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Resumen 

La predicción de picos de caudal en sistemas montañosos complejos presenta desafíos en 

hidrología debido a la falta de datos y las limitaciones de los modelos físicos. El aprendizaje 

automático (ML) ofrece una solución al permitir la integración de técnicas y productos satelitales 

de precipitación (SPPs). Sin embargo, se ha debatido sobre la efectividad del ML debido a su 

naturaleza de "caja negra" que dificulta la mejora del rendimiento y la reproducibilidad de los 

resultados. Para abordar estas preocupaciones, se han propuesto estrategias de ingeniería de 

características (FE) para incorporar conocimiento físico en los modelos de ML, mejorando la 

comprensión y precisión de las predicciones. Esta investigación doctoral tiene como objetivo 

mejorar la predicción de picos de caudal mediante la integración de conceptos hidrológicos a 

través de técnicas de FE y el uso de datos de precipitación in-situ y SPPs. Se exploran técnicas 

y estrategias de ML para mejorar la precisión en sistemas hidrológicos macro y mesoescala. 

Además, se propone una estrategia de FE para aprovechar la información de SPPs y superar la 

escasez de datos espaciales y temporales. La integración de técnicas avanzadas de ML y FE 

representa un avance en hidrología, especialmente para sistemas montañosos complejos con 

limitada o nula red de monitoreo. Los hallazgos de este estudio serán valiosos para tomadores 

de decisiones e hidrólogos, facilitando la mitigación de los impactos de los picos de caudal. 

Además, las metodologías desarrolladas se pueden adaptar a otros sistemas de macro y 

mesoescala, beneficiando a la comunidad científica en general. 

Palabras clave: picos de caudal, inundaciones, aprendizaje automático, ingeniería de 

características, Andes 
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Abstract 

Peak runoff forecasting in complex mountain systems poses significant challenges in hydrology 

due to limitations in traditional physically-based models and data scarcity. However, the 

integration of machine learning (ML) techniques offers a promising solution by balancing 

computational efficiency and enabling the incorporation of satellite precipitation products (SPPs). 

However, debates have emerged regarding the effectiveness of ML in hydrology, as its black-box 

nature lacks explicit representation of hydrological processes, hindering performance 

improvement and result reproducibility. To address these concerns, recent studies emphasize the 

inclusion of FE strategies to incorporate physical knowledge into ML models, enabling a better 

understanding of the system and improved forecasting accuracy. This doctoral research aims to 

enhance the effectiveness of ML in peak runoff forecasting by integrating hydrological concepts 

through FE techniques, utilizing both ground-based and satellite-based precipitation data. For 

this, we explore ML techniques and strategies to enhance accuracy in complex macro- and meso-

scale hydrological systems. Additionally, we propose a FE strategy for a proper utilization of SPP 

information which is crucial for overcoming spatial and temporal data scarcity. The integration of 

advanced ML techniques and FE represents a significant advancement in hydrology, particularly 

for complex mountain systems with limited or inexistent monitoring networks. The findings of this 

study will provide valuable insights for decision-makers and hydrologists, facilitating effective 

mitigation of the impacts of peak runoffs. Moreover, the developed methodologies can be adapted 

to other macro- and meso-scale systems, with necessary adjustments based on available data 

and system-specific characteristics, thus benefiting the broader scientific community. 

Keywords: peak runoff, flash floods, machine learning, feature engineering, Andes 
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Chapter one: introduction. 

loods resulting from peak runoffs are the most frequent and destructive natural disasters 

worldwide [1]–[4]. They have major impacts on society, including human losses, increased 

health risks, and disruptions to water and sewer services, as well as on the economy, with losses 

of agricultural production and damage to infrastructure and transportation networks. Floods also 

have significant ecological consequences, altering hydro-geomorphic conditions and causing 

changes to river and floodplain habitats, as well as biodiversity loss [5]. 

With much concern, recent studies worldwide have associated the increasing frequency and 

severity of peak runoff and flood events with land use land cover (LULC) changes (e.g., 

deforestation and urbanization), and climate change [3], [6]–[8]. For these reasons, peak runoff 

forecasting has globally become an emerging field of research, and its applications are of major 

importance for water management, risk analysis, and resilience enhancement [9], [10]. 

