“UNIVERSIDAD DE CUENCA”

FACULTAD DE CIENCIAS QUÍMICAS

ESCUELA DE BIOQUÍMICA Y FARMACIA

“Determinación de la actividad antimicrobiana de *Jungia rugosa* Less en extractos de n-hexano y diclorometano.”

TESIS PREVIA A LA OBTENCIÓN DEL TÍTULO DE BIOQUÍMICA FARMACÉUTICA

AUTORA:

SARA BETHZABÉ SOLÍS BOWEN

DIRECTORA:

Dra. MARÍA ISABEL WILCHES ARIZÁBALA Ms.C.

CUENCA - ECUADOR

2014
RESUMEN

Jungia rugosa Less es una planta nativa del Ecuador, ha sido utilizada desde hace mucho tiempo de una manera empírica por los nativos de las zonas andinas por la propiedad antiinflamatoria y cicatrizante que poseen sus hojas.

El presente estudio se realizó con la finalidad de determinar la actividad antimicrobiana de extractos de hojas, tallos y flores en diclorometano y n-hexano de Jungia rugosa Less frente a Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922) y Salmonella typhimurium (ATCC 14028).

Los extractos fueron obtenidos mediante percolación y concentrados al vacío. Se realizó cromatografía en capa fina donde se determinó la presencia de compuestos fenólicos: flavonoles y flavonas en las hojas extraídas con diclorometano, y la presencia de compuestos terpenoides y cumarinas en hojas, flores y tallos extraídos con diclorometano y n-hexano.

Para el análisis de la actividad antimicrobiana se realizaron tres técnicas diferentes: microdilución en placa, dilución en placa y difusión en agar; sin embargo no fue posible obtener resultados sobre la actividad antimicrobiana por la falta de solubilidad de los extractos debido a su alto carácter resinoso lo que determinó una falta de reproducibilidad de resultados.

Palabras claves:

ABSTRACT

Jungia rugosa Less is a native plant from Ecuador, its leaves had been used since ancient age for people from Andes due to the anti-inflammatory and cicatrizing effects that this medicinal plant has showed.

This study was conducted to determine the antibacterial activity from extracts of leaves, flowers and stems of *Jungia rugosa* Less in dichloromethane and n-hexane against bacteria such us *Staphylococcus aureus* (ATCC 25923), *Escherichia coli* (ATCC 25922) and *Salmonella typhimurium* (ATCC 14028).

The extracts were obtained by percolation and concentrate under vacuum. TLC (Thin Layer chromatographic) method was performed determining the presence of flavonols and flavones only in the leaves extracted with dichloromethane, and the presence of terpenoid compounds and coumarins in leaves, flowers and stems extracted with dichloromethane and n-hexane.

To determinate the antibacterial activity three different technique were applied: microdilution plate, dilution plate and agar diffusion, however it was not possible to obtain results about the antibacterial activity by the lack of solubility of the extracts, due to its high resinous character which resulted in a lack of reproducibility of the results.

Key words:

Índice

CAPÍTULO I .. 17
1. MARCO TEÓRICO .. 17
 1.1. TAXONOMÍA ... 17
 1.2. GENERALIDADES .. 17
 1.3. CARACTERÍSTICAS BOTÁNICAS ... 18
 1.4. DISTRIBUCIÓN .. 19

CAPÍTULO II .. 20
2. METABOLISMO VEGETAL .. 20
 2.1. GENERALIDADES .. 20
 2.2. RUTAS METABÓLICAS DE LAS PLANTAS .. 21
 2.2.1. Metabolitos secundarios con acción farmacológica ... 23
 2.2.1.1. Alcoholes .. 23
 2.2.1.2. Fenoles .. 23
 2.2.1.3. Cumarinas .. 23
 2.2.1.4. Alcaloides ... 24
 2.2.1.5. Saponinas .. 25
 2.2.1.6. Heterósidos cardiotónicos .. 25
 2.2.1.7. Aceites esenciales .. 25
 2.2.1.8. Quinonas .. 26
 2.2.1.9. Taninos .. 27
 2.2.1.10. Flavonoides .. 27
 2.2.1.11. Terpenoides ... 28
 2.2.1.12. Esteroides y Triterpenos .. 29
 2.2.1.13. Sesquiterpenos ... 29
 2.3. CROMATOGRAFÍA EN CAPA FINA TLC (THIN LAYER CHROMATOGRAPHY) 29
 2.4. AGENTES BACTERIANOS ... 31
 2.4.1. Escherichia coli .. 31
 2.4.2. Salmonella ... 31
 2.4.3. Staphylococcus aureus .. 32
CAPÍTULO III

3. MATERIALES ... 33

3.1. RECOLECCIÓN, LAVADO Y SECADO DE LA PLANTA .. 33

3.1.1. RECOLECCIÓN ... 33

3.1.2. LAVADO .. 34

3.1.3. SECADO ... 34

3.2. OBTENCIÓN DE EXTRACTOS ... 34

3.2.1. PERCOLACIÓN .. 34

3.2.2. CONCENTRACIÓN DE EXTRACTOS .. 36

3.3. ANÁLISIS MEDIANTE CROMATOGRAFÍA EN CAPA FINA (THIN CHROMATOGRAPHIC LAYER TLC) ... 37

3.4. EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA .. 38

3.4.1. EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA SEGÚN LA TÉCNICA DE MICRODILUCIÓN EN PLACA .. 38

3.4.1.1. Preparación de extractos .. 39

3.4.1.2. Preparación de microdiluciones ... 40

3.4.1.2.1. Microdiluciones con dimetilsulfóxido (DMSO) ... 40

3.4.1.2.2. Microdiluciones con agua purificada estéril ... 41

3.4.1.3. Preparación de la placa test .. 41

3.4.2. EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA SEGÚN LA TÉCNICA DE DILUCIÓN EN PLACA PARA ACEITES ESENCEIALES .. 42

3.4.2.1. Preparación de extractos .. 42

3.4.2.2. Preparación del inóculo bacteriano ... 43

3.4.2.3. Preparación de la placa test .. 43

3.4.2.4. Liofilización de extractos para eliminar el solvente 44

3.4.3. EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA SEGÚN LA TÉCNICA DE DIFUSIÓN EN AGAR VARIANTE DE POCILLO ... 45

3.4.3.1. Preparación de extractos .. 45

3.4.3.2. Preparación del agar .. 45

3.4.3.3. Preparación del inóculo bacteriano ... 46

3.4.3.4. Screening de extractos .. 46

3.4.3.5. Control de solvente y antibiótico .. 47
CAPÍTULO IV .. 48

4. MÉTODOS .. 48

4.1. RECOLECCIÓN, LAVADO Y SECADO DE LA PLANTA .. 48

4.1.1. RECOLECCIÓN .. 48

4.1.2. LAVADO .. 48

4.1.3. SECADO ... 49

4.2. OBTENCIÓN DE EXTRACTOS .. 50

4.2.1. TRITURACIÓN DE LAS DROGAS ... 50

4.2.2. EXTRACCIÓN POR PERCOLACIÓN SEGÚN U.S.P. (UNITED STATES PHARMACOPEIA) .. 50

4.2.3. CONCENTRACIÓN DE EXTRACTOS ... 51

4.2.3.1. Concentración a presión reducida ... 52

4.2.3.2. Concentración con nitrógeno ... 54

4.2.3.3. Concentración evaporación-centrifugación .. 54

4.3. ANÁLISIS MEDIANTE CROMATOGRAFÍA EN CAPA FINA (THIN CHROMATOGRAPHIC LAYER TLC) .. 55

4.3.1. PREPARACIÓN Y DESARROLLO DE PLACAS PARA TLC 60

4.3.1.1. Aplicación de la muestra ... 60

4.3.1.2. Migración sobre la placa .. 60

4.3.1.3. Revelado postcromatográfico .. 61

4.4. EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA .. 64

4.4.1. EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA SEGÚN LA TÉCNICA DE MICRODILUCIÓN EN PLACA. ... 65

4.4.1.1. Preparación de extractos ... 65

4.4.1.2. Preparación de microdiluciones ... 66

4.4.1.2.1. Microdiluciones con dimetilsulfóxido (DMSO) ... 66

4.4.1.2.2. Microdiluciones con Agua purificada estéril ... 67

4.4.1.3. Preparación de la placa test .. 67

4.4.1.4. Lectura de la placa test usando ELISA ... 68

4.4.2. EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA SEGÚN LA TÉCNICA DE DILUCIÓN EN PLACA PARA ACEITES ESENCIALES ... 70

4.4.2.1. Preparación de extractos ... 70
4.4.2.2. Preparación del inóculo bacteriano ... 70
4.4.2.3. Preparación de la placa Test .. 71
4.4.2.4. Liofilización de extractos ... 72
4.4.3. Evaluación de la actividad antimicrobiana según la técnica de difusión en agar variante de Pocillo ... 74
4.4.3.1. Preparación de extractos .. 74
4.4.3.2. Preparación del agar ... 75
4.4.3.3. Preparación del inóculo bacteriano ... 75
4.4.3.4. Screening de extractos .. 75
4.4.3.5. Control de solvente y antibiótico ... 76

CAPÍTULO V ... 77
5. RESULTADOS ... 77
5.1. Caracterización botánica .. 77
5.2. Preparación de extractos ... 79
5.3. Agotamiento de la droga ... 80
5.4. Rendimiento de la droga ... 83
5.5. Identificación de metabolitos mediante cromatografía en capa fina (TLC) 85
5.5.1. Compuestos fenólicos ... 85
5.5.1.1. Compuestos fenólicos en extractos de diclorometano 85
5.5.1.2. Compuestos fenólicos en extractos de n-hexano 87
5.5.2. Cumarinas ... 88
5.5.3. Terpenos y terpenoides .. 89
5.6. Evaluación de la actividad antimicrobiana .. 90
5.6.1. Disolución de extractos .. 90
5.6.2. Evaluación de la actividad antimicrobiana según la técnica de microdilución en placa ... 93
5.6.3. Evaluación de la actividad antimicrobiana según la técnica de dilución en placa para aceites esenciales ... 94
5.6.4. Evaluación de la actividad antimicrobiana según la técnica de difusión en agar variante de Pocillo ... 97

CAPÍTULO VI ... 99
6. DISCUSIÓN GENERAL ...99
CAPÍTULO VII ..110
7. CONCLUSIONES ...110
CAPÍTULO VIII ...112
8. RECOMENDACIONES ...112
ANEXO A ...118
ANEXO B ...120
ANEXO C ...123
ANEXO D ...126
ANEXO E ...130
Yo, Sara Bethzabé Solís Bowen autora de la tesis “DETERMINACIÓN DE LA ACTIVIDAD ANTIMICROBIANA DE *Jungia rugosa* Less EN EXTRACTOS DE DICLOROMETANO Y N-HEXANO”, certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autora.

Cuenca, 27 de mayo del 2014

Sara Bethzabé Solís Bowen

1310500598
Yo, Sara Bethzabé Solís Bowen, autor de la tesis, DETERMINACIÓN DE LA ACTIVIDAD ANTIMICROBIANA DE *Jungia rugosa* Less EN EXTRACTOS DE DICLOROMETANO Y N-HEXANO", reconozco y acepto el derecho de la Universidad de Cuenca, en base al Art. 5 literal c) de su Reglamento de Propiedad Intelectual, de publicar este trabajo por cualquier medio conocido o por conocer, al ser este requisito para la obtención de mi título de Bioquímica Farmacéutica. El uso que la Universidad de Cuenca hiciere de este trabajo, no implicará afección alguna de mis derechos morales o patrimoniales como autor.

Cuenca, 27 de mayo del 2014

Sara Bethzabé Solís Bowen

1310500598
AGRADECIMIENTO

Obtener este logro que se ha construido durante años de estudios y de sacrificios es un regalo prestigioso para cualquier ser humano por ello quiero agradecer en primer lugar a mi Dios por hacerlo posible, a mis padres, hermanos, familiares y amigos por el apoyo que me brindan siempre, y a mis queridos profesores que además formarme con una profesional ética también lo hicieron de alguna manera en mi formación como persona.

De manera muy especial a la Dra. Isabel Wilches quien además de ser mi directora de tesis compartió su amistad y sus conocimientos con mi persona, apoyándome con mucha paciencia para lograr cumplir con el objetivo planteado.

Al Dr. Fabián León y a la Dra. Lourdes Jerves por su temple y el apoyo académico brindado.

A la Dra. Nancy Cuzco y BQF. Andrea Abril quienes con paciencia me ayudaron siempre que lo necesité durante mi paso en los laboratorios del proyecto; y cada una de las personas que forman parte del proyecto de Plantas Medicinales Vlir de la Universidad de Cuenca las que compartieron sus conocimientos conmigo muchísimas gracias.

Dios los bendiga!!!.
DEDICATORIA

Todo este esfuerzo y trabajo que he realizado se lo dedico a la persona que para mí ha sido la más perfecta y sabía que ha existido sobre la tierra de quien aprendí el valor de la familia, el trabajo, la solidaridad y la amistad mi “ABUELITO ARIOLFO”. A mis padres por su apoyo incondicional y la paciencia que me han tenido en estos 6 años de estudio, a mis hermanos que me han dado ánimos cuando he querido flaquear en este camino, a mi sobrina que es lo más hermoso que mi Dios me ha podido regalar. A mis Tíos y mis primas con los que compartí gran parte de lo que fue mi carrera universitaria. A mis amigos los de mi cuidad y los que Cuenca me regalo que han estado conmigo cuando la nostalgia ha querido invadir mis días en la ciudad morlaca.

Y por último y lo más importante a mi Dios eje de mi vida y de lo que hago; que me dio y me sigue dando las fuerzas y medios para lograr lo que su voluntad desea para mi vida.

Sara Bethzabé
INTRODUCCIÓN

El Ecuador está considerado uno de los países más biodiverso del planeta. Su flora cuenta con más de 16.000 especies de plantas vasculares de las cuales 5.172 son útiles y de estas 3.118 son usadas con fines medicinales, un 75% de estas son especies nativas y un 11% corresponde a plantas que han sido introducidas.\(^{(1)}\)

Cabe mencionar que alrededor el 25% de moléculas de la farmacopea moderna son derivadas de plantas e importantes derivados sintéticos que se obtuvieron a partir de los principios activos de las plantas; tales como atropina, quinina aspirina entre otros\(^{(2)}\) por ello el afán por dar a conocer las bondades de las plantas medicinales, así como las diferentes afecciones que curan ha sido un tema tratado desde que la humanidad existe. La información sobre plantas medicinales de Los Andes ecuatorianos se ha difundido desde la época de la conquista hasta la actualidad transmitidos de generación en generación.\(^{(3)}\)

La presencia de enfermedades causadas por bacterias aumenta cada día en nuestro medio, debido a la resistencia bacteriana que se ha generado por el abuso de los antibióticos; así podemos mencionar las infecciones de vías urinarias (I.V.U), sepsis, meningitis, síndromes diarréicos que pueden provocar en muchos casos la muerte del paciente.

Es por ello que el estudio de nuevas moléculas que posean actividad antimicrobiana puede contribuir a la combatir dichas afecciones y mejorar la calidad de vida de los pacientes.
El Ecuador en su región andina presenta una diversidad etnobotánica de gran variedad de plantas con propiedades farmacológicas poco o nada estudiadas, solo son utilizadas de una manera empírica por los nativos de la zona como es el caso de la *Jungia rugosa* Less. En la presente investigación se procedió a determinar la actividad antimicrobiana de extractos en diclorometano y n-hexano de la *Jungia rugosa* Less frente a cepas bacterianas de *Staphylococcus aureus* (ATCC 25923), *Escherichia coli* (ATCC 25922) y *Salmonella typhimurium* (ATCC 14028).

Las hipótesis planteadas para iniciar la presente investigación fueron:

- Los extractos en diclorometano de flores, hojas, tallos de la *Jungia rugosa* Less presentan actividad antimicrobiana frente a *Staphylococcus aureus*, *Escherichia coli* y *Salmonella typhimurium*.
- Los extractos en n-hexano de flores, hojas, tallos de la *Jungia rugosa* Less presentan actividad antimicrobiana frente a *Staphylococcus aureus*, *Escherichia coli* y *Salmonella typhimurium*.

