Logo Repositorio Institucional

Por favor, use este identificador para citar o enlazar este ítem: http://dspace.ucuenca.edu.ec/handle/123456789/33153
Título : Random Sub-sampling Cross Validation for Empirical Correlation Between Heart Rate Variability, Biochemical and Anthropometrics Parameters
Autor: Severyn, Erika
Velásquez, Jesus
Herrera, Héctor Antonio
Wong de balzan , Sara Null
Correspondencia: Severyn, Erika, severeynerika@usb.ve
Palabras clave : Empirical Correlation
Metabolic Syndrome
Random Sub-Sampling Cross Validation
Area de conocimiento FRASCATI amplio: 1. Ciencias Naturales y Exactas
Area de conocimiento FRASCATI detallado: 1.6.4 Bioquímica y Biología Molecular
Area de conocimiento FRASCATI específico: 1.6 Ciencias Biológicas
Area de conocimiento UNESCO amplio: 05 - Ciencias Físicas, Ciencias Naturales, Matemáticas y Estadísticas
Area de conocimiento UNESCO detallado: 0512 - Bioquímica
Area de conocimiento UNESCO específico: 051 - Ciencias Biológicas y Afines
Fecha de publicación : 2019
Fecha de fin de embargo: 31-dic-2050
Volumen: volumen 884
Fuente: Advances in Intelligent Systems and Computing
metadata.dc.identifier.doi: 10.1007/978-3-030-02828-2_25
Editor: Springer Verlag
Ciudad: 
Riobamba
Tipo: ARTÍCULO DE CONFERENCIA
Abstract: 
According to National Cholesterol Education Program-Adult Treatment Panel III, metabolic syndrome (MS) is a condition characterized by: Dyslipidemia, abdominal obesity, high levels in fasting glucose and arterial hypertension. Studies have explored indexes using dimensional analysis (DA) formed by anthropometric, biochemical and heart rate variability parameters for the diagnosis of MS. The dimensionless numbers made from DA have the capability to manage them as a mathematical functionality; therefore it is possible to relate them, even when the parameters used are not connected. The aim of this work is to find a polynomial equation using as variables two dimensionless numbers designed from anthropometrical and biochemical (π_IS) parameters and from heart rate variability (π_HRV) parameters. A fitting using a parametrical random sub-sampling cross validation (RSV) was performed using as an objective function the least squares method. A database of 40 subjects (25 control subjects and 15 subjects with MS) was employed. The polynomial parameters that best fit the database used correspond to a polynomial of order eight. The RSV substantially improves the adjustment of the polynomial compared to the application of the least squares method only (0.6678 vs. 0.3255). The polynomial relationship between π_IS and π_HRV allows the possibility to determine biochemical and anthropometric variables from heart rate variability parameters. Due to the limited number of subjects in the database used, it is necessary to repeat this methodology in a more extensive database to determine a more general polynomial that can be used with any type of population.
Resumen : 
According to National Cholesterol Education Program-Adult Treatment Panel III, metabolic syndrome (MS) is a condition characterized by: Dyslipidemia, abdominal obesity, high levels in fasting glucose and arterial hypertension. Studies have explored indexes using dimensional analysis (DA) formed by anthropometric, biochemical and heart rate variability parameters for the diagnosis of MS. The dimensionless numbers made from DA have the capability to manage them as a mathematical functionality; therefore it is possible to relate them, even when the parameters used are not connected. The aim of this work is to find a polynomial equation using as variables two dimensionless numbers designed from anthropometrical and biochemical (π_IS) parameters and from heart rate variability (π_HRV) parameters. A fitting using a parametrical random sub-sampling cross validation (RSV) was performed using as an objective function the least squares method. A database of 40 subjects (25 control subjects and 15 subjects with MS) was employed. The polynomial parameters that best fit the database used correspond to a polynomial of order eight. The RSV substantially improves the adjustment of the polynomial compared to the application of the least squares method only (0.6678 vs. 0.3255). The polynomial relationship between π_IS and π_HRV allows the possibility to determine biochemical and anthropometric variables from heart rate variability parameters. Due to the limited number of subjects in the database used, it is necessary to repeat this methodology in a more extensive database to determine a more general polynomial that can be used with any type of population.
URI : http://dspace.ucuenca.edu.ec/handle/123456789/33153
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85055624575&origin=inward
URI Fuente: https://link.springer.com/book/10.1007/978-3-030-02828-2
ISBN : 978-303002827-5
ISSN : 2194-5357
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
documento.pdf
  Until 2050-12-31
document158.95 kBAdobe PDFVisualizar/Abrir     Solicitar una copia


Este ítem está protegido por copyright original



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Centro de Documentacion Regional "Juan Bautista Vázquez"

Biblioteca Campus Central Biblioteca Campus Salud Biblioteca Campus Yanuncay
Av. 12 de Abril y Calle Agustín Cueva, Telf: 4051000 Ext. 1311, 1312, 1313, 1314. Horario de atención: Lunes-Viernes: 07H00-21H00. Sábados: 08H00-12H00 Av. El Paraíso 3-52, detrás del Hospital Regional "Vicente Corral Moscoso", Telf: 4051000 Ext. 3144. Horario de atención: Lunes-Viernes: 07H00-19H00 Av. 12 de Octubre y Diego de Tapia, antiguo Colegio Orientalista, Telf: 4051000 Ext. 3535 2810706 Ext. 116. Horario de atención: Lunes-Viernes: 07H30-19H00