Kerosene y jet fuel Cañar Kerosene y jet fuel Morona Santiago	5	23,0	40.7 15,0	42.4 25,0	44.2 06,9	46.0 63,6	47.9 98,2	50.0 14,2	52.1 14,8	54.3 03,6	56.5 84,3	58.9 60,9	61.4 37,2	64.0 17,6	66.7 06,3	69.5 08,0	72.4 27,3	75.4 69,3	78.6 39,0	81. 41,
Crecimiento (%)	, 6		283,	298,	315,	333,	351,	371,	392,	414,	437,	462,	488,	515,	544,	574,	606,	640,	676,	71-
Diésel oil 1 Azuay Diésel oil 1 Cañar		306,0	0 1.03 7,0	8 1.09 5,1	6 1.15 6,4	3 1.22 1,2	9 1.28 9,5	6 1.36 1,8	4 1.43 8,0	4 1.51 8,5	6 1.60 3,6	1 1.69 3,4	0 1.78 8,2	3 1.88 8,3	2 1.99 4,1	7 2.10 5,8	8 2.22 3,7	8 2.34 8,2	7 2.47 9,7	2.6
Diésel oil 1 Morona Santiago	5	0,0	613, 0	647,	683, 6	721, 9	762, 3	805, 0	850, 0	897, 7	947, 9	1.00	1.05 7,1	1.11 6,3	1.17	1.24 4,8	1.31 4,5	1.38	1.46 5,8	1.5
Crecimiento (%)	6	262.0	272.	287.	303.	320.	338.	357.	377.	398.	421.	444. 671	469. 572	495.	523.	552.	583.	616.	651. 157	68
Diésel oil 2 Azuay		263.8 12,0	310, 0 119.	559, 4 126.	662, 7 133.	667, 8 140.	625, 2 148.	588, 2 157.	613, 1 165.	759, 5 175.	090, 0 185.	671, 0 195.	572, 6 206.	868, 7 217.	637, 3 230.	961, 0 242.	926, 8 256.	626, 8 270.	157, 9 286.	30
Diésel oil 2 Cañar		74.29 0,0	639, 0	338, 8	413, 8	884, 9	774, 5	105, 9	903, 8	194, 4	005, 3	365, 6	306, 0 103.	859, 2 108.	059, 3 115.	942, 6 121.	547, 4 128.	914, 1 135.	085, 2 143.	10 15
Diésel oil 2 Morona Santiago	5	18.77 1,0	59.8 09,0	63.1 58,3	66.6 95,2	70.4 30,1	74.3 74,2	78.5 39,1	82.9 37,3	87.5 81,8	92.4 86,4	97.6 65,6	134,	910, 5	009, 5	450, 0	251,	433,	017, 5	02
Crecimiento (%)	, 6	1.077	1.00	1 15	1 04	1.00	1.05	1 40	1 54	1.00	1.00	1 70	1.00	1.00	2.40	2.24	2.24	0.47	2.04	٥.
Diésel oil premium Azuay		1.077 .327, 0	1.09 3.17 3,0 438.	1.15 4.39 0,7 463.	1.21 9.03 6,6 489.	1.28 7.30 2,6 516.	1.35 9.39 1,6 545.	1.43 5.51 7,5 576.	1.51 5.90 6,5 608.	1.60 0.79 7,2 642.	1.69 0.44 1,9 678.	1.78 5.10 6,6 716.	1.88 5.07 2,6 756.	1.99 0.63 6,7 799.	2.10 2.11 2,3 844.	2.21 9.83 0,6 891.	2.34 4.14 1,1 941.	2.47 5.41 3,0 993.	2.61 4.03 6,1 1.04	2.7 0.4 2 1.1
Diésel oil premium Cañar		354.0 19,0	938, 0	518, 5	475, 6	886, 2	831, 8	398, 4	676, 7	762, 6	757, 3	767, 7	906, 7	293, 5	053, 9	321, 0	234, 9	944, 1	9.60 5,0	8.3
Diesel oil premium Morona Santiago		161.8	173. 741,	183. 470,	193. 744,	204. 594,	216. 051,	228. 150, 8	240. 927, 2	254. 419, 1	268. 666,	283. 711, 9	299. 599, 8	316. 377, 4	334. 094, 5	352. 803, 8	372. 560, 8	393. 424, 2	415. 456, 0	43 72

	Ī																		
	6																		
	178.7																		
Fuel oil Azuay	39,0																		
,	50.39																		
Fuel oil Cañar	7,0																		
Fuel oil Morona																			
Santiago	0,0																		
		673.	696.	720.															
Zona 6 Gas	642.4	857.	768.	458,															
Licuado Petróleo	26,0	0	1	3															
7	1.598	1.68	1.79	1.90	2.02	2.15	2.29	2.44	2.60	2.76	2.94	3.13	3.33	3.54	3.77	4.01	4.27	4.54	4.83
Zona 6 Gasolina	.484,	4.38	2.18	6.88	8.92	8.78	6.94	3.94	0.36	6.78	3.85	2.26	2.72	6.02	2.96	4.43	1.36	4.73	5.59
extra	0	8,0	8,8	8,9	9,8	1,3	3,3	7,7	0,3	3,4	7,5	4,4	9,4	4,0	9,6	9,6	3,8	1,0	3,8
Zona 6 Gasolina		234.	249.	265.	282.	300.	319.	339.	361.	384.	409.	435.	463.	493.	524.	558.	593.	631.	672
súper	255.7	192,	180,	127,	096,	150,	359,	798,	545,	684,	304,	500,	372,	028,	581,	155,	877,	885,	325
•	69,0	0	3	8	0	2	8	8	9	8	7	2	2	0	8	0	0	1	7
Zona 6 Kerosene		40.7	42.4	44.2	46.0	47.9	50.0	52.1	54.3	56.5	58.9	61.4	64.0	66.7	69.5	72.4	75.4	78.6	81.9
y Jet Fuel	23,0	15,0	25,0	06,9	63,6	98,2	14,2	14,8	03,6	84,3	60,9	37,2	17,6	06,3	08,0	27,3	69,3	39,0	41,8
Zona 6 Diésel oil 1	200.0	1.93	2.04	2.15	2.27	2.40 3.7	2.53	2.68	2.83	2.98	3.15	3.33	3.51	3.71	3.92	4.14	4.37	4.62	4.88
	306,0	3,0 451.	1,2 477.	5,6 503.	6,3 531.	3,7 561.	8,3 593.	0,5 626.	0,6 661.	9,1 698.	6,5 737.	3,3 779.	9,9 822.	7,1 868.	5,2 917.	5,0 968.	7,1 1.02	2,3 1.08	1,1 1.14
Zona 6 Diésel oil 2	356.8	758,	056,	771,	982,	773,	233,	454,	535,	581,	702,	013,	638,	706,	353,	725,	2.97	0.26	0.75
Zona o Dieser on Z	73,0	7 30,	4	6	8	9	200,	3	7	7	3	6	4	100,	6	4	4,1	0.20	5,2
	1.593	1.70	1.80	1.90	2.00	2.12	2.24	2.36	2.49	2.63	2.78	2.94	3.10	3.28	3.46	3.65	3.86	4.07	4.30
Zona 6 Diésel oil	.232,	5.85	1.37	2.25	8.78	1.27	0.06	5.51	7.97	7.86	5.58	1.57	6.30	0.26	3.95	7.93	2.78	9.09	7.52
premium	0	2,0	9,7	7,0	3,4	5,2	6,6	0,4	9,0	5,8	6,3	9,1	7,5	0,7	5,4	6,9	1,3	7,1	6,5
Zona 6 Fuel oil	229.1	,-		,-		,	.,-		.,-	.,-	,-	,	,-	.,	.,	.,-	,-	,	-,-
	36,0																		
TOTAL Zona 6																			

Calculo emisiones atmósfera por quema de combustibles fósiles

Mobile Combustion

GHG Emissions Calculation Tool

Version 2.3

Total GHG	
Emissions,	
exclude	61859
Biofuel CO2	65,998
(metric tonnes	
CO2e)	
Biofuel CO2	
Emissions	0
(metric	0
tonnes)	

Activity Data The default emission factors are sourced from the US EPA Climate Leaders program or from the UK DEFRA (for air travel only).

								Acti	vity D	ata					(GHG E	mis	sions	
St at us	Sour ceD escr iptio n	R e g i o n	M o de of Tr an sp or t	S c o p e	Type of Activi ty Data	Vehicle Type (For air transport, see footnote)	Dist anc eTra vell ed	To tal We igh t of Fr eig ht	# of Pas sen ger	Uni ts of Me as ure me nt	Fuel Use d	Fu el A mo un t	Uni t of Fu el Am ou nt	Er ro r M es sa ge s	Fo ssi I Fu el CO 2 (m etri c ton ne s)	CH 4 (kilo gra ms)	N2 O (kill og ra m s)	To tal GH G E mi ssi on s, ex clu de Bi of uel CO 2 (m etri c ton ne s CO 2e)	Bi of ue I C O 2 E mi ss io ns (m etr ic to nn es)
		U S	R oa d	S c o p	Fuel Use	Bus - CNG					CNG	0	US Gal lon		0	0	0	0	0

			e 1												
	U S	R oa d	S c o p e 1	Fuel Use	Light GoodsVeh icle - CNG			CNG	0	US Gal lon	0	0	0	0	0
	U S	R oa d	S c o p e 1	Fuel Use	Heavy Duty Vehicle - Rigid - CNG			CNG	0	US Gal lon	0	0	0	0	0
Ga olir s 201	a th	l R	S c o p e 1	Fuel Use				Gaso line/ Petro I	18 54 25 3	Bar rel	66 96 57, 66 6			66 96 57, 66 6	0
die el 201	th	I K	S c o p e 1	Fuel Use				On- Road Dies el Fuel	19 50 41 1	Bar rel	82 99 03, 78 1			82 99 03, 78 1	0
Ga dor ést o 201	n th	I R	S c o p e 1	Fuel Use				LPG	20 54 14 76 0,1	Litr e	33 10 15, 51 6			33 10 15, 51 6	0
Ga olir s 203	a th	l R	S c o p e	Fuel Use				Gaso line/ Petro I	55 07 91 9,5 5	Bar rel	19 89 16 7,9 04			19 89 16 7,9 04	0
die el 203	tn	I R	S c o p e 1	Fuel Use				On- Road Dies el Fuel	54 53 16 2,8 2	Bar rel	23 20 33 1,6 86			23 20 33 1,6 86	0
Ga dor ést o 203	n th	l R	S c o p e 1	Fuel Use				LPG	28 47 71 21, 77	Litr e	45 88 9,4 44			45 88 9,4 44	0

Efluentes: aguas servidas y desechos sólidos domésticos.

GENERACIÓN ESTIMADA DE EFLUENTE	S DE LA F	POBLACIÓ	ON DE LA ZONA (5
	U		Estimado 2015	Proyección 2030
Consumo estimado de agua Azuay			177.785.241	224.501.101
Consumo estimado de agua Cañar			57.537.316	72.622.708
Consumo estimado de agua Morona Santiago			40.063.891	54.193.044
Parámetros:				
Promedio del consumo de agua por persona/día	litros/día	160-230		
Porcentaje del total de consumo de agua para cálculo de efluentes por persona/día	litros/día	0,8		
Resultados:				
Efluentes Azuay			142.228.193	179.600.881
Efluentes Cañar			46.029.852	58.098.166
Efluentes Morona Santiago			32.051.113	43.354.435
TOTAL ESTIMADO DE EFLUENTES GENERADOS EN LA ZONA 6 DE PLANIFICACIÓN			220.309.158	281.053.482

Parámetros:

Según reporte OPS/OMS (2002) la generación de residuos a nivel nacional se encuentra en el rango de:

0,45 Kg/hab/día para una ciudad pequeña

0,64 Kg/habitante/ día para ciudad mediana

0,65 Kg/hab/día para una ciudad grande

0,85 Kg/habitante/ día para ciudad metrópolis

Para la ciudad de Cuenca según PDOT cantonal del año 2011 el rango es de: 0,76 Kg/hab/día.