Se propusieron los siguientes objetivos:

Objetivo general:
- Determinar la actividad antimicrobiana de *Jungia rugosa* Less en extractos obtenidos en diclorometano y n-hexano.

Objetivos específicos:
- Obtener extractos de *Jungia rugosa* Less usando hexano y diclorometano como solventes a partir de distintas partes de la planta (tallo, hojas, flores).
• Procesar corrimientos cromatográficos (TLC) de los extractos obtenidos.
• Evaluar la actividad antimicrobiana de los extractos de la planta frente a los microorganismos Staphylococcus aureus, Escherichia coli, y Salmonella typhimurium.

Una vez culminado el estudio no se han podido afirmar ni rechazar las hipótesis propuestas debido a la insolubilidad de los extractos de n-hexano y diclorometano que se obtuvieron con hojas, flores y tallos de Jungia rugosa Less con las diferentes técnicas aplicadas, ya que las técnicas citadas por la bibliografía científica y que se realizaron en la presente investigación no son viables para extractos con alto contenido resinoso como los que se obtuvieron con Jungia rugosa Less. La investigación evidenció la posible presencia de compuestos fenólicos (flavonas y flavonoles) en las hojas que fueron extraídas con diclorometano, y la posible presencia de compuestos terpenoides y cumarinas simples en hojas, flores y tallos extraídos tanto con diclorometano y n-hexano.

Sin embargo no se puede descartar la posibilidad de que los extractos hojas, flores y tallos empleando como menstruo diclorometano y n-hexano no presente actividad antimicrobiana, ya que el análisis cromatográfico nos proporcionó información sobre la posible presencia de compuestos fenólicos y compuestos terpenoides los cuales según referencias bibliográficas indican que estos metabolitos tienen propiedades antibacterianas.

Además, se han determinado los tiempos de agotamiento al preparar los extractos cuando se usan hojas, flores y tallos, así como también sus rendimientos.
Finalmente, a través de la investigación se ha podido corroborar que el hábitat en el que se desarrolla la planta influye en la composición y contenido de metabolitos secundarios.

Con la presente investigación se pretende que los datos obtenidos constituyan un aporte para la comunidad científica, y sirva de propuestas para posteriores y nuevas investigaciones sobre *Jungia rugosa* Less.
CAPÍTULO I

1. MARCO TEÓRICO

**Jungia rugosa** Less.

1.1. **Taxonomía**

Reino: Plantae
Filo: Magnoliophyta
Clase: Magnoliopsida
Orden: Asterales
Familia: Asteraceae
Género: _Jungia_
Especie: _Jungia rugosa_ (4)

1.2. **Generalidades**

Es muy reducida la información que la literatura científica refiere sobre _Jungia rugosa_ Less. Su nombre fue aceptado en la comunidad botánica en 1830, su récord consta en los datos TICA (The International Compositae Alliance) (record 436A8FFB-1316-47E0-9E5A-1CDF1024CDCF). (5)

Fue descrita por Christian Friedrich Lessing médico y botánico alemán en 1830. (6)
La región andina de nuestro país posee una variada flora y dentro de ella, muchas especies con reconocida actividad benéfica para la salud. Dentro de estas especies se encuentra *Jungia rugosa* Less ‘matico de puna’ (como es conocida en el Perú), una especie vegetal que crece en la región andina de nuestro país, cuyas hojas son utilizadas como desinflamante y cicatrizante\(^{(7)}\), es conocida por la población como “carne humana”, fompo, guayombo\(^{(8)}\), trikache (zonas andinas peruana).

1.3. Características botánicas

La *Jungia rugosa* Less es un arbusto de la familia de las asteráceas, crece entre altitudes de 2900 a 3800 metros sobre el nivel del mar.

Arbustos trepadores. Tallo no tomentoso. Hojas simples, con peciolo de 4-5 cm, lámina coriácea, orbicular, marginalmente lobulada, algo escabrosa, palmatinervias, base cordada, ápice con óvulo agudo. Capítulos cortamente pedicelados, involucro campanulado, filarias 2-seriadas. Flores homógamas, numerosas, bilabiadas, blanco-moradas.\(^{(9)}\) Se distingue fácilmente por su superficie bulada características de parte superior de las hojas y filarios glandulares. El ápice de los filarios es variable de agudo a atenuado, pero la densidad glandular pelosa y ciliolada de los márgenes es invariable (Figuras 1.1 y 1. 2).\(^{(10)}\)

![Figura 1.1 Hojas de *Jungia rugosa* L.](image)

*Figura 1.1 Hojas de *Jungia rugosa* L.*

![Figura 1.2 Flores de *Jungia rugosa* L.](image)

*Figura 1.2. Flores de *Jungia rugosa* L.*
1.4. Distribución

La *Jungia rugosa* Less se distribuye a lo largo de Los Andes ubicados en Ecuador, Perú y Bolivia. En el caso de nuestro país, se la puede localizar en los siguientes lugares cuyas altitudes varían entre 2900- 3800 metros sobre el nivel del mar:

- Chimborazo: parroquia Pungala, Parque Nacional Sangay, quebrada Supaycahuan, Reserva Faunística del Chimborazo.
- Napo: Laguna de Papallacta.
- Cañar: sector Mosquera, Ingapirca.
- Azuay: Parque Nacional El Cajas, Vía Cuenca- Machala Km 22, Vía Cuenca- Soldados Km 23.\(^{(11)}\)
- Loja: Saraguro.
- Cotopaxi: Latacunga.
CAPÍTULO II

2. METABOLISMO VEGETAL

2.1. Generalidades

El metabolismo primario se considera esencial para la vida y es común a todos los seres vivos; mientras que el metabolismo secundario no se considera esencial para la vida, es de gran importancia ya que da lugar a productos (metabolitos secundarios) que resultan de gran interés farmacológico. La mayoría de principios activos que se obtienen de las plantas proceden del metabolismo secundario. Producto del metabolismo podemos encontrar componentes químicos que son generalmente abundantes y de estructura diversa. Según su naturaleza química se pueden clasificar en:

Inorgánicos: agua, minerales. Generalmente las hojas y tallos contienen mayor cantidad de agua (hasta el 80 % en algunos de los casos), mientras que las semillas contienen menos proporción de agua. Los minerales algunos en forma de sales solubilizadas (cloruros, sulfatos, nitratos) y otros formando sales cristalizadas (magnesio, manganeso, silicio, hierro, yodo, flúor).

Orgánicos: los compuestos orgánicos pueden proceder del metabolismo primario o del metabolismo secundario de la planta (Tabla 2.1). (12)
Compuestos procedentes del metabolismo primario

- Glúcidos
- Lípidos y ceras vegetales
- Aminoácidos y proteínas
- Ácidos nucleicos
- Compuestos nitrogenados: Glúcidos cianogenéticos, glucosinolatos, enzimas

Compuestos procedentes del metabolismo secundario

- Isoprenoides: aceites esenciales, saponinas, cardiotónicos.
- Derivados fenólicos: fenoles y ácidos fenólicos, cumarinas, lignanos, flavonoides, antocianinas, taninos.
- Acetatos: quinonas, antracenósidos.
- Alcaloides.

<table>
<thead>
<tr>
<th>Tabla 2.1. Compuestos generados del metabolismo primario y secundario (KUKLINSKI, 2000)</th>
</tr>
</thead>
</table>

2.2. Rutas metabólicas de las plantas

La producción de los metabolitos secundarios depende de los ciclos metabólicos fundamentales de los tejidos vivos. La fotosíntesis es uno de estos procesos básicos por medio de la cual se va a producir azúcares y ciertas enzimas fundamentales a partir de dióxido de carbono en los cloroplastos.

La reserva glucosídica se destina a la producción de energía, la biosíntesis de ácidos grasos, y la formación de heterósidos.

La biosíntesis de compuestos aromáticos (la mayoría de metabolitos secundarios son aromáticos) se da a través de las siguientes vías:
- Vía del ácido Sikímico: es una ruta importante para la biosíntesis de unidades C₆-C₃ (derivados del fenilpropano) a partir de carbohidratos.
- Hipótesis del acetato: la condensación del acetato puede prever la formación de compuestos aromáticos. (Ver figura 2.1).

Figura 2.1. Metabolismo Vegetal. (http://www.ugr.es/~quiored/pnatu/secundario.htm)

Las plantas contienen flavonoides, compuestos polifenólicos, terpenos, terpenoides, aceites escenciales, cumarinas con efectos antiinflamatorios, antimicrobianos, antivirales, antiulcerosos, antioxidante, antihepatotóxico y antihipertensivo. Inhiben gran variedad de enzimas, como la ciclooxigenasa, lipooxigenasa, NADPH oxidasa y xantina oxidasa, los radicales libres y reducen el...
estrés oxidativo. Los flavonoides, polifenoles y el alfa tocoferol poseen capacidad antioxidante.\(^7\)

2.2.1. Metabolitos secundarios con acción farmacológica

2.2.1.1. Alcoholes

Los alcoholes libres no están generalmente presentes más que en formas de trazas en las plantas vivas. Son esterificados y combinados bajo la forma de heterósidos. Se encuentran en los aceites esenciales. Los alcoholes alifáticos son tensioactivos e hipotensores; todos son tóxicos en grado diverso.

2.2.1.2. Fenoles

Presentan estructura aromática con frecuencia poseen grupos alcohólicos, aldehídicos y carboxílicos. Se encuentran en estado libre o en estado de éter poseen propiedades fisiológicas como antisépticas, emenagogo, antidiarreico, carminativo.\(^14\)\(^13\)

2.2.1.3. Cumarinas
Son metabolitos derivados de la Benzo-α-pirona muchas de ellas son fenólicas (Figura 2.2). Poseen propiedades como antiinflamatoria, antiespasmódicos, vasodilatador, sedante, anticoagulantes, tónico venosos, ligero efecto hipnótico.

![Figura 1 - Estructura básica de las cumarinas 1, cromonas 2 y xantonas 3](http://quimica.laguia2000.com/wp-content/uploads/2011/10/Cumarina1.png)

2.2.1.4. Alcaloides

Son sustancias orgánicas nitrogenadas (Figura 2.3) con carácter básico, son de origen biológico y mayoritariamente de origen vegetal, ejercen acciones fisiológicas incluso a dosis muy bajas; muchas de estas sustancias son muy tóxicas. (13)

![Figura 2.3. Moléculas de alcaloides que encontramos en las plantas](http://www.monografias.com/trabajos72/compuestos-nitrogenados-aminas/compuestos-nitrogenados-aminas.shtml)
2.2.1.5. Saponinas

Son heterósidos (azúcar + aglicón) se caracterizan por producir espumas ya que disminuyen la tensión superficial del agua. Poseen actividad hemolítica, antiprotozoaria, antitusiva, detergente, diurética, antiedematosa y antiinflamatoria (Figura 2.4). (14) (12)

2.2.1.6. Heterósidos cardiotónicos

Son compuestos heterósidos (azúcar + aglicón) la parte glucídica está constituida por una o varias unidades de azúcar y la parte aglicón de C27 esteroídico, capaces de modular el funcionamiento del corazón, actuando directamente sobre la contractibilidad del músculo. (12)

2.2.1.7. Aceites esenciales

Son comúnmente llamados esencias, son sustancias olorosas volátiles contenidas en los vegetales compuestos por sustancias terpenoides y no terpenoides; su
volatilidad les diferencias de los aceites fíjos (Figura 2.5). Tienen propiedades antisépticas, sedantes, antiinflamatorias, antiespasmódicas, analgésicas. (14) (12)

Figura 2.5. Principios olorosos presentes en los aceites esenciales (http://www.um.es/molecule/lipi06.htm)

2.2.1.8. Quinonas

Son compuestos aromáticos con dos grupos cetonas (Figura 2.6) frecuentemente en posición para (1,4) y orto (1,2), según su estructura química se clasifican en:

- Benzoquinonas: derivadas del benceno.
- Naftoquinonas: derivadas del naftaleno.
- Antraquinonas: derivadas del antraceno, antraquinonas (2 funciones cetonas), oxantronas (1 función cetona y otra alcohol), antronas (1 función cetona), dihidroantranoles (1 función alcohol).
- Fenatraquinonas: derivadas del fenantroeno.
- Antraciclinonas: derivadas del naftaceno.

Tienen efecto colagogo, hidragogo (laxante). (12)
2.2.1.9. Taninos

Son sustancias de origen vegetal no nitrogenadas de estructura polifenólica (Figura 2.7). Tienen la propiedad de curtir la piel (evitan la putrefacción) combinándose con proteínas presentes en la piel convirtiéndola en cuero, se les atribuye poder astringente, antiséptico, antioxidante, cicatrizante, antihemorrágico, hipocolesterolémico.\(^{(14)}\)\(^{(12)}\)

![Figura 2.7. Taninos Acido Galíco (http://taninos.tripod.com/)](http://taninos.tripod.com/)

2.2.1.10. Flavonoides

Son de estructura tipo \(C_6-C_3-C_6\) con dos anillos aromáticos unidos por cadenas de \(C_3\) (Figura 2.8), se considera una estructura derivada de la \(\alpha\)-benzo-\(\gamma\)-pirona con un fenilo en la posición 2. Se clasifican en Flavonas, flavonoles, flavononas,
flavonololes, chalconas e isoflavonoides. Presentan actividades terapéuticas como antihemorrágica, antiarrítmica, antiinflamatoria, antihepatotóxica, antibacteriana, diurética, antiespasmódica, antioxidante.(12)

![Figura 2.8. Estructura química de las clases de flavonoides](http://www.scielo.org.mx/scielo.php?pid=S1405-99402006000800004&script=sci_arttext)

2.2.1.11. Terpenoides

Compuestos no saturados de carbono, hidrógeno y oxígeno de estructura no aromática (Figura 2.9) y forman parte de los aceites esenciales y las resinas, derivados del C\textsubscript{10} geranil-pirofosfato. Poseen propiedades rubefacientes, antiinflamatoria y antisépticas.(14) (13)

![Figura 2.9. Genaril pirofosfato Estructura](http://ibcbioquimica.blogspot.com/2012/04/colesterogenesis.html)
2.2.1.12. *Esteroides y Triterpenos*

Se obtienen por condensación isoprénica. Los triterpenos son compuestos de C$_{30}$ forman parte de las saponinas y heterósidos cardiotónicos. Suelen poseer actividad antimicrobiana.$^{(14)}$ $^{(12)}$

2.2.1.13. *Sesquiterpenos*

Presentan una estructura de C$_{15}$ formadas a través de la condensación isoprénica. Se encuentran formando parte de los aceites esenciales pero también hay sesquiterpenos diferentes a los que se encuentran en dichos aceites como las lactonas. Presentan diferentes propiedades farmacológicas como antibacteriana, antiinflamatoria, antihistámica, antiespasmódica.$^{(12)}$

2.3. *Cromatografía en capa fina TLC (Thin Layer Chromatography)*

La cromatografía consiste en la separación de los componentes de una mezcla debido a la diferente velocidad de elución a través de una fase estacionaria cuando la mezcla es transportada por una fase móvil.

