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Abstract. Weekly samples from surface waters, springs, soill Introduction

water and rainfall were collected in a 76.9%mountain

rain forest catchment and its tributaries in southern Ecuadorl’he mean transit time (MTT) of waters provides a valuable
Time series of the stable water isotopé80 ands?H were ~ Primary description of the hydrological (Fenicia et al., 2010)
used to calculate mean transit times (MTTs) and the tranand biochemical systems (Wolock et al., 1997) of a catch-
sit time distribution functions (TTDs) solving the convolu- Ment and its sensitivity to anthropogenic factors (Landon et
tion method for seven lumped-parameter models. For eacil-, 2000; Turner et al., 2006; Tetzlaff et al., 2007; Darracq
model setup, the generalized likelihood uncertainty estima£t al., 2010). Whereas the MTT describes the average time it
tion (GLUE) methodology was applied to find the best pre- takes for any given water parcel to leave the catchment, the
dictions, behavioral solutions and parameter identifiability. transit time distribution function (TTD) describes the reten-
For the study basin, TTDs based on model types such afion behavior of all those water parcels as a frequency func-
the linear—piston flow for soil waters and the exponential-tion over time (McGuire and McDonnell, 2006). Together
piston flow for surface waters and springs performed bettetith the physical characteristics of the catchment, the MTT
than more versatile equations such as the gamma and the tw&d TTD (for the particular case of soil water, MTT should
parallel linear reservoirs. Notwithstanding both approached€ more properly understood as mean residence time, and
yielded a better goodness of fit for most sites, but with con-TTD as residence time distribution function) allow inferring
siderable larger uncertainty shown by GLUE. Among the the recharge of aquifers (Rose etal., 1996), the bulk water ve-
tested models, corresponding results were obtained for sofPcities through its compartments (Rinaldo et al., 2011), and
waters with short MTTs (ranging from 2 to 9 weeks). For the interpretation of the water chemistry (Maher, 2011), all
waters with longer MTTs differences were found, suggest-Of which supports the design of prevention, control, reme-
ing that for those cases the MTT should be based at leaddiation and restoration techniques. Additionally, MTT and
on an intercomparison of several models. Under dominantl TD data are useful to reduce the uncertainty of results and
baseflow conditions long MTTs for stream wate? yr were  improve input parameter identifiability for either hydrologic
detected, a phenomenon also observed for shallow springgnodeling studies (Weiler et al., 2003; Vache and McDonnell,
Short MTTs for water in the top soil layer indicate a rapid 2006; McGuire et al., 2007; Capell et al., 2012) or solute
exchange of surface waters with deeper soil horizons. Dif-movement analyses through soil and aquifers using mixing
ferences in travel times between soils suggest that there ig10dels (lorgulescu et al., 2007; Barthold et al., 2010).
evidence of a land use effect on flow generation.
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The stable water isotopes80 and§?H are commonly  authors believe that it is better to use an ensemble of mod-
used as environmental tracers for a preliminary assessmeis in order to be certain that the results or the inferences
of the transport of water in watersheds with transit timespoint in the same direction, or, if not, to have a better idea of
less than 5yr (Soulsby et al., 2000, 2009; Rodgers et al.the uncertainties.

2005; Viville et al., 2006). For longer MTTs of up to 200yr  Particularly for tropical zones the knowledge of hydrologi-
(Stewart et al., 2010), tritium radioisotopes are used to anaeal functioning is still limited, and investigation of system de-
lyze the storage and flow behavior in surface water and shalscriptors such as TTD and MTT is key to improving our un-
low groundwater systems (Kendall and McDonnell, 1998), derstanding of catchment responses (Murphy and Bowman,
while, for example, carbon isotopes are employed for analyz2012; Brehm et al., 2008). This is especially the case for
ing the dynamics of deep groundwater with ages of hundredsropical mountain rainforest systems. In this study we fo-
to thousands of years (Leibundgut et al., 2009). cus on the San Francisco River basin, an Andean mesoscale

Since Barnes and Bonell (1996), researchers in tracer hyheadwater catchment in Ecuador. Notwithstanding the recent
drology use quasi-distributed and conceptual models to eneharacterization of the climate (Bendix et al., 2006), soils
compass the non-linearity of the processes related to the trar{Wilcke et al., 2002), water chemistry (Buecker et al., 2011)
sit states of the soil moisture dynamics (Botter et al., 2010;and hydrology (Plesca et al., 2012) of the basin, we are still
Fenicia et al., 2010). However, the use of such modeling aplacking a perceptual model that explains the observations of
proaches is only advisable after basic inferences about thehemical, hydrometric and isotopic variables and related pro-
underlying mixing processes and the way water is routedcesses (Crespo et al., 2012).
through the system have been drawn. In this sense, insights To enhance the understanding of the hydrological func-
can be provided by applying lumped TTD functions as thetioning of the San Francisco basin, this study focuses on
models proposed by Maloszewski and Zuber (1982, 1993)the (i) estimation of the MTT in the different compartments
which are based on quasi-linearity and steady-state condief the catchment; (ii) characterization of the dominant TTD
tions. These models include the exponential (EM), pistonfunctions; and (iii) evaluation of the performance and uncer-
(PM), or linear (LM) models, in which the MTT of the tainty of the models used to derive the MTTs and TTDs.
tracer is the only unknown variable, and also combinationsTranslated into hypotheses the study reported in this paper
of models such as the exponential—piston flow (EPM) and theaimed to test if
linear—piston flow (LPM) models. Among the two-parameter
lumped models, the dispersion model (DM), which con- ' T HIe e ! !
siders simplifications of the general advection—dispersion the spatial variability in catchment hydrology, identi-
equation, has been applied in environmental tracer studies  ¥ing the dominant processes, and screening the per-
(Maloszewski et al., 2006; Viville et al., 2006; Kabeya et formance of the TTD models;

al., 2006). For almost one-and-a-half decades, other lumped 5 1o multi-model approach and the identifiability of

models have been exploited such as the two-parameter  yheir harameters enable identification of the respective
gamma model (GM) proposed by Kirchner et al. (2000), TTDs and MTTs.

which is a more general and flexible version of the expo-

nential model, and the two parallel linear reservoirs modelThe hypotheses are based on the following assumptions:
(TPLR), a three-parameter function that combines two par-
allel reservoirs, each one represented by a single-exponential
distribution (Weiler et al., 2003). The use of these models
for estimating the MTT in the compartments of a catchment
has become a standard practice for the preliminary assess-
ment of the catchment functioning. The advantage of the lat- 5
ter functions relies on the fact that they allow the represen-
tation of different mixing processes in different system com-
ponents, such as soil and groundwater. In contrast, simpler
models assume instantaneous and complete mixing over the 3. from insights derived from related studies (Soulsby et
entire model domain (Hrachowitz et al., 2013). Regarding al., 2009; McGuire and McDonnell, 2006; Rodgers et

1. the diversity of the sampling sites allows evaluating

| 1. the used tracers are conservative, there are no stag-
nant flows in the system, and the tracer’s mean transit
time t represents the MTT of water (e.g., McGuire and
McDonnell, 2006);

. stationary conditions are dominant in the basin, and
lumped equations based on linear or quasi-linear be-
haviors are applicable (Heidblichel et al., 2012);

lumped-parameter models, McGuire and McDonnell (2006) al., 2005), considering the drainage areas, the steep-
presented in their study a compilation of the most frequently ness of the topography and the shallow depth of the

used models for deriving MTTs. Under the condition that soil layers, the transit times of the sampling sites are

a particular model ought to be concordant with the physi- less than 5yr, making it possible to U ands1€0

cal characteristics of the aquifer system, this condition hin- as tracers.

ders the applicability of lumped-parameter models to poorly
gauged catchments with scarce or no information on the
physical characteristics of the system. For these cases the
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Fig. 1. San Francisco catchment with sampling locations and delineation of drainage area. Acronyms in bold are defined in Table 2. Framed
image shows the zoomed area of the lower part of the catchment.