Proyección Generación Desechos sólidos domésticos de la Población de la Zona 6

			Total			Total
	Población	Generación	generación	Proyectado	Generación	generación
	estimado	referente	estimada de	2030	referente	estimada de
	2015	(kg/hab/día)	desechos	2030	(kg/hab/día)	desechos
			(kg/hab/día)			(kg/hab/día)
AZUAY	810.412	0,45 - 0,76	542.888,6	1.020.376	0,45 - 0,76	683.541,7
Camilo Ponce		0,45			0,45	
Enríquez	24.719	0.45	11.123,7	31.124	0.45	14.005,7
Chordeleg	14.327	0,45	6.447,3	18.039	0,45	8.117,7
Cuenca	574.849	0,76	436.885,1	723.782	0,76	550.074,6
El Pan	3.484	0,45	1.567,7	4.386	0,45	1.973,8
Girón	14.457	0,45	6.505,5	18.202	0,45	8.190,9
Guachapala	3.894	0,45	1.752,1	4.902	0,45	2.206,1
Gualaceo	48.752	0,45	21.938,2	61.382	0,45	27.622,1
Nabón	18.184	0,45	8.182,6	22.895	0,45	10.302,6
Oña	4.090	0,45	1.840,4	5.149	0,45	2.317,2
Paute	29.105	0,45	13.097,3	36.646	0,45	16.490,5
Pucará	11.518	0,45	5.182,9	14.502	0,45	6.525,7
San Fernando	4.577	0,45	2.059,8	5.763	0,45	2.593,5
Santa Isabel	21.004	0,45	9.452,0	26.446	0,45	11.900,8
Sevilla de Oro	6.718	0,45	3.022,9	8.458	0,45	3.806,1
Sigsig	30.736	0,45	13.831,0	38.699	0,45	17.414,4
CAÑAR	258.450	0,45	116.302,5	326.212	0,45	146.795,3
Azogues	80.453	0,45	36.204,0	101.547	0,45	45.696,2
Biblián	23.984	0,45	10.792,6	30.272	0,45	13.622,3
Cañar	68.299	0,45	30.734,5	86.206	0,45	38.792,6
La Troncal	62.084	0,45	27.937,6	78.361	0,45	35.262,4
El Tambo	10.849	0,45	4.882,1	13.694	0,45	6.162,2
Déleg	7.035	0,45	3.165,8	8.880	0,45	3.995,9
Suscal	5.746	0,45	2.585,8	7.253	0,45	3.263,8
MORONA						
SANTIAGO	175.074	0,45	78.783,4	236.817	0,45	106.567,6
Gualaquiza	20.419	0,45	9.188,5	27.620	0,45	12.428,9
Huamboya	9.976	0,45	4.489,0	13.494	0,45	6.072,2
Limón Indanza	11.614	0,45	5.226,2	15.710	0,45	7.069,3
Logroño	6.770	0,45	3.046,5	9.158	0,45	4.120,9
Morona	48.562	0,45	21.853,0	65.689	0,45	29.559,8
Pablo VI	2.140	0,45	963,0	2.895	0,45	1.302,7
Palora	8.270	0,45	3.721,5	11.186	0,45	5.033,9
San Juan Bosco	4.632	0,45	2.084,5	6.266	0,45	2.819,7
Santiago	11.049	0,45	4.972,1	14.946	0,45	6.725,6
Sucúa	21.695	0,45	9.762,6	29.346	0,45	13.205,5
Taisha	21.732	0,45	9.779,6	29.397	0,45	13.228,5
Tiwintza	8.215	0,45	3.696,8	11.112	0,45	5.000,5
TOTAL ZONA 6	1.243.936		737.974,5	1.583.405		936.904,5

Agua para consumo humano.

	Proyección	Demanda de	e Agua de la pobl	ación de la Zo	ona 6	
	Población estimado 2015	Dotación referente (I/hab/día)	Total consumo estimado de agua (I/hab/día)	Proyectado 2030	Dotación referente (I/hab/día)	Total proyección consumo estimado de agua (I/hab/día)
AZUAY	810.412		177.785.240,6	1.020.376		224.501.100,7
Camilo Ponce Enríquez	24.719	230	5.685.454,6	31.124	230	7.158.458,2
Chordeleg	14.327	220	3.152.007,1	18.039	220	3.968.637,9
Cuenca	574.849	220	126.466.750,0	723.782	220	159.232.110,2
El Pan	3.484	160	557.399,4	4.386	160	701.812,1
Girón	14.457	220	3.180.455,7	18.202	220	4.004.457,0
Guachapala	3.894	160	622.975,9	4.902	160	784.378,2
Gualaceo	48.752	220	10.725.358,6	61.382	220	13.504.114,6
Nabón	18.184	220	4.000.401,8	22.895	220	5.036.837,1
Oña	4.090	160	654.361,4	5.149	220	1.132.855,8
Paute	29.105	220	6.403.102,0	36.646	220	
		220			220	8.062.035,7
Pucará	11.518	160	2.533.853,0	14.502	220	3.190.330,8
San Fernando	4.577		732.386,8	5.763		1.267.936,4
Santa Isabel	21.004	230	4.831.010,7	26.446	230	6.082.642,5
Sevilla de Oro	6.718	220	1.477.880,0	8.458	220	1.860.773,3
Sigsig	30.736	220	6.761.843,5	38.699	220	8.513.720,9
CAÑAR	258.450		57.537.315,6	326.212		72.622.707,5
Azogues	80.453	220	17.699.754,5	101.547	220	22.340.355,6
Biblián	23.984	220	5.276.386,8	30.272	220	6.659.773,6
Cañar	68.299	220	15.025.755,0	86.206	220	18.965.275,0
La Troncal	62.084	230	14.279.209,6	78.361	230	18.022.997,0
El Tambo	10.849	220	2.386.827,8	13.694	220	3.012.617,1
Déleg	7.035	220	1.547.736,9	8.880	220	1.953.529,5
Suscal	5.746	230	1.321.644,9	7.253	230	1.668.159,7
MORONA SANTIAGO	175.074		40.063.891,2	236.817		54.193.043,8
Gualaguiza	20.419	230	4.696.329,5	27.620	230	6.352.563,0
Huamboya	9.976	230	2.294.394,0	13.494	230	3.103.547,6
Limón Indanza	11.614	230	2.671.183,7	15.710	230	3.613.218,0
Logroño	6.770	230	1.557.116,8	9.158	230	2.106.258,2
Morona	48.562	230	11.169.328,8	65.689	230	15.108.365,9
Pablo VI	2.140	200	428.016,8	2.895	200	578.963,5
Palora	8.270	230	1.902.091,0	11.186	230	2.572.892,9
San Juan Bosco	4.632	200	926.455,1	6.266	200	1.253.183,9
Santiago	11.049	230	2.541.292,5	14.946	230	3.437.518,7
Sucúa	21.695	230	4.989.768,0	29.346	230	6.749.487,0
Taisha	21.732	230	4.998.444,9	29.397	230	6.761.224,0
Tiwintza	8.215	230	1.889.470,0	11.112	230	2.555.820,9
TOTAL ZONA 6						
	1.243.936		275.386.447,4	1.583.405		351.316.852,0

Territorio disponible para agricultura.

		Pendientes	en la zona 6
% pendiente	На	% territorio	Criterio
0 a 20 %	1488343,3	41,9	Mecanizable y relativamente mecanizable
	1255448,4		
20 a 50 %	2	35,4	Con limitaciones moderadas
Mayor a 50 %	804261,9	22,7	Con limitaciones severas
Total	3548053,6	-	•
general	2	100	

Cobertura de suelo s	egún MAGAP-SIGAGRO 2003 (es	scala 1:250 000)
На	Cobertura de suelo	%
756,38	Bancos de Arena	0,02
22120,04	Cuerpo de Agua	0,62
358168,83	Cultivos	10,09
20564,81	Humedales	0,58
12828,62	Nieve	0,36
386103,51	Paramo	10,88
462095,28	Pastos	13,02
2131743,25	Vegetación leñosa	60,08
143961,79	Vegetación Arbustiva	4,06
5082,01	Zona Urbana	0,14
4629,1	Zonas Erosionadas	0,13
3548053,62	TOTAL	100

Pisos altitudinales en la zona 6											
Cobertura	На	% territorio									
Entre 2.200 a 3.200 m s.n.m.	754423,99	21,3									
Mayor a 3.200 m s.n.m.	495138,88	14,0									
Menor a 2.200 m s.n.m.	2298490,75	64,8									
Total general	3548053,62	100									

	Áreas de cu	ultivos según cobertura de s	suelo MAGA	P-SIGAGR	O 2003	escala 1:250 0	00
Total Ha por zona	Pendiente	Piso Altitudinal	Cobertur a	На	%	Zona térmica	Comentario
	Mayor a 50 %			2.749,0	0,77		Limitado potencial productivo por
	20 a 50 %			9.862,1	2,75		condiciones ambientales
18.964,6	0 a 20 %	Mayor a 3.200 m s.n.m.	Cultivos	6.353,4	1,77	frío	extremas (baja temperatura, altas precipitaciones) además zona de sensibilidad ambiental contigua a páramos.
	Mayor a 50 %			34.969,3	9,76		Con limitaciones severas
188.626, 9	20 a 50 %	Entre 2.200 a 3.200 m s.n.m.	Cultivos	89.745,9	25,0 6	templado	Con limitaciones moderadas
	0 a 20 %			63.911,8	17,8 4		Mecanizable y relativamente mecanizable
	Mayor a 50 %			17.773,4	4,96		
	Mayor a 50 %			4.590,5	1,28		Con limitaciones
	Mayor a 50 %			49,1	0,01		severas
	Mayor a 50 %			585,2	0,16		
150.577, 4	20 a 50 %	Menor a 2.200 m s.n.m.	Cultivos	3.588,6	1,00	cálido	
	20 a 50 %			33.290,9	9,29		Con limitaciones
	20 a 50 %			95,2	0,03		moderadas
	20 a 50 %			6.627,9	1,85		
	0 a 20 %			83.976,7	23,4 5		Mecanizable y relativamente mecanizable
358.168, 8		TOTAL		358.168, 8	100		

	Áreas de cu	ultivos según cobertura de s	suelo MAGA	P-SIGAGR	O 2003	escala 1:250 0	00	
Total Ha por zona	Pendiente	Piso Altitudinal	Cobertur a	На	%	Zona térmica	Comentario	
	Mayor a 50 %			2.749,0	0,77		Limitado potencial productivo por	
	20 a 50 %			9.862,1	2,75		condiciones ambientales extremas (baja	
18.964,6	0 a 20 %	Mayor a 3.200 m s.n.m.	Cultivos	6.353,4	1,77	frío	temperatura, altas precipitaciones) además zona de sensibilidad ambiental contigua a páramos.	
	Mayor a 50 %			34.969,3	9,76		Con limitaciones severas	
188.626, 9	20 a 50 %	Entre 2.200 a 3.200 m s.n.m.	Cultivos	89.745,9	25,0 6	76 limitacione severas 7,0 templado limitacione moderada Mecanizable		
	0 a 20 %			63.911,8	17,8 4		Mecanizable y relativamente mecanizable	
	Mayor a 50 %			22.998,2	6,42		Con limitaciones severas	
150.577, 4	20 a 50 %	Menor a 2.200 m s.n.m.	Cultivos	43.602,5	12,1 7	cálido	Con limitaciones moderadas	
	0 a 20 %			83.976,7	23,4 5		Mecanizable y relativamente mecanizable	
358.168, 8		TOTAL		358.168, 8	100			

Análisis de la estimación de has por la demanda de alimentos.

					TONEI TONEI D ALIMEN REQUE	IACIÓN DE LADAS DE NTOS/DÍ A ERIDOS:	ESTIM N I Has reque	DE /día
		g	RENDIM		PROY POBL AÑO 2015 1.243. 936	POBL ACIÓN 2030 1.583. 405	AÑO 2015	2030
			IENTO DE CULTIV					
			OS Z6 TON/Ha					
	Arroz blanco común	45	4,65	Censo agropecuario 2000 Promedio de la Z6	55,98	71,25	12,04	15,32
	Trigo (pan de labranza)	40	0,28	Censo agropecuario 2000 Promedio de la Z6	49,76	63,34	179,3 1	228,2 4
	Trigo (harina fortificada)	15	0,28	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	67,24	85,59
CEREAL ES	Avena (hojuela cruda)	15	0,31	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	60,19	76,62
	Cebada (machica) Amaranto (kiwicha,	15	0,56	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	33,32	42,41
	semilla comestible) Quinua	15 15	1,50 1,82	MAGAP. Amaranto 2014 MAGAP. Quínua 2014	18,66 18,66	23,75 23,75		15,83 13,05
	Maíz (blanco crudo)	40	0,45	Censo agropecuario 2000 Promedio de la Z6	49,76	63,34		140,7
TOTAL	Maiz (Biarico ciado)	20 0,0	0,40	de la 20	248,8	316,7		617,8
	Fréjol bayo	10	0,20	Censo agropecuario 2000 Promedio de la Z6		· · · · · · ·		70.17
LEGUMI	Arveja seca sin cáscara	10	0,20	Censo agropecuario 2000 Promedio de la Z6	12,44 12,44	15,83 15,83		79,17 75,40
NOSAS	Haba secas con cáscara	10	0,33	Censo agropecuario 2000 Promedio de la Z6	12,44	15,83		47,98
	Chocho (tarhui- tarwi) Lenteja chicas	10	1,35 0,90	INIAP. Chocho 2010 INIAP. Leguminosas 2010	12,44 12,44	15,83 15,83	9,21 13,82	11,73 17,59
	Garbanzo	10 60,			12,44	15,83	182,1	231,8
TOTAL	Aceituna (PC)	5		No se ubica información	74,6 6,22	95,0 7,92	6	7
OLEAGI NOSAS	Maní crudo, pelado con película almendras	5	0,29 0,00	Censo agropecuario 2000 Promedio de la Z6 No se ubica información	6,22 6,22	7,92 7,92	21,45	27,30
	nueces	5 20,	0,00	No se ubica información	6,22	7,92		
TOTAL	I Dana and 199	0		0.000	24,9	31,7	21,45	27,30
	Papa amarilla sin cascara	25	3,82	Censo agropecuario 2000 Promedio de la Z6	31,10	39,59	8,14	10,36
	Plátano maduro (PC)	25	8,49	Censo agropecuario 2000 Promedio de la Z6 Censo agropecuario 2000 Promedio	31,10	39,59	3,66	4,66
RAICES, TUBÉRC	Yuca	25	5,00	de la Z6 Censo agropecuario 2000 Promedio	31,10	39,59	6,22	7,92
ULOS, PLÁTAN	Melloco Camote amarillo	5	1,95 9,80	de la Z6 INIAP. Ensayos en Manabí 2010	6,22 6,22	7,92 7,92	3,19 0,63	4,06 0,81
os	Banano de seda	10	19,17	Censo agropecuario 2000 Promedio de la Z6	12,44	15,83	0,65	0,83
	Oca	5	2,43	Censo agropecuario 2000 Promedio de la Z6	6,22	7,92	2,56	3,26
	Zanahoria blanca	5	0,04	Censo agropecuario 2000 Promedio de la Z6	6,22	7,92	155,4 9	197,9
TOTAL		10 5,0	-		130,6	166,3	180,5 5	229,8