En la cromatografía en capa fina o TLC la fase estacionaria es un sólido poroso dispuesto formando una capa delgada sobre una placa metálica o de vidrio. La fase móvil es líquida y esta fluye en sentido ascendente arrastrando los diferentes
componentes de la mezcla diferentes velocidades, con lo que se consigue una separación.\(^{(12)}\)

La mezcla a separar se deposita sobre la fase estacionaria, mientras que la móvil atraviesa el sistema desplazando a los componentes de la mezcla a distinta velocidad, dependiendo de la magnitud de sus interacciones relativas con ambas fases. Las dos fases se eligen de forma que los componentes de la muestra se distribuyan de modo distinto entre la fase móvil y la fase estacionaria. Aquellos componentes que son fuertemente retenidos por la fase estacionaria se mueven lentamente con el flujo de la fase móvil; por el contrario los componentes que se unen débilmente a la fase estacionaria, se mueven con rapidez. Como consecuencia de la distinta movilidad, los componentes de la muestra se separan en bandas o zonas discretas que pueden analizarse cualitativa y/o cuantitativamente.\(^{(15)}\)

La cromatografía en capa fina sirve entre otras cosas para:

- Identificación de metabolitos.
- Determinar el grado de pureza de un compuesto. Se puede determinar así, por ejemplo, la efectividad de una etapa de purificación.
- Comparar muestras. Si dos muestras corren igual en placa podrían ser idénticas. Si, por el contrario, corren distinto entonces no son la misma sustancia.
- Realizar el seguimiento de una reacción. Es posible estudiar cómo desaparecen los reactivos y cómo aparecen los productos finales o, lo que es lo mismo, saber cuándo la reacción ha concluido.\(^{(16)}\)
2.4. **Agentes Bacterianos**

2.4.1. *Escherichia coli*

Enterobacteria, correspondiente a las características de este grupo es bacilo gram negativo, cuyo hábitat natural es el intestino de humanos y animales. Forma parte de la flora normal e incidentalmente causan enfermedad como infecciones del tracto urinario, infecciones diarreicas, septicemia, meningitis.

Se distinguen seis cepas según su capacidad patógena:

- *Escherichia coli* enteropatógena (ECEP)
- *Escherichia coli* enterotoxigénica (ECET)
- *Escherichia coli* enterohemorrágica (ECEH)
- *Escherichia coli* enteroinvasiva (ECEI)
- *Escherichia coli* enteroagregativa (ECEA)
- *Eschericha coli* de adherencia difusa (ECAD)\(^{(17)}\)

2.4.2. *Salmonella*

Enterobacterias, bacilos gram negativos, son patógenas para humanos y animales; se transmiten a los humanos a partir de los animales y productos de estos y causan enteritis, infección sistémica y fiebre entérica. Los microorganismos ingresan casi siempre por vía oral.
Características bioquímicas:

- Son bacilos dotados de motilidad por flagelos peritricos, no fermentan la lactosa o sacarosa. Forman ácido y a veces gas a partir de la glucosa; generalmente producen H₂S\(^{(17)}\)

2.4.3. *Staphylococcus aureus*

Es una bacteria gram positiva en forma de cocos, perteneciente a la familia *Micrococcaceae*, que tiene varios factores de virulencia entre ellos una cápsula mucoide, que incrementa su capacidad de adherencia, y refuerza el efecto antifagocítico\(^{(18)}\)

Miembro de la flora bacteriana de la nariz, es un patógeno invasor produce coagulasa y muestra tendencia a generar un pigmento amarillo y causar hemólisis. Puede provocar intoxicación alimentaria por la ingestión de toxina y causar síndromes diarreicos, fiebre, cefalea; por otro lado puede provocar bacteremia estafilocócica por contaminación de heridas, lo que podría complicarse con una endocarditis, osteomelitis hematógena aguda, meningitis o infección pulmonar.\(^{(17)}\)
CAPITULO III

3. MATERIALES

3.1. Recolección, lavado y secado de la planta

A continuación se detalla las materias primas empleadas en la recolección, lavado y secado de la planta objeto de nuestro estudio.

3.1.1. Recolección

Para la recolección de la planta se emplearon los siguientes materiales:

- Bolsas de papel: para el transporte y conservación de las plantas
- Bolsas de plástico: para la recolección de muestras botánicas.
- Podadoras: para la obtención de la planta.
- Etiquetas y bolígrafos
- G.P.S. Maguellan Explorist 600.
3.1.2. Lavado

Luego de obtener las muestras necesarias de planta en estudio se procedió a lavar las plantas para lo cual se utilizaron:

- Recipientes de plásticos
- Bandejas de acero inoxidable.
- Papel periódico blanco.
- Etanol al 70% y gaza.
- Agua potable de la red pública.
- Agua purificada.

3.1.3. Secado

Para el secado se usaron los siguientes materiales:

- Bandejas de acero inoxidable.
- Papel periódico blanco.
- Fundas de papel periódico.
- Etanol al 70%: y gaza.

3.2. Obtención de extractos.

3.2.1. Percolación

El método extractivo utilizado fue la percolación para lo cual empleamos:
- Frascos de vidrio.
- Embudos de separación para la percolación.
- Bolitas de vidrio.
- Algodón.
- Papel filtro.
- Tubos de ensayo pequeños.
- Diclorometano: solvente utilizado para la extracción de principios activos lipófilos, con las siguientes especificaciones:

<table>
<thead>
<tr>
<th>T° ignición</th>
<th>Solubilidad en agua</th>
<th>Punto de fusión</th>
<th>Masa molar</th>
<th>Densidad</th>
<th>pH</th>
<th>Punto de ebullición</th>
</tr>
</thead>
<tbody>
<tr>
<td>605 °C</td>
<td>20 g/L</td>
<td>-95 °C</td>
<td>84.93 g/mol</td>
<td>1,33 g/cm³</td>
<td>neutro</td>
<td>40 °C</td>
</tr>
</tbody>
</table>

Tabla 3.1. (Merck Chemicals, 2014)

- N-Hexano (Merk, Darmstadt, Alemania): solvente utilizado en la extracción de principios activos lipófilos.
n- HEXANO
MARCA MERCK
Especificaciones físicas y químicas

<table>
<thead>
<tr>
<th>T° ignición</th>
<th>Solubilidad en agua</th>
<th>Punto de fusión</th>
<th>Masa molar</th>
<th>Densidad</th>
<th>pH</th>
<th>Punto de ebullición</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 °C</td>
<td>0,0095 g/L</td>
<td>-94,3 °C</td>
<td>86.18 g/mol</td>
<td>0,66 g/cm3</td>
<td>No aplicable</td>
<td>69 °C</td>
</tr>
</tbody>
</table>

Tabla 3.2. (Merck Chemicals, 2014)

3.2.2. Concentración de extractos

- Nitrógeno

Es un método que se empleó para eliminar el solvente, con la ayuda de un pipeta Pasteur conectada a una manguera que proporciona nitrógeno gaseoso se eliminó gran proporción del solvente dejando solo una pequeña cantidad que posteriormente fue eliminada con ayuda del vacío.
Propiedades físicas y químicas del Nitrógeno gas

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado físico</td>
<td>Gas</td>
</tr>
<tr>
<td>Densidad del vapor</td>
<td>0,97</td>
</tr>
<tr>
<td>Punto de ebullición</td>
<td>-195,8 °C</td>
</tr>
<tr>
<td>Punto de congelamiento</td>
<td>-209,9 °C</td>
</tr>
<tr>
<td>Solubilidad en agua</td>
<td>Levemente soluble</td>
</tr>
<tr>
<td>Olor y apariencia</td>
<td>Gas incoloro y sin olor</td>
</tr>
</tbody>
</table>

Tabla 3.2. (Indura, 2008)

- Matraces fondo redondo.
- Tubos de ensayos grandes.
- Pipetas Pasteur.
- Equipo de soporte.
- Viales.

3.3. Análisis mediante Cromatografía en capa fina (Thin Chromatographic Layer TLC)

Para poder garantizar el agotamiento de la droga se utilizaron los siguientes materiales:

- Fase estacionaria: placas de sílica gel con medidas de 10 x 10 centímetros.
- Capilares.
- Fase móvil: tolueno- acetato de etilo (85/15).
Para la identificación de metabolitos presentes en los extractos obtenidos se empleó:

- **Fase estacionaria**: sílica gel placas de vidrios de 10 x 20 centímetros.
- **Fase móvil**: tolueno- acetato de etilo (85/15) utilizada para cumarinas y terpenos, tolueno-dioxano- ácido acético glacial (90/25/4) utilizada para flavonoides y compuestos fenólicos.
- **Jeringa inyectora de equipo de HPLC de 10 µl.**
- **Reveladores**:
 - Hidróxido de potasio 10% en etanol: revelador específico para cumade rinas.
 - Vainillina I: vainillina al 1% en etanol absoluto, revelador específicos para terpenos e isoterpenos.
 - Vainillina II: ácido sulfúrico al 10% en etanol Absoluto, revelador específicos para terpenos e isoterpenos.
 - Polietilenglicol (PEG) 4000 al 5% en etanol: revelador para flavonoides y compuestos fenólicos.
 - Difenil boriloxietilamina: difenil bórico ácido-β-etilamino esteral 1% en metanol; revelador para flavonoides y compuestos fenólicos.\(^{(19)}\)

3.4. **Evaluación de la actividad antimicrobiana**

3.4.1. **Evaluación de la actividad antimicrobiana según la técnica de microdilución en placa.**
3.4.1.1. **Preparación de extractos**

En la preparación de los extractos se emplearon:

- **Dimetilsulfóxido**: DMSO (Merck, Darmstadt, Alemania) indicado para la disolución de los extractos ya que presenta solubilidad tanto en solventes polares como en apolares.

<table>
<thead>
<tr>
<th>DIMETILSULFÓXIDO (DMSO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARCA MERCK</td>
</tr>
<tr>
<td>Especificaciones físicas y químicas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T° ignición</th>
<th>Solubilidad en agua</th>
<th>Punto de fusión</th>
<th>Masa molar</th>
<th>Densidad</th>
<th>Punto de ebullición</th>
</tr>
</thead>
<tbody>
<tr>
<td>455 °C</td>
<td>A 20 °C soluble</td>
<td>-98 °C</td>
<td>32,04 g/mol</td>
<td>0,792 g/cm³</td>
<td>64,5 °C</td>
</tr>
</tbody>
</table>

Tabla 3.4. *(Merck Chemicals, 2014)*

- **Metanol**: calidad analítica (Merk, Darmstadt, Alemania).
METANOL

MARCA MERCK

Especificaciones físicas y químicas

<table>
<thead>
<tr>
<th>T° ignición</th>
<th>Solubilidad en agua</th>
<th>Punto de fusión</th>
<th>Masa molar</th>
<th>Densidad</th>
<th>Punto de ebullición</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 °C</td>
<td>1000 g/L</td>
<td>18,4 °C</td>
<td>78,13 g/mol</td>
<td>1,10 g/cm³</td>
<td>189 °C</td>
</tr>
</tbody>
</table>

Tabla 3.5. *(Merck Chemicals, 2014)*

- Pipetas automáticas Thermo scientific (20, 100, 200, 1000 µl).
- Puntas de pipetas.

3.4.1.2. Preparación de microdiluciones

3.4.1.2.1. Microdiluciones con dimetilsulfóxido (DMSO)

Se utilizaron los siguientes materiales en la preparación de la placa para las microdiluciones con DMSO:

- **Dimetilsulfóxido** DMSO (Merk, Darmstadt, Alemania, para realizar diluciones del extracto.
- Placa de 96 posillos fondo en V.
- Pipetas automáticas Thermo scientific (20, 100, 200, 1000 µl).
- Pipetas multicanal Thermo scientific (50-300 µl)
- Puntas de pipetas.

3.4.1.2.2. Microdiluciones con agua purificada estéril

Para la preparación de la placa de agua se empleó:
- Placas de 96 pocillos fondo plano.
- Pipetas automáticas Thermo scientific (20, 100, 200, 1000 µl).
- Pipetas multicanal Thermo scientific (50-300 µl).
- Puntas de pipetas.
- Agua purificada estéril.

3.4.1.3. Preparación de la placa test

En la placa test se utilizó:
- Placas de 96 de pocillos fondo plano.
- Pipetas automáticas Thermo scientific (20-100-200-1000 µl).
- Pipetas multicanal Thermo scientific (50-300 µl).
- Puntas de pipetas.
- Tripticasa soya caldo (Merck, Darmstadt, Alemania): TSB Medio de cultivo universal, exento de sustancias inhibidoras y de indicadores, concebidos para su utilización en un amplio espectro de aplicaciones. Por su rica y abundante base nutritiva, estos medios de cultivo son adecuados también para el cultivo de microorganismos exigentes. Debido a la inclusión de
Peptona de Soya y Triptona, el medio facilita un gran crecimiento de muchos microorganismos que son de crecimiento difícil sin la adición de suero, etc.\(^{(20)}\)

- Tubos de plásticos estériles.
- Ciprofloxacino: antibiótico preparado a diferentes concentraciones según la actividad que tenga para cada bacteria (Clinical and Laboratory Standards Institute®, 2013) se utilizó como referencia. Antibiótico del grupo de las fluoroquinolonas, inhibe la síntesis del DNA bacteriano. Bactericida, con un espectro antimicrobiano que incluye bacilos Gram negativos entéricos y \textit{Pseudomonas aeruginosa}. Escasa actividad frente a patógenos Gram positivos y anaerobios.\(^{(21)}\)
- CEPAS ATCC: conservadas en Cryostock.
 - \textit{Staphylococcus aureus} (ATCC 25923)
 - \textit{Escherichia coli} (ATCC 25922)
 - \textit{Salmonella Typhimurium} (ATCC 14028)

3.4.2. Evaluación de la actividad antimicrobiana según la técnica de dilución en placa para aceites esenciales

3.4.2.1. Preparación de extractos

La preparación de los extractos para esta técnica utilizó los mismos materiales que se utilizaron en el apartado 3.4.1.
3.4.2.2. Preparación del inóculo bacteriano.

En la preparación del inoculo bacteriano se empleó:

- **Tripticasa soya agar (Merk, Darmstadt, Alemania):** TSA, Medio de cultivo universal, utilizado para el cultivo de una amplia variedad de microorganismos de acuerdo a los requerimientos. En 1995 Leavitt et al. Descubrieron el Agar Tripticasa de Soya (TSA), lo cual facilitó un crecimiento vigoroso de microorganismos aerobios y anaerobios. TSA, es una base nutritiva y gran variedad de suplementos pueden ser adicionados para mejorar este medio.\(^{22}\)

- **Tripticasa soya caldo (Merk, Darmstadt, Alemania):** TSB caldo en el cual se hizo la suspensión de inóculo bacteriano.

- **Bacterias:** se emplearon los microorganismos descritos en el apartado 3.4.1.3.

- Tubos de plásticos estériles.

- Asa calibrada.

- Cubeta de lectura.

- Agua purificada estéril.

- Tween 20

3.4.2.3. Preparación de la placa test.

- Placas pocillos 96 de fondo plano.

- Pipetas automáticas Thermo scientific (20-100-200-1000 µl).
• Pipetas multicanal Thermo scientific (50-300 µl).

• Puntas de pipetas.

• Tripticasa soya caldo (Merck, Darmstadt, Alemania): TSB caldo en el cual se hizo la suspensión de inóculo bacteriano. Ver apartado 3.4.3.

• Ampicilina: antibiótico utilizado de referencia, se preparó a diferentes concentraciones (Clinical and Laboratory Standars Institute®, 2013). Los antibióticos beta-lactámicos como la ampicilina son bactericidas. Actúan inhibiendo la última etapa de la síntesis de la pared celular bacteriana uniéndose a unas proteínas específicas llamadas PBPs (*Penicillin-Binding Proteins*) localizadas en la pared celular. Al impedir que la pared celular se construya correctamente, la ampicilina ocasiona, en último término, la lisis de la bacteria y su muerte.[23]

3.4.2.4. Liofilización de extractos para eliminar el solvente

• Butanol (Merk, Darmstadt, Alemania):

• Agua purificada.

• Extracto seco de la planta.

• Tubos liofilizadores
3.4.3. Evaluación de la actividad antimicrobiana según la técnica de difusión en agar variante de pocillo.

3.4.3.1. Preparación de extractos

Se utilizaron los materiales que se emplearon en el apartado 3.4.1.