2 Materials and methods wind velocities in the middle and lower catchment areas are
fairly constant, equal to 1 nTs. The humid regime of the
2.1 Study area catchment is comparatively constant with the relative humid-

ity varying from 84.5% in the lower parts to 95.5% at the
The San Francisco tropical mountain cloud forest catch-ridges. Among all meteorological parameters, precipitation
ment (Fig. 1, Table 1), 76.9kin size, is located shows the largest spatial variability, with an average gradient
in the foothills of the Andean cordillera in south- of 220 mm per 100 m (Bendix et al., 2008b). However, this
ern Ecuador, between Loja and Zamora, and draingradientis not constant throughout the catchment and shows
into the Amazonian River system. Hourly meteorologi- substantial spatial variability (Breuer et al., 2013). Recent es-
cal data recorded at the Estacion Cientifica San Frantimation of horizontal rainfall revealed its significance, con-
cisco (ECSF, 1957 ma.s.l.), El Tiro (2825ma.s.l.), Ante- tributing 5 to 35% of measured tipping-bucket rainfall, re-
nas (3150ma.s.l.) and TS1 (2660 ma.s.l.) climate stationspectively, to the lower and ridge areas of the catchment
are available from the DFG funded Research Unit FOR816(Rollenbeck et al., 2011). Rainfall is marked by low rainfall
(www.tropicalmountainforest.org). Monthly averages of the intensities, generally less than 10 mmthand high spatial
main meteorological parameters for the period 1998-2012ariability. Annual rainfall is uni-modally distributed with a
allow a description of their spatial and interannual variation. peak in the period April-June. Using the Thiessen method
Mean annual temperature ranges from°C5in the lower  and considering horizontal rainfall, the precipitation depth
part of the study area (1957 ma.s.l.) to°@on the ridge amounted 2321 mm in the period August 2010-July 2011,
(3150 ma.s.l.), with an altitude gradient ef0.57°C per  and 2505 mm in the period August 2011-July 2012. A more
100 m, without marked monthly variability. The wind veloci- detailed description of the weather and climate of the study
ties of the prevailing southeasterlies reach average maximurarea is given in Bendix et al. (2008a).
daily values of 10 ms! between June and September, while
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Table 1. Main characteristics of the San Francisco catchment and its tributaries. Acronyms of sampled sites are defined in Table 2.

. Outlet Sub-catchment

Parameter Units

PL FH Qz ON QR QP QM QC

Catchment physical characteristics
Drainage area [kmz] 76.9 349 11.2 9.8 4.7 3.4 1.3 0.7
Mean elevation [ma.s.l] 2531 2615 2615 2591 2472 2447 2274 2290
Altitude range [m] 1325 1133 991 975 1424 975 772 516
Mean slope [%] 63 63 63 60 69 67 57 56
Hydrological parameters
Discharge [mm] 2959 2691 - 1291 - - 3315 2742
Baseflow [mm] 2520 2152 - 1044 - - 2118 2268
[%] 85.2 80.0 - 80.8 - - 63.9 827
Land use
Forest [%] 68 67 72 65 80 63 90 22
Sub-paramo [%0] 21 29 15 17 18 10 9 10
Pasture/Bracken [%] 9 3 12 16 2 26 1 67
Others [%] 2 1 1 2 0 1 0 1
Soil type

Histosols [%] 74 74 70 71 70 62 57 54
Regosols [%0] 15 15 18 16 18 21 25 24
Cambisols [%] 7 7 8 8 8 11 13 14
Stagnasols [%%0] 4 4 4 5 4 6 5 8

In line with findings of Crespo et al. (2012) in the same 2.2 Catchment composition and discharge
area, baseflow accounts for 85 % of the total runoff (Table 1), measurements
notwithstanding the rapid and marked response of flows to
extreme rainfall events. In just a few hours peak discharged he San Francisco catchment was subdivided into seven sub-
are several times higher than baseflows (Fig. 2a), carryingatchments with areas ranging between 0.7 and 3429 km
considerable amounts of sediment and accompanied by drasharacterized by different land uses varying from pristine
tic changes in some of the cross sections. forest and sub-paramo to pasture areas (Fig. 1 and Table 1).

Major soil types are Histosols associated with Stagnasolsin order to define baseflow conditions, each sub-catchment
Cambisols and Regosols, while Umbrisols and Leptosols aravas equipped with a water level sensor (mini-diver, Schlum-
present to a lesser degree (Liess et al., 2009). The geologerger Water Services, Delft, NL). Reference discharge mea-
is reasonable similar throughout the study area, consisting ofurement, using the salt dilution method, were made fre-
sedimentary and metamorphic Paleozoic rocks of the Chiguguently during the time of sampling. However, due to the
inda unit with contacts to the Zamora batholith (Beck et al., high variability of the river bed for the sites Pastos (QP),
2008). The topography is characterized by steep valleys witiZurita (QZ) and Ramon (QR), only continuous records for
an average slope of 63 %, situated in the altitudinal rangesub-catchments Francisco Head (FH), Navidades (QN), Mi-
of 1725 to 3150 ma.s.l. (Table 1). Protected by the Podocartagro (QM) and Cruces (QC) and for the main outlet Planta
pus National Park, the southern part of the catchment is cov{PL) were considered as reliable to calculate stage-discharge
ered by pristine primary forest and sub-paramo. In the northcurves and the hydrographs, as shown in Fig. 2a for PL
ern part, particular during the last two decades, land is be{Abreviations of names for all study sites are defined in Ta-
ing converted to grassland. Presently 68 % of the catchmeritle 2). For the remaining sites, discharge measured at the mo-
is covered by forest, 20 % is sub-paramo, 6.5 % is used asent of sampling was used.
pasture and 3% is degraded grassland covered with shrubs
(Goettlicher et al., 2009; Plesca et al., 2012). Landslides are.3

present in the catchment, especially along the paved road be-
tween the cities Loja and Zamora. Weekly water samples for isotope analysis were collected

manually in the main river (Fig. 2b), its tributaries, creeks
and springs in the period August 2010 to mid-August 2012

Isotope sampling and analyses
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Fig. 2. (a) Time series of rainfall for ECSF meteorological station, hourly discharge and baseflows at the catchment outle} \Rekly
8180 ands2H of stream water at PL for baseflow and high flow conditions; @madveekly §180 ands2H at the ECSF rainfall sampling
collector; light blue bubbles indicate daiyf80 and relative volume of daily rainfall.

and later for soil water starting in September/November 2010nhereby a total of 946 samples were collected with an av-
(Table 2), using 2mL amber glass bottles. Soil water sam-erage duration of 3.2 h (varying from 0.25 to 19 h with up to
pling was performed along two altitudinal transects coveredl1 events per day). Since the solving of the convolution equa-
by forest and pasture (Table 2), at 6 sites (Fig. 1) and 3 depth8on needs a continuous time step of input data (Maloszewski
(0.10, 0.25 and 0.40m) using wick samplers. Wick sam-and Zuber, 1982), the time resolution of the input series was
plers were designed and installed as described by Mertenset to 7 days (Fig. 2c). In this sense, weekly mean isotopic
et al. (2007). Woven and braided 3/8-inch fiberglass wickssignatures for smaller rainfall events during longer dry peri-
(Amatex Co., Norristown, PA, US) were unraveled over a ods (only 5 among 104 weeks had no rainfall evetmL
length of 0.75 m and spread over a 0.3&r2.30 mx 0.01 m sampling volume) were interpolated using antecedent and
square plastic plate. The plate enveloped with fiberglass waprecedent measurements.

covered with fine soil particles of the parent material and then The final isotope signature used for the models represents
set in contact with the undisturbed soil, respectively at the
bottom of the organic horizon (0.10 m below surface), a tran-
sition horizon (0.25m below surface) and a lower mineral . i
horizon (0.40 m below surface). The low constant tension in fall data recorded at the nearby meteorological station
the wick samplers guarantees sampling of the mobile phase (400m to ECSF),

of soil water, avoiding isotope fractionation (Landon et al.,  _ ¢4 soil water samples, the weekly average isotope sig-