	I Managara Nagara			O			10,53	13,41
	Manzana Nacional (PC)	15	2,93	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	6,37	8,11
	Durazno (PC)	15	0,44	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	42,41	53,98
	Capulí (PC)	15		No se ubica información a nivel nacional	18,66	23,75		
	Chirimoya (PC)	15	0,28	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	66,64	84,83
	Granadilla (PC)	15	0,25	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	74,64	95,00
FRUTAS	Pera chilena (PC)	15	0,41	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	45,51	57,93
(FRUTA S Y VERDU	Tomate árbol	15	3,68	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	5,07	6,45
RA)	Aguacate (PC)	15	0,06	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	310,9 8	395,8 5
	Guayaba (PC)	15	0,00	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75		
	Limón (jugo)	15	0,41	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	45,51	57,93
	Naranja (PC)	15	0,65	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	28,71	36,54
	Papaya (PC)	15	6,89	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	2,71	3,45
	Piña (PC)	15	0,71	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	26,28	33,45
TOTAL		19 5,0			242,6	308,8	654,8 2	833,5
-	Sandía (PC)	15	13,55	Censo agropecuario 2000 Promedio Nacional	18,66	23,75	1,38	1,75
	Melón	15	6,82	Censo agropecuario 2000 Promedio Nacional	18,66	23,75	2,74	3,48
		15	,	Censo agropecuario 2000 Promedio	,	,		•
	Brócoli Coliflor (sin tallo y sin	15	9,42	de la Z6 Censo agropecuario 2000 Promedio	18,66	23,75	1,98	2,52
	hojas) Apio sin hoja	15	0,96	de la Z6	18,66 18,66	23,75 23,75	19,44	24,74
VERDU	Tomate (PC)	15	6,79	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	2,75	3,50
RAS	Lechuga (redonda)	15	2,71	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	6,89	8,76
(FRUTA S Y	Acelgas (hojas sin tallo)	15			18,66	23,75		
VERDU RAS)	Espinaca (hojas) Zanahoria amarilla sin	15		Censo agropecuario 2000 Promedio	18,66	23,75		
-,	cáscara	15	1,87	de la Z6	18,66	23,75	9,98	12,70
	Vainitas (PC)	15			18,66	23,75		
	Cebolla blanca (parte comestible -PC-)	15	0,58	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	32,17	40,95
	Pimiento	15	5,24	Censo agropecuario 2000 Promedio Nacional	18,66	23,75	3,56	4,53
	Col blanca (PC)	15	4,89	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	3,82	4,86
	Zapallo macre	15	0,10	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75	186,5 9	237,5 1
TOTAL		22 5,0			279,9	356,3	271,2 8	345,3 1
			0,92 1,65 1,08	Maíz duro seco Censo agropecuario 2 Promedio de la Z5 Soya SINAGAP 2015 Promedio nacional	2000	84		
	Carne pollo pulpa	30	,	Censo agropecuario 2000 Promedio de la Z6	37,32	47,50	97,83	124,5 3
	Trucha fresca	15		No se ubica información a nivel nacional	18,66	23,75	25,51	32,47
CARNE	Pescado bonito (PC)	15		Demanda satisfecha	18,66	23,75	'	•
S	Camarones frescos	15		Demanda satisfecha	10.66	23,75	56 20	71,66
J	(PC)				18,66	23,73	56,29	11,00
J		15	0,10	Censo agropecuario 2000 Promedio de la Z6	18,66	23,75		0,00

	hueso		l	de la Z6			I	
		10		30.32				317,6
TOTAL		5,0			130,6 84.18	166,3	2	1
					95885			
HUEVO		47		Censo agropecuario 2000 Promedio				295,3
S	Huevo de gallina Huevo de codorniz			de la Z6	58,46 0,00	74,42 0,00	7	4
	Tidevo de codoffiiz	47,			0,00	0,00	104.2	295,3
TOTAL		0			58,5	74,4	,7	4
		12	0.04.47	Censo agropecuario 2000 y	155,4	407.00	10.57	13.46
LÁCTEO	Leche fresca de vaca	5	0,0147	Encuesta coyuntura BCE 2013 Censo agropecuario 2000 y	9	197,93	7,69	4,33
SY	Yogurt de leche	65		Encuesta coyuntura BCE 2014 y			5.500	7.001
DERIVA	entera		0,0147	otros	80,86	102,92	,40	,45
DOS		35		Censo agropecuario 2000 y Encuesta coyuntura BCE 2014 y			10 7/	25.13
	Queso fresco de vaca	•	0,00221	otros	43,54	55,42	5,02	3,41
TOTAL		22			070.0	050.0	35.82	45.59
TOTAL	Aceite vegetal palma	5,0	2.4	MACAR polmo 2014 ANGLIRA	279,9	356,3	3,10 7,58	9,19 9,64
	Aceite vegetai paima		2,1	MAGAP palma 2014 ANCUPA No se ubica información a nivel	16,17	20,58	7,56	9,04
	Aceite vegetal girasol	0,5		nacional	0,62	0,79		
GRASA	A saita va satal masís	0,5		No se ubica información a nivel	0.00	0.70		
SY	Aceite vegetal maíz			nacional No se ubica información a nivel	0,62	0,79		
ACEITE S	Aceite vegetal oliva	0,5		nacional	0,62	0,79		
	Mantequilla	1			1,24	1,58		
	Margarina vegetal con sal	1			1,24	1,58		
	Manteca cerdo	0,5			0,62	0,79		
TOTAL		17,			04.4	00.0	7.50	0.04
TOTAL	gasaasa	0			21,1 0,00	26,9 0.00	7,58	9,64
	gaseosa Cerveza				0,00	0,00		
	Energizante				0,00	0,00		
BEBIDA	Chocolate simple	2	0,23	Censo agropecuario 2000 Promedio	0.40	0.47	40.00	40.77
S	(con azúcar) Café (sin azúcar) 99,1		,	de la Z6 MAGAP café (dato para Azuay)	2,49	3,17	10,82	13,77
AZUCA RADAS	% agua	2	0,48	2014	2,49	3,17	5,18	6,60
I ADAO	Té hojas secas	2			2,49	3,17		
	Jugo artificial			CINCAE 2012 ozúgor ingonica La	0,00	0,00		
	Azúcar refinada	35	7,55	CINCAE 2013 azúcar ingenios La Troncal San Carlos y Valdés	43,54	55,42	5,77	7,34
	***	41,	,		,		,	
TOTAL		0			51,0	64,9	21,77	27,71

Estimación del déficit hídrico.

Déficit hídrico (mm de agua)	Superficie (Ha)		Superficie (m2)	Déficit hídrico (litros/m2)	Déficit en millones de m3/año
			296327515		
0 - 10	2.963.275,2		00	296.327.515.000,0	296,33
10 - 20	63.659,9		636599000	12.731.980.000,0	12,73
10 - 25	24.503,2		245031500	6.125.787.500,0	6,13
20 - 30	72.927,5		729275300	21.878.259.000,0	21,88
30 - 40	6.120,5		61205000	2.448.200.000,0	2,45
25 - 50	18.202,1		182020800	9.101.040.000,0	9,10
40 - 50	5.808,7		58087200	2.904.360.000,0	2,90
50 - 75	34.944,2		349441500	26.208.112.500,0	26,21
75 - 100	21.522,9	3210964,06	215228800	21.522.880.000,0	21,52
100 - 125	42.596,7		425967200	53.245.900.000,0	53,25
125 - 150	36.435,9		364359000	54.653.850.000,0	54,65
150 - 175	63.050,9		630508700	110.339.022.500,0	110,34
175 - 200	29.908,8		299088400	59.817.680.000,0	59,82
		171992,33			
200 - 225	28.518,1		285180700	64.165.657.500,0	64,17
225 - 250	15.999,6		159996400	39.999.100.000,0	40,00
250 - 275	31.501,8		315017800	86.629.895.000,0	86,63
275 - 300	17.952,8		179528300	53.858.490.000,0	53,86
		93972,32			
300 - 325	20.313,8		203137800	66.019.785.000,0	66,02
325 - 350	8.886,3		88863100	31.102.085.000,0	31,10
350 - 375	9.654,1		96541100	36.202.912.500,0	36,20
375 - 400	11.481,7		114817100	45.926.840.000,0	45,93
		50335,91			
400 - 425	9.920,9		99209200	42.163.910.000,0	42,16
425 - 450	5.327,3		53272700	23.972.715.000,0	23,97
450 - 475	5.727,8		57277500	27.206.812.500,0	27,21
475 - 500	640,8		6407700	3.203.850.000,0	3,20
		21616,71			
500 - 525	335,4		3354000	1.760.850.000,0	1,76
525 - 550	388,1		3880600	2.134.330.000,0 1.201.651.819.000,	2,13
TOTAL	3.549.604,8	723,46		0	1.202

FAO TOTAL

Análisis consolidado general energía.

TOTAL ESTIMADO DE REQUERIMIENTOS ENERGÍA

	TOTAL POBLACIÓN ZONA 6	FAO TOTAL REQUERIMIENTO ENERGÍA (KJ/Kg/año)	FAO TOTAL REQUERIMIENTO ENERGÍA (Kcal/año)	ENSANUT TOTAL REQUERIMIENTO ENERGÍA (Kcal/año)
2015	1.243.936	3.871.785.004.750	914.600.710.780	827.985.799.425
2030	1.583.405	5.020.798.194.945	1.189.038.922.295	1.070.690.484.985
		FAO (KJ/d)	FAO (Kcal/d)	ENSANUT (Kcal/d)
	PROMEDIO DIARIO DE REQUERIMIENTOS POBLACIÓN:	8293,7	1971,79	1787,42
PROYECCIÓN DEMAN	DA DE ENERGÍA ELECTR (MWh)	ICA EN LA ZONA 6 DE I	PLANIFICACIÓN	
		AÑO 2015	AÑO 2030	
Crecimiento (%)		4,3	4,4	
EE Azogues		110000	205059,3	
Crecimiento (%)		4,1	4,2	
EE Centro Sur		945000	1754742,1	
Zona 6 cargas singulares Indus	tria (minería)		240462	
Zona 6 introducción vehículos e	léctricos		249	
Zona 6 cargas singulares Tranv	ía		53079	
Zona 6 cocinas inducción		77280	643473,4	
Zona 6 calentamiento agua		805	1198,4	
Zona 6 AHORROS (cambio refr	igeradoras)	-8237	-11278	
Zona 6 AHORROS (cambio lum	inarias)	-4875	-6500	
Zona 6 AHORROS (optimizació	n industrias)	-9888	-19775	
TOTAL Zona 6		1.110.085,00	2.860.710,20	
ESTIMACIÓN CONSUMO	TOTAL GAS LICUADO DE HOGAR (TON)	PETRÓLEO PARA		
TOTAL	AÑO 2015	AÑO 2030		
TOTAL consumo promedio gas/ cocción/año ZONA 6	58.513,50	8.261,00]	
TOTAL consumo promedio gas/ calentar agua/año ZONA 6	52.821,30	7.173,50		
TOTAL GENERAL consumo promedio gas/ año /hogar ZONA 6	111.334,80	15.434,60		
ESTIMACIÓN CONSUMO HIE	•		1	
	AÑO 2015	AÑO 2030		
Zona 6 Gasolina extra	1.598.484,00	4.835.593,82		
Zona 6 Gasolina súper	255.769,00	672.325,73		
Zona 6 Diesel oil 1	306	4.881,11		
Zona 6 Diesel oil 2	356.873,00	1.140.755,21		
Zona 6 Diesel oil premium	1.593.232,00	4.307.526,50	J	