3.4.3.2. Preparación del agar.

Se utilizaron los siguientes materiales:

- Cajas Petri de plástico
- **Agar Mueller Hinton (Merk, Darmstadt, Alemania):** agar indicado para los test de susceptibilidad antimicrobiana. Medio de cultivo nutritivo no selectivo que promueve el desarrollo microbiano. Por su composición, ha sido recomendado por el Clinical and Laboratory Standards Institute (CLSI), para ser utilizado en forma rutinaria en la realización del antibiograma y medio sólido, debido a que presenta buena reproducibilidad lote a lote en las pruebas de sensibilidad, su contenido en inhibidores de sulfonamidas, trimetoprima y tetraciclina es bajo, la mayoría de los patógenos microbianos crece satisfactoriamente y una gran cantidad de datos adicionales que han sido evaluados usando este medio de cultivo.\(^{(24)}\)
- Pipetas Pasteur estériles.
3.4.3.3. **Preparación del inóculo bacteriano**

Se emplearon los siguientes materiales para la preparación del inóculo bacteriano:

- Tripticasa soya agar (Merk, Darmstadt, Alemania): TSA, para sembrar la bacteria. Ver apartado 3.5.2.
- Bacterias: se emplearon los microorganismos descritos en el apartado 3.4.3
- Tubos de plásticos estériles.
- Asa.
- Cubeta de lectura.
- Agua purificada estéril.

3.4.3.4. **Screening de extractos**

Se emplearon los siguientes materiales:

- Cajas 46etri preparadas con el agar.
- Cotonetes.
- Pipetas automáticas Thermo scientific (20-100-200 µl).
- Extractos preparados en DMSO
3.4.3.5. Control de solvente y antibiótico

Se utilizó para realizar los controles de solventes y antibióticos lo siguiente:

- **Dimetilsulfóxido. (DMSO).**
- **Metanol (especificaciones tabla 3.5.)**
- **Ampicilina:** antibiótico de referencia que se preparó a diferentes concentraciones, (Clinical and Laboratory Standards Institute®, 2013).
CAPÍTULO IV

4. MÉTODOS

4.1. Recolección, lavado y secado de la planta

4.1.1. Recolección

Se recolectaron hojas, flores y tallos de *Jungia rugosa* Less camino a Llaviuco. Las muestras recolectadas se obtuvieron utilizando podadoras luego se colocaron en bolsas de papel utilizando los materiales descritos en el apartado 3.1.1. para muestras de análisis y dos muestras botánicas en fundas de plástico para el montaje y posterior caracterización botánica. Se tomaron fotos de cada muestra, se anotaron las coordenadas del lugar de recolección, y se designaron códigos para cada lugar donde se obtuvieron las plantas.

4.1.2. Lavado

Empleando los materiales descritos en el apartado 3.1.2. se procedió de la siguiente manera
1. Se eliminaron las partes de la planta que se encontraban parasitadas y se procedió a seleccionar las de mejor estado para su utilización, sin lesiones, ni zonas oscuras.

2. Se separaron las fracciones de la planta en tallos, hojas y flores y se designaron códigos de recolección.

3. Se procedió a lavar con agua potable corriente cada fracción hoja por hoja, tallo por tallo, flor por flor.

4. Luego se colocaron en agua destilada por 10 minutos cada parte de la planta.

5. Las drogas lavadas y escurridas se colocan sobre una malla de acero inoxidable con papel periódico para eliminar el exceso de agua durante 24 horas.

4.1.3. Secado

Equipo

Horno Pro 3: Rango de temperatura provista de secado: 30 – 60 °C

- Seleccionar una temperatura de secado de 40 °C y precalentar el horno durante 12 horas

- Cargar las bandejas y desecer las drogas hasta peso constante, lo que se ha logrado durante 24 horas para las hojas, y durante 48 para los tallos.

- Las drogas secas se almacenan en bolsas de papel debidamente codificadas.
4.2. Obtención de extractos

4.2.1. Trituración de las drogas

Equipo

Licuadora osterizer modelo 4655
Licuadora clásica, potente motor de 600 watts, jarra de vidrio con capacidad de 1,25 lts, control giratorio de 3 velocidades, sistema de impulsión totalmente metálico All-Metal Drive, tapa hermética con copa medidora.

Procedimiento

Se pesaron cinco gramos de droga previamente triturada, mediante el uso de la licuadora Osterizer 4655 obteniéndose tamaños de fragmentos pequeños (flores) 0,5-2 mm, medianos (hojas) 1-3 mm y los grandes de 2-5 mm (tallos).

4.2.2. Extracción por Percolación según U.S.P. (United States Pharmacopeia)

- Se extrajo mediante percolación usando los materiales descritos en el apartado 3.2.1, para lo cual se colocó algodón en el fondo de un embudo de separación, luego la droga seca previamente pesada y sobre esta, papel filtro que se sujeta con bolitas de vidrio sobre el mismo.
- Se procedió a agregar el solvente hasta que este se encuentre a unos 2 a 3 cm sobre las bolitas de vidrio.
• Se dejó en reposo 24 horas.

• Se recolectó un volumen correspondiente al 75% del peso de la droga (3.75 ml) a una velocidad de XX/minuto en un tubo (Volumen 1)

• Se continuó con la extracción a la misma velocidad de goteo recolectándose en un matraz fondo redondo (Volumen 2), añadiendo solvente al percolador para mantener el nivel del solvente por los menos 1 cm sobre las bolitas de vidrio.

• El agotamiento total de principios activos se comprobó mediante análisis de cromatografía en capa fina TLC (ver apartado 4.3.) para ello se tomaron sendas muestras del Volumen 2 luego de tres, cuatro, cinco y seis horas de iniciado el agotamiento, se hace un corrimiento cromatográfico y posterior revelado hasta constatar que ya no existe principio activo por extraer.\(^{(26)}\)

4.2.3. Concentración de extractos

Los extractos obtenidos mediante proceso descrito en el apartado anterior se concentraron en tres etapas:

1. Concentración a presión reducida utilizando un equipo Rotavapor Laborta 4000 efficient Heidolph®, para eliminar el menstruo hasta sequedad.

2. Concentración con nitrógeno para obtener una fracción muy reducida de extracto.
3. Concentración evaporación-centrifugación empleando el equipo RapidVap Labconco 64132 Kansas City, Missouri) para eliminar completamente el menstruo y obtener un extracto seco.

4.2.3.1. Concentración a presión reducida.

Equipo

Rota-vapor (Laborota 4000 efficient Heidolph®, Alemania)

Este equipo (ver figura 4.1.) se emplea para la eliminación eficaz y suave de solvente, es una variante de la destilación a presión reducida, por lo que la evaporación total del solvente se obtiene en menor tiempo al descender el punto de ebullición de la mezcla a ser concentrada.

El disolvente extraído es enviado por un conducto hacia un circuito donde se enfriará. Muchos utilizan rotavapores antiguos donde este conducto es un tubo en espiral muy largo, se enfria con agua helada. Finalmente las fases quedan separadas: en el colector el disolvente y en el matraz los compuestos sólidos que hubieran estado disueltos.

A través del serpentín enfriador (K) circula el agua refrigerante que se encuentra unido a un tubo alimentador (M) que va a permitir el paso del vacío por medio de la apertura de una llave. El matraz recolector (N) está conectado al serpentín por una arandela de goteo para recolectar el solvente eliminado; el matraz de evaporación (P) se conecta al equipo por un tubo de paso de vapor (9). El matraz de evaporación está conectado a un equipo generador de revoluciones y facilitan
la evaporación del solvente contribuyendo a la protección térmica del matraz a destilar.\(^{(27)}\)

![Diagrama de la destilación](image)

Figura 4.1. (Heidolph, 2008)

Procedimiento

Los extractos obtenidos según metodología descrita en el apartado 4.2.1. fueron concentrados utilizando el equipo descrito en el apartado anterior para lo cual se procedió de la siguiente manera:

a) Regular la temperatura del baño de agua (2) hasta un máximo de 40 °C.

b) Colocar el extracto a concentrar en P para eliminar el solvente.

c) Rotar el balón a baja velocidad, para luego incrementarla poco a poco hasta 270 r.p.m.

d) Se detiene el proceso cuando se ha evaporado todo el solvente.
e) El Volumen 1 obtenido según procedimiento descrito en d) del apartado 4.2.2, se vierte sobre el extracto concentrado en P. Si es necesario se agrega un mínimo de solvente para lavar las paredes de P a fin de recuperar todo el extracto.

f) Lo obtenido en el literal e se recolectó en un tubo.

4.2.3.2. Concentración con nitrógeno

Con la finalidad de eliminar el exceso de solvente usado para lavar el extracto en P luego de la concentración a presión reducida descrita en 4.2.3.1., se burbujearon los extractos con corriente de nitrógeno hasta obtener un volumen aproximado de 3ml.

4.2.3.3. Concentración evaporación-centrifugación

Equipo

RapidVap Labconco 64132 (Kansas City, Missouri)

El equipo utiliza un sistema de vacío junto con el calor y el vórtice de movimiento para ayudar a acelerar la evaporación. El calor se suministra mediante un sistema de calentamiento de bloque seco que, a diferencia de los baños de agua, no añade ninguna fuente potencial de contaminación y no requiere mantenimiento. Con este sistema, se elimina cualquier rastro de solvente, es un método empleado para extractos obtenidos con solventes apolares. En la práctica se
trabajó a 36 °C, a 150 milibares de presión en la noche, y hasta 500 milibares en el día controlando el proceso.

Procedimiento

a) Se pesó viales vacíos para contener los extractos.

b) Los extractos obtenidos en el apartado 4.2.3.2. se reparten en 10 viales con ayuda de una pipeta Pasteur.

c) Se colocaron los viales en el equipo RapidVap Labconco 64132 (Kansas City, Missouri) con ayuda de una pinza, se dejaron bajo las condiciones especificadas: presión y temperatura hasta obtener el extracto seco.

d) Finalmente se pesaron los viales para determinar el peso de los extractos en cada vial.

4.3. Análisis mediante Cromatografía en capa fina (Thin Chromatographic Layer TLC)

La cromatografía es una técnica que permite la separación de los componentes de una mezcla debido a la influencia de dos efectos contrapuestos:

a) **Retención**: efecto producido por los componentes de una fase estacionaria.

b) **Desplazamiento**: ejercido sobre los componentes por una fase móvil.

Este fenómeno de migración de los componentes de una mezcla a lo largo de una fase estacionaria impulsados por una fase móvil recibe el nombre de elución.
La cromatografía en capa fina se basa en la preparación de una capa, uniforme de un adsorbente mantenido sobre una placa, la cual puede ser de vidrio, aluminio u otro soporte. La fase móvil es líquida y la fase estacionaria consiste en un sólido. La fase estacionaria será un componente polar y el eluyente será por lo general menos polar que la fase estacionaria, de forma que los componentes que se desplacen con mayor velocidad serán los menos polares.

La mezcla a analizar se deposita a una pequeña distancia del borde inferior de la placa y se introduce en una cubeta que contiene la fase móvil, que asciende a lo largo de la placa por capilaridad, desplazando a los componentes de la mezcla a diferentes velocidades, lo que provoca su separación. Cuando el frente del disolvente se encuentra próximo al extremo superior de la placa esta se saca y se visualiza.(15)

Fase estacionaria

Los dos adsorbentes (fase estacionaria) más ampliamente utilizados son la gel de sílice (SiO₂) y la alúmina (Al₂O₃), ambas de carácter polar. La alúmina anhidra es el más activo de los dos, es decir, es el que retiene con más fuerza a los compuestos; por ello se utiliza para separar compuestos relativamente apolares (hidrocarburos, haluros de alquilo, éteres, aldehídos y cetonas). El gel de sílice, por el contrario, se utiliza para separar sustancias más polares (alcoholes, aminas, ácidos carboxílicos). El proceso de adsorción se debe a interacciones intermoleculares de tipo dipolo-dipolo o enlaces de hidrógeno entre el soluto y el
adsorbente. El adsorbente debe ser inerte con las sustancias a analizar y no actuar como catalizador en reacciones de descomposición. El adsorbente interacciona con las sustancias mediante interacción dipolo-dipolo o mediante enlace de hidrógeno si lo presentan.(16)

Fase móvil

La fase móvil está constituida por un disolvenente en el que los componentes de la mezcla deben ser al menos parcialmente solubles. La velocidad de elución de un compuesto se incrementa al aumentar la polaridad de la fase móvil y se puede utilizar un gradiente de polaridad aumentando con el tiempo la proporción del disolvente más polar.

La retención se realiza en base a la competencia que se establece entre el soluto a separar y las moléculas de la fase móvil por adsorberse a los centros activos polares de la fase estacionaria. Así las moléculas de soluto se adsorben a los centros activos de la fase estacionaria y van siendo desplazados por las moléculas polares presentes en la fase móvil.

Los tiempos de retención y la selectividad en la separación dependerán de la polaridad de los compuestos a separar, la naturaleza del adsorbente y la naturaleza de los disolventes que componen la fase móvil.(15)
<table>
<thead>
<tr>
<th>Disolvente</th>
<th>Fórmula química</th>
<th>Punto de ebullición</th>
<th>Constante dieléctrica</th>
<th>Densidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disolventes no polares</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexano</td>
<td>CH3-(CH2)4-CH3</td>
<td>69 °C</td>
<td>2,0</td>
<td>0,655 g/ml</td>
</tr>
<tr>
<td>Benceno</td>
<td>C6H6</td>
<td>80 °C</td>
<td>2,3</td>
<td>0,879 g/ml</td>
</tr>
<tr>
<td>Tolueno</td>
<td>C6H5-CH3</td>
<td>111 °C</td>
<td>2,4</td>
<td>0,867 g/ml</td>
</tr>
<tr>
<td>Éter dietilico</td>
<td>CH3CH2-O-CH2-CH3</td>
<td>35 °C</td>
<td>4,3</td>
<td>0,713 g/ml</td>
</tr>
<tr>
<td>Cloroformo</td>
<td>CHCl3</td>
<td>61 °C</td>
<td>4,8</td>
<td>1,498 g/ml</td>
</tr>
<tr>
<td>Acetato de etilo</td>
<td>CH3-C(=O)-O-CH2-CH3</td>
<td>77 °C</td>
<td>6,0</td>
<td>0,894 g/ml</td>
</tr>
<tr>
<td>Disolventes polares apróticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxano</td>
<td>CH2-CH2-O-CH2-CH2-O</td>
<td>101 °C</td>
<td>2,3</td>
<td>1,033 g/ml</td>
</tr>
<tr>
<td>Tetrahidrofurano (THF)</td>
<td>CH2-CH2-O-CH2-CH2</td>
<td>66 °C</td>
<td>7,5</td>
<td>0,886 g/ml</td>
</tr>
<tr>
<td>Diclorometano (DCM)</td>
<td>CH2Cl2</td>
<td>40 °C</td>
<td>9,1</td>
<td>1,326 g/ml</td>
</tr>
<tr>
<td>Acetona</td>
<td>CH3-C(=O)-CH3</td>
<td>56 °C</td>
<td>21</td>
<td>0,786 g/ml</td>
</tr>
<tr>
<td>Acetonitrilo (MeCN)</td>
<td>CH3-C≡N</td>
<td>82 °C</td>
<td>37</td>
<td>0,786 g/ml</td>
</tr>
<tr>
<td>Disolventes polares próticos</td>
<td>Acido acético</td>
<td>n-Butanol</td>
<td>Isopropanol (IPA)</td>
<td>n-Propanol</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dimetilformamida (DMF)</td>
<td>H-C(=O)N(CH3)2</td>
<td>153 °C</td>
<td>189 °C</td>
<td>118 °C</td>
</tr>
<tr>
<td>Dimetilsulfóxido (DMSO)</td>
<td>CH3-S(=O)-CH3</td>
<td>189 °C</td>
<td></td>
<td>118 °C</td>
</tr>
<tr>
<td>Disolventes empleados como fase móvil</td>
<td>CH3-C(=O)OH</td>
<td>118 °C</td>
<td>118 °C</td>
<td>82 °C</td>
</tr>
</tbody>
</table>

Tabla 4.1: Disolventes empleados como fase móvil (http://ocw.uv.es/ocw-formacio-

La relación entre la distancia recorrida por un compuesto y por el disolvente desde el origen se conoce como Rf (rate factor).

\[Rf = \frac{\text{Distancia recorrida por el compuesto}}{\text{Distancia recorrida por el disolvente}} \]
4.3.1. Preparación y Desarrollo de placas para TLC

Para la preparación de las placas de TLC se utilizaron los materiales descritos en el apartado 3.3 y se procedió de la siguiente manera:

4.3.1.1. Aplicación de la muestra

1. En el borde de la placa se identifica a cada extracto con la ayuda de un lápiz.

2. Cada extracto se colocó a un centímetro de distancia entre sí; y a una distancia de un centímetro desde el borde inferior de la placa. (Ver apartado 3.3).