Floods can be classified according to their generation mechanisms into long- and short-

precipitation floods [11], [12]. In any case, the response time between a precipitation event and 

its associated flood response can be on the scale of minutes, hours, or even longer [13]. Based 

on these concepts, flash floods are defined as peak runoffs that develop less than six hours after 

a precipitation event with little or no forecast lead time [14]. Thus, the key to building resilience to 

flash floods is to sufficiently anticipate the event itself and provide accurate forecasts for decision-

making.  

However, although crucial, the development of flood anticipation (forecasting) models is still a 

major challenge within the scientific community, especially for complex hydrological systems (e.g., 

catchment). Complex hydrological systems are hereafter defined as meso-scale (10 km2≤ area 

≤ 1000 km2) and macro-scale (> 1000 km2) mountain systems whose flash flood response is the 

result of extremely variable yet poorly monitored driving forces. In short, meso-scales hydrology 

refers to the study of hydrological processes, where local land use and topography play a 

significant role. Whereas, macro-scale hydrology deals with the large-scale hydrological 

processes that occur at a regional or global level, where the effects of local land use and 

topography are less significant. 

The main driving forces for peak runoff (including flash floods) formation are for instance 

precipitation, soil and LULC information, soil moisture (humid areas), and topography [15], [16]. 

F 



   

Paul Andrés Muñoz Pauta 

 

11 

Overall, macro-scale systems depict higher heterogeneity on the peak runoff main driving forces 

when compared to meso-scale mountain systems. This is because larger mountain systems 

commonly encompass multiple climates and terrain features, which in combination, lead to highly 

variant peak runoff driving forces. Consequently, the difficulty to monitor these driving forces 

induce spatial and/or temporal data scarcity issues. On one hand, spatial data scarcity relates to 

representability of the information. For instance, it is known that in complex regions such as the 

tropical Andes, the characterization of precipitation patterns is limited by inexistent or insufficient 

ground precipitation networks (rain gauges) [17]–[20]. And on the other hand, temporal data 

scarcity is referred to the cases when there is insufficient dataset extension for describing general 

processes, e.g., the use of less than a hydrological year for a water balance model. A solution to 

deal with both spatial and temporal data limitation is the exploitation of data derived from remote 

sensing estimates such as satellite precipitation products (SPPs). The situation is similar when it 

comes to soil moisture, which is even more complicated because the remote sensing data 

available only provides imagery at a temporal resolution of one day, which is not suitable for sub-

daily peak runoff forecasting. 

An additional limiting issue in peak runoff forecasting is the selection of an adequate forecasting 

technique in terms of input data demand, model efficiency, and computational cost criteria. For 

instance, employment of the most complex forecasting model might be unfeasible due to 

extensive input data demand, lack of efficiency, or simply because the required computation time 

hinders the lead time. Therefore, the appropriate forecasting model must meet parsimony 

concepts and optimize its accuracy (performance metrics), for instance, by improving the 

representation of peak runoff governing processes from the available input data. In practice, 

representation improvement can be achieved by the application of strategies such as input 

variable selection, preprocessing of input data, and derivation of new information for facilitating 

the data assimilation of forecasting models. 

From the previous revision of state-of-the-art flash flood forecasting, we identified two clear 

research niches that aim to improve the efficiency of peak runoff forecasts. The first one is related 

to the process of forecasting with the latest techniques (models) together with strategies for 

improving forecasting efficiencies in complex meso- and macro-scale hydrological systems. The 

second niche is related to find ways to exploit SPP information for dealing with spatial and 

temporal data scarcity. In the following paragraphs, we expand on these niches.  
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1.1 Data sources 

Peak runoff forecasting models demand information on at least two variables: runoff and 

precipitation (i.e., precipitation-runoff models). Runoff data has to be obtained from in situ 

measurements, whereas, precipitation information can be retrieved either from ground-based or 

SPPs products. 

The most employed sources of precipitation are rain gauges and weather radars yet they demand 

purchase, installation, and maintenance costs for continuous monitoring [25]. The problem gets 

exacerbated when the interest lies in mountain regions with complex topography. This is because 

the spatial characterization precipitation demands highly-dense monitoring networks, and even 

worst, the most traditional and affordable rain gauges (tipping bucket) have shown important 

deficiencies in measuring certain types of precipitation such as drizzle, causing important 

precipitation underestimations/overestimations [20], [21]. To overcome these issues, recent 

advances in remote sensing technology such as freely-available SPPs are becoming popular 

since they provide spatial precipitation data that, in principle, could produce more efficient 

forecasting models [25]. However, the primary challenge is validating/correcting satellite data in 

cases where there are no ground-based precipitation networks available. 