1999). _ _ ) nal for each soil depth, and
Along with the weekly sampling, event-based rainfall

samples for isotope analyses were collected manually in 1L - for stream, creek and spring water samples, an in-

— for rainfall water, the weighted mean of all events dur-
ing each week (Sundays to Saturdays) using the rain-

bottles using a @25cm funnel at 1900 ma.s.l. (Fig. 1). Af- stantaneous isotopic concentration in time. These sam-
ter every event, the sample bottles were covered with a lid ples were not flux-weighted. For stream waters, only
and stored for analysis within a week in 2mL amber glass isotope samples from designated baseflow conditions
bottles. Only sample volumes2 mL were suitable for per- were later considered (see Sect. 2.5).

manent storage and measurements. Events with a sample voI—h ble i . o8 d4s? q
ume below 2 mL were discarded. The end of a single rainfall| "€ Stable isotopes signaturesiofO ands“H are reporte

event was marked by a time span of 30 min without rainfall, " PEr Mil relative to the Vienna Standard Mean Ocean Wa-

ter (VSMOW) (Craig, 1961). The water isotopic analyses

www.hydrol-earth-syst-sci.net/18/1503/2014/ Hydrol. Earth Syst. Sci., 18, 1503523 2014
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Table 2. Applied sampling strategy in the San Francisco catchment.

Sample type Collection Sampled Site name Site code Altitude  Sample
method sincé ma.s.l. number
(weeks)
Rainfall Collector AUG 2010 Estacion San Francisco ECSF 1900 99
- Planta (outlet) PL 1725 104
Main river Manually AUG 2010 San Francisco SF 1825 104
Francisco Head FH 1917 98
Zurita QZ 2047 103
Navidades QN 2050 104
Tributaries Manually AUG 2010 Ramon QR 1726 104
Pastos QP 1925 103
Milagro QM 1878 104
Cruces QR 1978 102
Pastos tributary TP 1950 88
Creeks Manually DEC 2010 Q3 Q3 1907 88
PL Spring PLS 1731 98
Springs Manually AUG 2010 SF Spring SFS 1826 100
QR Spring QRS 1900 100
Pasture soll Pastos ao A1/A2/A3 2025 60/58/45
water Wick sampler NOV 2010 Pastos metlio B1/B2/B3 1975 70/70/63
Pastos bafd Cl/C2/C3 1925  67/71/55
Forest soil Bosque alfo D1/D2/D3 2000  78/74/62
water Wick sampler SEP 2010 Bosque mé&dio E1/E2/E3 1900 86/80/62
Bosque bajb F1/F2/F3 1825 55/53/36

2 Sampling campaign was completed by mid-August 201mhere are three wick samplers per site (i.e., AL=0.10m, A2=0.25m and
A3=0.40 m below surface¥. The letterQ for the site codes comes from “Quebrada” which stands for “Stream” in English.

were performed using a compact wavelength-scanned cavitthereby excluding any unlikely source of water from outside
ring down spectroscopy (WS-CRDS)-based isotope analyzethe topographic catchment boundaries with a different iso-
with a precision of 0.1 %o fos80 and 0.5 fors?H (Picarro  tope signal, it was possible to derive the recharge elevation
L1102-i, CA, US). and localized input signal in each sub-catchment. The de-
rived recharge elevations were used to crosscheck that they
are inside the topographic boundaries of every sub-catchment
and comparable to their mean elevations.

Throughout the catchment, the recorded rainfall time se- The justification to adopt only the mentioned gradient to
ries from meteorological stations are correlatel \yas at  extrapolate the isotope signals was based on previous studies
least 0.6, based on weekly precipitation data). As the mod-on spatial and temporal variation of stable isotopes of rainfall
els in question are only driven by the isotope signal and notin the same catchment, which revealed that only the altitude
by the actual amount of incoming precipitation on site, aeffectis significant and that in this factor there is no influence
flux weighting based on a single station within the catch-of temperature, relative humidity and precipitation amount or
ment (ECSF) was sufficient. However, given the large al-intensity (Windhorst et al., 2013).

titudinal gradient in the San Francisco basin, it is to be Since no marked fractionation was observed for all ana-
expected that the input isotopic signal of rainfall for ev- lyzed waters, it is highly probable that similar estimations of
ery sub-catchment varies according to its elevation (DansMTT are derived either using'®0 or §°H (Fig. 3). There-
gaard, 1964). In this regard, Windhorst et al. (2013) es-fore, in this studys80 was selected for further analysis.
timated this variation for the main transect of the catch-

ment: —0.22 %o §180, —1.12 %0 §°H and 0.6 %o deuterium

excess per 100 m elevation gain. Applying this altitude gradi-

ent to the flux-weighted isotope signal under the assumption

that the incoming rainfall signal is the sole source of water,

2.4 Isotopic gradient of rainfall
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For the calculation of MTTs, we used the lumped-
parameter approach. In this, the aquifer system is treated as
an integral unit and the flow pattern is assumed to be constant
0 LMWL rver outiet (L) as outlined in Maloszewski and Zuper (_1982) fc_)r the_ special

Catchment mean height: 2531 m as| case of constant tracer concentration in time-invariant sys-
| T ae g tems. In this case the transport of a tracer through a catch-
: ment is expressed mathematically by the convolution inte-

L gral. The tracer outpufoyi(r) and inputCi, (¢) are related as

50 | | |

GMWL
y=8.13x+10.8

2 .50 - LMWL rainfall (ECSF)
S, Collector at 1900 m asl ; : .
- y = 8.1485x + 10.6602 a function of time:
& - 2 =099 -
Legend !
Rainfall (ECSF)
-100 A Sroomweter (L) - Coulr) = f Cin(t) exp[—(t — 1) gt = Hd'. (D)
Pastures soil water (C2)
@  Forest soil water (D1) —0o0
1 @  Spring water (QRS) r
T i ecs) In the convolution integral, the stream outflow composition
-150 LMWL of river outiet (PL) | [~ Cout at a timer (time of exit) consists of a tracef, that falls
Expected D-excess variation . . . . .
uniformly on the catchment in a previous time stéefiime of

' ' ' ! ' entry), andCj, becomes lagged according to its transit time
-20 18-1% 0 distributiong(+ — t’); the factor expp—i(t — ¢')] is used to
50 [0l correct for decay if a radioactive tracer is usad(racer's

Fig. 3. Shaded area depicts the expected variation range of the IocarladIO&CUVe decay constant). For stable tracers ), and

meteorological water line of rainfall (LMWL) considering the alti- gonS|der|ng that the t|me ?Pa“ ' is the tracer's transit
tudinal range of the catchment (1725-3150 ma.s.l.) and estimateiMe 7. E. (1) can be simplified and re-expressed as
d-excess gradient. Symbols in colors depict weekly values of some o
of the catchment’s waters. Acronyms are defined in Table 2.