3. Cantidad de muestra.
 3.1. Para verificar agotamiento de la droga se colocó una gota para cada muestra de extracto usando un capilar.
 3.2. Para identificación de metabolitos previo a su revelado se usó 2 µL usando una pipeta de inyección para H.P.L.C.

4.3.1.2. Migración sobre la placa

1. Con la ayuda de una pinza se colocó verticalmente la placa en una cuba provista de una tapa, que contiene la fase móvil o eluyente que variará según los metabolitos a investigar, así para terpenos y cumarinas se empleó Tolueno-acetato de etilo (85/15); para identificación de flavonoides
y compuestos fenólicos se utilizó tolueno-dioxano-ácido acético glacial (90/25/4). La fase móvil para verificar el agotamiento de la droga empleada fue la misma que se utilizó para terpenos y cumarinas.

2. El corrimiento se detiene hasta que el eluyente se encuentre a un centímetro del borde superior de la placa lo cual se establece previamente trazando una línea con un lápiz.

3. Se retira la placa con una pinza y se deja secar a la temperatura ambiente bajo campana de extracción de vapores.

4.3.1.3. Revelado postcromatográfico.

La identificación de compuestos incoloros exige que estos sean revelados, para facilitar su visualización se usan distintos tipos de reveladores\(^{(29)}\) según los metabolitos a ser identificados de metabolitos en la droga se realizó en dos diferentes fases móviles las cuales se seleccionaron de acuerdo a las sustancias a revelar Si se obtienen las siguientes coloraciones en la revelación de los metabolitos utilizando los reveladores indicados (ver apartado 3.3.) se puede tratar de:

<table>
<thead>
<tr>
<th>Terpenos</th>
<th>Revelador</th>
<th>Coloración (espectro visible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compuestos terpenoides</td>
<td>Vainillina I y Vainillina II (ver apartado)</td>
<td>morado- negruzco</td>
</tr>
<tr>
<td>Compuestos fenólicos y flavonoides</td>
<td>Revelador</td>
<td>Coloración (UV 366nm)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Flavonoles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercitina, miricetina y sus glicósidos.</td>
<td>PEG 4000 al 5% en etanol y Difenil Boriloxietilamin a (ver apartado 3.3)</td>
<td>Naranja-amarillo.</td>
</tr>
<tr>
<td>Kaempferol, isorhamnetina y sus glicósidos.</td>
<td></td>
<td>Amarillo-verde</td>
</tr>
<tr>
<td>Flavonas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luteolina y sus glicósidos</td>
<td></td>
<td>Naranja</td>
</tr>
<tr>
<td>Apigenina y sus glicósidos</td>
<td></td>
<td>Amarillo- verde</td>
</tr>
<tr>
<td>Cumarinas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumarinas simples</td>
<td>Hidróxido de potasio al 10% en etanol (Ver apartado 3.3)</td>
<td>Intenso azul a verde-azul</td>
</tr>
<tr>
<td>Piranocumarinas y furanocumarinas</td>
<td></td>
<td>Amarillas, cafés azul o verde azul</td>
</tr>
</tbody>
</table>

Tabla 4.2: Coloración de metabolitos en la revelación postcromatográfica (WAGNER, Hidelbert 1996)
Procedimiento

Para la revelación de metabolitos se prosiguió de la siguiente manera:

1. Las placas obtenidas en 3 de 4.3.1.2 se sometieron a la aplicación de los reveladores por rociado (Ver apartado 3.3).

2. Se observaron las placas en el equipo (Ver apartado 4.3.2.) y se registraron las imágenes.

Equipo

Equipo de lectura de placas de TLC (Camag TLC visualizer)

Por medio de este equipo se pueden visualizar las placas de TLC a 254nm, 366nm y luz visible y de esta manera se revelan las fluorescencias que presenten las bandas de los compuestos a analizar.

El equipo posee una unidad de iluminación, una cámara digital, e. El diseño de la unidad de iluminación asegura la homogeneidad de la imagen capturada bajo UV 254 nm, UV 366 nm y luz visible. El software archiva de todas las imágenes de una placa junto con todos los datos operativos del análisis en un solo archivo. (30)

Figura 4.2: Camag TLC visualizer (CAMAG,2013)
4.4. Evaluación de la actividad antimicrobiana

Las pruebas de sensibilidad están indicadas para cualquier organismo que contribuye a un proceso infeccioso garantizando la quimioterapia antimicrobiana, si su susceptibilidad no puede determinarse de manera fiable a partir del conocimiento de la identidad del organismo. Las pruebas de susceptibilidad más a menudo se indican cuando se piensa que el organismo causante de pertenecer a una especie capaz de mostrar resistencia a los agentes antimicrobianos de uso común.

Una variedad de métodos de laboratorio puede utilizarse para medir la susceptibilidad in vitro de las bacterias a los agentes antimicrobianos tales como la dilución en caldo estándar (macrodilución y microdilución) y técnicas de dilución de agar y difusión en agar.

Métodos de ensayo de la susceptibilidad de dilución se utilizan para determinar la concentración mínima de antimicrobiano para inhibir o matar al microorganismo. Esto se puede lograr mediante dilución de los antimicrobianos o extractos en estudio, ya sea en agar o caldo de medios de crecimiento bacteriano.(31)

Para evaluar la actividad antimicrobiana se trabajó bajo campana de seguridad biológica clase II (Labconco 3440801, USA), para evitar la contaminación de las muestras y del operario.
En la presente investigación se probaron tres técnicas:

1. Evaluación de la actividad antimicrobiana según la técnica de microdilución en placa.

2. Evaluación de la actividad antimicrobiana según la técnica de microdilución en placa para aceites esenciales.

3. Evaluación de la actividad antimicrobiana según la técnica de difusión en agar variante de pocillo.

Todas ellas se detallan a continuación:

4.4.1. Evaluación de la actividad antimicrobiana según la técnica de microdilución en placa.

4.4.1.1. **Preparación de extractos**

Con los materiales descritos en el apartado 3.4.1.1 se procedió a preparar los extractos a una concentración de 20 mg/ml de la siguiente manera:

1. Se pesaron los extractos secos en un vial y luego se agregó DMSO hasta conseguir una concentración de 20 mg/ml; evaluando la concentración de solvente para lograr solubilidad (100% DMSO, 75/25 DMSO/metanol y 50/50 DMSO/metanol).

2. Se dejaron 24 horas en el homogeneizador (Thermo Scientific) para facilitar la disolución.
3. Luego se colocaron los viales en el baño maría con ultrasonido (Branson 3510R-DTH, México) durante 60 minutos. Luego se procedió a preparar las placas con los extractos preparados.

4.4.1.2. **Preparación de microdiluciones**

4.4.1.2.1. **Microdiluciones con dimetilsulfóxido (DMSO)**

Se emplearon los materiales descritos en el apartado 3.4.1.2.1. y se procedió de la siguiente manera:

1. En las columnas 3, 4, 5 y 6 se colocaron 30 µl de DMSO y de la 8-11 de la placa fondo cónico;
2. 20 µL DMSO y 20 µl de extracto se colocaron en las columnas 2 y 7 se homogenizaron con la pipeta (30-40 veces).
3. Se transfirieron 10 µl de la columna 2 a la 3 y de la 7 a 8 se homogenizaron, luego se transfirieron 10 µl de la columna 3 a la 4 y de la 8 a la 9, del mismo modo se continuó hasta la columna 6 y 11, después de cada dilución se homogenizó previamente a la transferencia de pocillo a pocillo.
4. La placa de DMSO se debe conservar protegida de la luz y a temperatura ambiente.
4.4.1.2.2. Microdiluciones con Agua purificada estéril

Para la microdilución en agua estéril se emplearon los materiales descritos en el apartado 3.4.1.2.2 y se procedió de la siguiente manera:

1. Se colocaron 80 µl de agua purificada estéril en la placa fondo plano de la columna 2 a la 11.
2. Luego se transfirieron 11,76 µl de las microdiluciones realizadas en el apartado anterior, desde la de menor concentración a mayor concentración, es decir se empezó a transferir de la columna 6 y de la 11 respectivamente hasta la columna 2 y 7, homogenizando en cada transferencia.
3. La placa se conserva protegida de la luz a -4 ºC.

4.4.1.3. Preparación de la placa test

Luego de preparar las diluciones descritas en el apartado anterior se procedió a preparar la placa test de la siguiente manera:

1. Se traspasaron 10 µl de la microdilución en agua previamente homogenizada, la trasferencia se la realizó desde menor a mayor concentración, es decir desde la columna 6 y 11 respectivamente hasta la columna 2 y 7.
2. Se colocaron 200 µl de caldo (TSB) en los pocillos de la columna 1 en las filas E-H que representaron los controles negativos.
3. En la columna 12 se colocaron 10 µl de las diluciones del antibiótico (Ciprofloxacino) las cuales fueron de 64 µg/ml hasta 0.5 µg/ml.
4. Se procedió a realizar la suspensión bacteriana (cryostock + TSB) de acuerdo a los valores obtenidos en el cryostock hasta lograr una concentración bacteriana en cada pocillo de 5×10^3 UFC/ml para *S. aureus* y de 5×10^4 UFC/ml para *E. coli* y *S. typhimurium* en 200 µl de caldo con bacterias que fueron colocados en todos los pocillos de la placa excepto los de la columna 1 filas E-H. La columna 1 en las filas A-D representaron controles positivos.

5. Se incubaron las placas 18-24 horas a 35°C±2°C en la estufa Memmert y se procedió a la lectura.

4.4.1.4. **Lectura de la placa test usando ELISA**

La lectura que se obtienen de las placas se basa en la turbidez que generan los extractos al existir la presencia de microorganismos en el caldo, los valores de absorbancia que se obtendrán serán mayores cuando exista crecimiento bacteriano y valores de absorbancia menores se obtendrán cuando en el caldo no exista crecimiento bacteriano.

Luego de la incubación de las placas de 18-24 horas se procedió a la lectura en el equipo que se describe a continuación:
Equipo

Microelisa Thermo Scientific Multiskan EX modelo 355

Equipo con un filtro de 405 nm el cual lee las microplacas de 96 pocillos 3 veces y saca un promedio de las lecturas, el equipo está conectado a un software en el cual se pueden evidenciar las lecturas.

Especificaciones

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Especificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de lectura</td>
<td>400-750 nm</td>
</tr>
<tr>
<td>Filtro estándar</td>
<td>405 nm , 450 y 620 nm</td>
</tr>
<tr>
<td>Gama de lectura</td>
<td>0-3,5 Abs</td>
</tr>
<tr>
<td>Linealidad</td>
<td>0-2 Abs, ± 2.0% a 405 nm</td>
</tr>
<tr>
<td>Precisión</td>
<td>± 2.0% o ± 0,007 Abs</td>
</tr>
<tr>
<td>Tipo de placa</td>
<td>96 pocillos</td>
</tr>
<tr>
<td>Velocidad de medición</td>
<td>5 segundos</td>
</tr>
<tr>
<td>Detector</td>
<td>8 fotodectores de silicio</td>
</tr>
<tr>
<td>Interfaz de usuario a bordo del control de PC</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.6. (Thermo Scientific Multiskan EX, 2010)

Para la lectura de las placas se procedió de la siguiente manera:
• Se retiraron las placas de la estufa y se homogenizaron (Thermo Scientific Titer Plate Shaker) 10 minutos.
• Se procedió inmediatamente a la lectura en el equipo de microelisa (Thermo Scientific Multiskan EX modelo 355).

4.4.2. Evaluación de la actividad antimicrobiana según la técnica de dilución en placa para aceites esenciales.

Esta técnica se empleó para intentar solucionar los problemas de solubilidad que estaban presentando los extractos, ya que se trataban de extractos muy resinosos.

4.4.2.1. Preparación de extractos

Se procedió de igual manera que en el apartado 4.4.1.1, solo se variaron las concentraciones, las cuales fueron 20mg/ml, 10 mg/ml, 6mg/ml, 3mg/ml y 1,5mg/ml.

4.4.2.2. Preparación del inóculo bacteriano

Para la preparación del inóculo bacteriano se utilizaron los materiales descritos en el apartado 3.4.2.2 y se procedió de la siguiente manera:
1. Se sembraron en agar tripticasa soya (TSA) las bacterias del cryostock en leche, se incubaron de 18-24 horas a 35°C±2°C.

2. Con la bacterias obtenidas de la siembra se realizó una suspensión bacteriana en agua purificada estéril hasta llegar a la concentración del patrón Mc Farland 0,5 que equivale $1,5 \times 10^8$ UFC/ml, para lo cual se realizó una lectura en el espectro Genesys 10 uv a 625nm de la suspensión y cuyos valores debían estar entre 0,08 y 0,1 de absorbancia.\(^{(32)}\)

3. Luego se preparó una suspensión de 1×10^6 UFC/ml en tripticasa soya caldo (TSB) al cual se le colocó tween 20 previamente; se probaron las concentraciones del tensoactivo entre 0,1% y 1%.

4.4.2.3. **Preparación de la placa Test**

Con los materiales descritos en 3.4.2.3 se procedió de la siguiente manera:

1. Se colocaron 180 µl de tripticasa soya caldo (TSB) el cual previamente fue preparado con tween 20 a diferentes concentraciones (0,1 - 0,3-0,5-1%) en la fila A y en las columnas de la 2-11.

2. Se añadieron 20 µl de extracto (cada muestra se trabajó por triplicado) en la fila A y columnas 2-11 y se homogenizó.

3. Se colocaron 100 µl de tripticasa soya caldo (TSB) con tween 20, en los pocillos de las filas B-H y las columnas 2-12.
4. Se transfirieron 100 µl de la fila A a la B respectivamente y se homogenizó, se procedió de la misma manera hasta la fila H en la cual después de homogenizar se descartaron 100 µl.

5. Se colocó 20 µl del antibiótico (Ampicilina) en la columna 12 fila A más 180 µl de tripticasa soya caldo (TSB) con tween 20 y procedió de igual manera como se trabajó con los extractos transfiriendo 100 µl de la fila A a la B y hasta la H.

6. Se adicionó 100 µl del inóculo bacteriano preparado en los pocillos de las columnas 2-12 y de la fila A-H.

7. En la columna 1 filas A-D se añadió 200 µl de caldo con bacterias (control positivo) y en las filas E-H se colocó 200 µl de caldo sin bacterias (control negativo).

8. Se incubó a 21 horas a 35°C±2°C y se procede a la lectura en el equipo Microelisa (Thermo Scientific Multiskan EX modelo 355) como se indica en el apartado 4.4.1.4.

4.4.2.4. Liofilización de extractos

Para mejorar la solubilidad de los extractos en el caldo se decidió eliminar el remanente de solvente que pudiesen tener usando la liofilización para lo cual se utilizó en siguiente equipo:
Liofilizador Labconco U.S.A N° 7670520 serial 080587321F

La liofilización es un proceso de deshidratación de productos a baja presión (vacío) y moderada temperatura. En la liofilización no ocurre la evaporación del agua a partir del estado líquido - normal en procesos de secados - sino la sublimación del hielo. Por este motivo los productos deben permanecer obligatoriamente solidificados (congelados) durante el secado.

La liofilización es un conjunto de procesos, no solo el secado, y en ello el material resultante se presentará seco, pero con todas las características del producto original forma, color, aroma, sabor y textura estarán preservados en el producto seco. Eso diferencia y destaca el proceso de liofilización de los otros utilizados en deshidrataciones.\(^{33}\)

Se procedió a armar el equipo liofilizador según PNT FUN 004 Proyecto Vlir de Plantas Medicinales de la Universidad de Cuenca. Se trabajó a 180 mBares de presión y a -50 °C de temperatura.

