Logo Repositorio Institucional

Please use this identifier to cite or link to this item: http://dspace.ucuenca.edu.ec/handle/123456789/34497
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAuquilla Sangolqui, Andres Vinicio-
dc.contributor.authorDe Bock, Yannick-
dc.contributor.authorDuflou, Joost R-
dc.contributor.authorNowé, Ann-
dc.date.accessioned2020-06-13T00:43:28Z-
dc.date.available2020-06-13T00:43:28Z-
dc.date.issued2020-
dc.identifier.issn09241868-
dc.identifier.urihttp://dspace.ucuenca.edu.ec/handle/123456789/34497-
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs11257-020-09259-3-
dc.descriptionModelling the occupancy of buildings, rooms or the usage of machines has many applications in varying fields, exemplified by the fairly recent emergence of smart, self-learning thermostats. Typically, the aim of such systems is to provide insight into user behaviour and incentivise energy savings or to automatically reduce consumption while maintaining user comfort. This paper presents a nonparametric user activity modelling algorithm, i.e. a Dirichlet process mixture model implemented by Gibbs sampling and the stick-breaking process, to infer the underlying patterns in user behaviour from the data. The technique deals with multiple activities, such as <present, absent, sleeping>, of multiple users. Furthermore, it can also be used for modelling and predicting appliance usage (e.g. <on, standby, off>). The algorithm is evaluated, both on cluster validity and predictive performance, using three case studies of varying complexity. The obtained results indicate that the method is able to properly assign the activity data into well-defined clusters. Moreover, the high prediction accuracy demonstrates that these clusters can be exploited to anticipate future behaviour, facilitating the development of intelligent building management systems. © 2020, Springer Nature B.V.-
dc.description.abstractModelling the occupancy of buildings, rooms or the usage of machines has many applications in varying fields, exemplified by the fairly recent emergence of smart, self-learning thermostats. Typically, the aim of such systems is to provide insight into user behaviour and incentivise energy savings or to automatically reduce consumption while maintaining user comfort. This paper presents a nonparametric user activity modelling algorithm, i.e. a Dirichlet process mixture model implemented by Gibbs sampling and the stick-breaking process, to infer the underlying patterns in user behaviour from the data. The technique deals with multiple activities, such as <present, absent, sleeping>, of multiple users. Furthermore, it can also be used for modelling and predicting appliance usage (e.g. <on, standby, off>). The algorithm is evaluated, both on cluster validity and predictive performance, using three case studies of varying complexity. The obtained results indicate that the method is able to properly assign the activity data into well-defined clusters. Moreover, the high prediction accuracy demonstrates that these clusters can be exploited to anticipate future behaviour, facilitating the development of intelligent building management systems. © 2020, Springer Nature B.V.-
dc.language.isoes_ES-
dc.sourceUser Modeling and User-Adapted Interaction-
dc.subjectOccupancy prediction-
dc.subjectActivity recognition-
dc.subjectClustering-
dc.subjectDirichlet process mixture-
dc.titleNonparametric user activity modelling and prediction-
dc.typeARTÍCULO-
dc.ucuenca.idautorSgrp-3164-1-
dc.ucuenca.idautorSgrp-3164-4-
dc.ucuenca.idautor0103557369-
dc.ucuenca.idautorSgrp-3164-3-
dc.identifier.doi10.1007/s11257-020-09259-3-
dc.ucuenca.embargoend2050-06-12-
dc.ucuenca.versionVersión publicada-
dc.ucuenca.embargointerno2050-06-12-
dc.ucuenca.areaconocimientounescoamplio07 - Ingeniería, Industria y Construcción-
dc.ucuenca.afiliacionAuquilla, A., KU Leuven, Leuven, Belgica; Auquilla, A., Universidad de Cuenca, Departamento de Ciencias de la Computación, Cuenca, Ecuador-
dc.ucuenca.afiliacionDe Bock, Y., KU Leuven, Leuven, Belgica-
dc.ucuenca.afiliacionNowé, A., Vrije Universiteit Brussel, Elsene, Belgica-
dc.ucuenca.afiliacionDuflou, J., KU Leuven, Leuven, Belgica-
dc.ucuenca.correspondenciaDe Bock, Yannick, yannick.debock@kuleuven.be-
dc.ucuenca.volumenVolumen 0-
dc.ucuenca.indicebibliograficoSCOPUS-
dc.ucuenca.factorimpacto1.57-
dc.ucuenca.cuartilQ1-
dc.ucuenca.numerocitaciones7955-
dc.ucuenca.areaconocimientofrascatiamplio2. Ingeniería y Tecnología-
dc.ucuenca.areaconocimientofrascatiespecifico2.1 Ingeniería Civil-
dc.ucuenca.areaconocimientofrascatidetallado2.1.3 Ingeniería en Construcción-
dc.ucuenca.areaconocimientounescoespecifico073 - Arquitectura y Construcción-
dc.ucuenca.areaconocimientounescodetallado0732 - Construcción e Ingeniería Civil-
dc.ucuenca.urifuentehttps://www.springer.com/journal/11257-
Appears in Collections:Artículos

Files in This Item:
File Description SizeFormat 
documento.pdf
  Until 2050-06-12
document103.87 kBAdobe PDFView/Open Request a copy


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00