ENERGÍA, TRABAJO, CALOR

UNIVERSIDAD DE CUENCA

ANEXOS

Cuadro Conversiones de Energía

	Btu	erg	ft·lb	y.dų	JOULE	cal	kW·h	eV	MeV	20	n
l unidad térmica británica =	_	1.055×10^{10}	6.777	3.929 × 10-4	1055	252.0	2.930 × 10-4	6.585×10^{21}	6.585 × 10 ¹⁵	7.17 7.10 10	7.070 X.10 ¹²
erg =	9.481 × 10 ⁻¹¹	1	7.376 × 10-8	3.725×10^{-14}	10-7	2.389 × 10 ⁻⁸	2.778×10^{-14}	6.242 × 10 ¹¹	6.242 × 10 ⁵	1.113 ×.10°2	670.2
l libra-pie =	1.285 × 10 ⁻³	1.356 × 107	-	5.051 × 10 ⁻⁷	1.356	0.3238	3.766 × 10 ⁻⁷	8.464 × 10 ¹⁸	8.464 × 10 ¹²	1.509 × 10 ⁻⁷⁷	9.037 × 10°
caballo de fuerza- hora =	2545	2.685×10^{13}	1.980 × 10 ⁶	_	2.685 × 10°	6.413 × 10 ⁵	0.7457	1.676 × 10 ²⁵	1.676 × 10 ¹⁹	2.988 × 10 ⁻¹¹	1.799 × 10 ¹ 0
I JOULE =	9.481 × 10 ⁻⁴	107	0.7376	3.725 × 10 ⁻⁷	-	0.2389	2.778 × 10 ⁻⁷	6.242×10^{18}	6.242 × 10 ¹²	100 X	6.702 × 10°
caloría =	3.969 × 10 ⁻³	4.186 × 107	3.088	1.560 × 10 ⁻⁶	4.186	-	1.163 × 10⁻6	2.613 × 10 ¹⁹	2.613×10^{13}	4.660 × 10 ⁻¹⁷	2.806 × 10 ¹⁰
kilowatt-hora =	3413	3.6 × 10 ¹³	2.655 × 10 ⁶	1.341	3.6 × 10°	8.600 × 10 ⁵	-	2.247 × 10 ²⁵	2.247 × 10 ¹⁹	4.007 × 10 ⁻¹¹	2.413 × 1016
electrónvolt =	1.519 × 10 ⁻²²	1.602 × 10 ⁻¹²	1.182 × 10 ⁻¹⁹	5.967 × 10 ⁻²⁶	1.602 × 10 ⁻¹⁹	3.827×10^{-20}	4.450 × 10 ⁻²⁶	_	10-6	1.783 × 10 ⁻³⁶	1.07 × 10 ²
l millón de electronvolts =	1.519 × 10 ⁻¹⁶	1.602 × 10 ⁻⁶	1.182 × 10 ⁻¹³	5.967×10^{-20}	1.602 × 10 ⁻¹³	3.827 × 10 ¹⁴	4.450 × 10 ⁻²⁰	106	_	1.783 × 10 ⁻³⁰	1.074 X 10 ⁻³
kilogramo =	8.521 × 10 ¹³	8.987 × 10 ²³	6.629 × 101	3,348 × 101º	8.987 × 1016	2.146 × 1016	2.497 × 10 ¹⁰	5.610 × 10³5	5.610 × 1029		6.022×10^{26}
unidad unificada de masa atómica =	1.415 × 10 ⁻¹³	1.492 × 10 ⁻³	1.101 X.10°10	5.559 × 10 ⁻¹⁷	1.492 × 10 ⁻¹⁰	3.564 × 10 ⁻¹¹	4.146 × 10 ⁻¹⁷	9.32 × 10 ⁸	932.0	1.661 × 10-27	

Las cantidades en las zonas sombreadas no son unidades de energía propiamente pero se incluyen por conveniencia. Provienen de la fórmula de equivalencia masa-energía relativista $E = mc^2$ y representan la energía equivalente de una masa de un kilogramo o una unidad unificada de masa atómica (u).

Fuente: Resnick (2001).

Esquema de los principales cuerpos de legislación y normativa que se vinculan a la temática.

CUA	DRO SINTESIS DE L	EGISLACIÓN				
NORMA SUPREMA:	Constitución Política Oficial –RO- N° 449	•	del Ecuador (Registro)			
TRATADOS Y CONVENIOS INTERNACIONALES:	Naciones Unidas er	n Ecuador (RO 316 stenibilidad ambier	ntal, resiliencia y gestión			
	Tratado Internacion la Alimentación y la enero 2004; publica	Agricultura (Ratific				
	Convenio Internaci 647 6marzo1995)	onal Sobre la Div	ersidad Biológica (RO			
	Convención Relativo Internacional Especi (RO 33 24 septiemb	ialmente como há	s de Importancia bitat de aves acuáticas			
	Convenio de Viena (RO 397 16marzo19		n de la capa de Ozono			
	LEGISLACIÓN POR ÁMBITO					
LEGISLACIÓN GENERAL	Planificación Territorial	Energía	Sustentabilidad/Meta bolismo			
Código Civil -Codificado 2005- 010- (R.O suplemento 46 24junio 2005)	Código Orgánico de Organización Territorial, Autonomía y Descentralización. (Registro Oficial Suplemento 303, 19octubre 2010).	Ley-Orgánica- del-Servicio- Publico-de- Energía- Eléctrica (RO 418 16 enero 2015)	Ley orgánica del Régimen de la Soberanía Alimentaria (RO Suplemento. 583 05 mayo 2009)			
Código Integral Penal (RO suplemento 180 10 febrero 2014)	Código de Planificación y Finanzas Públicas (RO segundo suplemento 306 22octubre 2010)	DE 883 Política de Estado generación energía hidroeléctrica (RO 162 09dicembre200 5)	Código Orgánico de la Producción Comercio e Inversiones (RO 351 29diciembre2010)			

Ley Orgánica de Participación Ciudadana (RO suplemento 175 20abril 2011)	Ley Gestión Ambiental codificada 2004- 019 (RO Suplemento 418 10septiembre 2004)	DE 1048 Creación Instituto Eficiencia Energética y Energías Renovables (10-FEB-2012)	DE 2232 Estrategia Nacional de Biodiversidad como Política de Estado (RO 11 30ene2007)
	Ley forestal y de conservación de áreas naturales y vida silvestre - codificada 2004-017-(RO suplemento 418 10septiembre 2004)	Acuerdo Ministerio de Electricidad Establece Programa Eficiencia Energética para la cocción por inducción y calentamiento agua sustituyendo uso gas (RO 359 22 octubre 2014 y RO 430 03 febrero2015)	DE 1303 Declaratoria interés nacional biocombustibles (RO S 799 28-sep-2012)
	Ley preservación de zonas de reserva y parques nacionales codificada 2004- 018- (RO suplemento 418 10septiembre 2004)	Ac MAE 264 Establece mecanismos para otorgar el reconocimiento ecuatoriano ambiental carbono neutral (RO 349 07octubre2014)	DE 2820 Fondo Ambiental Nacional (RO 622 19 julio 2002)
	Ley Patrimonio Cultural codificado 2004 027 (RO suplemento 465 19noviembre 2004)		DE 1815 Política de Estado adaptación y mitigación cambio climático (RO 636 17jul2009)
	Ley protege Biodiversidad (RO suplemento 418 10 septiembre 2004)		Texto Unificado de Legislación Secundaria del Ministerio del Ambiente (RO EE N°2 31 marzo 2003)

Ley de caminos (RO 285 07julio1964)	DE N° 1048 Se crea el instituto nacional de eficiencia energética y energías renovables como entidad adscrita al ministerio de electricidad y energía renovable (RO 649 28 febrero 2012)	Ac MAE 114 Expide la Política Nacional de Gobernanza del Patrimonio Natural para la sociedad del Buen Vivir 2013 2017 (RO 138 5dic2013)
Ley Orgánica de Telecomunicacion es (RO 439 3Supl 18feb2015)		Ac MAE 095 Establece Política de Estado Estrategia Nacional Cambio Climático (RO EE 9 17junio 2013)
Ley Orgánica de Recursos Hídricos RO 2°Suplem No 305 06agosto2014		Ac MAE 64 Política de ecosistemas andinos (jul2009)
Ley desarrollo agrario (RO Suplemento 315 16 abril 2004)		Ac MAE 019 Políticas Generales Gestión Integral de Plásticos (RO 218 3abril2014)
DE 2766 Política Estado agua y saneamiento (RO 611 04jul2002)		Ac MAE 095 Establece Política de Estado Estrategia Nacional Cambio Climático (RO EE 9 17junio 2013)
Plan Nacional del Buen Vivir 2013- 2017 (R O Suplemento 78 11 septiembre 2013)		Ac MAE 0125 Normas manejo forestal sostenible bosques (RO EE 272 23 febrero 2015)
Políticas de Estado del sistema nacional de áreas naturales protegidas (Ac MAE 009 RO Suplemento 343 22 mayo 2008 y Ac MAE 093 RO 65 12 noviembre		Ac MAE 086 varias políticas ambientales (RO 64 11nov2008)

	2009)		
	Ac MAE MAGAP		
	norma zonificación		
	tierras forestación		
	y reforestación		
	(Ac 002 RO s 884		
	01feb2013 Ac258		
	RO01312jun2013)		
	Ordenanzas que		
	sancionan los		
	planes de		
	ordenamiento		
	territorial cantonal		
	de las		
	municipalidades que conforman la		
	zona 6 de		
	planificación.		
	Ac SNPD 0089		
	2014 lineamientos		
	actualización		
	PDOTs (RO 360		
	23 octubre2014)		
TEVTOC V DOCUMEN	ITOC IMPORTANTES	_	•
S TEXTOS Y DOCUMEN	NIOS IMPORTANTES	:	
acional del Ruen Vivir -P	NRV- 2005-2000		

OTRO

Plan Nacional del Buen Vivir -PNBV- 2005-2009

Plan Nacional del Buen Vivir -PNBV- 2009-2013

Plan Nacional de Desarrollo Minero versión borrador 2011

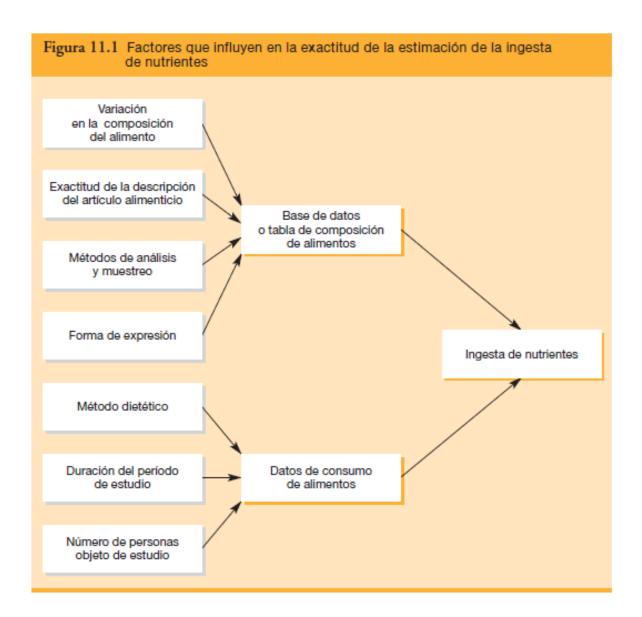
Agenda Zonal 6 SENPLADES 2009 2013

Actualización Agenda Zonal 6 SENPLADES 2013 2017

Plan Nacional de Riego 2012-2022 MAGAP (RO S

Planes Especiales de Desarrollo y Ordenamiento Territorial en Áreas de Proyectos Nacionales Estratégicos Zona 6.

DE: Decreto Ejecutivo RO: Registro Oficial Ac: Acuerdo Ministerial MAE: Ministerio del Ambiente.


MAGAP: Ministerio de Agricultura Ganadería y Pesca.

Cuadro 31. Sistematización de los principales cuerpos de legislación. Fuente: Elaboración en atención a la revisión de la legislación.

Factores que influyen en la exactitud de la estimación de ingesta de nutrientes

Factores que influyen en la exactitud de ingesta nutrientes Fuentes: Greenfield H, Southgate D.A.T. (2003).

Recomendaciones de ingesta alimentos: agua y macro nutrientes

Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients

Food and Nutrition Board, Institute of Medicine, National Academies Life Stage	Total Watera	Carbohydrate	Total Fiber	Fat	LinoleicAcid	α- LinolenicAcid	Protein <i>b</i>
Group	(L/d)	(g/d)	(g/d)	(g/d)	(g/d)	(g/d)	(g/d)
Infants	0.7*	60*	ND	31*	4.4*	0.5*	9.1*
0 to 6 mo							
6 to 12 mo	0.8*	95*	ND	30*	4.6*	0.5*	11.0
Children	1.3*	130	19*	ND_c	7*	0.7*	13
1–3 y							
4–8 y	1.7*	130	25*	ND	10*	0.9*	19
Males	2.4*	130	31*	ND	12*	1.2*	34
9–13 y							
14–18 y	3.3*	130	38*	ND	16*	1.6*	52
19–30 y	3.7*	130	38*	ND	17*	1.6*	56
31–50 y	3.7*	130	38*	ND	17*	1.6*	56
51–70 y	3.7*	130	30*	ND	14*	1.6*	56
> 70 y	3.7*	130	30*	ND	14*	1.6*	56
Females	2.1*	130	26*	ND	10*	1.0*	34
9–13 y							
14–18 y	2.3*	130	26*	ND	11*	1.1*	46
19–30 y	2.7*	130	25*	ND	12*	1.1*	46
31–50 y	2.7*	130	25*	ND	12*	1.1*	46
51–70 y	2.7*	130	21*	ND	11*	1.1*	46
> 70 y	2.7*	130	21*	ND	11*	1.1*	46
Pregnancy		•	•		•	•	
14–18 y	3.0*	175	28*	ND	13*	1.4*	71
19–30 y	3.0*	175	28*	ND	13*	1.4*	71
31–50 y	3.0*	175	28*	ND	13*	1.4*	71
Lactation		<u>t</u>	L		ı	ı	
14–18	3.8*	210	29*	ND	13*	1.3*	71
19–30 y	3.8*	210	29*	ND	13*	1.3*	71
31–50 y	3.8*	210	29*	ND	13*	1.3*	71

NOTE: This table (take from the DRI reports, see www.nap.edu) presents Recommended Dietary Allowances (RDA) in **bold type** and Adequate Intakes (AI) in ordinary type followed by an asterisk (*). An RDA is the average daily dietary intake level; sufficient to meet the nutrient requirements of nearly all (97-98 percent) healthy individuals in a group. It is calculated from an Estimated Average Requirement (EAR). If sufficient scientific evidence is not available to establish an EAR, and thus calculate an RDA, an AI is usually developed. For healthy breastfed infants, an AI is the mean intake. The AI for other life stage and gender groups is believed to cover the needs of all healthy individuals in the groups, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake.