Figura 4.4: Liofilizador Labconco (Labconco,2009)
Para evaluar si mejoraba la solubilidad al eliminar el remanente del solvente se trabajó con 2 extractos y se procedió de la siguiente manera:

1. Se pesaron 20 mg de extracto los cuales se disolvieron en 1 ml de butanol.
2. Luego se traspasaron a un tubo de liofilización previamente pesado, se añadieron 24 ml de agua purificada.
3. Se congelaron a -73°C en el biofreezer.
4. Se colocaron en el equipo de liofilización (Labconco U.S.A N° 7670520 serial 080587321F) de 20-24 horas después del congelamiento previo.
5. Luego se retiró y pesó el tubo.
6. Después de ello se prepararon muestras de igual manera que en el apartado 4.4.2.1. y se probó si existía o no precipitación en el caldo (TSB) con la adición de tensoactivo y sin este.

4.4.3. Evaluación de la actividad antimicrobiana según la técnica de difusión en agar variante de pocillo.

Las técnicas empleadas anteriormente no dieron los resultados esperados por lo que se decidió probar la técnica de difusión en agar variante de pocillo.

4.4.3.1. Preparación de extractos

Se procedió de igual manera que en el apartado 4.4.1.1., pero con variación de concentraciones las cuales fueron de 4mg/ml, 2mg/ml, y 1mg/ml.
4.4.3.2. Preparación del agar

1. Se prepararon cajas Petri con agar Muller Hinton, de tal manera que la altura sea de 4-5 mm.
2. Se incubó una caja 24 horas (hasta 72 horas) para verificar esterilidad del lote, luego se procedió a perforar los 3 pocillos de 6 mm de diámetro a 20 mm de distancia entre ellos.

4.4.3.3. Preparación del inóculo bacteriano

1. Se sembraron en agar tripticasa soya (TSA) las bacterias del cryostock en leche, se incubaron de 18-24 horas a 35°C±2°C.
2. Con la bacterias obtenidas de la siembra se realizó una suspensión bacteriana en agua purificada estéril hasta llegar a la concentración del patrón Mc Farland 0,5 que equivale 1,5 x 10⁸ UFC/ml, para lo cual se debe realizar una lectura en el espectro Genesys 10 uv a 625nm de la suspensión y cuyos valores deben variar de 0,08-0,10.\(^{(32)}\)

4.4.3.4. Screening de extractos

1. Con un hisopo estéril se procedió a inocular las bacterias en las placas de agar se dejó reposar unos 15 min.
2. Luego se colocó 50 µl de los extractos en los pocillos (por triplicado).
3. Se los dejó 30-45 minutos en la estufa (Memmert) para facilitar la difusión y luego se procedió a invertir las cajas e incubarlas de 18-24 horas a 35°C±2°C.

4.4.3.5. Control de solvente y antibiótico

Se realizó el control del solvente colocando 50 µl del solvente en los pocillos en el agar, del mismo modo se preparó concentraciones del antibiótico (ampicilina) 0,2 µg, 2 µg, que estaban contenidos en los 50 µl.
CAPÍTULO V

5. Resultados

5.1. Caracterización botánica

Para la investigación y con la finalidad de asegurar que la especie recolectada en el sector de Llaviuco, fuese *Jungia rugosa* Less, pues existen numerosas especies adicionales de características morfológicas muy parecidas; las muestras objeto de nuestro estudio luego de su montaje fueron remitidas al herbario de la Universidad del Azuay, obteniéndose los siguientes resultados:

<table>
<thead>
<tr>
<th>Código</th>
<th>Coordenada x</th>
<th>Coordenada y</th>
<th>Altitud</th>
<th>Hábitat</th>
<th>Caracterización botánica</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 59</td>
<td>17707040</td>
<td>9685442</td>
<td>3143</td>
<td>Potrero</td>
<td>Jungia rugosa Less</td>
</tr>
<tr>
<td>CH 60</td>
<td>17706785</td>
<td>9685440</td>
<td>3154</td>
<td>Potrero</td>
<td>Jungia rugosa Less</td>
</tr>
</tbody>
</table>

Tabla 5.1.: Caracterización botánica de las plantas que fueron analizadas.
Los baucher reportados por el Herbario de la UDA puede observarse en el Anexo B-1, B-2. Las características botánicas de las plantas analizadas en el herbario podemos observar en la tabla 5.2

<table>
<thead>
<tr>
<th>Caracterización botánica CH59 (I. Wilches 17)</th>
<th>Caracterización botánica CH60 (I. Wilches 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subarbusto escandente con espítulas sésiles orbiculares y peciolo de longitud 3-7 cm. Hojas suborbicular-cordadas, 5 lobadas y de textura membranosa, rugosa ligeramente bullosa, envés densamente pubescente-lanado y haz esparcidamente pubescente. Inflorescencias en panículas abiertas 1 cm. Brácteas pecioladas, ovado triangulares y capítulo discoide.</td>
<td>Subarbusto escandete con estípulas sésiles orbiculares y peciolos de longitud de 2,5-7,5 cm. Hojas suborbicular-cordadas, 5 lobadas y de textura membranosa, rugosa ligeramente bullosa. Envés densamente pubescente-lanado y haz esparcidamente pubescente. Inflorescencias en paniculas abiertas de 16 cm; brácteas pecioladas, ovado triangulares y capítulo discoide.</td>
</tr>
</tbody>
</table>

Tabla 5.2: Características botánicas de *Jungia rugosa* Less analizadas en el Herbario de la Universidad del Azuay.
5.2. Preparación de extractos

Utilizando la técnica descrita en el apartado 4.2., se obtuvieron extractos de dos colecciones de *Jungia Rugosa* Less a partir de dos individuos diferentes colectados y botánicamente caracterizados y usando como menstruos diclorometano y n-hexano con las cuales se obtuvieron doce extractos: tres diclometánicos y n-hexánicos para cada planta para su posterior análisis, asignando respectivos códigos.

<table>
<thead>
<tr>
<th>Extractos obtenido de Jungia rugosa Less</th>
</tr>
</thead>
<tbody>
<tr>
<td>Código de recolección: CH 59</td>
</tr>
<tr>
<td>Parte usada de la planta</td>
</tr>
<tr>
<td>Menstruo</td>
</tr>
<tr>
<td>Código de extracción</td>
</tr>
<tr>
<td>Hojas</td>
</tr>
<tr>
<td>Diclorometano</td>
</tr>
<tr>
<td>DCM</td>
</tr>
<tr>
<td>n-Hexano</td>
</tr>
<tr>
<td>CH59 H HEX</td>
</tr>
<tr>
<td>Flores</td>
</tr>
<tr>
<td>Diclorometano</td>
</tr>
<tr>
<td>DCM</td>
</tr>
<tr>
<td>n-Hexano</td>
</tr>
<tr>
<td>CH59 F HEX</td>
</tr>
<tr>
<td>Tallos</td>
</tr>
<tr>
<td>Diclorometano</td>
</tr>
<tr>
<td>DCM</td>
</tr>
<tr>
<td>n-Hexano</td>
</tr>
<tr>
<td>CH59 T HEX</td>
</tr>
<tr>
<td>Código de recolección: CH 60</td>
</tr>
<tr>
<td>Parte de la planta</td>
</tr>
<tr>
<td>Menstruo</td>
</tr>
<tr>
<td>Código de extracción</td>
</tr>
<tr>
<td>Hojas</td>
</tr>
<tr>
<td>Diclorometano</td>
</tr>
<tr>
<td>DCM</td>
</tr>
<tr>
<td>n-Hexano</td>
</tr>
<tr>
<td>CH60 H HEX</td>
</tr>
<tr>
<td>Flores</td>
</tr>
<tr>
<td>Diclorometano</td>
</tr>
<tr>
<td>DCM</td>
</tr>
<tr>
<td>n-Hexano</td>
</tr>
<tr>
<td>CH60 F HEX</td>
</tr>
<tr>
<td>Tallos</td>
</tr>
<tr>
<td>Diclorometano</td>
</tr>
<tr>
<td>DCM</td>
</tr>
<tr>
<td>n-Hexano</td>
</tr>
<tr>
<td>CH60 T HEX</td>
</tr>
</tbody>
</table>

Tabla 5.3: Extractos obtenidos por percolación de *Jungia rugosa* Less
5.3. Agotamiento de la droga

A continuación se detallan en la tabla 5.4., los tiempos de agotamiento de los principios activos durante la extracción mediante procedimientos descritos en los apartados 4.3.1.

<table>
<thead>
<tr>
<th>Extractos obtenidos en diclorometano</th>
<th>Tiempo de agotamiento en horas (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractos</td>
<td>Hojas</td>
</tr>
<tr>
<td>CH59 DCM</td>
<td>Menor a 6 h</td>
</tr>
<tr>
<td>CH60 DCM</td>
<td>Menor a 6 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extractos obtenidos en n-hexano</th>
<th>Tiempo de agotamiento en horas (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractos</td>
<td>Hojas</td>
</tr>
<tr>
<td>CH59 HEX</td>
<td>Menor a 4 h</td>
</tr>
<tr>
<td>CH60 HEX</td>
<td>Menor a 4 h</td>
</tr>
</tbody>
</table>

Tabla 5.4.: Tiempo de agotamiento de principios activos.

De la observación de los resultados podemos ver que el agotamiento de droga que se realizó según metodología descrita en el aparatado 4.3.1., y que se evidenció por la ausencia de bandas en los cromatogramas luego de cierto período de tiempo de percolación, donde se logró determinar que los tallos de las plantas estudiadas se agotaban en un tiempo menor a cuatro horas independientemente del menstruo utilizado en la extracción ya sea en
diclorometano (Ver figura 5.1 y anexo D-8) o n-hexano (ver figuras 5.2 y anexo D-5).

Los extractos de hojas obtenidos en diclorometano (ver anexo D-1, D-6) se agotaron antes de las seis horas de percolación en ambas muestras, diferenciándose del agotamiento de los extractos de hojas obtenidos en n-hexano (ver anexo D-3, D-9) que se agotaban antes de las cuatro horas.

Los extractos de flores obtenidos con diclorometano (ver anexo D-2, D-7) se agotaron antes de las seis horas de percolación, no así los extractos de flores obtenidos en n-hexano (ver anexo D-4, D-10) los cuales se agotaron a las cuatro horas de percolación.

La figura 5.1. es el cromatograma para verificar el agotamiento en la extracción usando tallos y diclorometano como solvente de extracción, todos los cromatogramas para verificar agotamiento pueden observarse en el Anexo D. Dicha figura nos indica que a las cuatro horas hemos logrado extraer la totalidad de los principios activos.
Figura 5.1: Cromatograma obtenido por TLC CH59 Tallos en Diclorometano Agotamiento 366 nm, a las cero, cuatro y cuatro horas y media de percolación.

En la figura 5.2. se presenta el cromatograma correspondiente al agotamiento usando tallos y n-hexano como solvente de extracción donde observamos a las cuatro horas se ha logrado obtener todos los principios activos de la droga.
Figura 5.2: Cromatograma obtenido por TLC CH60 tallos en Hexano Agotamiento 366 nm, a las cero, cuatro y cuatro horas y media de percolación.

5.4. Rendimiento de la droga

Para cumplir con los objetivos del estudio se obtuvieron extractos en diclorometano y n-hexano según la nomenclatura especificada en el apartado 4.2.

En la tabla 5.5 se indica el rendimiento de la droga en los diferentes solvents utilizados en la extracción usando tallos, hojas y flores de las plantas estudiadas.
<table>
<thead>
<tr>
<th>CÓDIGO DE EXTRACCIÓN</th>
<th>APARIENCIA (COLOR)</th>
<th>PESO DE DROGA SECA g</th>
<th>RENDIMIENTO Peso (g)</th>
<th>Rendimiento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH59 H DCM</td>
<td>Verde oscuro</td>
<td>5</td>
<td>0,1163</td>
<td>2,326</td>
</tr>
<tr>
<td>CH60 H DCM</td>
<td>Verde oscuro</td>
<td>5</td>
<td>0,3236</td>
<td>6,472</td>
</tr>
<tr>
<td>CH59 H HEX</td>
<td>Amarillo verdoso</td>
<td>5</td>
<td>0,575</td>
<td>11,5</td>
</tr>
<tr>
<td>CH60 H HEX</td>
<td>Amarillo verdoso</td>
<td>5</td>
<td>0,2251</td>
<td>4,502</td>
</tr>
<tr>
<td>CH59 F DCM</td>
<td>Amarillo</td>
<td>5</td>
<td>0,2018</td>
<td>4,036</td>
</tr>
<tr>
<td>CH60 F DCM</td>
<td>Amarillo</td>
<td>5</td>
<td>0,2412</td>
<td>4,824</td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td>Amarillo</td>
<td>5</td>
<td>0,3651</td>
<td>7,302</td>
</tr>
<tr>
<td>CH60 F HEX</td>
<td>Amarillo</td>
<td>5</td>
<td>0,1502</td>
<td>3,004</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>Amarillo</td>
<td>5</td>
<td>0,3787</td>
<td>7,574</td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td>Amarillo</td>
<td>5</td>
<td>0,1694</td>
<td>3,388</td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td>Amarillo</td>
<td>5</td>
<td>0,0944</td>
<td>1,88</td>
</tr>
<tr>
<td>CH60 T HEX</td>
<td>Amarillo</td>
<td>5</td>
<td>0,0526</td>
<td>1,052</td>
</tr>
</tbody>
</table>

Tabla 5.5. Rendimiento de la droga
5.5. **Identificación de metabolitos mediante cromatografía en capa fina (TLC)**

Para el análisis cromatográfico se efectuaron corrimientos de cromatografía en capa fina (TLC) siguiendo la metodología descrita en el apartado 4.3.1., para lo cual se trabajó con una muestra de cada extracto obtenido (doce en total). Se investigaron los siguientes metabolitos: compuestos fenólicos, cumarinas y terpenoides, para lo cual luego de los corrimientos se utilizó como reveladores Natural products/PEG 4000, Hidróxido de Potasio 10% y Vainillina/ácido sulfúrico respectivamente obteniéndose los siguientes resultados:

5.5.1. **Compuestos fenólicos**

5.5.1.1. **Compuestos fenólicos en extractos de diclorometano**

Se realizó la investigación de compuestos fenólicos tanto en extractos de hojas, flores y tallos empleando diclorometano como solvente de extracción. Se obtuvieron los cromatogramas, se observaron bajo UV 366nm y bajo espectro visible empleando como revelador Natural products/PEG 4000 que es específico para este tipo de compuestos.

Observando los cromatogramas bajo UV 366nm (figura 5.3. A) la banda que se aprecia al final (frente del solvente) como una fluorescencia roja una corresponde a pigmentos de las plantas, no representan a principios activos de las mismas, se observa además que dichas fluorescencias presentan una curvatura que podría deberse a una falta de activación de la placa previo al corrimiento.
Los extractos de hojas en diclorometano de las dos plantas estudiadas (CH60 H y CH59 H) presentan dos bandas de Rf 0,43 y 0,62 que observadas bajo UV 366 nm (ver figura 5.3. A) y bajo espectro visible (ver figura 5.3. B) presentan una coloración que varía entre el amarillo verde que pueden indicar la presencia de flavonas y flavonoles (Ver tabla 4.3.2).

Los cromatogramas de tallos y flores para los extractos obtenidos de ambas plantas en diclorometano no presentaron bandas que podamos relacionar con compuestos fenólicos ya que solo se puede observar la presencia de pigmentos tanto bajo espectro visible y bajo UV 366 nm.
5.5.1.2. Compuestos fenólicos en extractos de n-hexano

Se realizó la investigación de compuestos fenólicos tanto en extractos de hojas, flores y tallos utilizando n-hexano como solvente en la extracción. Se obtuvieron los cromatogramas cuando se observaron bajo UV 366nm y en espectro visible y empleando como revelador Natural products/PEG 4000. La fluorescencia roja que observan en los cromatogramas corresponde a pigmentos de las plantas, no representan a principios activos de las mismas.