Among SPPs, we highlight the NASA Global Precipitation Measurement (GPM), Integrated Multi-

satellite Retrievals for GPM (IMERG) [22], and the Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks (PERSIANN) [23]. IMERG and PERSIANN products 

offer quasi-global coverage, free access, high spatiotemporal resolutions, and short latency times 

adequate for flash flood forecasting and real-time operation. For instance, the spatial resolution 

of the PERSIANN-Cloud Classification System (CCS) product is 0.04o (i.e., pixels of ~ 4.4 x 4.4 

km). The PERSIANN-CCS delivers global precipitation images each hour (1-hour temporal 

resolution), and they are available to the public with a latency time of 1 hour [24]. For these 

reasons, these SPPs have yielded a growing body of literature for hydrometeorological 

applications [25]. Current applications include tracking precipitation anomalies [26], [27], 

precipitation early-warning systems [28], and flood forecasting and mapping [29], [30]. Thus, the 

combined use of SPPs and ground-based data represents an opportunity for developing flash 

flood forecasting models in regions with data scarcity issues such as the Andes.  
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1.2 Peak runoff forecasting models 

Two main paradigms can be followed for the development of peak runoff forecasting models. 

These are the physics-based and data-driven paradigms. The physics-based paradigm aims at 

including mathematical equations for describing the physical processes that govern flash flood 

generation processes in a system [31]. Nevertheless, the use of traditional physically-based 

models to forecast peak runoffs is either restricted to data rich regions or leads to significant 

uncertainties for regions with complex biophysical characteristics [31]. This is due to data scarcity 

and extreme spatiotemporal variability of the driving forces. Furthermore, even with the increasing 

availability of SPPs, it remains mandatory a validation/correction with ground information before 

its usage. Moreover, overall the use physically-based models demands intensive computation, 

and leads to overparameterization issues and higher uncertainties for data poor regions. This 

complicates the use of physics-based models for peak runoff and real-time applications [9], [32]–

[38].  

Contrary to the physics-based paradigm, the data-driven one approaches peak runoffs 

phenomena as stochastic processes whose distribution probability can be directly derived from 

historical data. In other words, the data-driven paradigm can be used without requiring knowledge 

about the underlying physical processes in a system. Among traditional data-driven approaches 

for peak runoff modeling, we highlight the autoregressive moving average (ARMA) [39], 

autoregressive integrated moving average (ARIMA) [40], and multiple linear regressions (MLR) 

[41]. However, although these traditional models have provided improved generalization power 

and computational costs when compared to physically-based models, a major improvement is still 

required given their unsuitability for peak runoff and real-time [37]. The main reasons are lack of 

accuracy, high complexity regarding model structure (i.e., dependence of initial parameter values 

to inputs), and elevated computational costs that hinder the temporal forecast window or lead time 

for operational hydrology. 

To overcome the shortcomings of traditional data-driven models, extensive research during the 

last decades has focused on the development and use of advanced data-driven models, e.g., 

machine learning (ML) [6], [34], [37], [42]–[48]. Particularly during the last decade, ML approaches 

have increased their popularity among hydrologists, mostly since the forecasting ability of a model 

is dependent on how much the modeler can exploit from relevant input information to find relations 

to the target variable (i.e., runoff) [37]. Moreover, since there is no assumption on a global function 
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describing the data, ML techniques are particularly relevant for problems of non-stationarity, 

missing features (estimators), and systematic measurement errors [42]. 

In this sense, the use of ML represents both a challenge and an opportunity. First, the challenge 

is to select the optimal ML technique for short-term peak runoff forecasting (flash floods). Different 

ML methods have been explored in pursue of a better performance in conventional hydrological 

problems. It is now common to find new studies that use artificial neural networks (ANNs), 

specialized ANNs also known as deep learning (DL), support vector machines (SVMs), and 

random forest (RF) [37], [47]–[54]. Second, the use of ML techniques is a great opportunity for 

exploiting SPPs, especially in cases where validation/correction is not possible due to a lack of 

ground monitoring networks. This is because SPP data in ML models are merely estimators of 

another target variables, i.e., runoff. Thus, the premise is that systematic errors of the estimators 

can be absorbed by ML models. This opportunity is pertinent for complex regions such as the 

tropical Andes, where the installation of ground monitoring networks is restricted by its topography 

[17], [18]. 