SOURCE: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005) and Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate (2005). Thereportmay be accessed www.nap.edu.

 $_{\it a}$ Total water includes all water contained in food, beverages, and drinking water.

b Based on g protein per kg of body weight for the reference body weight, e.g., for adults 0.8 g/kg body weight for the reference body weight.

cNot determined.

Recomendaciones de rangos de distribución de la energía en el porcentaje de los macro nutrientes (carbohidratos, proteína y grasa)

Dietary Reference Intakes (DRIs): Acceptable Macronutrient Distribution Ranges

Food and Nutrition Board, Institute of Medicine, National Academies

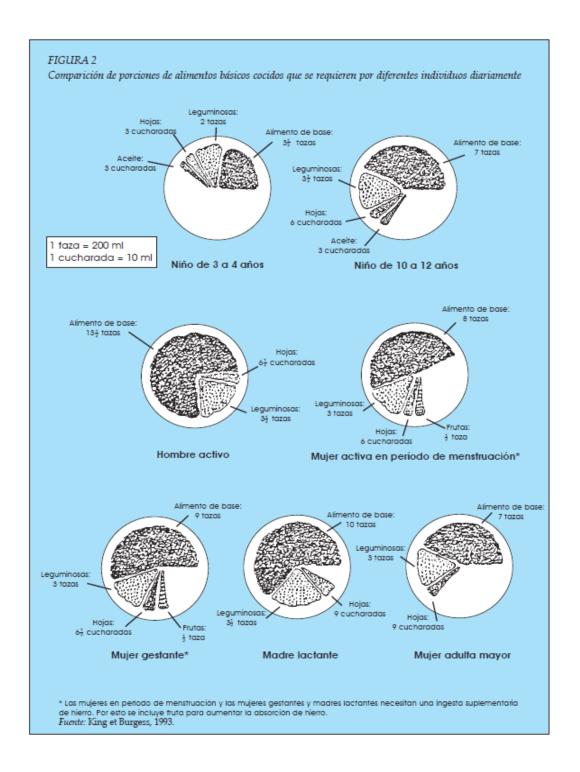
	Range (percent of energy)		
Macronutrient	Children, 1–3 y	Children, 4–18 y	Adults
Fat	30-40	25–35	20–35
n-6 polyunsaturated fatty acids a (Imoleic acid)	5-10	5-10	5-10
$n-3$ polyunsaturated fatty acids ^a (α -linolenic acid)	0.6-1.2	0.6-1.2	0.6–1.2
	45–65	45–65	45–65
	5-20	10-30	10–35

^a Approximately 10 percent of the total can come from longer-chain n-3 or n-6 fatty acids.

SOURCE: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005). The report may be accessed via www.nap.edu.

Dietary Reference Intakes (DRIs): Acceptable Macronutrient Distribution Ranges

Food and Nutrition Board, Institute of Medicine, National Academies


Recommendation	As low as possible while consuming a nutritionally adequate diet	As low as possible while consuming a nutritionally adequate diet	As low as possible while consuming a nutritionally adequate diet	Limit to no more than 25 % of total energy
Macronutrient	Dietary cholesterol	Trans fatty Acids	Saturated fatty acids	Added sugars"

"Not a recommended intake. A daily intake of added sugars that individuals should aim for to achieve a healthful diet was not set.

SOURCE: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005). The report may be accessed via www.nap.edu.

Porciones de alimentos según diferentes estados fisiológicos.

Valor Nutricional de algunas preparaciones ecuatorianas

Preparación	Cantidad	Valor nutritivo macro nutrientes			Carbohidrato
		Energía		Proteína	Grasa
Sopa de lenteja	1 plato	253	17,7	7,2	32,5
Tallarín con pollo	1 plato	543	23,3	6,6	63
Cebiche de pollo	1 porción	415,9	17,7	24,8	34,2
Salchipapas	1 plato	498	8,4	35,9	38
Bistec de hígado	1 plato	613,6	23,4	17,3	95,8
con plátano frito					
Apanado	1 porción	738,5	38,4	24,6	94,2
Churrasco	1 plato	740,7	41,5	31,6	75,6
Arroz con huevo frito	1 plato	430,9	11,4	16,4	58,6
Pinchos	1 plato	426,6	17,4	33,2	16,8
Mote casado	1 plato	832,5	24,7	64,8	43
Maduro con queso	1 unidad	516,8	8,5	22	80,3
Sancocho de pescado	1 plato	488,1	24,2	11,1	70,3
Encocado de pescado	1 porción	769,7	28,5	29,8	102,8
Biche de pescado	1 porción	486,6	27	18,9	58,5
Higos con queso	1 porción	231,9	5,8	6,4	39,7
Ensalada de frutas	1 porción	103,4	1,5	0,4	28
Taja de pastel	1 tajada	449,9	7,8	16	73,3
de chocolate					
Refresco de avena	1 vaso	115,2	2,7	1,1	24,1
Sopa de fideo	1 plato	258,6	6,7	12,6	32,5
con papas y queso					
Sopa de arroz	1 plato	232,4	5,1	12,4	37,4
con queso					
Sopa de quinua	1 plato	283,1	11,6	12,4	33,2
con carne de chancho					
Locro de papa	1 plato	314,2	6,9	17,6	36,2
Sopa de arroz	1 plato	314,3	6,9	17,6	35,6
de cebada					
Morocho con azúcar	1 vaso	338,9		9,8	8,6
Sopa de timbushca	1 plato	322,1	22,8	14,2	30,2
Caldo de morcilla	1 plato	507,1	29,2	15,3	68,7
Caldo de pata	1 plato	390,7	29,3	23,1	20,6
Caldo de bagre	1 plato	373,0	21,3	11,2	53,5
Caldo de gallina	1 plato	519,8	20,5	19,4	43,6
Yaguarlocro	1 plato	394,3	31,7	24,9	11,5
Sopa de bolas	1 plato	364,7	17,7	6,6	66,2
de verde	-				
Sopa de sancocho	1 plato	399,5	13,8	2,7	85,6
Colada de haba	1 plato	352,8	13,6	17,5	32,4
Aguado de gallina	1 plato	379,2	5,7	17	55,2
- 0	•	,	•		•

Arroz relleno	1 plato	684,6	21,4	27,7	91,9
con pollo Pollo asado con papas	¼ de pollo	1850	64,5	73,6	178
fritas Seco de carne	1 plato	600	25	15,1	93,2
Seco de chivo	1 plato	795,5	27,6	36,1	91
Guatita Hornado con mote	1 plato 1 plato	680,5 1296,4	26,1 65,6	28,9 64,4	87,5 129,5
Fritada	880	26	6,5	58	51,5
Llapingac hos con chorizo	1 plato	737,6	29,5	49,4	48,7
Arroz, menestra de fréjol y carne frita	1 plato	701,9	29,7	49,4	39,2
Arroz, pescado frito y	1 plato	790,9	31,1	37,6	85,6
patacone s Encebolla do de pescado	1 porción	389,3	3,5	26,5	41,5

Fuente: MSP (2014). **Alimentación y nutrición de la mujer gestante y de la madre en período de lactancia.** Gestión interna de promoción de la nutrición, seguridad y soberanía alimentaria. MSP, Universidad Técnica del Norte. Elaboración: autores.

Recomendaciones referenciales de nutrientes.

CUADRO A 25

Densidades de nutrientes de referencia para nutrientes seleccionados

Nutriente	Densidad del nutriente (cantidad por 1 000 kcal)	Comentarios	
Energía	Ver recomendaciones específicas por edad, sexo y actividad en Anexo 1	Para 2-5 años: 0,6-0,8 kcal /ml de alimentos líquidos; 2 kcal/g de alimentos sólidos	
Proteína	20-25 g	8-10% de la energía total si la proteína es de alta	
_	25-30 g	calidad 10-12% de la energía total si la ingesta de proteína	
Grasas	16-39 g (máximo)	animal es baja 15-35% de la energía; colesterol <300 mg /día	
Grasas saturadas	< 11 g	Hasta 10% de la ingesta energética total	
Carbohidratos	140-190 g	55-75 de la energía	
Fibra	8-20 g	Debe considerarse el total de la fibra dietética, no sólo la fibra cruda	
Vitamina A (retinol)	350-500 μg ER	1 equivalente de retinol (ER)= 1 mg de retinol o 6 ug de betacaroteno como provitamina A	
Betacaroteno	-	Funciones como antioxidante; no hay ADR para betacaroteno	
Vitamina D	2,5-5 μg	Promueve la salud ósea	
Vitamina E	3,5-5 mg α-ET	1 mg a-ET= 1 mg de a-tocoferol; inhibe la oxidación	
Vitamina K	20-40 μg	de lās lipoproteinas	
Vitamina C (ácido ascórbico)	25-30 mg	Funciones como un antioxidante; favorece la absor- ción de hierro	
Tiamina	0,5-0,8 mg		
Riboflavina	0,6-0,9 mg		
Niacina (o equivalente)	6-10 mg	60 mg triptófano equivale a 1 mg de niacina	
Vitamina B ₆	0,6-1 mg		
Vitamina B ₁₂	0,5-1 mg	Reduce homocisteinemia	
Folato	150-200 mg	Ingestas de 400 mg/día se asocian con una reduc-	
Hierro	100 200 Hig	ción de riesgo de defectos del tubo neural al nacer; reduce hiperhomocisteinemia	
Zinc	3,5, 5,5, 11 o 20 mg	Para alta, media, baja y muy baja biodisponibilidad en la dieta	
Calcio	6 o 10 mg	Para dietas de alta y baja biodisponibilidad	
Yodo	250-400 mg	Alimentos ricos en calcio especialmente para muje- res adolescentes, embarazadas y madres lactantes	
Flúor	75 µg	100-200 mg/día en regiones libres de bocio; habi- tualmente se requiere fortificación de la sal	
Sodio como NaCl	0,5-1 mg (máximo)	Si el agua contiene >1 ppm los requerimientos están satisfechos	
	<2,5 g	Sodio total como NaCl <6g/día (población media)	

Fuente: OMS, 1996.

Nota: Estas densidades de nutrientes hacen referencia a una dieta total; si la ingesta es insuficiente para satisfacer las necesidades energéticas, la dieta también responderá a las necesidades de todos con la exceptión posiblemente de los niños menores de 2 años y las mujeres embarazadas y lactantes. Los niños deberían ser alimentados exclusivamente con leche materna hasta la edad de 4 a 6 meses; después de ese período la dieta debería complementarse con alimentos apropiados que proporcionarán energía, proteínas y determinados nutrientes adicionales.

Distribución porcentual del consumo de energía para trasporte en el año 2013 a nivel país.

Figure 1-17 Energy consumption structure by sectors

1% Otros sectores
Other Sectors

1% Agropesca, miner
Agriculture, fithery, mining

1% Commercial, Ser. pub
Commercial, Fub. ser

12% Residential

18% Industria
Industry

99 millones de BEP

Figura 1-18 Estructura del consumo por fuente

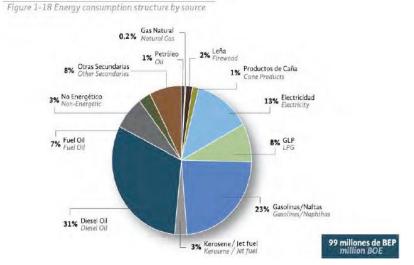
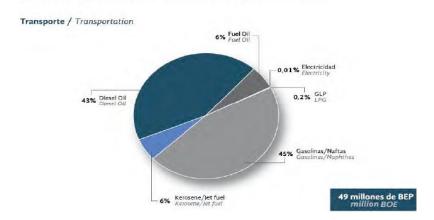



Figura 1-19 Consumo de los sectores económicos por tipo de fuente Figure 1-19 Energy consumption of the economic sectors by energy source.

Fuente: Balance Energía 2014. Ministerio Coordinador de Sectores Estratégicos (2014).

Cuadros y tablas sobre residuos en el Ecuador

Análisis Sectorial de Residuos Sólidos

Dada la variación en la composición de los residuos sólidos, se ha procedido a calcular los porcentajes medios ponderados de cada material en el ámbito de país, a fin de estimar la cantidad que se genera diariamente, de cada uno de ellos. Los valores obtenidos se muestran en el Cuadro 3.25.

Cuadro 3.25 Naturaleza de los residuos sólidos en Ecuador

Material	Porcentaje (%)	Producción (ton/día)
Materia orgánica	71,4	5.298
Papel y cartón	9,6	709
Plástico	4,5	336
Vidrio	3,7	274
Metales	0,7	53
TOTAL	100	6.669

De este cuadro se puede establecer que alrededor de 1.371 toneladas de residuos sólidos son susceptibles de reciclar, dentro de las cuales se incluye el papel y cartón, plástico, vidrio y los metales.

Por otro lado, si se estima que diariamente se generan 7.423 toneladas de basura, el 71,4% (5.298 toneladas) corresponden a materia orgánica, constituyéndose en una potencial fuente de materia prima para la producción de compost.