Coutt) = [ Cntt = Dg01¢k @)

0
2.5 Mean transit time estimation and transit time

distribution where the weighting functiop(t) or tracer’s TTD describes

the normalized distribution function of the tracer injected in-

Mean transit times were calculated based on stationary constantaneously over an entire area (McGuire and McDonnell,
ditions. In the case of stream water this condition was ful-2006). As it is hard to obtain this function by experimental
filled by considering only baseflow conditions (Heidbiichel means, the most common way to apply this lumped approach
et al., 2012), which were dominant in the catchment duringis to adopt a theoretical distribution function that better fits
the 2yr observation period (Fig. 2a and b depict this char-the studied system. In general meaning, any type of a weight-
acteristic for the main outlet), accounting for 85% of to- ing function is understood as a model. In accordance, seven
tal runoff volume. Baseflow separations for streamflow werelumped-parameter models to infer the MTTs for diverse wa-
obtained through parameter fitting to the slope of the recester storages (stream, springs, creeks and soil water) were ap-
sions in the observed hour|y flows using the Water Engineer.plied in this Study. Results were evaluated on the basis of the
ing Time Series PROcessing tool (WETSPRO), developeobeSt matches to a predefined objective function, their mag-
by Willems (2009). To account for samples taken at basehitude of uncertainty and the number of observations in the
flow conditions at sites where hydrometric records were not'ange of behavioral solutions. The equations for each of the
available, the specific discharges of the closer catchmenti/mped-parameter models used are shown in Table 3. EM
with similar characteristics in terms of land use, size, anda@nd LM reflect simpler transitions where the tracer's mean
observed hydrologic behavior were used. In this sense, Qztransit timez is the only unknown variable. More flexible
QR and QP were considered similar to QN, QM and QC'modeIs consider a mixture of two different types of distri-
respective]y (Tab|e 1) In contrast, all spring and creek Wa_bution. EPM includes piSton and exponential ﬂOWS, while
ter samples were included in the analysis since their isotopi¢he€ LPM accounts for piston and linear flows. In both cases
signatures were less influenced by particular rain events (aff'e equations are integrated by the parametérdicating
inferred from the smooth shape of the observed isotope sigthe percentage contribution of each flow type distribution.
nal) in the San Francisco catchment. In regard to soil wa-The DM, derived from the general equation of advection—
ter, we considered all samples, since each sample represerflispersion, is also one of the common models used in hydro-
a volume-weighted weekly average signature (isotopic siglogic systems (Maloszewski et al., 2006). In this model the

natures of particular high-rainfall events are smoothed at ditting parametetDp, known as the dispersion parameter, is
weekly time span). related to the transport process of the tracer (Kabeya et al.,

2006). In the GM, the product of the shape parametand
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0 perform statistical comparisons with instantaneous observed
data. For soil waters, direct comparisons were performed be-
tween predictions and observed data.

-5 4

s 7 \ 2.7 Evaluation of model performance
2 10

g -10 ~ R

w

The search for acceptable model parameters for each site was
conducted through statistical comparisons of 10 000 simula-
tions based on the Monte Carlo method, considering a uni-
— form random distribution of the variables involved in each
Sep Nov Jan Mar May  Jul model. For each site and model its performance was calcu-
Mo lated using the Nash—Sutcliffe efficiency (NSE). Quantifica-
Fig. 4. Monthly isotopic 5180 signals between two consecu- tion of errors and deviations from the observed data were re-
tive years (2010-2012) at ECSF (1900ma.s.l) and average@pectively calculated by the root mean square error (RMSE)
monthly values (1992-1994) at Amaluza GNIP station {2t61, and the bias. MatLab version 7 was used for data handling
long —78.57; altitude 2378 ma.s.l.). and solving the convolution equation.
When looking for the optimum parameter range, we first
set a wide range (maybe even unrealistic) to be sure to cover

the scale parametgrequals:. This method was successfully all possible solutions (Table 3). By checking the plots of
applied by Dunn et al. (2010) and Hrachowitz et al. (2010).these preliminary results we were able to identify the con-
The TPLR model (Weiler et al., 2003) is based on the paralleergence of model solutions (we used NSE as the objective
combination of two single exponential reservoirs (despite itsfunction for all model parameters), thereby making it possi-
name TPLR follows exponential and not linear assumption),ble, for a second simulation, to narrow down the parameter
representing fast and slow flows:ands, respectively. The range for each variable. Once the variation ranges were iden-
flow partition between the two reservoirs is denoted by thetified and bounded, according to the largest solution peak for

7

1 -6 ECSF2010/2011 i\
15 - ECSF 2011/2012 &
) - Amaluza (GNIP 8423901) 1992/1994 0
T

paramete. every site and for every variable, all the solutions 5% below
the top NSE were selected. For these behavioral efficiencies,
2.6 Convolution equation resolution weighted quantiles between 0.05 and 0.95 (90 % prediction

limits) were calculated in order to refine limits of behavioral

Due to the similarities between the seasonal isotopic fluctuSolutions for every variable. Using these limits, a final sim-
ations of the sampled effluents and rainfall signal, a constantation for each site and model was performed (at this stage
interannual recharge of the aquifers was assumed. For eadh€ 10000 simulations were allowed to vary only for the cor-
sampling site, the 2 yr isotopic data series were used as inpf€SPOnding final solution ranges). Results are shown in Ta-

for the models. To get stable results between two consecP!€S 4 and 5, as well as in Parts 1 and 2 of the Supplement.
tive periods, these input isotope time series were repeated 1he aforementioned approach is based on the generalized

20 times in a loop: an approach similar to the methodology"ke"hOOd uncertainty estimation (GLUE; Beven anq Freer,
presented by Munoz-Villers and McDonnell (2012) result- 20,01)' The GL_UE approach con§|ders that seve_ral I|kelly S0
ing in an artificial time series of 40yr. It is common prac- lutions are valid as long as efficiency of a particular simu-
tice to extend the time series artificially by duplicating it lation is ab(_)ve a pre-set, but subjecnvg, threshold. In this
(Hrachowitz et al., 2010, 2011). This does not change thesense, c_on_S|der|ng the large number_o_fsnes and models used,
results; it rather gives the model more room to find stable? lOWer limit dependent of the top efficiency was set for each
results. Data of the last loop were considered for statisticaf@Se- Only for the analysis and intercomparison of results we
treatment and analysis. The repetition of the input isotopicconsidered that a prediction was poor whenever NSEAS.
signal implies that the interannual variation is negligible; ~1he following three criteria were used to select the best
an acceptable assumption for the San Francisco catchmefjP!utions of MTTs and TTDs from the final model runs:
considering the high degree of similarity between the samdl) NSE: (2) magnitude of the uncertainty of the predic-
months along the analyzed 2 yr period (Fig. 4). Comparablet'on’ expressed as a percent of the predicted MTT value; and
monthly isotopic seasonality of rainfall has been described(3) Percentage of observations covered by the range of be-
by Goller et al. (2005) for the same study area and for nearb)haworal solutions defined according to the second criterion.

regions with similar climatic conditions, e.g., Amaluza GNIP
station pttp://www.iaea.org/watgr

Modeled output results are available for the weekly time
span chosen for the input function (an average signal of
rainfall was distributed for every week on Wednesdays
at 12:00LT). These results were interpolated in order to
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Table 3. Lumped-parameter models used for estimation of mean transit times and transit time distribution functions of water in the San
Francisco catchment.

Model Transit time distributiog (t) Parameter(s)
range
Exponential model (EM) Lexp(3) 7 [1-40Q
Linear model (LM) 2% fort <2t 7 [1-404
Oforr> 2t
Exponential—piston flow model (EPM) Z exp(—2 + 5 — 1) forr >t (1 - rfl) 7 [1-40Q
Oforr <7 (1-n2) n10.5-4
Linear—piston flow model (LPM) % fort — % <t<t+ % T [1-40Q9
0 for othert n [0.5-4
~1/2
Dispersion model (DM) (w) / 1 exp[— (1- %)2 (ﬁpr)] 7 [1-40Q
Dp [0.5-4
Gamma model (GM) ﬁi%_(la) exp 7/P « [0.0001-10
T [1-40Q
B=t/x
Two parallel linear reservoirs (TPLR) £ exp (—Tif) + 1:—;‘7 exp(;—s’) 175 [1-40Q
7t [1-40
@ [0-1]

T =tracer's mean transit time;= parameter that indicates the percentage of contribution of each flowiypedispersion parameter;

« = shape parameter amd= scale parametet; andzs = transit time of fast and slow flowg;=flow partition parameter between fast and
slow flow reservoirs. Units for parameters and their respective ranges are dimensionless excaptfarwhich have units of time (in this
table they are given in weeks).