1.3 Feature engineering in peak runoff forecasting 

While ML techniques have shown promising results in hydrology, there has been ongoing 

controversy in the field due to the black box nature of ML models, which do not explicitly represent 

the hydrological processes of a system and, as a result, lack physical knowledge that limits 

performance improvement and reproducibility of results [43]. To address this issue, current and 

future studies have focused on the use of FE strategies to improve input data representation and 

incorporate physical knowledge of the system to enhance the interpretability of ML models and 

improve their efficiency.  

FE is a crucial component in the use of ML for hydrological modeling as it enables the creation of 

more meaningful input features, thereby improving the performance and interpretability of ML 

models. Specifically, FE involves a series of strategies such as missing data imputation, variable 

transformation, and feature creation, all aimed at enhancing the quality and relevance of input 

data. For example, in peak runoff forecasting, FE can be employed to incorporate additional 

information beyond precipitation and runoff, such as soil moisture, topography, and land use, to 

develop more specialized and accurate ML models. By leveraging FE, hydrologists can improve 
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their understanding of complex hydrological systems and develop more effective and reliable 

forecasting tools. 

So far, however, there has been little discussion about ways in which available precipitation data 

can be exploited in ML models, or on how to incorporate essential hydrological knowledge to 

improve forecasting efficiencies of ML models. Some efforts are, for instance, the use of 

precipitation data to mimic antecedent soil moisture conditions through a proxy variable derived 

from precipitation data. This was done by Orellana-Alvear et al. [55] from weather radar data and 

can be replicated to any SPP. Other successful ways in which FE can be applied are the use of 

object-based methods for extracting precipitation attributes from SPPs [48], [56]–[61], runoff 

separation into subflow components [62]–[64], exploitation of topographic characteristics [65], the 

addition of stream network information [66], [67], sub-catchment modeling, and various ways to 

leveraging hydrological knowledge in selecting input attributes [68]. 

1.4 Aim of the research 

The aim of this research is to improve the effectiveness of machine learning peak runoff  

forecasting by utilizing feature engineering techniques that exploit both ground- and satellite-

based precipitation data, while also incorporating process-based hydrological knowledge. The 

study will focus on two complex mountain systems that are representative of meso- and macro-

scales. To achieve this objective, the research is organized into three work packages, which are 

developed in six thematic chapters (see Figure 1.1). 

1.4.1 Work packages (WPs) 

- WP1: Development of ML peak runoff forecasting models using ground-based 

precipitation data. 

- WP2: Exploitation of SPP data with a FE strategy for ML. 

- WP3: Improvement in ML peak runoff and flash flood forecasting through the use of FE 

strategies for exploiting ground- and satellite-based precipitation data, and for adding 

process-based hydrological knowledge. 
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1.4.2 Outline of the thesis 

Chapter One serves as an introduction to the importance of flash flood forecasting for society and 

the scientific community. The chapter also gives an overview of the theoretical dimensions for 

improving the effectiveness of machine learning (ML) flash flood forecasting through the use of 

feature engineering (FE) strategies for modeling complex mountain hydrological systems at 

meso- and macro-scale with data scarcity issues. 

Chapter Two, as the first part of WP1, provides a detailed methodological framework for 

developing and evaluating ML-based flash flood forecasting models using model parsimony 

criteria. This chapter lays the foundation for the development of ML models for flash flood 

forecasting in meso- and macro-scale hydrological systems (WP1). The framework is then applied 

to explore qualitative and quantitative flash flood forecasting using ground-based precipitation 

data, as presented in Chapter Three (second part of WP1). The qualitative and quantitative case 

studies in a meso-scale hydrological system demonstrate the link between academia and society, 

as the developed models can be immediately integrated into a flash flood forecasting system.  

Additionally, Chapter Four highlights the effectiveness of FE implementation to achieve ML 

forecasting improvement (WP2). FE strategies, such as exploiting satellite-based precipitation 

data and adding physical knowledge of the system to ML models, are tested for modeling the 

functioning of a system. 

Then, Chapter Five encompasses WP3, which explores the use of the implemented FE strategies 

for improving flash flood forecasts in meso- and macro-scale hydrological systems by exploiting 

ground- and satellite-based precipitation data and adding process-based hydrological knowledge. 