Ecuador 87

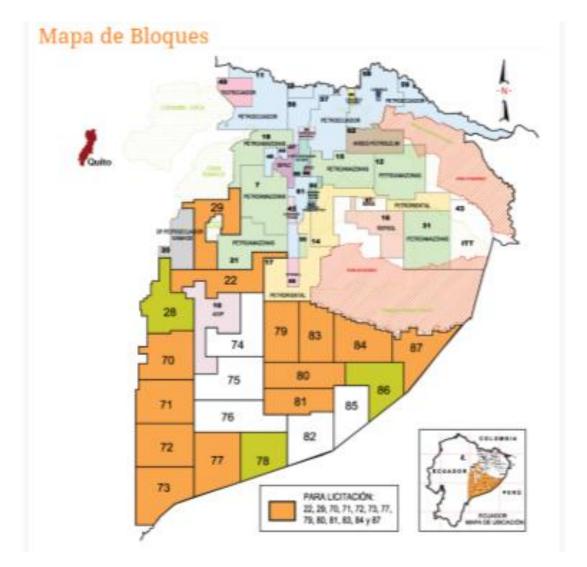
Cuadro 3.22 Generación per cápita, por tamaño de ciudades

Tipo de ciudad	GPC (kg/hab/día)	Referencia
Metrópolis	0,85	Quito
Grande	0,65	Santo Domingo
Mediana	0,64	Riobamba
Pequeña y rural	0,45	Tena

Considerando los valores de generación per cápita y el tipo de ciudad señalados, en el Cuadro 3.23 se estima que en el país se generan alrededor de 7.423 toneladas de residuos sólidos por día.

Cuadro 3.23 Generación de residuos por tipo de ciudad

Región	Generación de Residuos por tipo de ciudad (ton/día)				
Kegion	Pequeña	Mediana	Grande		
Costa	235	1.922	1.679		
Sierra	351	1.650	1.311		
Oriente	111	157			
Galápagos	7				
Total	704	3.729	2.990		


En la totalidad de basura, el 50,2% corresponde a las ciudades grandes y medianas, 40,3% a las metrópolis y el 9,5% restante a las ciudades pequeñas. Asimismo, se puede establecer que la cantidad de residuos generados en el ámbito de regiones es como se indica a en el Cuadro 3.24.

Cuadro 3.24 Producción de residuos sólidos por región y zona

Región			Producci	ón de Resid	duos	
Region	Zona	a Urbana	Zona	Rural		País
	%	Ton/día	%	Ton/día	%	Ton/día
Sierra	31,1	2.311	13,5	804	44,6	3.312
Costa	40,8	3.032	10,8	1.001	51,7	3.836
Oriente	1,3	94	2,3	174	3,6	268
Galápagos	0,1	6	0,01	1	0,1	7
Total	73,3	5.443	26,7	1.980	100,0	7.423

Fuente: OPS (2002).

Bloques petroleros en el Sur Oriente de Ecuador

Fuente: http://www.rondasuroriente.gob.ec/ronda-sur-oriente/informacion-general/ (25 mayo2015).

Cuadro de dotaciones de agua recomendadas por la normativa.

TABLA V.3 Dotaciones recomendadas

POBLACION (habitantes)	CLIMA	DOTACION MEDIA FUTURA (1/hab/día)
hasta 5 000	frío templado cálido	120 - 150 130 - 160 170 - 200
5 000 a 50 000	frío templado cálido	180 - 200 190 - 220 200 - 230
más de 50 000	frío templado cálido	> 200 > 220 > 230

Para la selección de la dotación se debe hacer, al menos, una investigación cualitativa de los hábitos de consumo, usos del agua y una aproximación del costo de los servicios y disponibilidades hídricas en las fuentes.

Para poblaciones menores a 5 000 habitantes, se debe tomar la dotación mínima fijada.

Fuente: Norma para diseño de sistemas de agua potable y disposición de aguas residuales INEN (1992).

Rendimiento en carne de bovino

Tabla 1. Peso vivo, peso de la res y de otros componentes corporales en novillos de diferente raza o biotipo, alimentados con concentrados y forrajes (Adaptado Jones y otros, 9).

1 /	, ,			\ 1		
Parámetro		Raza		Alimento		
Farameno	Chica	Grande	Lechera	Concentrado	Forraje	
Peso vivo (kg)	393	457	409	428	413	
Rend. % (1)	58.2	60.7	56.1	59.2	57.6	
Rend. % (2)	67.1	69.3	65.8	67.4	67.3	
Grasa subcutánea	7.0	5.8	5.9	6.5	5.9	
Cuero	10.3	9.7	8.5	9.3	9.7	
Cabeza	4.1	3.7	4.2	3.9	4.1	
Extremidades	2.5	2.5	2.7	2.5	2.5	
Órganos	3.8	3.5	4.5	3.8	3.6	
Grasa visceral *	3.7	4.0	5.6	4.8	4.1	
Librillo y estóm.	2.6	2.4	2.9	2.6	2.7	
Intestino	3.7	3.1	3.6	3.6	3.3	

⁽¹⁾ Respecto al peso total y (2) respecto al peso vacío.

Dr. Oscar N. Di Marco. 2002. Unidad Integrada Balcarce (INTA-Fac.Cs.Agrarias).

^{*} En la grasa visceral el autor incluye, además de la grasa omental y mesentérica, la de riñonada y pélvica que en Argentina quedan en la res.

Cuadros de precipitaciones mensuales en las provincias de Azuay, Cañar y Morona Santiago.

Precipitación media mensual en la
provincia del Azuay.

MES	PRECIPITACIÓN	ET°	Diferencia
enero	100,23	60,14	40,09
febrero	127,94	59,71	68,23
marzo	133,53	60,03	73,50
abril	123,93	59,21	64,72
mayo	78,72	58,71	20,01
junio	55,41	55,39	0,02
julio	46,03	51,15	(5,12)
agosto	34,11	53,79	(19,68)
septiembre	43,04	55,98	(12,94)
octubre	61,81	59,42	2,39
noviembre	58,97	59,84	(0,87)
diciembre	75,91	61,17	14,74

Fuente: Elaborado a partir de información del Plan de Desarrollo y Ordenamiento Territorial del Azuay (2011).

Precipitación media mensual en la provincia del Cañar

MES	ZONA 1: Azogues, Biblián y Déleg	ZONA 2: Cañar, Suscal y El Tambo	ZONA 3: La Troncal
Enero	61	38,5	375,3
Febrero	97,9	53,1	382,3
Marzo	111,5	66,3	497,3
Abril	113,9	64,6	231
Mayo	71,1	41,5	69,5
Junio	44,4	26,5	15
Julio	48,6	20	7,3
Agosto	32	16,7	8,2
Septiembre	40,6	25,2	20,7
Octubre	85,2	42,2	17,1
Noviembre	102,3	43	25,4
Diciembre	86,1	34,2	35,4

Fuente: Elaborado a partir de información del Plan de Desarrollo y Ordenamiento Territorial de la provincia del Cañar (2011).

Precipitación media mensual en la provincia de Morona Santiago

MES	PALORA	MACAS	MENDEZ
Enero	413,5	151,5	184,9
Febrero	409,0	197,1	167,8
Marzo	424,9	234,4	227
Abril	565,4	266,7	267,7
Mayo	543,9	264,2	262,3
Junio	533,2	250,6	273,6
Julio	404,1	200	223,2
Agosto	331,0	158,2	200,7
Septiembre	384,9	190,7	213,7
Octubre	497,9	188,8	229,4
Noviembre	476,9	178,7	161,1
Diciembre	464,9	171,1	177,3

Fuente: Elaborado a partir de información del estudio sobre Sostenibilidad de los sistemas agrícolas en la provincia de Morona Santiago (2009)

Hoja informativa para Ecuador FAO aquastat (2015)

Hoja informativa nacional Ecuador

TERRA Y POBLACIÓN	Año	Valor	Unidad
uperficie			
Superficie total del país	2012	25 637	1 000 ha
Superficie cultivada	2012	2 531	1 000 ha
oblación			
Población total	2013	15 738	1 000
Densidad de población	2012	60.43	hab/km2
Población rural	2013	4 942	1 000
Población económicamente activa en la agricultura	2013	1 268	1 000
En % de la población total económicamente activa	2013	17.07	%
RECURSOS HÍDRICOS RENOVABLES (RH)	Afio	Valor	Unidad
Promedio a largo plazo de precipitacón anual			
Profundidad		2 274	mm/año
Volumen		583	km²/año
		500	
Promedio a largo plazo de los RHR		440.4	less No. 2
Internos (RHRI)		442.4 15	km³/año km³/año
Externos (RHRE)		15 457.4	km²/año
Totales (RHRT)		457.4 3.279	km²/ano %
Tasa de dependencia RHRT per cápita	2014	29 063	m³/año
		7.692	km²
Capacidad total de presas	2015	1.082	Km-
EXTRACCIÓN DE AGUA	Aflo	Valor	Unidad
Por sector			
Agricola	2005	8.076	km²
Municipal	2005	1.293	km²
Industrial	2005	0.549	km²
Total	2005	9.918	km²
Extracción total de agua per cápita	2005	695.1	m²
Por fuente			
Agua superficial		-	km²
Agua subterránea			km²
Extracción total de agua dulce	2005	9.916	km²
Agua desalinizada producida	2005	0.0022	km²
Uso directo de agua residual municipal tratada		-	km²
Uso directo de agua de drenaje agrícola		-	km²
Presión sobre los recursos hídricos			
Extracción total de agua dulce como % de los RHRT	2005	2.168	%
Extracción de agua per la agricultura como % de los RHRT	2005	1.766	%
SUPERFICIE BAJO RIEGO	Afio	Valor	Unidad
Área equipada para riego			
Riego con dominio total	2010	1 500	1 000 ha
riego superficial (2000) 663.9 1 000 ha			
riego por aspersión (2000) 170.1 1 000 ha riego localizado (2000) 19.4 1 000 ha			
Zonas bajas equipadas		-	1 000 ha
Derivación de crecidas		-	1 000 ha
Superficie total equipada para riego	2010	1 500	1 000 ha
Como % de la superficie cultivada	2010	59.27	%
Superficie realmente regada	2010	942	1 000 ha
Superiide realitiente regada			

Generado el 21 may 2015 a las 08:14 CEST

http://www.fao.org/nr/aquastat/

TABLA 1 Estadísticas básicas y población

Superficies físicas:			
Superficie del país	2012	25 637 000	ha
Superficie agrícola (praderas y pastos permanentes + superficie cultivada)	2012	7 507 000	ha
Como % de la superficie total del país	2012	29	%
 Praderas y pastos permanentes 	2012	4 976 000	ha
 Superficie cultivada (superficie arable y cultivos permanentes) 	2012	2 531 000	ha
 Como % de la superficie total del país 	2012	10	%
 Superficie arable (cult temp + pastos y barbechos temp) 	2012	1 148 000	ha
 Superficie bajo cultivos permanentes 	2012	1 383 000	ha
Población:			
Población total	2013	15 738 000	habitantes
- % de población rural	2013	31	%
Densidad de población	2013	61	habitantes/km²
Población económicamente activa	2013	7 427 000	habitantes
% sobre la población total	2013	47	%
Femenina	2013	41	%
Masculina	2013	59	%
Población económicamente activa en la agricultura	2013	1 268 000	habitantes
 % sobre la población económicamente activa 	2013	17	%
Femenina	2013	26	%
Masculina	2013	74	%
Economía y desarrollo:			
Producto Interno Bruto (PIB) (\$EE.UU. corrientes)	2012	84 040	millones \$/año
 Contribución de la agricultura al PIB (% del PIB) 	2011	10	%
PIB per cápita	2012	5 654	\$EE.UU./año
Índice de Desarrollo Humano (el máximo = 1)	2013	0.71	2 -
Índice de Desigualdad de Género (igualdad = 0, desigualdad = 1)	2013	0.42	9 -
Acceso a fuentes mejoradas de agua potable:			
Población total	2012	86	%
Población urbana	2012	92	%
Población rural	2012	75	%

TABLA 2 Recursos hídricos

Recursos hídricos renovables de agua dulce:			
Precipitación (media a largo plazo)	-	2 274	mm/año
	-	583 000	millones m³/año
Recursos hídricos renovables internos (media a largo plazo)	-	442 400	millones m³/año
Recursos hídricos renovables totales	-	457 400	millones m³/año
Tasa de dependencia	-	3.3	%
Recursos hídricos renovables totales por habitante	2013	29 063	m³/año
Capacidad total de presas	2011	7 692	millones m ³

TABLA 3 Usos del agua

Extracción de agua:			
Extracción total de agua	2005	9 918	millones m³/año
 Agrícola (Riego + Ganadería + Acuicultura) 	2005	8 076	millones m³/año
- Municipal	2005	1 293	millones m³/año
- Industrial	2005	549	millones m³/año
Por habitante	2005	720	m³/año
Extracción de agua superficial y agua subterránea (primaria y secundaria)	2005	9 915.8	millones m³/año
 % sobre los recursos hídricos renovables totales 	2005	2.2	%
Fuentes de agua no convencionales:			
Agua residual municipal producida	1999	631	millones m³/año
Agua residual municipal tratada	1999	158	millones m³/año
Uso directo de agua residual municipal tratada	-	-	millones m³/año
Uso directo de agua de drenaje agrícola	-	-	millones m³/año
Agua desalinizada producida	2000	2.2	millones m³/año