3 Results to the volume in which linear flow applies) ranged from 0.84
to 2.23 and from 0.76 to 1.61, respectively.

Regarding the shapes of the distribution functions, Fig. 8
shows the best-matching results for two representative and
comparable sampling sites (C2 for pastures and E2 for forest)
Of all predictions the best matches of the models, with re-for each lumped model (results for LM are not included since
spect to the NSE objective function, ranged between 0.64€st-matching results for LPM were achieved witiv 1; see
and 0.91 (Fig. 5a). When only the best goodness of fit waslable 4). These probability (PDFs) and cumulative density
considered, the GM and the EPM performed best in most ofunctions (CDFs) depict how water is routed through the sys-
the sampled sites (13 from 18), followed by the DM, LM and tem. In this sense, pasture sites generally show a faster and
LPM (Fig. 5b). Only these models were considered for fur- higher response of the tracer peak when compared to forest
ther mutual comparison. Even when the derived MTT valuesSites (Fig. 8a and c). The CDFs (Fig. 8b and d) of all models
were similar among the models that best fitted the objectivear® quite similar for the major part of the flows, even includ-
function (Fig. 6a, Table 4 and Part 1 of the Supplement), thdng the linear function LPM that averages the shape of the
LPM performed best taking into consideration additional se-P€aks described by the other models. Models based on expo-
lection criteria, as shown in Fig. 6b and c. Figure 7 depicts,nential functions (EPM, DM, or GM in Fig. 8b and d) pre-
for the LPM applied to site C2, the uncertainty and the rangediCt a small portion of the flow with an exponentially delayed
of behavioral solutions for the two model parameters. tail, which is larger for forested sites than for pastures. Best

Considering results from the LPM (Table 4), differences distribution function results (based on highest NSEs) for all
between observed and predicted values described by thé@mpled sites, according to the type of land cover, are shown
RMSE are up to 1.72 %, and the larger absolute bias acin Fig. 9a and b for the LPM and GM applied to pasture sites,
counts for 0.181 %.. Bearing in mind the ranges of behav-and in Fig. 9c and d for forest sites. Considering the range of
ioral solution, MTT results were between 2.3 and 6.3 weekgP0ssible or behavioral solutions (e.g., shaded area represents
for pasture soils and between 3.7 and 9.2 weeks for forestefnge of solutions for C2 site in Fig. 9a and b, and for E2 in
soils, while parameterizations fgr(ratio of the total volume

3.1 Soil water
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Table 4. Main statistical parameters of obsen&P0O and predicted results for soil waters using a LPM distribution function. Statistical
parameters of modeled results: RMSE, bias, mearsacarrespond to the best-matching value of the objective function NSE. Uncertainty
bounds of modeled parametersandy), calculated through generalized likelihood uncertainty estimation (GLUE), are shown in parenthesis.

Sampling Observed Modeled80, %o, VSMOW
Site depth 5180, %o, VSMOW Mean o NSE RMSE  Bias T n
m Mean N o %o %o - %o %o weeks -

Pasture transect

Al 0.10 —-6.70 60 3.65 —6.80 3.06 0.87 1.32 -0.099 3.5(2.8-4.4) 1.40(0.93-2.23)
A2 0.25 —-6.79 58 3.33 —6.87 246 0.73 172 -0.084 5.3(4.6-6.3) 0.99(0.90-1.28)
A3 0.40 —-7.13 45 3.98 -7.31 3.18 0.86 146 -0.181 4.9(3.6-5.3) 1.11(0.88-1.37)
B1 0.10 -6.84 70 3.71 —-6.91 3.01 0.83 152 -0.069 4.7(3.4-5.1) 1.10(0.93-1.47)
B2 0.25 -7.03 70 341 -7.02 271 0.78 1.57 0.007 4.3 (3.9-5.3) 0.98(0.90-1.33)
B3 0.40 —-6.76 63 3.41 —-6.77 297 0.79 154 -0.006 4.5(3.4-5.2) 1.03(0.89-1.45)
C1 0.10 —6.65 67 3.66 —-6.74 3.15 0.84 1.44 -0.090 3.3(2.3-4.2) 0.96(0.87-1.82)
C2 0.25 —-7.06 71 3.49 -7.10 3.11 0.87 1.27 -0.043 3.1(2.7-4.4) 0.89(0.84-1.55)
C3 0.40 —-6.52 55 3.07 —-6.53 256 0.80 1.36 —-0.015 5.4(4.4-5.8) 1.09(0.88-1.32)
Forest transect
D1 0.10 -7.38 78 3.12 —-7.26 256 0.78 1.44 0.122 5.7 (4.8-6.4) 1.27 (0.97-1.60)
D2 0.25 -7.06 74 259 —-6.97 256 0.78 1.19 0.087 6.8 (5.5-9.2) 1.04(0.86-1.19)
D3 0.40 —-6.80 62 2.75 —-6.73 256 0.80 1.22 0.062 6.0 (4.8-6.7) 0.99 (0.86-1.28)
El 0.10 —-6.65 86 3.14 —-6.58 256 0.80 1.40 0.070 5.1(4.8-6.3) 1.15(0.93-1.61)
E2 0.25 —-6.63 78 294 —-6.64 256 0.78 1.37 -0.016 6.4(5.7-7.3) 1.01(0.93-1.45)
E3 0.40 —6.44 62 257 —-6.48 256 0.76 124 -0.036 8.3(7.2-9.2) 1.03(0.88-1.18)
F1 0.10 —-6.75 55 3.16 —-6.79 256 0.89 1.05 -0.039 4.3(3.8-5.5) 0.96(0.87-1.38)
F2 0.25 —-6.45 53 3.15 —-6.54 256 0.89 1.03 -0.089 4.3(3.7-5.5) 0.94(0.83-1.58)
F3 0.40 —-8.09 36 256 —-8.05 256 0.66 1.46 0.045 6.0 (6.0-7.8) 0.80(0.76-0.94)

N =number of samples; = standard deviation; RMSE =root mean square error; NSE = Nash—Sutcliffe efficiency.

»EM < LM A EPM vLPM =DM ¢ GM e TPLR
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Fig. 5. (a)Best NSE for each of the seven lumped-parameter mo@gIMTT estimation according the best NSE per site: symbols represent
MTT corresponding to the best-matching result among seven models considering the NSE criteria stewwhiile the vertical line
represents uncertainty bounds according the GLUE methodology for the selected model.
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Table 5.Main statistical parameters of obsens&0 and predicted results for surface and spring waters using an EPM distribution function.
Statistical parameters of modeled results: RMSE, bias, meawn adrespond to the best-matching value of the objective function NSE.
Uncertainty bounds of modeled parametersdn), calculated through generalized likelihood uncertainty estimation (GLUE), are shown
in parenthesis.

Drainage  Outlet  Recharge Observed ModekRD, %o, VSMOW
Site area altitude  altitude 8180, %0, VSMOW Mean o NSE RMSE Bias T n
km? mas.l ma.s.l. Mean N o %0 %0 - %0 %0 yr —
Stream
PL 76.93 1725 2488 -8.25 97 054 —8.25 042 0.56 0.36 0.003 2.0(1.8-2.2) 1.84 (1.73-1.98)
SF 65.09 1825 2437 —-8.12 88 0.56 —-8.11 0.43 0.55 0.37 0.001 2.0(1.9-2.2) 1.85(1.71-1.97)