This chapter focuses on two case studies: a precipitation ungauged meso-scale system and a 

macro-scale system where SPPs complemented existing ground-based precipitation data. 

The final Chapter Six provides a summary of the research findings and highlights the future 

directions of the field. Overall, this thesis demonstrates the effectiveness of using ML techniques 

and FE strategies for modeling complex mountain hydrological systems and improving flash flood 

forecasting. 
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Figure 1.1. Work packages of the doctoral research and their associated thematic chapters. 
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1.5 Study areas 

We have chosen two study areas that represent meso- and macro-scale hydrological systems in 

the tropical Andes of Ecuador. The first study area is the Tomebamba catchment, covering an 

area of 300 km², while the second one is the Jubones basin, covering an area of 4400 km². These 

areas are also typical examples of mountainous regions where it is often difficult to gather 

comprehensive hydrological data due to limited budgets and the complexity of the terrain. As a 

result, essential information beyond precipitation and runoff is often lacking.This is evident from 

the absence of operational flash flood forecasting systems in the Andes, as there are no 

sufficiently dense ground-based monitoring networks available, as reported in the studies of 

Dávila [56] and del Granado et al. [57]. 

Moreover, the selection of meso- and macro-scale systems for this study was based, in part, on 

the availability of precipitation data. For small-area systems like the Tomebamba catchment, 

ground-based precipitation monitoring networks can be used in combination with SPPs. However, 

for larger systems like the Jubones basin, SPPs may be the sole source of precipitation data for 

flash flood forecasting. As a result, differences in the assimilation process of input data by 

machine learning (ML) techniques must be carefully considered for effective application in each 

study area. 

1.5.1 A meso-scale hydrological system: the Tomebamba catchment 

The Tomebamba catchment is delineated upstream of the Matadero-Sayausí hydrological station, 

and it is the major water source for the city of Cuenca (third most populated city in Ecuador with 

0.6 million inhabitants). The Tomebamba catchment is located in the southeastern flank of the 

Ecuadorian Andes discharging to the Amazon river and ultimately to the Atlantic Ocean. The 

catchment area is approximately 300 km2, with an elevation range from 2700 to 4400 m a.s.l. 

(Figure 1.2). Moreover, the Tomebamba is part of the Cajas National Park, which was declared 

by UNESCO as a World Biosphere Reserve in 2013. Based on the main streams, the Tomebamba 

can be divided into 6 micro catchments (M1-M6), whose approximate areas are 93.2, 51.4, 73.3, 

60.8, 12.7, and 8.6 km2. 

Paramo vegetation covers 70% of the Tomebamba catchment, followed by native woody species, 

pastures, and crops among other land cover use. Numerous lakes can be found in the western 

part of the microcatchments, especially in M2 and M3. Soils in the study area are the result of 
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volcanic ash accumulation (including andosols and histosols) and are characterized by a high-

water retention capacity associated with organic and clay composition [58], [59]. The climate at 

the Tomebamba is mainly influenced by continental air masses from the Amazon basin [60]. 

Precipitation depicts a bimodal regime with peaks during March-May and October; the mean 

(maximum) annual precipitation is around 1110 (1210) mm. Most of the precipitation falls as 

drizzle [61], with intensities less than 2 mm.h-1 in more than 95 % of events in the upper [20] and 

lower parts of the catchment. The average temperature and relative humidity are 6.9 degrees 

Celsius and 92.1 %, respectively. 

 

Figure 1.2. The Tomebamba catchment in the southern Ecuadorian Andes. Location of ground-

based precipitation stations (Toreadora, Virgen del Cajas, and Chirimachay), and runoff at the 

outlet (Sayausí). 

Dataset 

The dataset comprises hourly information on two variables, runoff measured at the outlet of the 

catchment (Figure 1.2) and precipitation within the catchment for the period January/2015 to 

May/2021. Runoff time series for the Sayausí station were obtained from the drinking water facility 

of Cuenca, the Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado 

y Saneamiento de Cuenca (ETAPA-EP). 
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Precipitation data were retrieved from ground and satellite sources. Ground estimates were 

acquired from three rain gauges installed in the upper and middle parts of the catchment, 

Toreadora at 3395, Virgen del Cajas at 3626, and Chirimachay at 3298 m a.s.l. These rain gauges 

are located within the microcatchment M1. On the other hand, satellite estimates of precipitation 

were retrieved from the PERSIANN-CCS database, resulting in 15 pixels-based information for 

the Tomebamba catchment. Figure 1.3 shows the PERSIANN-CCS coverage over the study 

catchment as well as a comparison between the annual cumulated precipitation measured by the 

satellite- and ground-based products for the study period. 