FIGURA 1 Extracciones de agua por sector Total: 9 918 millones de m³ en 2005

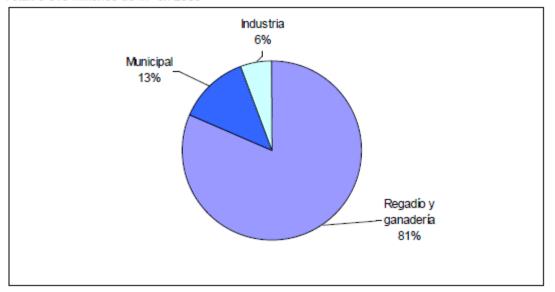


TABLA 4 Riego y drenaje

Superficie potencial de riego	-	3 136 000	ha
Riego:			
Superficie equipada para el riego con dominio total	2010	1 500 000	ha
 Riego por superficie 	2000	663 900	ha
 Riego por aspersión 	2000	170 100	ha
 Riego localizado 	2000	19 400	ha
 Superficie eq. para el riego con dominio total efectivamente regada 	2010	942 000	ha
 % sobre la sup. equipada para el riego con dominio total 	2010	63	%
2. Zonas bajas equip. (humedales, fvi, agua de decrecidas, manglares)	2010	0	ha
 Riego por derivación de crecidas 	2010	0	ha
Superficie total equipada para el riego (1+2+3)	2010	1 500 000	ha
% sobre la superficie cultivada	2010	58	%
 % regado con agua superficial 	2000	98.88	%
 % regado con agua subterránea 	2000	1.11	%
 % regado con agua mixta (superficial y subterránea) 	-	-	%
 % regado con fuentes de agua no convencionales 	2001	0.01	%
 Superficie equipada para el riego efectivamente regada 	2010	942 000	ha
 % sobre la superficie total equipada para el riego 	2010	63	%
Incremento medio anual	2000-2010	6	%
Superficie regada por bombeo como % de la superficie equipada	1997	2	%
4. Humedales y fondos de valles interiores no equipados	2010	0	ha
5. Sup. cultivada en áreas de decrecida de inundaciones no equipadas	2010	0	ha
Superficie total con gestión de agua agrícola (1+2+3+4+5)	2010	1 500 000	ha
% sobre la superficie cultivada	2010	58	%
Explotaciones equipada para el riego con dominio total : Criterio:			
Explotaciones en regadío pequeñas < 10 ha	2000	219 202	ha
Explotaciones en regadío medianas > 10 ha y < 100 ha	2000	286 443	ha
Explotaciones en regadío grandes > 100 ha	2000	347 884	ha
Número total de hogares que dependen del riego	1997	59 273	

Cultivos regados en superficies equipadas para el riego con dom. tota	ıl:				
Producción total de grano en regadío			t. métricas		
 % sobre el total de la producción de grano 					
Cultivos cosechados:					
Superficie cosechada de cultivos regados total:	2000	666 320	ha		
Cultivos temporales: total	2000	409 350	ha		
- Arroz	2000	153 860	ha		
- Maíz	2000	60 640	ha		
- Hortalizas	2000	80 740	ha		
- Papas	2000	13 230	ha		
- Caña de azúcar	2000	90 830	ha		
 Otros cultivos temporales 	2000	10 050	ha		
 Cultivos permanentes: total 	2000	256 970	ha		
- Banano	2000	148 480	ha		
- Cítricos	2000	7 890	ha		
- Frutales	2000	42 200	ha		
- Café	2000	8 750	ha		
- Cacao en grano	2000	33 340	ha		
 Otros cultivos permanentes 	2000	16 310	ha		
Intensidad de los cultivos regados (sobre sup. efectivamente regada)	2000	108	%		
Drenaje – Medio ambiente:					
Superficie cultivada drenada total	1998	52 030	ha		
 Superficie cultivada no equipada para el riego drenada 	-	-	ha		
 Superficie equipada para el riego drenada 	1998	52 030	ha		
 % sobre la superficie equipada para el riego 	1998	2	%		
Superficie salinizada por el riego	-	-	ha		
Superficie encharcada por el riego	-	-	ha		

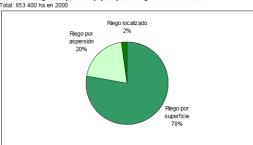


FIGURA 4 Tipo de explotaciones de riego con dominio total Total: 853 400 ha en 2000

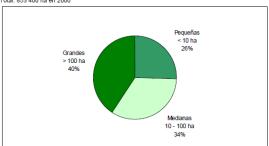


FIGURA 5 Fuente de agua en superficie equipada para el riego Total: 853 400 ha en 2000

THE STATE CHARGO COMMON

UNIVERSIDAD DE CUENCA

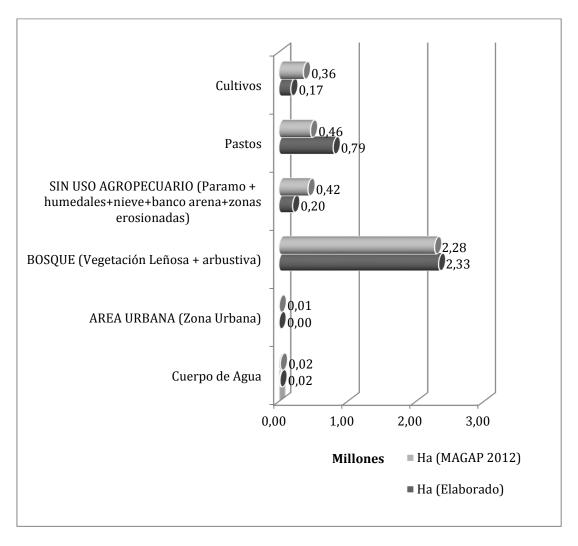
Cuadros comparativos de superficie de suelo disponible para agricultura y ganadería:

APTITUD AGRÍCOLA (ESTIMACIÓN DISPONIBILIDAD)	ha (MAGAP 2012)	ha (Elaborado)
Cuerpo de Agua	22.120,04	15.843,00
AREA URBANA (Zona Urbana)	5.082,01	2.208,00
BOSQUE (Vegetación Leñosa + arbustiva)	2.275.705,04	2.333.813,00
SIN USO AGROPECUARIO (Páramo + humedales + nieve +banco arena + zonas erosionadas)	424.882,42	201.078,00
Pastos	462.095,28	793.198,00
Cultivos	358.168,83	174.068,00
TOTAL	3.548.053,62	3.520.208,00

*Los valores finales difieren ligeramente por aspectos de empleo de cartografía digital.

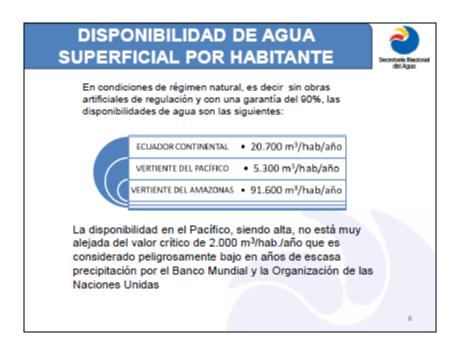
Aptitud agrícola generada por el MAGAP (2012) y la elaborada para el presente análisis en atención a tres criterios: pendiente, piso altitudinal y cobertura suelo.

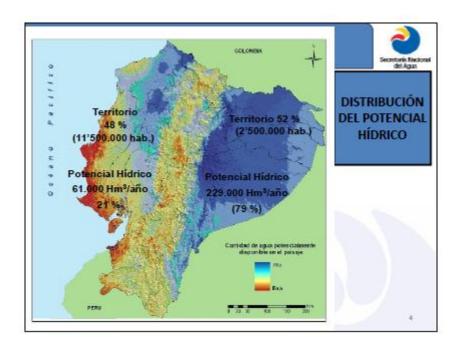
		Aptitud	d agrícola s	egún MA	GAP (agosto 2	2012 escala 1:250 000)
%	На	Total Z6	Aptitud Agrícola	%	Código	Detalle
0,1		3.455,0			C1a	C1a AGRICULTURA SIN LIMITACIONES, MECANIZACION Y RIEGO MUY FACILES
0,3		9.511,0			C1b	C1b AGRICULTURA CON LIMITACIONES LIGERAS, MECANIZACION Y RIEGO MUY FACILES
0,2		5.761,0			C1c	C1c AGRICULTURA CON LIMITACIONES LIGERAS, (TEXTURA) MECANIZACION Y RIEGO MUY FACILES
0,1		3.915,0			C1d	C1d AGRICULTURA CON LIMITACIONES MUY IMPORTANTES, (TEXTURA) MECANIZACION Y RIEGO MUY FACILES
0,1		1.636,0			C2a	C2a AGRICULTURA CON LIMITACIONES LIGERAS, (PENDIENTE) MECANIZACION Y RIEGO MUY FACILES
0,1		3.827,0			C2b	C2b AGRICULTURA CON LIMITACIONES MUY IMPORTANTES, (TEXTURA) MECANIZACION Y RIEGO DIFICILES
0,5		16.114,0			C2c	C2c AGRICULTURA CON LIMITACIONES IMPORTANTES, (TEXTURA) MECANIZACION ESPECIALIZADA Y RIEGO DIFICIL
0,0		0,0			C2d	C2d AGRICULTURA CON LIMITACIONES MUY IMPORTANTES, (TEXTURA) MECANIZACION Y RIEGO DIFICIL
	174.068, 0		Cultivos	4,94	СЗа	C3a AGRICULTURA CON LIMITACIONES IMPORTANTES, (PENDIENTE) MECANIZACION ESPECIALIZADA Y RIEGO
0,8		25.541,0			C3b	DIFICIL A IMPOSIBLE C3b AGRICULTURA CON LIMITACIONES IMPORTANTES, (PENDIENTE) MECANIZACION
0,3		8.983,0				DIFICIL Y RIEGO DIFICIL A IMPOSIBLE C3c AGRICULTURA CON LIMITACIONES MUY IMPORTANTES, (PENDIENTE)
1,8		57.636,0			C3c	MECANIZACION ESPECIALIZADA Y RIEGO DIFICIL A IMPOSIBLE C3d AGRICULTURA CON LIMITACIONES
0,3		10.628,0			C3d	IMPORTANTES, (PENDIENTE), MECANIZACION Y RIEGO IMPOSIBLE
0,0		0,0			C4a	AGRICULTURA CON LIMITACIONES LIGERAS,
0,1		3.550,0			C4b	(PENDIENTE) MECANIZACION ESPECIALIZADA Y RIEGO DIFICIL A IMPOSIBLE C4c AGRICULTURA CON LIMITACIONES
0,4		13.912,0			C4c	IMPORTANTES, (PENDIENTE) MEDIDAS DE PROTECCION, EXPLOTACION ACONSEJADA C4d AGRICULTURA CON LIMITACIONES MUY
0,3		9.599,0			C4d	IMPORTANTES, (PENDIENTE), MEDIDAS DE PROTECCION ACONSEJADAS
72,9	2.333.81 3,0	2.333.813,0	Bosque	66,30	В	B FORESTACION, REFORESTACION Y MANTENIMIENTO DE LA COBERTURA VEGETAL NATURAL, LIMITACIONES IMPORTANTES
	793.198,			22,53	Р	ZONAS MARGINALES PARA LA AGRICULTURA, MEJORAMIENTO DE PASTOS NATURALES EXISTENTES, LIMITACIONES
24,8	201.078,	793.198,0	Pastos Sin uso agropecu	5,71	S	IMPORTANTES
6,3	0	201.078,0	ario Área	-		S SIN USO AGROPECUARIO
0,1	2.208,0	2.208,0	Urbana	0,06	U	U AREA URBANA
0,5	15.843,0	15.843,0	Cuerpos agua	0,45	Wn	Wn CUERPOS DE AGUA



	3.520.20			100
100	8	3.520.208,0	Total	100

Disponibilidad de suelo según tres criterios: pendiente, piso altitudinal y cobertura de suelo


cobertura de suel	0	
Cobertura	На	% territorio
Cultivos	358.168,83	10,1
Vegetación Leñosa + arbustiva	2.275.705,04	
Pastos	462.095,28	13,0
Paramo + humedales +nieve +banco arena +zonas		12,0
erosionadas	424.882,42	12,0
Zona Urbana	5.082,01	0,1
Cuerpo de Agua	22.120,04	0,6
Total general	3.548.053,62	100



Disponibilidad de Agua en el Ecuador continental según SENAGUA (2011)

Balanza comercial en productos agrícolas

PRINCIPALES PRODUCTOS DE COMERCIO EXTERIOR Peso en Toneladas Métricas

PRODUCTO		013	2014		2015 Ene- Feb	
FRODUCIO					Ex	
	Exp	Imp	Exp	Imp	р	Imp
			1.27	113.6		
Maíz duro	748	124.493	0	56	0	0
Papa ^{2/}	161	8.600	87	7.915	13	915
Tomate riñón incluye pasta ^{2/}	11	5.388	0	6.278	0	862
			17.4	66.70	16	
Cebolla bulbo	21.743	35.513	41	2	9	738
Arveja ^{3/}	0	3.611	6	4.546	0	384
Maíz suave fresco	1	1.475	0	2.407	0	134
				798.5		34.57
Trigo	0	559.240	0	54	0	5
				116.5	_	13.56
Soya aceite crudo y refinado	88	126.714	133	10	1	9
Soya torta	0	617.973	0	751.8 50	0	143.0 22
Soya torta	U	017.373	9.19	22.32	12	
Azúcar crudo y refinado ^{7/}	12.073	2.113	0	9	8	1.123
Leche evaporada	0	526	0	433	0	185
Leche condensada	0	2.002	0	1.834	0	574
Ganado bovino carne ^{5/}	0	69	1	103	0	43
Ganado porcino carne ^{5/}	0	6.144	0	4.672	0	448
Pollo en pie ^{6/}	0	169	0	265	0	35