Stream water tributaries

FH 34.92 1917 2492 -8.28 83 055 —-8.28 042 048 0.39 0.000 2.1(2.0-2.3) 1.84 (1.70-1.93)
Qz 11.25 2047 2565 —-8.41 93 047 —-8.42 0.36 0.55 0.32 -0.004 2.2(2.1-2.5) 1.72 (1.61-1.82)
QN 9.79 2050 2503 —-8.28 92 0.50 —-8.28 040 0.57 0.33 -0.002 2.1(2.0-2.3) 1.78 (1.67-1.90)
QR 4.66 1726 2350 -7.96 97 048 —-7.96 0.16 0.56 0.32 0.000 2.2(2.0-2.4) 1.73(1.62-1.84)
QP 3.42 1925 2418 -8.07 98 0.34 -8.07 0.26 0.57 0.22 -0.001 3.7(3.5-4.1) 2.06 (1.91-2.21)
QM 1.29 1878 2310 —7.81 90 0.59 -7.81 044 051 0.41 0.005 2.0(1.8-2.2) 1.85(1.73-1.98)
QcC 0.70 1978 2197 -762 95 0.30 —-7.62 0.24 0.58 0.19 0.000 3.9(3.8-4.4) 1.97 (1.81-2.06)
Creeks
TP 0.14 1950 2213 -766 80 0.25 —-7.66 0.20 0.49 0.17 0.000 4.5(4.2-5.1) 1.74 (1.61-1.82)
Q3 0.10 1907 2165 —7.67 88 0.54 —7.67 045 0.65 0.32 -0.002 2.1(1.9-2.2) 1.84(1.72-2.01)
Springs
PLS - 1731 2377 —-8.03 101 0.50 —-8.04 0.43 0.69 0.28 —-0.009 2.0(1.9-2.2) 1.85 (1.70-1.94)
SFS - 1826 2187 -7.61 101 0.29 -7.61 023 047 0.21 -0.002 3.3(3.0-3.6) 1.42 (1.36-1.47)
QRS - 1900 2285 -7.80 97 0.17 -7.79 0.09 0.28 0.14 0.005 9.6(8.8-10.1) 1.70(1.65-1.82)

Fig. 9c and d), distributions functions for each type of modelfor the main stream, and NSEs between 0.48 and 0.58 for
and land cover are very similar between each sampled site. the main tributaries (Fig. 5a). The predicted MTT at catch-
ment outlet was 2.0 yr with a parameter of 1.84 (a similar
3.2 River and tributaries value was estimated for the main river at the SF sampling
S . L site, MTT=2.0yr andy=1.85) and varied from 2.0 (QM,
Considering aII_ sites and models .th.e cntenqn NS8.45 n=1.85) to 3.9yr (QC; = 1.97) for the main tributaries.
was exceeded in 41 of the 63 predictions (9 sites per 7 rnOdUncertainties of MTT predictions between sites were similar

els, Fig. 5a). Among the analyzed sites the TPLR modelWith a maximum ran
. ge between 14.1 and 20.4 % of the pre-
yielded the best matches for PL, SF, FH, QZ, QN, QM anddicted MTT, as derived for the FH and QM sites (Table 5).

QC, while the EPM for '_[h_e QR and QP sites (Fig. 5b). The Similarly, n ranged from 1.61 (QZ) to 2.21 (QP); the aver-
GM reached closest efficiencies when compared to the bes(,j{ge value ofy = 1.85 implies a 54 % of volume portion of

gsltch forfever:y site. anse(;qugr;ftly only thlf TPLR, 'Sll:__'\;l andexponential flow and a 46 % volume of piston flow; the un-
were further considered. Differences between pre'certainty for they parameter was 25 % on average.

dictions for all sites are depicted in Fig. 10a, and results Figure 14a and b show the shape of the TTD for the main
from refained models in Table 5 and_ Part 2 of the SUppIe'river outlet (PL), corresponding to the highest NSEs for the
ment. Although MTT results according to the best NSEs EPM. GM and TPLR models. The curve for EPM shows a

were reached using the TPLR model, compared to the GIvbelayed peak that is not accounted in the GM or TPLR mod-

or the EPM, these predictions also showed the largest unceigg (Fig. 14a), which in turn are very similar between them (at

tainties (Fig. 10b) and at the same time depicted the IoWe‘Q’Feast after a short initial time since GM tends to infinity for

_number Of_ obseryanons inside the p_red|cted range _Of behavﬁmes closes to zero). Furthermore, the latter models show
ioral solutions (Fig. 10c). Considering these additional se-

lecti iteria. EPM perf db F a more delayed flow tail when compared to EPM, which
ection criteria, performed better. For stream water atg, ,\« i, general a faster transit time (Fig. 14b). Differences

the maénbourflet_, F'?S' |11.—13 sfhowhtht_an:p))a;argel\t/ler ugcggﬁ/'lnbetween stream water TTDs from the main sub-catchments
ties ant. Ie avioral solutions for the ’ an ' considering EPM and GM are shown in Fig. 15a and b. For
respectively. comparison of the degree of similarities between sites, these

Co_nsidering _resglts from the EPM (_Table 5, Fig. 10a), plots include the range of behavioral solutions for the main
the fitting efficiencies reached a maximum NSE of 0.56
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4LM 2 EPM v LPM = DM ¢ GM Considering EPM, MTTs of 4.5yr (NSE=0.49~1.74)
i I for TP and 2.1yr (NSE=0.65;=1.84) for Q3 were esti-
_ a) l mated; while for springs, 2.0yr (NSE=0.69=1.85) for
2 12 | X . PLS and 3.3 yr (NSE = 0.47,= 1.42) for SFS. Results for the
g T i = ‘\ s % QRS site showed poor reliability due to the reduced ampli-
= 87 e &8, 8 d tude ofs180 in the observed data (Table 5), the lowest among
£ 1 €544 gl® ¥ 3 “ ia the observed sitesr(=0.17). Estimations of MTTs for this
4y BERTE ag ! o9 site were larger than 5yr, and therefore beyond the level of
e applicability of the method for natural isotopic tracers.

100 ] Figure 14c and d show the TTD results of EPM, GM and
= 80 7 b) 1 TPLR models, for a representative site with long MTT (creek
= . s ! TP). This site show a distinctive more-delayed time to the
_*E 60 INCE L f‘ ) ¢ D]D - - peak (for EPM) and longer duration of flow tails compared
% 40 ¥ $ ’ . ; 5‘ PR 416 cAm, § ; ] to stream'water (Fig. 14a and b). I'n Fig. 15c and d, the TTDs
o 4 =7 MEIME R I Q 4 9 for all spring and creek sampled sites are shown for the EPM
> 20 1 o - 4 and GM. In these figures, it is noticeable that the sites Q3 and

o T A S — PLS show the same patterns described previously for most of

100 1< ' the stream waters (Fig. 15a and b), while some differences
T 80 1. v7 | M related to more-delayed flow responses can be accounted for
) - v v & Ty vV o SFS, TP or QRS sites (Fig. 15c and d), which are more simi-
_(éu 602:&@153 /}@é ‘Agggw lar to QP and QC stream waters.

A '] ) R I 4
%40:‘3?“?0??0 iig‘ogo‘ M
S 20 7 D J 4 4 Discussion
0 |
1; é é é é g.lg IG é é IE lg IS LI‘E Im ﬁlﬁ’ lﬁ é Llcg For each soil water s_ite, similar MTT results of a few weeks
to months were obtained regardless of the lumped-parameter
Soil water from pastureSI Soil water from forest model used (Fig. 6a, Table 4 and Part 1 of the Supplement).