 

2015 

 

2016 

 

2017 

 

2018 

 

2019 

 

2020 

 

2021 

 

(a) (b) 

Figure 1.3. (a) PERSIANN-CCS coverage and mean annual precipitation over the Tomebamba 

catchment. (b) Comparison between annual precipitation measured by ground-based products 

(average of three rain gauges over microcatchments M1, light blue line) and the PERSIANN-

CCS (average over M1, dark blue line). The remaining gray lines depict the PERSIANN-CCS 

precipitation for microcatchments M2-M6. 

1.5.2 A macro-scale hydrological system: the Jubones basin 

The Jubones basin is located in the tropical Andes of Ecuador, covering an area of 3391 km2 

upstream of the Minas-San Francisco (MSF) hydroelectric dam (Figure 1.4). The MSF was 

constructed and started operating in late 2018. The elevation of the Jubones basin ranges 

between 1250 to 3920 m above sea level. The climatology of the basin is governed by local 

topography, the presence of the Andean Mountain range, trade winds, and ocean currents from 
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the Pacific Ocean. As a result, the spatial distribution of the climatology is very variable, depicting 

tropical to semi-arid climates according to the Köppen-Geiger classification [62]. As a result, mean 

annual precipitation in the basin is extremely variable in space, ranging from 290 to 925 mm. 

Similarly, reported mean annual temperature of the basin ranges from 15 to 28 degrees Celsius 

[63], yet it is also expected a high variability across the altitudinal gradient. 

 

 

 

Figure 1.4. The Jubones basin in the Tropical Andes of Ecuador, South America (UTM 

coordinates). 

Dataset 

The dataset comprises ~3.5 years of hourly information on two variables, precipitation, and runoff 

for the period January 2019 to June 2022. Precipitation data were retrieved from two near-real-

time databases, the IMERG-Early Run (ER), and the PERSIANN-Cloud Classification System 

(CCS) products. Data were extracted at the finest temporal resolution (30 minutes and 1 hour for 

the IMERG-ER and PERSIANN-CCS products, respectively) and then aggregated to the hourly 

time step. Apart from inner satellite image processing, the most remarkable difference between 

both precipitation sources is their spatial resolution. The PERSIANN-CCS presents the highest 

spatial resolution for the study area (0.04o, ~4.4 km), and it is the result of infrared imagery 

processing and cloud classification using artificial neural networks [64]. Whereas the IMERG-ER 

delivers 30-min maps with a spatial resolution of 0.1o (~11.1 km) using an approach based on the 

interpolation of multiple microwave precipitation estimates. It is worth noting the difference in the 
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number of pixels (timeseries) obtained with each satellite product, 174 and 30 pixels for the 

PERSIAN-CCS and the IMERG-ER, respectively.  

Figure 1.5 compares hourly satellite precipitation measured by both satellite products in the 

Jubones basin, with mean (maximum) annual precipitation depths of 729 (1167) and 1532 (2759) 

mm, respectively. The mean annual precipitation differences of 803 and 1592 mm for the mean 

and the maximum precipitation are attributed to the aforementioned reasons.  

  

Figure 1.5. Mean annual precipitation measured by the PERSIANN-CCS and the IMERG-ER 

satellite products for the study period from January 2019 to June 2022 (Jubones basin, 

Ecuador). 

To date, no ground precipitation gauges are operating in the basin. However, a precipitation 

comparison can be done with the study of [63] to give an idea about SPPs agreement with ground 

observations. In that study, daily historical data for the period 1982-1998 revealed mean annual 

precipitation ranging from 471 to 1106 mm in the Jubones basin, which better agrees with the 

obtained PERSIANN-CCS information. Although it was not possible to perform an hourly 

validation of the satellite precipitation with ground measurements, this was not a limiting aspect 

since precipitation is merely an estimator of runoff when ML techniques are employed. Instead, 

we exploited the spatiotemporal variability of both precipitation signals under the assumption that 

the overall bias of each of them remains constant for the study area. 