- 1/ Incluye descascarillado, semi blanqueado y partido
- 2/ Incluye congelada y/o en conserva
- 3/ Incluye fresco y/o seco
- 4/ Palma africana en fruta no se comercializa
- 5/ Incluye fresca, refrigerada y congelada
- 6/ Incluye pollito BB
- 7/ Incluye sacarosa químicamente pura

Fuente: Banco Central del Ecuador (cifras provisionales 2013, 2014,

2015 acumulado a Febrero)

Elaboración: MAGAP/CGSIN/DAPI

BIBLIOGRAFÍA

- Alemán y Pérez (1997). Agroecología. Universidad Francisco de Paula Santander. Cuba 1997.
- Arrojo P (2007). Agua y política pública. Intercambio y Debate de visones y propuestas sobre la gestión del agua en el marco del proceso constituyente. Conferencia dictada en el Aula Magna de la Universidad de Cuenca. 11 octubre 2007.
- Consejo Nacional de Electrificación CONELEC (2013). Plan Maestro de Electrificación 2013-2022. Volumen 3.
- Consejo Nacional de Electrificación CONELEC (2013). Plan Maestro de Electrificación 2013-2022. Volúmenes 1 al 4.
- Di Marco O (2002). Rendimiento de Res. Unidad integrada Balcarce (INTA-Facultad Ciencias Agrarias). Argentina.
- Expert Consultation, FAO (2001). <u>Human energy requirements</u>. Report of a Joint FAO/WHO/UNU FAO Expert Consultation. Food and Nutrition Technical Report Series No. 1. Rome.
- Freire WB., Ramírez-Luzuriaga MJ., Belmont P., Mendieta MJ., Silva-Jaramillo MK., Romero N., Saenz K., Pineiros P., Gomez LF., Monge R. (2014). Tomo I: Encuesta Nacional de Salud y Nutrición de la población ecuatoriana de cero a 59 anos. ENSANUT-ECU 2012. Ministerio de Salud Publica/Instituto Nacional de Estadísticas y Censos. Quito-Ecuador.
- Gobierno Provincial del Azuay (2011). Plan de Desarrollo y Ordenamiento Territorial del Azuay.
- Gobierno Provincial del Cañar (2012). Plan de Desarrollo y Ordenamiento Territorial de la Provincia del Cañar.
- Gobierno Provincial de Morona Santiago (2012). Plan de Desarrollo y Ordenamiento Territorial de Morona Santiago.
- Gómez J, Luis E, Puerto A. (1978). El Sistema vaguada como unidad de estudio en pastizales. Departamento de Ecología, Facultad de Ciencia. Salamanca. (pág. 2).
- Gómez D. (2008). Ordenación Territorial, 2.ª ed. Ediciones Mundi-Prensa S.A. Madrid.
- González de Molina, M; Toledo, V. (2011). Metabolismos, naturaleza e historia: hacia una teoría socio-ecológica de las transformaciones, Barcelona, Icaria editorial.
- Greenfield H, Southgate D.A.T. (2003). Datos de composición de alimentos FAO, Roma (2006). Pág. 218.
- Instituto Nacional de Eficiencia Energética y Energías Renovables INER (2010) Eficiencia energética en Transporte. Dossier publicado, (pág. 5)
- Instituto Nacional Ecuatoriano de Normalización INEN (1992). Código Ecuatoriano de la Construcción C.E.C. Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 1 000 habitantes. CPE INEN Parte9-1:1992
- Instituto Nacional de Estadísticas y Censos -INEC-, (2010). Censo Nacional de Población y Vivienda Ecuador para el año 2010. Ecuador.

THE VILL CRIPTO RECORDS

UNIVERSIDAD DE CUENCA

- Instituto Nacional de Estadísticas y Censos INEC (2014). Información ambiental en hogares.
- Lozano A, (2010). Ordenamiento Territorial y "Buen Vivir -Sumak Kawsay-: Retos del Estado Plurinacional Ecuatoriano. Universidad Jaume I. Plan de promoción para estancias de investigadores extranjeros. INV-2010-XX. Castellón, España (pág. 19)
- Lozano A, (2011). Plan del Buen Vivir y Ordenamiento Territorial del cantón Azogues. Diapositivas sobre el Avance Propuesta PBV. Municipalidad de Azogues
 COPADE consultora. Azogues, Ecuador. (Diapositiva N° 3)
- Ministerio de Coordinación de Desarrollo Social del Ecuador. FAO.AECID. (2014).
 Seguridad alimentaria y Nutricional en el Ecuador. Construyendo la Soberanía Alimentaria.
- Ministerio Coordinador de Sectores Estratégicos (2014). Balance Energético Nacional 2014.Quito.
- Ministerio del Ambiente del Ecuador (2013). Reporte de la Huella Ecológica del Ecuador: 2008 y 2009". Primera edición, Quito - Ecuador.
- Ministerio de Salud Pública –MSP- (2014). Alimentación y nutrición de la mujer gestante y de la madre en período de lactancia. Guía de Práctica Clínica (GPC).
 Primera edición. Quito: Dirección Nacional de Normalización. Disponible en: http://salud.gob.ec. (pág. 72).
- Monserrat P, (2008). Ecología eficaz en la vida rural de montaña. Universidad de Alcalá. Madrid / Fundación Interuniversitaria Fernando González Bernáldez para los Espacios Naturales. Madríd.
- Organización de las Naciones Unidad para la alimentación y la Agricultura-FAO-.
 (2011) Reporte del Trigésimo séptimo período de sesiones. Roma, 25 junio-2 julio,
- Organización Panamericana de la Salud (2002). Análisis Sectorial de Residuos Sólidos Ecuador. OPS, OMS. División de Salud y Ambiente.
- Real Academia de la Lengua Española (2015). Diccionario virtual.
- Registro Oficial de la República del Ecuador. Varias fechas. Reyes M, Gómez P, Espinoza B, et al. (2009). Tablas peruanas de composición de alimentos. Instituto Nacional de Salud de Perú. Ministerio de Salud. 8ª edición, 2009. Lima.
- Resnick. R, Halliday D, Krane Kenneth (2001). Física Vol. 1.Cuarta edición (Tercera en español). Compañía Editorial Continental. México 2001, (pág. 189).
- Secretaría Nacional de Planificación SENPLADES (2014). Agenda Zonal 6.
 Cuenca.
- Toledo Víctor M. (2013). "El metabolismo social: Una nueva teoría socio ecológica".
 Revista Relaciones 136, otoño 2013, vol. XXXIV. México. ISSN 0185-3929 (pág. 41-71).
- Toledo Víctor M. (2008). "Metabolismos Rurales: hacia una teoría económicoecológica de la apropiación de la naturaleza". Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Campus Morelia, México 2008. Revista Iberoamericana de Economía Ecológica Vol. 7. (pág. 1-28).
- Toledo Víctor M, González de Molina M. (2007) "El metabolismo social: Las relaciones entre la sociedad y la Naturaleza". En: coord. por <u>Francisco Garrido</u> <u>Peña</u>, Manuel Luis González de Molina Navarro, <u>José Luis Serrano Moreno</u>, <u>José</u>

- <u>Luis Solana Ruiz</u> "<u>El paradigma ecológico en las ciencias sociales</u>", 2007, ISBN 978-84-7426-756-3, (pág. 85-112).
- Urteaga L, (1985). "La economía ecológica de Martínez Alier". Revista Documents d' anàlis i geogràfica. 7,1985, UAB, (pág.193-205).
- World Resources Institute (2008). GHG Protocol tool for mobile combustion.
 Version 2.2.

BIBLIOGRAFÍA CITADA EN LAS HOJAS DE CÁLCULO

- Alimentos argentinos (2015).
 http://www.alimentosargentinos.gob.ar/contenido/revista/ediciones/28/Harina_trigo.
 http://www.alimentosargentinos.gob.ar/contenido/revista/ediciones/28/Harina_trigo.
 http://www.alimentosargentinos.gob.ar/contenido/revista/ediciones/28/Harina_trigo.
 http://www.alimentosargentinos.gob.ar/contenido/revista/ediciones/28/Harina_trigo.
- Alvarez, R (2010). Caracterización del sector de la palma aceitera en Ecuador.
 Zamorano, Honduras.
- Andrade, P. Chávez M, Naar V. (2007). Evaluación de las etapas de cocción y secado en la obtención de harina de cabezas de camarón de cultivo (Penaeus sp). DYNA, Vol. 74, Núm. 153 (2007).
- Banco Central del Ecuador (2013). Encuesta de coyuntura Sector Agropecuario. N° 86-II2013. ISSN N° 1390-0579.
- Ceballos, o. Velázquez, M. FAO (1998). Perfiles de la alimentación de peces y crustáceos en los centros y unidades de producción acuícola en México.
- Centro de Investigación de la Caña de Azúcar del Ecuador –CINCAE- (2014) Informe Anual 2013. El Triunfo, Ecuador. 68 p. Publicación CINCAE © ISSN 13903365.
- FAO (2013). <u>Base de datos AQUASTAT</u>, Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Sitio web accedido el [09/01/2014 2:30]
- FAO (2015). Sitio web AQUASTAT, Organización de las Naciones Unidas para la Alimentación y la Agricultura. Sitio accedido el [2015/05/26]
- Gobierno Provincial de Morona Santiago (2009). Sostenibilidad de los sistemas agrícolas en la provincia de Morona Santiago.
- Hy-Line (2001). Manual de Estándares de Rendimiento. Ponedoras Comerciales.
 CV-22. Edición 2.
- Instituto Nacional Autónomo de Investigaciones Agropecuarias INIAP (2010).
 Nueva variedad de Chocho para la provincia de Bolívar. INIAP 451 Guaranguito.
 Boletín Divulgativo N° 382.
- Instituto Nacional Autónomo de Investigaciones Agropecuarias INIAP (2010).
 Manual Agrícola de fréjol y otras leguminosas. Publicación Miscelánea N° 135 (Segunda Impresión actualizada). Septiembre 2010. Quito.
- Ministerio de Agricultura, Ganadería, Acuacultura y Pesca, MAGAP (2014).
 Zonificación agroecológica económica del cultivo de amaranto (amaranthus sp.) en el Ecuador a escala 1:250.000 Resumen Ejecutivo.
- Moreno, A (2011). Monitoreo y Estudio de Cadenas de Valor ONCCA. Informe de la Cadena Porcina.
- Revilla A. (1982). Tecnología de la leche. IICA. Pág. 196.

THE PLANT HERMAN

UNIVERSIDAD DE CUENCA

- Wadswortth, J (1997). Análisis de Sistemas de Producción Animal Tomo 2: las Herramientas Básicas. (Estudio FAO Producción y Sanidad Animal 140/2). FAO.
- Zuccchini F. (2005). Harina de trigo. Análisis de Cadena Alimentaria. Dirección Nacional de Alimentos - Dirección de Industria Alimentaria. Secretaría de Agricultura, Ganadería, Pesca y Alimentos Subsecretaría de Política Agropecuaria y Alimentos. Dirección Nacional de Alimentos.

LECTURAS COMPLEMENTARIAS

- Arnon, Isaac.(1980). Factores agrícolas en Planificación y Desarrollo Regional.
 IICA.
- Beltrán M, Velázquez E (2011) "Del metabolismo social al metabolismo hídrico". Eco Eco Es Documento Trabajo 01_2011.
- FAO (1997). Zonificación-agro-ecológica. Guía General. Servicio de recursos, Manejo y conservación de suelos. Dirección de Fomento de tierras y Agua, Roma, FAO.
- FAO (2001). Nutrición humana en el mundo desarrollado. Traducción español.
 Oficina Regional de la FAO para América Latina.
- FAO, FIDA y PMA. (2014). El estado de la inseguridad alimentaria en el mundo 2014.
 - Fortalecimiento de un entorno favorable para la seguridad alimentaria y la nutrición.
 - Roma, FAO.
- FAO 2014. Panorama de la Seguridad Alimentaria y Nutricional en América Latina y el Caribe 2014. Objetivos de desarrollo del Milenio: Región logró la Meta del Hambre.
- Figueroa F (2008). "Tablero de comando" para la promoción de los biocombustibles en Ecuador. CEPAL. Naciones Unidas.
- ICFPA/NCASI (2005). Spreadsheets for calculating GHG emissions from pulp and paper manufacturing. Workbook Version 1.2.
- Latham Michael C. (2002). Nutrición Humana en el Mundo Desarrollado. Organización de las Naciones Unidad para la alimentación y la Agricultura-FAO-. Colección FAO: Alimentación y nutrición N° 29 Roma 2002. ORGANIZACIÓN DE LAS NACIONES UNIDAS (2012).
- Martínez Alier, J. (1998). "La economía ecológica como ecología humana".
 Fundación César Manrique, Madrid.
- Oficina Catalana del Canvi Climátic (2015) GUIA PRÀCTICA PER AL CÀLCUL D'EMISSIONS DE GASOS AMB EFECTE D'HIVERNACLE (GEH). Versió de marc de 2015. Cataluña.
- Ordoñez Díaz (1999). Captura de Carbono en un Bosque Templado: el caso de San Juan Nuevo, Michoacán. Instituto Nacional de Ecología. México. http://www2.inecc.gob.mx/publicaciones/libros/296/cap2.html.
- Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat World Population Prospects: The 2012 Revision, http://esa.un.org/unpd/wpp/index.htm.

TOO VIE COMP POSSIONS

UNIVERSIDAD DE CUENCA

• S. Braatz y A. Kandiah (1996) <u>Utilización de aguas residuales urbanas para el riego de árboles y bosques</u>. Revista internacional de silvicultura e industrias forestales. Vol. 47. Unasylva, FAO.