Although the LPM did not yield predictions with the highest
Fig. 6. Intercomparison of models for soil sites according to their fficiencies (Fig. 5a), it provided smaller ranges of uncer-
(a) estimated mean transit time) uncertainty ranges expressed ainty (Fig. 6b) and a larger number of observations inside
in percentage of its respective MTT estimation; &odnumber of them (Fig. 6¢), advantages that could not be inferred by us-
observations inside the range of behavioral solutions. . ) ' .

ing only the best matches to NSE, for which GM and EPM

performed better than others (Fig. 5b). Using a LPM, suit-
outlet (PL), thereby being clear that apart from QC or QP?‘bIe to describe a partlally.conflned aquifer with increas-
the remaining sites have similar (EPM or GM) transit time N9 _thickness (Maloszewski and Zuber, 1982), we found

distribution functions. MTTs varying from 2.3 to 6.3 weeks for pasture sites and
from 3.7 to 9.2 weeks for forested soils. If we consider
3.3 Springs and creeks that only the top soil horizon was sampled (maximum sam-

pled depth was 0.4 m), these results are comparable to val-
Of 35 predictions (7 models for 5 sites) the criterion NSE ues between 7.5 and 31 weeks found in 2.0m soil columns
> 0.45 was fulfilled in 20 cases. Sites with reduced isotopeof typical Bavarian soil using the DM (Maloszewski et al.,
signal (smallo) yielded lower efficiencies (Fig. 5a, Table 5 2006). When analyzing the distribution function for soil wa-
and Part 2 of the Supplement). Apart from Pasto’s tribu-ters, similarities between model results are evident (Figs. 8
tary (TP) and Ramon'’s spring (QRS), in the remaining sitesand 9). Considering the range of possible solutions of each
the criterion NSE> 0.45 was reached at least by 5 models. site (shaded areas in Fig. 9a—d), it is noticeable that the ma-
TP and springs located near to Planta (PLS) and San Frarjer part of the flow’s transit can be described similarly by
cisco (SFS) sampling sites were best described by using all models, even using the simpler function (LPM). For these
TPLR model (Fig. 5b). In this regard, GM and EPM were the sites, when considering exponential models (EPM, GM or
second- and third-best models. Figure 10a shows the MTTDP), a small portion of the flow is depicted as having a de-
results predicted by the three models, while detailed infor-layed tail; however, compared to the magnitude of the total
mation is given in Table 5 and Part 2 of the Supplement. Asvolume, an LPM distribution could still be considered as a
for stream waters, the EPM performed best when looking ateliable method to estimate MTTSs.
the uncertainties and the number of observed data inside the Considering the LPM results for MTTs of soil water from
range of behavioral solutions (Fig. 10b and c). pastures (4.3 weeks on average) and forest sites (5.9 weeks
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Fig. 7. Fitted results of the LPM compared to observed data for soil water of a pasture site (C2). Sub)@loti(b) show the uncertainty

analysis of 10 000 simulations and the feasible range of behavioral solutions of model parameters as a 5% of the top best prediction. Black
filled circles in(c) represent the observed data; the black line and the shaded area represent the best possible solution and its range o
variation according to the 5-95 % confidence limits of the behavioral solutions shdajy &md the gray dashed line with crosses represents

the weekly rainfall variation as an input function for the model.

0.4 04 on average) as independent data sets, a two-tailgdlue
N - o of 0.0075 for a Student’stest was calculated, meaning that
03 — EPM 03 the difference between the two groups was statistically sig-
& o) | - SPMM o ] nificant, although physical characteristics, like length, slope,
' ' altitude and meteorological conditions of the respective hill
ot ot slopes were more or less similar. Land use effects, affect-
i i k ing soil hydraulic properties controlling the infiltration and
o = 0 e — flow of water, were detected in previous studies within the
research area (Huwe et al., 2008). Confirming findings in
1 1 other tropical catchments were published by Zimmermann et
1P o5 ] 9 al. (2006) and by Roa-Garcia and Weiler (2010), who stated
' that under grazing the hydraulic conductivity decreased,
overland and near-surface flows increased, and the storage
capacity of the soil matrix declined, with feedbacks on the
MTT of soil water. Similar insights were found by Tetzlaff
et al. (2007) comparing two small catchments in the central
o4 0 S Scotland Highlands of different land use.
o 4 8 12 16 0 10 20 30 For larger MTTs & 2yr), as derived for sampled surface
Residence time [weeks] waters and shallow springs, there were differences when pre-

: . - _ . . dicted results among models were compared (Fig. 10a, Ta-
Fig. 8. Comparative characteristic shapes of residence time dlstrl-bIe 5 and Part 2 of the Supplement), especially for sites with
bution functions corresponding to the best NSE using four lumped- PP , €SP y

parameter models (DM, EPM, GM and LPMg) and (b) for the  Strong damped signals of measusedo (e.g., QRS and TP
soil site C2 located in a pasture land cov@),and(d) for the soil sites). When considering uncertainties, the EPM performed

site E2 located in a forest land cover. significantly better when compared to the GM or TPLR mod-
els (Fig. 10b and c), although the latter two performed best
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for most of the sampled surface waters according to the NSE »c
objective function (Fig. 5a and b). Main river and | Creeks and
When analyzing results from different models, dotty plots subcatchments SRAAgS

of model parameter uncertalnt_y are very us_eful to display _nOtFig. 10. Intercomparison of models for surface waters and springs
only the magnitude of uncertainty but also its tendency. Sim-5ccording to their(a) estimated mean transit timeg) uncer-
ilarly, the uncertainty bands of behavioral solutions can helptainty ranges expressed in percentage of its respective MTT estima-
to account for the sensitivity of the parameter uncertainty ontion; and(c) number of observations inside the range of behavioral
8180 modeled results. For example, when predicted resultsolutions.
for the PL site are compared, larger parameter uncertainty
and skewness are notorious for TPLR than for EPM or GM
(Fig. 11a—c for TPLR; Fig. 12a—c for GM; Fig. 13a and b for or TPLR the response of the flow occurred instantaneously
EPM). At the same time EPM shows the highest sensitivityafter the spread of the tracer along the catchment (Figs. 14
in modeled results (Figs. 11d, 12d, 13c). In order to contrastand 15, Part 2 of the Supplement); and secondly by a com-
the signature of the effluent with younger waters such as rainparatively smaller exponential flow tails, which also means
fall, Figs. 11e, 12e, or 13d show the damped observed (anthat in general the flow transport is faster considering EPM
predicted)s180 signatures at the main outlet: a characteristicthan GM or TPLR models. For these cases, regardless of the
present in all analyzed surface waters. Considering the effidegree of efficiencies or uncertainties, the decision on which
ciencies reached by the predictions, we should keep in mind' TD is more reliable would depend on the conceptual knowl-
that ranges of behavioral solutions derived from a fixed 5 %edge of the functioning of the catchment. For the San Fran-
of the top NSE are generally smaller than a predefined lowecisco catchment this can be gained through additional field
limit for all waters; e.g., a predefined lower efficiency limit experiments in selected sites or sub-catchments using either
of 0.30 and 0.45 were used by Speed et al. (2010) and Capelligher-resolution samples from the effluents in order to ana-
et al. (2012), respectively. lyze non-steady conditions (Botter et al., 2011) or consider-
For stream waters, as for springs and creeks, the main difing different mixing assumptions (Hrachowitz et al., 2013).
ferences between EPM and GM (or TPLR) results consistedAnother approach could be to analyze longer time series of
first in a delayed response of the tracer signal in the out-stable isotopes, or even to include radioactive isotopes as tri-
let, modeled by a parameter> 1 (Table 5), while for GM  tium, which would help to crosscheck results, as it has been

Hydrol. Earth Syst. Sci., 18, 15034523 2014 www.hydrol-earth-syst-sci.net/18/1503/2014/



E. Timbe et al.: Understanding uncertainties when inferring mean transit times of water 1517

b)

T ; —
0 4 8 12 16 20 0 100 200 300 4000

7, [weeks] 15 [Weeks]
-7
= -8 -
o) ]
© g ]
‘10 T T T T T T T T T T T T T T T T T T T T T .I T T
e
0 - ),T +
—3 S Mo 1
5 a A\ T RS
= AR AN \ A \ &, Aot
© -10 ~ Y | TR YA .
g 7y Yoo \/t o } * f& 1
| + iy +/ T\J.
|/ \+¥
+
-20 \
T T T T T T T I+I T T T T T T T T T T T T T T T

8/1/10 11/1/10 2/1/11 5M1/11 8/1/11 11/1/11 2/1/12 5/1/12 8/1/12
Date [m/d/yy]

Fig. 11.Uncertainty ranges for outlet stream water (PL site) using a TPLR distribution funaip(b) and(c) show the modeled parameter
uncertainties of 10 000 random simulations and the feasible range of behavioral solutions taking a lower limit of 5% from the best solution.
Black filled circles in(d) and(e) represent the observed data; the black line and shaded area depict the best possible solution and its range
of variation according to the 5-95 % confidence limits of the behavioral solutions shae)y and the gray dashed line with crossegeh
represents the weekly rainfall variation as an input function for the model.