Figura 5.4: A Fotografía en UV a 366 nm Compuestos Fenólicos de extractos en Hexano. B Fotografía en filtro visible de Compuestos fenólicos de extractos en n-hexano

Los extractos obtenidos en n-hexano de hojas, flores y tallos de las plantas estudiadas no presentaron coloraciones que pudieran ser observadas bajo
espectro visible (ver figura 5.4 B) y bajo UV 366nm (ver figura 5.4 A) que correspondieran a compuesto fenólicos. Cuando estos compuestos están presentes la coloración que presentan varían entre verde y amarillo.

5.5.2. Cumarinas

Se realizó la investigación de cumarinas tanto en extractos de hojas flores y tallos usando diclorometano y en n-hexano como solventes. Se obtuvo la siguiente fotografía de los cromatogramas observados bajo UV 366nm. El revelador empleado fue hidróxido de potasio al 10% en etanol que es específico para cumarinas.

Figura 5.5. Cumarinas reveladas a 366 nm en extractos en diclorometano y n-Hexano
Los seis extractos que se obtuvieron en diclorometano (ver figura 5.5.) presentaron patrones cromatográficos idénticos entre sí que al ser observados bajo UV 366 nm y fluorescencias azul intenso cuyos Rf fueron de 0,2, lo cual podría indicar la presencia de cumarinas simples de acuerdo al revelador que se empleó (ver apartado 4.3.1.3.).

Los seis extractos que se obtuvieron en n-hexano (ver figura 5.5.) presentaron patrones cromatográficos idénticos entre sí donde se evidenció fluorescencia azul cuyos Rf fueron de 0,05 lo cual podría indicar la presencia de cumarinas simples. Las fluorescencias con Rf alrededor de 0,7 podrían corresponder a compuestos fenólicos pues a pesar de presentar una coloración azul menos intensa su mayor Rf las diferencia de las cumarinas.

5.5.3. Terpenos y terpenoides

La investigación de terpenos y terpenoides se realizó tanto en hojas, flores y tallos que fueron obtenidos en diclorometano y n-hexano como menstruo. La siguiente fotografía observada bajo espectro visible reveló la presencia de estos metabolitos en las plantas revelados con vainillina/ácido sulfúrico. No se muestran cromatogramas de longitud de onda larga y onda corta debido a que no presentan coloración específica para estos compuestos con el revelador empleado.
En la figura 5.6 podemos observar bajo espectro visible la gran cantidad de compuestos terpenoides cuya coloración varía de morado-negruzco de Rf entre 0,01-0,98 que presentan ambas plantas independientemente del menstruo que se empleó en la extracción.

5.6. **Evaluación de la actividad antimicrobiana.**

En la investigación de la actividad antimicrobiana se probaron tres técnicas para los extractos obtenidos de *Jungia rugosa* Less.

5.6.1. **Disolución de extractos**

Para el desarrollo de todas las técnicas fue necesario disolver los extractos en dimetilsulfóxido se obtuvieron los siguientes resultados (ver tabla 5.6 y tabla 5.7) con respecto a la cantidad dimetilsulfóxido (DMSO) y metanol usados.
<table>
<thead>
<tr>
<th>Extracto</th>
<th>Solvente</th>
<th>Solubilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH59 H DCM</td>
<td>DMSO 100%</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>Soluble</td>
</tr>
<tr>
<td>CH60 H DCM</td>
<td>DMSO 100%</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>Soluble</td>
</tr>
<tr>
<td>CH59 F DCM</td>
<td>DMSO 100%</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>-</td>
</tr>
<tr>
<td>CH60 F DCM</td>
<td>DMSO 100%</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>-</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>DMSO 100%</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>-</td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td>DMSO 100%</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 5.6: Solubilidad de los extractos de diclorometano en DMSO
<table>
<thead>
<tr>
<th>Extracto</th>
<th>Solvente</th>
<th>Solubilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH59 H HEX</td>
<td>DMSO 100%</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>Soluble</td>
</tr>
<tr>
<td>CH60 H HEX</td>
<td>DMSO 100%</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>Soluble</td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td>DMSO 100%</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>-</td>
</tr>
<tr>
<td>CH60 F HEX</td>
<td>DMSO 100%</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>-</td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td>DMSO 100%</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>-</td>
</tr>
<tr>
<td>CH60 T HEX</td>
<td>DMSO 100%</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (75/25)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DMSO/metanol (50/50)</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 5.7: Solubilidad de los extractos de n-hexano en DMSO
5.6.2. Evaluación de la actividad antimicrobiana según la técnica de microdilución en placa.

La investigación de la actividad antimicrobiana por esta técnica (Ver apartado 4.4.1.) se realizó en los doce extractos, llegándose a una concentración máxima de extracto que de 64 μg/ml y al realizar las diluciones se debía obtener una concentración mínima de 1 μg/ml.

La dispersión del extracto en agua estéril al preparar las diluciones fue imposible por precipitación del extracto, lo que impidió homogeneidad y por lo tanto no fue posible medir la cantidad descrita en la técnica, por lo que la medida se volvió inexacta. El control de solventes (DMSO 100%, DMSO/metanol 75/25, DMSO/metanol 50/50) no presentó actividad antimicrobiana frente a ningún microorganismo. En la tabla 5.8 se detallan las concentraciones de extractos que se transfirieron al agua estéril y la precipitación que se evidenció en todos los extractos.
<table>
<thead>
<tr>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN DE EXTRACTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,281 mg/ml</td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 H HEX</td>
<td>P</td>
</tr>
<tr>
<td>CH59 F DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td>P</td>
</tr>
<tr>
<td>CH60 H DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH60 H HEX</td>
<td>P</td>
</tr>
<tr>
<td>CH60 F DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH60 F HEX</td>
<td>P</td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH60 T HEX</td>
<td>P</td>
</tr>
</tbody>
</table>

Tabla 5.8: Evaluación de la actividad antimicrobiana según la técnica de microdilución en placa. P= precipitación

5.6.3. Evaluación de la actividad antimicrobiana según la técnica de dilución en placa para aceites esenciales.

Esta técnica se decidió probar debido a que se trataban de extractos muy lipófilos y la técnica de microdilución en placa para extractos no fue la adecuada. Según lo
procedimientos realizados (ver apartado 4.4.2.). Se analizaron 5 de los 12 extractos y se obtuvieron los siguientes resultados:

- Se probó si la solubilidad mejoraba con esta técnica sin la adición del tensoactivo pero la precipitación seguía presente. La concentración inicial de los extractos en esta técnica fue de 1 mg/ml.

- Posteriormente se adicionó un tensoactivo (Tween 20) que se probó en diferentes concentraciones (0,1-0,3-0,5-1%) para mejorar la solubilidad e incluso se redujo la concentración de los extractos en la placa hasta obtener una concentración inicial de 75 μg/ml, independientemente de la concentración del tensoactivo en los extractos probados se obtuvieron los mismos resultados (ver tabla 5.9). La técnica no era la adecuada para probar la actividad antimicrobiana para los extractos en diclorometano y n-hexano de Jungia rugosa Less.

<table>
<thead>
<tr>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN DE EXTRACTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 μg/ml</td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td>P</td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td>P</td>
</tr>
</tbody>
</table>

Tabla 5.9: Evaluación de la Actividad antimicrobiana según la técnica de microdilución en placa para aceites esenciales. P = precipitación
Con la finalidad de mejorar la solubilidad se probó la eliminación del remanente de solvente que pudieran tener los extractos por liofilización (ver apartado 4.4.2.4.), lo cual se realizó en dos extractos obteniéndose los siguientes rendimientos:

<table>
<thead>
<tr>
<th>Extractos</th>
<th>Peso inicial mg</th>
<th>Rendimiento mg</th>
<th>Rendimiento %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH59 H DCM</td>
<td>20</td>
<td>17,6</td>
<td>88</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>20</td>
<td>14,1</td>
<td>70,5</td>
</tr>
</tbody>
</table>

Tabla 5.10: Rendimiento de extractos sometidos a liofilización

Después de obtener los liofilizados se evaluó la solubilidad estos en el caldo pero los resultados no fueron favorables la precipitación seguía presente (ver tabla 5.11).

<table>
<thead>
<tr>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN DE EXTRACTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 µg/ml</td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
</tr>
</tbody>
</table>

Tabla 5.11: Evaluación de la actividad antimicrobiana según la técnica de microdilución para aceites esenciales. P= precipitación
Con la eliminación del solvente no se logró superar el problema de solubilidad y los extractos volvieron a precipitar en el caldo (ver figura 5.9).

![Figura 5.7: Precipitación de extractos en caldo](image)

5.6.4. Evaluación de la actividad antimicrobiana según la técnica de difusión en agar variante de pocillo.

Con la finalidad de caracterizar la actividad antibacteriana y una vez que las técnicas anteriores no permitieron evaluarla se optó por probar la técnica descrita en el apartado 4.4.3. Se analizó uno de los extractos en diferentes concentraciones las que fueron 1, 2, 4, 6, y 8 mg/ml. El análisis resultó nuevamente desfavorable puesto que las concentraciones de 1, 2, y 4 mg/ml no se difundían en el agar, el tiempo que se esperaba para la inversión de las cajas era muy prolongado mayores a 90 minutos mientras que los controles del solvente y antibiótico se difundían en tiempos menores a 35 minutos; las concentraciones mayores de los extractos generaban una clara precipitación en el agar (ver tabla 5.12); por lo que la técnica volvió a resultar no favorable por problemas de solubilidad.
Tabla 5.12: Resultados de la Evaluación de la actividad antimicrobiana según la técnica de difusión en agar variante de pocillo

<table>
<thead>
<tr>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN DE EXTRACTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH60 F HEX</td>
<td>1 mg/ml</td>
</tr>
<tr>
<td></td>
<td>No difunde en agar</td>
</tr>
<tr>
<td></td>
<td>2 mg/ml</td>
</tr>
<tr>
<td></td>
<td>No difunde en agar</td>
</tr>
<tr>
<td></td>
<td>4 mg/ml</td>
</tr>
<tr>
<td></td>
<td>No difunde en agar</td>
</tr>
<tr>
<td></td>
<td>6 mg/ml</td>
</tr>
<tr>
<td></td>
<td>Precipita</td>
</tr>
<tr>
<td></td>
<td>8 mg/ml</td>
</tr>
<tr>
<td></td>
<td>Precipita</td>
</tr>
</tbody>
</table>

Tabla 5.12: Resultados de la Evaluación de la actividad antimicrobiana según la técnica de difusión en agar variante de pocillo
CAPÍTULO VI

6. Discusión general

Para el desarrollo de la presente investigación se plantearon dos hipótesis:

- Los extractos en diclorometano de flores, hojas, tallos de la *Jungia rugosa* Less presentan actividad antimicrobiana frente a *Staphylococcus aureus*, *Escherichia coli* y *Salmonella typhimurium*.

- Los extractos en n-hexano de flores, hojas, tallos de la *Jungia rugosa* Less presentan actividad antimicrobiana frente a *Staphylococcus aureus*, *Escherichia coli* y *Salmonella typhimurium*.

Los objetivos fueron los siguientes:

Objetivo general:

- Determinar la actividad antimicrobiana de *Jungia rugosa* Less en extractos obtenidos en diclorometano y n-hexano.
Objetivos específicos:

- Obtener extractos de *Jungia rugosa* Less usando hexano y diclorometano como solventes a partir de distintas partes de la planta (tallo, hojas, flores).
- Procesar corrimientos cromatográficos (TLC) de los extractos obtenidos.
- Evaluar la actividad antimicrobiana de los extractos de la planta frente a los microorganismos *Staphylococcus aureus, Escherichia coli, y Salmonella typhimurium*.

Caracterización

Los resultados de las actividades ejecutadas para cumplir con los objetivos planteados y cuyos resultados se detallan en el capítulo cinco, nos permiten concluir que las especies de *Jungia* colectadas en el sector de LLaviuco corresponden a la especie *rugosa Less* que en el mes de colección: septiembre y que corresponde a la estación poco lluviosa presentaba floración de coloración que variaba entre blanco y lila, a diferencia de la floración amarillenta que presenta *Jungia paniculata* (Santacruz, 2011).

Tiempos de agotamiento y rendimiento

En cuanto al tiempo requerido para agotar las drogas y extraer la totalidad de principios activos durante la preparación de los extractos, y observando la tabla resumen 6.1 se pudo establecer que el menor tiempo de agotamiento (inferior a cuatro horas) lo presentaron los tallos independientemente del menstruo empleado en la extracción, lo cual podría atribuirse a una menor concentración.
de principios activos en esta estructura o a la mayor solubilidad de los metabolitos en los solventes empleados.

<table>
<thead>
<tr>
<th></th>
<th>n-Hexano</th>
<th>Diclorometano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tallos</td>
<td>Hojas</td>
</tr>
<tr>
<td>Inferior a 4</td>
<td>Inferior a 4</td>
<td>Inferior a 4</td>
</tr>
</tbody>
</table>

Tabla 6.1: Tiempo de agotamiento en la extracción con los diferentes solventes

En lo que respecta a flores y hojas, presentaron los mismos tiempos de agotamiento y que correspondió a un período inferior a 4 horas cuando se usó n-hexano como menstruo, en tanto que los extractos preparados con hojas y flores usando diclorometano requirieron un tiempo mayor para lograr extraer los principios activos y fue menor a seis horas.

En la figura 6.1 podemos observar claramente que el tiempo de agotamiento de extractos de n-hexano fue igual e independiente de parte usada de la planta en la extracción.
En la figura 6.2 podemos observar que los tiempos de extracción en diclorometano fueron mayores para las hojas y flores con respecto al tiempo de agotamiento para los tallos durante la extracción de los principios activos.

Comparando los tiempos de agotamiento usando los dos menstruos podemos observar en la figura 6.3 que los extractos de hojas y flores en diclorometano presentan los mayores tiempos para extraer los principios activos de la planta.
Refiriéndonos al rendimiento de la droga en la preparación de extractos, los resultados obtenidos demostraron que la mayor cantidad de principios activos en las extracciones se obtuvieron en una de las muestras utilizando n-hexano como menstruo. En tanto que en los rendimientos obtenidos en diclorometano presentaron similitudes en lo que respecta a flores entre ambas plantas, para las hojas y tallos extraídos en diclorometano presentaron diferencias de rendimiento entre las plantas estudiadas como lo podemos observar en la tabla 6.2. Los tallos extraídos en n-hexano presentaron los rendimientos más bajos. Las variaciones del rendimiento de las plantas pueden deberse a las condiciones de hábitat que presentaban las plantas recolectadas, así como el tipo de suelo, lluvia, duración del día (exposición a la luz), la altitud, orientación, época del año, edad de la planta.\(^{(34)}\)
<table>
<thead>
<tr>
<th>Extractos obtenidos en diclorometano</th>
<th>Rendimiento porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hojas</td>
</tr>
<tr>
<td>CH59 DCM</td>
<td>2,326</td>
</tr>
<tr>
<td>CH60 DCM</td>
<td>6,472</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extractos obtenidos en n-hexano</th>
<th>Rendimiento porcentaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hojas</td>
</tr>
<tr>
<td>CH59 HEX</td>
<td>11,5</td>
</tr>
<tr>
<td>CH60 HEX</td>
<td>4,502</td>
</tr>
</tbody>
</table>

Tabla 6.2: Porcentaje de rendimiento de los extractos en función de la droga y solvente usado.