On the other hand, hourly runoff data was collected for a hydrological station in the outlet of the 

basin, i.e., the entrance MSF hydropower dam (see Figure 1.4). The runoff data were facilitated 
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by the Corporación Eléctrica del Ecuador (CELEC EP, https://www.celec.gob.ec/), the company 

that operates the MSF hydropower dam. 
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Chapter two: methodological framework for developing machine learning flash flood 

forecasting models. 

eak runoff including flash flood forecasting can be issued with either quantitative or 

qualitative approaches [47], [65]–[71]. Quantitative forecasts become a regression problem 

for addressing hydrological tasks where peak runoff magnitudes are of importance for water 

resources management or for taking mitigation actions. Some examples are the operation of 

water supply and water treatment plants, the development of flood early warning systems 

(FEWS), or for producing inputs to hydraulic models for the delineation of areas prone to flooding. 

On the other hand, qualitative forecasting represents a classification problem consisting of 

classifying floods into distinct categories or river states according to their severity (i.e., runoff 

magnitude). The utility of categorizing runoff magnitudes is that they can be used for producing 

runoff susceptibility states in a semaphore-like FEWS (e.g., no-alert, pre-alert, and alert of 

flooding), which is easy to understand by non-hydrologists (decision-makers and the public). 

Another application is the mapping of compound flood vulnerability occasioned by the combined 

effects of hydrological, meteorological, oceanic, and anthropogenic processes (e.g., urbanization) 

[72], [73]. In general, the advantage of the classification over the regression approach is the 

possibility to account also for inputs not directly related to flash flood driving forces. 

However, regardless of the forecasting approach (regression or classification), the use of ML for 

flash flood forecasting represents a scientific challenge. This is the selection of the optimal ML 

technique for developing robust models able to provide accurate forecasts with a sufficient lead 

time for decision-making. To date, the problem has received scant attention, and as far as our 

knowledge no previous work has examined the potential and efficacy of ML techniques for flash 

flood forecasting in complex hydrological systems (i.e., systems that face data scarcity issues 

regarding the highly variable driving forces behind peak runoffs). 

 

Partially based on the publication of Contreras, P., Orellana-Alvear, J., Muñoz, P., Bendix, J., & Célleri, R. 
(2021). Influence of Random Forest Hyperparameterization on Short-Term Runoff Forecasting in an 
Andean Mountain Catchment. Atmosphere, 12(2), 238. https://doi.org/10.3390/atmos12020238. 

P 
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2.1 Aim and objectives 

The aim of this chapter is to propose a methodological framework for developing and evaluating 

peak runoff and flash flood forecasting models with ML techniques. 

Objectives: 

- To propose a methodological framework for developing and evaluating qualitative (ML 

classification) peak runoff and flash flood forecasting models.  

- To propose a methodological framework for developing and evaluating quantitative (ML 

regression) peak runoff and flash flood forecasting models. 

This chapter is organized into three sections. The first section explores state-of-the-art on peak 

runoff including flash flood forecasting with ML techniques. In this section, we describe the 

learning mechanisms of the most-employed ML techniques. With this background, the second 

section describes the overall process for developing ML forecasting models, starting with the 

composition of the input feature space, the hyperparameterization of ML models, and finally 

feature reduction for meeting parsimony criteria. And finally, the third section proposes an 

evaluation framework for both quantitative and qualitative peak runoff forecasting. 

2.2 Review of Machine Learning (ML) techniques 

ML techniques can be grouped according to their functionality. For peak runoff and flash flood 

forecasting, the five most employed groups worldwide are [37]:  

i. Regression techniques to model relations between input-output variables. For 

instance, linear regression, logistic regression, multivariate adaptive regression 

splines, etc.). 

ii. Instance-based techniques relying on memory-based learning. This represents a 

decision problem, some examples are the K-nearest neighbors’ algorithm, locally 

weighted learning, learning vector quantification, etc.). 

iii. Bayesian algorithms using Bayes’ theorem on conditional probability, some examples 

are Naive Bayes, Gaussian Naïve Bayes, Bayesian network, etc. 
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iv. Decision tree algorithms, whose idea is to progressively divide the input feature space 

into data subsets according to feature values or scenarios. For instance, the Random 

Forest algorithm, regression tree, M5, etc. 

v. Neural Network-based algorithm inspired by the functioning of biological neural 

networks. The idea is to transform input to outputs through specified transient states 

which enables the model to learn in a sophisticated way. For instance, perceptron, 

multi-layer perceptron, long short-term memory networks, radial basis function 

networks, convolutional networks, etc. 