claimed that, in some cases, the inferences of the processekefined according to the conceptual knowledge of the catch-
using solely stables isotopes underestimate the delayed pament’s functioning, before calculating MTT. In this regard,
of the flow (Stewart et al., 2010). the use of a multi-model approach and uncertainty analysis
Regardless of the model used, efficiencies of MTT for is believed essential as to be able to define which functions
stream waters were lower than for soil waters. This wasdescribe in a better way the parameter identifiability and
somehow expected, since the dampening effect on a catchzounds of behavioral solutions. By considering best matches
ment to sub-catchment scale generates a smoother signal file NSE for stream waters, best predictions were obtained
tering/averaging the heterogeneity observed at a single poinvith the TPLR, EPM and GM — being more flexible versions
along a precise transect. Since for most of the cases MTTsf a pure exponential distribution function (i.e., EM), which
for soil waters showed an increasing trend according to in-helps to account for non-linearities of the system. The same
creasing soil depth, longer MTTs corresponding to deepedistribution functions were identified as good predictors of
soil layers are to be expected. Soil water below 0.4 m wasbserved data in a related study by Weiler et al. (2003). When
not monitored within this study, given the shallow soil depth comparing the TPLR to EPM or GM, the latter two take the
and the increasing fraction of rock material with depth, pre-non-linearity of the flow without splitting it in two reservoirs
venting the use of wick samplers. with different exponential behaviors, therefore yielding more
The similarities and differences between models for sitesidentifiable results. However, findings by Weiler et al. (2003)
with MTTs > 2yr, as for stream and spring waters, gave in- suggest that the TPLR distribution function could achieve
sights about the importance of accounting for a proper TTD,better predictions for runoff events generated by mixed fast
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Fig. 12.Uncertainty ranges for outlet stream water (PL site) using a GM distribution fun¢éiprib) and(c) show the modeled parameters
uncertainties of 10 000 simulations and the feasible range of behavioral solutions taking a lower limit of 5% from the best solution. Black
filled circles in(d) and(e) represent the observed data; the black line and the shaded area represent the best possible solution and its range
of variation according to the 5-95 % confidence limits of the behavioral solutions shdaj) and the gray dashed line with crossegeh
represents the weekly rainfall variation as an input function for the model.

and slow flows. In related studies using multiple models, thespring sites meaning that an initial peak or a significant
EPM yielded the best predictions for surface and spring wa-art of the flow was quickly transported to the river. Simi-
ters (Viville et al., 2006). Considering this model, in the San lar results were found recently for mountain catchments of
Francisco catchment the average 1.85 value for stream comparable size in Scotland by Kirchner et al. (2010), who
waters (similar values were found for creeks and springsalso stated the importance of accounting for the best dis-
n=1.79 andy = 1.64, respectively) implies that a significant tribution shape, which is usually assumed as purely expo-
portion of old water (46 %) is released prior to the new onenential ¢ =1). MTTs derived without the use of observed
(54 %). Then value in this study is larger than thevalue  data, using a purely exponential model, frequently led to an
found in studies for stream water in temperate small headoverestimation oft and consequently an underestimation of
waters catchments) € 1.09, Kabeya et al., 2006;=1.28, @ MTTs. The higher flexibility of the GM permits accounting
McGuire et al., 2002 =1.37, Asano et al., 2002), and close for the non-linearity in the behavior of a catchment system
to results published by Katsuyama et al. (2009) for two ripar-(Hrachowitz et al., 2010).
ian groundwater systemg € 1.6 and 1.7).

Regarding the gamma model, it was also identified as an
applicable distribution function in headwater montane catch-
ments with dominant baseflow in a temperate climate (Hra-
chowitz et al., 2009, 2010; Dunn et al., 2010). For our study
area, a characteristic shape parameterl (e.g., Fig. 12b
and Part 2 of the Supplement) was found in all stream and
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Fig. 13. Uncertainty ranges for outlet stream water (PL site) using an EPM distribution funiosnd (b) show the modeled parameters
uncertainties of 10 000 simulations and the feasible range of behavioral solutions taking a lower limit of 5% from the best solution. Black
filled circles in(c) and(d) represent the observed data; the black line and the shaded area represent the best possible solution and its range
of variation according the 5-95% confidence limits of the behavioral solutions shoga);iand the gray dashed line with crosses in

(d) represents the weekly rainfall variation as an input function for the model.

5 Conclusions reduction of the isotopic signal yielding larger uncertainties
and extended MTT predictions getting close to the limita-
éions of the used method. Considering the high uncertainties

derived MTT is not only a matter of accounting for the best fit fobr the c(;':lses. whezre M.TTS predmnonz v(\;ere_ larger thﬁn the
to a predefined objective function; instead, itis recommended*S€MV€ .perlod% yn), itis recommended to interpret these
to at least (1) include in the analysis several potential TTDres,UItS W',th carg, even to not gonSIder them until longer time
models, (2) assess the uncertainty range of predictions angt!es of isotopic data are available.

(3) account for the parameter identifiability. Although the un- The diversity of s_ampling sitgs a_nd unce_rtainty analysis,
certainty ranges increases for MTI2 yr (e.g., compared to based on the best fits to the objective function NSE and the

short residence times of water for soils) using simpler modelgdentlflabnny of the parameters of the convolution equations

that still yield acceptable fits to an objective function can helpOf Seven c?nﬁeptual model;, e}llowedhto'defme thg ranges gf
to reduce the uncertainty associated with the predictions. ifyanation of the mean transit imes, their uncertainties, an

this sense, using the best predictions from models like Lppihe probable distribution functions for the main hydrologi-

for soil waters and EPM for surface and spring waters yieldeoCal compart.me_nts_ of th? San Franmsc;o catchment. Pure ex-
a more reliable range of MTT inferences through lowering ponential distributions (i.e., EM) provided the poorest pre-

the uncertainty associated in the predictions of certain mod-d'c'[Ions in all thes,dsgggestflng ngr}-llnet;’:\rltles ?If the pro;]
els. Sites that showed substantial differences in prediction§esse;” aj produi:e ){1 preEePrEI\E/Intlaeol\r/l yﬁaﬁsh ow. (.t))n the
between models (e.g., QRS or TP) were related to a strong?t €rhand, models such as or which have a better

The research revealed that looking for the best TTD and it
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Fig. 15.Comparative results between the EPM and GM of soil water
transit time distribution functions corresponding to the best NSE
for every sampling sitefa) stream water of main outlet and sub-

catchments using EPM ar(th) using GM; (c) spring waters and

creeks using LPM andd) using GM. Gray shaded area in each
plot corresponds to the range of possible shapes of the distribution
function for one of the sampling sites: the main outlet (PLjah
performance in terms of considering the non-linearity, in and(b) and TP creek irfc) and(d).

most cases yielded better fits to the observed data and at the

same time better identifiability of its variables, { or «).

For baseflow conditions, which are annually dominant in for estimating the effects of changes in vegetation, a task
the catchment area, stream water at the main outlet (PL) angsually difficult to accomplish by conventional hydrometric
five tributaries (FH, QZ, QN, QR, QM) yielded similar MTT Methods.
estimations, ranging from 1.8 to 2.5 yr, including uncertainty
ranges, while the MTT estimation for two tributaries (QP and Supplementary material related to this article is

QC) were between 3.5 and 4.4 yr. Despite the similar contri-_ . : ) .
; . . vailable online athttp://www.hydrol-earth-syst-sci.net/
bution areas, two small creeks described contrasting tran558/1503/2014/hess-18-1503-2014-su lement zi
times, TP between 4.2 and 5.1yr, and Q3 between 1.9 an PP 2P
2.2yr. Springs showed a longer variation range, from 2.0 yr
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