Podríamos considerar que si los principios activos eran extraídos en menor tiempo tendrían menor rendimiento es decir que estos parámetros serían directamente proporcionales entre sí, pero los resultados obtenidos demuestran lo contrario, esto se aprecia en la figura 6.4 donde podemos observar que algunas muestras presentan mayor rendimiento que tiempo de extracción, en tanto otras presentan mayores tiempos de agotamiento y el rendimiento es menor, es decir a pesar de presentar un mayor rendimiento las hojas de una de las plantas extraídas en n-hexano el tiempo de agotamiento de principios activos fue menor con respecto a las hojas extraídas con diclorometano y cuyo rendimiento no fue mayor al de estas. De igual manera hay variaciones de rendimiento entre las partes de la planta, y con respecto al menstruo empleado; las variaciones en
el tiempo de agotamiento de principios activos podrían deberse a la solubilidad de estos en los solventes que se emplearon en la extracción. Los metabolitos estudiados que presenta Jungia rugosa Less y que se investigaron en el presente estudio varían su solubilidad de acuerdo a la estructura presente, así los flavonoides presentan una solubilidad en solventes orgánicos como éter de petróleo y cloroformo cuando se encuentran en su forma de aglicosones. Las cumarinas simples hidroxiladas de igual manera presentan solubilidad en solventes orgánicos como los mencionados previamente. Los terpenos son hidrófobos por lo tanto son solubles en compuestos orgánicos con baja polaridad.

Figura 6.4: Tiempos de agotamiento y rendimiento de los extractos de las plantas estudiadas.
Identificación de metabolitos por análisis cromatográfico de capa fina TLC

Estudios previos realizados (Enciso y Arroyo, 2011) sobre Jungia rugosa Less revelan la presencia de compuestos fenólicos como lo son los flavonoides y citan los siguientes metabolitos: 3',5-dihidroxi-4',7-di metoxi flavona, 4',5,6,8-tetrametoxi-7-O-azúcar flavona y 3'-hidroxi–5,6,7-tri metoxiflavona que se encuentran presente en las hojas de Jungia rugosa Less en la fracción flavónica a lo cual le atribuye su elevada actividad antioxidante\(^{(7)}\). En la presente investigación se corroboró mediante análisis cromatográfico de capa fina (TLC) la presencia de compuestos fenólicos (Flavonas y flavonoles) de Rf de 043 y 0,62 en las hojas de la planta extraídas con diclorometano no así en los extractos de hojas con n-hexano; los tallos y flores no evidenciaron presencia de estos compuestos independientemente del menstruo empleado en la extracción.

Además de los compuestos fenólicos se pudo obtener información sobre la presencia de un alto contenido de compuestos terpenoides obteniéndose Rf entre 0,01-0,98; la posible presencia de cumarinas simples se observó en hojas, tallos y flores de la planta y cuyos valores de Rf variaron para las extraídas en diclorometano el cual de 0,2 y para las de n-hexano que fueron de 0,05. (Ver tabla 6.3).
Extractos

<table>
<thead>
<tr>
<th></th>
<th>Terpenoides</th>
<th>Cumarinas (cumarinas simples)</th>
<th>Compuestos fenólicos (flavonas y flavonoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rf</td>
<td>Rf</td>
<td>Rf</td>
</tr>
<tr>
<td></td>
<td>Vanillina/ácido sulfúrico</td>
<td>Hidróxido de potasio al 10%</td>
<td>NP/PEG 4000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extractos</th>
<th>+</th>
<th>0,01-0,98</th>
<th>+</th>
<th>0,2</th>
<th>+</th>
<th>0,43 y 0,62</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH59 H DCM</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH59 H HEX</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH59 F DCM</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH60 H DCM</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,2</td>
<td>+</td>
<td>0,43 y 0,62</td>
</tr>
<tr>
<td>CH60 H HEX</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH60 F DCM</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH60 F HEX</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH60 T HEX</td>
<td></td>
<td>0,01-0,98</td>
<td></td>
<td>0,05</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 6.3. Resultados del análisis en cromatografía en capa fina. (TLC). NP= Natural products.
+ (Presencia), - (ausencia)
TABLA 6.4: Posibles Metabolitos presentes en los extractos de flores, tallos y hojas de *Jungia rugosa* Less. Terp = Terpenoides. Cuma r= Cumarinas. C. Fen = Compuestos fenólicos

+ (Presencia), - (ausencia)

Actividad antimicrobiana

Estudios realizados sobre la actividad antimicrobiana de *Jungia rugosa* Less en el aceite esencial y extractos obtenido en metanol y acetato de etilo de sus hojas (Valdés y Cazar, 2012) frente a *E.coli* y *S.aureus* evidenciaron actividad del aceite esencial frente a *Staphylococcus aureus* (CIM de 21,93 μL/mL); los extractos de hojas obtenidos en metanol y acetato de etilo no presentaron actividad alguna frente a los microorganismos empleados en mencionada investigación\(^2\). Por ello en la investigación que realizamos se trabajó con
extractos lipófilos que obtuvimos con diclorometano y n-hexano de cada parte de la planta.

En el estudio realizado sobre la actividad antimicrobiana de los extractos de la planta con ambos menstruos por las tres técnicas aplicadas se presentaron dificultades debido a la solubilidad. En las técnicas de microdilución en placa los extractos que fueron probados a diferentes concentraciones y con la adición de Tween 20 como emulgente en el caldo, los extractos precipitaban en él y en agua estéril por lo que no se aseguraba la reproducibilidad de los resultados, mientras que en la técnica de difusión en agar variante de pocillo los extractos no se difundían en el agar y nuevamente los estudios de la actividad antimicrobiana no tuvieron validez. La precipitación fue indistinta según la parte de la planta y al menstruo que se empleó en la extracción; por lo que se podría suponer que la molécula o las moléculas causantes de la precipitación se encuentran todas las partes de la planta y que podrían ser solubles en ambos menstruos. La precipitación podría deberse a que la tensión superficial no pudo ser modificada por la anfífilia del emulgente indicado por la técnica, o posiblemente a que los compuestos que precipitan se hallan en tal proporción que la naturaleza del emulgente no puede dispersar produciéndose la posterior coalescencia de la fase interna.
CAPÍTULO VII

7. Conclusiones

- Las hipótesis planteadas para la presente investigación no pueden ser aceptadas ni rechazadas debido a los problemas de solubilidad que presentaron todos los extractos que se obtuvieron de la planta para su caracterización usando las diferentes técnicas aplicadas, lo que determinó falta de reproducibilidad en los resultados; por lo que podemos concluir que no se puede afirmar ni rechazar que los extractos en n-hexano y en diclorometano tienen actividad antimicrobiana, usando *E.coli*, *S.aureus* y *S. typhimurium*.

- No es posible generalizar diferencias en el rendimiento en función del solvente empleado en la extracción. Los porcentajes de menor rendimiento en la extracción fueron de los tallos al emplear n-hexano como menstruo y el mayor rendimiento fue el de hojas de igual manera al emplear n-hexano como solvente.
- El tiempo empleado para agotar los principios activos fue de alrededor de cuatro horas para tallos en diclorometano, mientras que para flores y hojas extraídas en diclorometano el tiempo de agotamiento fue alrededor de seis horas. Para hojas, flores y tallos extraídos en n-hexano el tiempo de agotamiento fue de alrededor de cuatro horas. Así el análisis cromatográfico permitió establecer que un posible tiempo adecuado para el consumo de la totalidad de principios activos con los menstruos empleados sería el de cinco horas de goteo (XX/min).

- El análisis cromatográfico demostró la posible presencia de gran cantidad de compuestos terpenoides de Rf entre 0,01 - 0,98 en *Jungia rugosa* Less tanto en hojas, flores, tallos extraídos con diclorometano y n-hexano, de igual manera se evidenció la presencia de cumarinas simples en dichos extractos, y cuyos Rf fueron de 0,2 para hojas, tallos y flores extraídos en diclorometano y Rf de 0,05 para hojas, flores tallos extraídos en n-hexano. En el caso del análisis de compuestos fenólicos se determinó la posible presencia de flavonas y flavonoles de Rf de 0,43 y 0,62 exclusivamente en las hojas de *Jungia rugosa* Less extraídas con diclorometano mientras que los tallos y flores extraídos en diclorometano no presentan dichos compuestos de igual manera que las hojas, flores y tallos extraídos con n-hexano que revelaron la presencia de compuestos fenólicos.
CAPÍTULO VIII

8. Recomendaciones

- Investigar actividad antimicrobiana de los extractos de *Jungia rugosa* Less utilizando nuevas técnicas o variando las existentes, pues la presencia de metabolitos secundarios como los compuestos fenólicos y compuestos terpenoides cuya presencia fue detectada en la presente investigación podrían dar actividad positiva antimicrobiana.

- Investigar el uso de nuevos emulgentes para la dispersión de extractos resinosos para su uso en las técnicas de microdilución en placas, usando especialmente tensioactivos con bajo HLB.

- Completar el análisis cromatográfico para la identificación de todos los metabolitos que pueda contener *Jungia rugosa* Less e incluir además estándares de referencia.
Bibliografía

ANEXO A
<table>
<thead>
<tr>
<th>Código</th>
<th>Especificaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH59</td>
</tr>
<tr>
<td></td>
<td>CH60</td>
</tr>
<tr>
<td>Fecha de recolección</td>
<td>23 de septiembre del 2013</td>
</tr>
<tr>
<td>Lugar</td>
<td>Camino a Llaviuco</td>
</tr>
<tr>
<td>Altitud</td>
<td>3143</td>
</tr>
<tr>
<td>Coordenada X</td>
<td>17707040</td>
</tr>
<tr>
<td>Coordenada Y</td>
<td>9685442</td>
</tr>
<tr>
<td>Color de suelo</td>
<td>-</td>
</tr>
<tr>
<td>Tipo de suelo</td>
<td>-</td>
</tr>
<tr>
<td>Hábitat</td>
<td>Potrero</td>
</tr>
</tbody>
</table>

Tabla A -1: Datos de recolección de plantas
ANEXO B
Figura B-1: Bauchers de Caracterización botánica I.Wilches 17 (HA) muestra (CH59).
(http://www.uazuay.edu.ec/HerbarioAzuay/index.php/buscador-de-muestra)
Figura B-2: Bauchers de Caracterización botánica I.Wilches 18 (HA) muestra (CH60).
(http://www.uazuay.edu.ec/HerbarioAzuay/index.php/buscador-de-muestra)
ANEXO C
<table>
<thead>
<tr>
<th>Código</th>
<th>Fecha de lavado</th>
<th>Fecha de secado</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH59 hojas</td>
<td>24 de septiembre 2013</td>
<td>25-26 de septiembre 2013</td>
</tr>
<tr>
<td>CH59 tallos</td>
<td>26 de septiembre 2013</td>
<td>27-30 septiembre 2013</td>
</tr>
<tr>
<td>CH59 flores</td>
<td>24 de septiembre 2013</td>
<td>25-27 de septiembre 2013</td>
</tr>
<tr>
<td>CH60 hojas</td>
<td>23 de septiembre 2013</td>
<td>24-25 de septiembre 2013</td>
</tr>
<tr>
<td>CH60 tallos</td>
<td>26 de septiembre 2013</td>
<td>27-30 septiembre 2013</td>
</tr>
<tr>
<td>CH60 flores</td>
<td>23 de septiembre 2013</td>
<td>24-26 de septiembre 2013</td>
</tr>
</tbody>
</table>

Tabla C-1: Datos de fecha de Lavado y secado de plantas

<table>
<thead>
<tr>
<th>Código</th>
<th>Fecha de triturado</th>
<th>Humectación Diclorometano</th>
<th>Percolación Diclorometano</th>
<th>Humectación n-hexano</th>
<th>Percolación n-hexano</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH59 hojas</td>
<td>2 de octubre de 2013</td>
<td>21 de octubre 2013</td>
<td>22-23 de octubre 2013</td>
<td>14 de octubre 2013</td>
<td>15-16 de octubre 2013</td>
</tr>
<tr>
<td>CH59 tallos</td>
<td>14 de octubre de 2013</td>
<td>21 de octubre 2013</td>
<td>22-23 de octubre 2013</td>
<td>14 de octubre 2013</td>
<td>15-16 de octubre 2013</td>
</tr>
<tr>
<td>CH59 flores</td>
<td>2 de octubre 2013</td>
<td>2 de octubre 2013</td>
<td>3-4 de octubre 2013</td>
<td>14 de octubre 2013</td>
<td>15-16 de octubre 2013</td>
</tr>
<tr>
<td>CH60 hojas</td>
<td>hojas</td>
<td>2 de octubre de 2013</td>
<td>2 de octubre de 2013</td>
<td>3-4 de octubre 2013</td>
<td>14 de octubre 2013</td>
</tr>
<tr>
<td>CH60 tallos</td>
<td>tallos</td>
<td>14 de octubre de 2013</td>
<td>21 de octubre 2013</td>
<td>22-23 de octubre 2013</td>
<td>14 de octubre 2013</td>
</tr>
<tr>
<td>CH60 flores</td>
<td>flores</td>
<td>2 de octubre de 2013</td>
<td>2 de octubre 2013</td>
<td>3-4 de octubre 2013</td>
<td>21 de octubre 2013</td>
</tr>
</tbody>
</table>

Tabla C-2: Datos de fechas de Preparación de extractos.
ANEXO D
Figura D-1: Cromatogramas obtenidos por TLC CH 59 Hojas en Diclorometano Agotamiento 366 nm. **Figura D-2:** Cromatogramas obtenidos por TLC CH59 Flores en Diclorometano Agotamiento 366 nm.

Figura D-3: Cromatogramas obtenidos por TLC CH59 hojas en Hexano agotamiento 366 nm. **Figura D-4:** Cromatogramas obtenidos por TLC CH59 flores en Hexano Agotamiento 366 nm.
Figura D-5: Cromatogramas obtenidos por TLC CH59 tallos en Hexano Agotamiento 366 nm.

Figura D-6: Cromatogramas obtenidos por TLC CH60 Hojas en Diclorometano agotamiento 366 nm.

Figura D-7: Cromatogramas obtenidos por TLC CH59 flores en Diclorometano agotamiento 366 nm.

Figura D-8: Cromatogramas obtenidos por TLC CH60 Tallos en Diclorometano agotamiento 366 nm.
Figura D-9: Cromatogramas obtenidos por TLC CH60 hojas en Hexano Agotamiento 366 nm.

Figura D-10: Cromatogramas obtenidos por TLC CH60 Flores en Hexano Agotamiento 366 nm
ANEXO E
Tabla E-1: Evaluación de la actividad antimicrobiana según la técnica de dilución para aceites esenciales sin la adición de tensoactivo en TSB, y a diferentes concentraciones. P= Precipitación.

<table>
<thead>
<tr>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN</th>
<th>1000 μg/ml</th>
<th>500 μg/ml</th>
<th>250 μg/ml</th>
<th>125 μg/ml</th>
<th>75 μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tween 20 al 0,1% en TSB</td>
<td>EXTRACTOS</td>
<td>CONCENTRACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 μg/ml</td>
<td>500 μg/ml</td>
<td>250 μg/ml</td>
<td>125 μg/ml</td>
<td>75 μg/ml</td>
<td></td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tween 20 al 0,3 % en TSB</th>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 μg/ml</td>
<td>500 μg/ml</td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tween 20 al 0,5 % en TSB</th>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 μg/ml</td>
<td>500 μg/ml</td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CH59 F HEX</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>1000 µg/ml</td>
<td>500 µg/ml</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T HEX</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CH60 T DCM</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

Tabla E-2: Evaluación de la actividad antimicrobiana según la técnica de dilución para aceites esenciales con la adición de tensoactivo en TSB, y a diferentes concentraciones. P= Precipitación.
TSB sin la adición de tensoactivo

<table>
<thead>
<tr>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 μg/ml</td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
</tr>
</tbody>
</table>

Tabla E-3: Evaluación de la precipitación de los extractos luego de la liofilización en TSB sin la adición de tensoactivo y la adición de este y a diferentes concentraciones por la técnica de dilución para aceites esenciales. P = precipitación.

Tween 20 al 0,5 % en TSB

<table>
<thead>
<tr>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 μg/ml</td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
</tr>
</tbody>
</table>

Tween 20 al 1 % en TSB

<table>
<thead>
<tr>
<th>EXTRACTOS</th>
<th>CONCENTRACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 μg/ml</td>
</tr>
<tr>
<td>CH59 H DCM</td>
<td>P</td>
</tr>
<tr>
<td>CH59 T DCM</td>
<td>P</td>
</tr>
</tbody>
</table>