Below, we describe five ML techniques, one from each group. These are logistic regression (LR), 

K-nearest neighbors (KNN), naive Bayes (NB), random forest (RF), and Multi-layer perceptron 

(MLP). LR, KNN, and NB are classification techniques, whereas RF and MLP can be employed 

for both classification and regression applications. 

2.1.1 Logistic Regression 

Logistic Regression (LR) is a discriminative classification algorithm. LR focuses on the decision 

boundary between classes. For this, existent relationships between input features are obtained 

via linear regressions. Then, the conditional probability of belonging to a class is obtained with a 

logistic (Sigmoid) function useful for outliers (binary classification). 

From the obtained probabilities, the LR is used to classify, with regularization, the dependent 

variables into the created classes. The extension for multiclass problems takes into account all 

binary classification possibilities. In the end, the classification decision is based on the maximum 

probability (multinomial LR) calculated with the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function [74]. The calculated probability 

for each class is positive with the logistic function and normalized across all classes. The 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is calculated as follows. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑙𝑘
𝑙=1

       Equation 1 

Where 𝑧𝑖 is the ith input of the softmax function, corresponding to class 𝑖 from the 𝑘 number of 

classes. 
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2.1.2 K-Nearest Neighbors 

K-nearest neighbors (KNN) is a non-parametric algorithm for statistical pattern recognition. The 

classification concept of KNN is based on memory-based learning (intuitive statistical procedure) 

rather than on a theoretical or analytical background. The classification decision is performed 

based on a distance function (e.g., Euclidean, Manhattan, Chebyshev, Hamming, etc.). Moreover, 

the use of multiple neighbors is recommended to deal with noisy features misleading the 

classification task. In that case, the majority vote of the nearest neighbors determines the 

classification decision (see formulation in the study of Bishop [74]). 

The number of neighbors can be optimized to achieve a global minimum, avoid longer 

computation times, and reduce the influence of class size. Although the greatest advantage of 

KNN is its simplicity, a major drawback is that KNN is memory intensive. In practice, the entire 

training dataset must be stored and computed for the evaluation of new information. 

2.1.3 Naïve Bayes 

Naïve Bayes (NB) is a classification algorithm that relies on Bayes’ theorem, and with the “naive” 

assumption of independence between features in a class, even when there is dependence [75]. 

Bayes’ theorem can be expressed as follows: 

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦) 𝑃(𝑦)

𝑃(𝑋)
      Equation 2 

where 𝑃(𝑦|𝑋) is the conditional probability of 𝑦 (hypothesis) given the occurrence of 𝑋 (features), 

and 𝑋  can be defined as 𝑋 = 𝑥1, 𝑥2 , … , 𝑥𝑛 . According to Bayes’ theorem equation 2 can be 

rewritten as: 

𝑃(𝑦|𝑥1, 𝑥2, … , 𝑥𝑛) =
𝑃(𝑥1|𝑦) 𝑃(𝑥2|𝑦)… 𝑃(𝑥𝑛|𝑦) 𝑃(𝑦)

𝑃(𝑥1) 𝑃(𝑥2)… 𝑃(𝑥𝑛)
   Equation 3 

Moreover, depending on the assumption of the distribution of 𝑃(X|𝑦), different NB classifiers can 

be used. In this regard, the study of [75] proved the optimality of NB under the Gaussian 

distribution even when there is feature dependence (real application cases). The extension for 

multiclass problems outputs the class with the maximum probability. For the Gaussian NB 

algorithm, there are no parameters to be tuned. 
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2.1.4 Random Forest 

Random Forest (RF) is a supervised algorithm where an input feature space (i.e., set of 

predictors) is related to output through a forest of decision-tree regression models [76]. The RF 

algorithm mines an ensemble of a multitude of decorrelated decision trees (DTs), where a single 

DT is a particular model obtained by hierarchically applying a set of conditions. Decorrelation 

between DTs is assured by applying a bagging technique aimed at growing DTs from different 

randomly resampled training subsets. The mean prediction of the individual trees is the solution 

for regression applications, whereas, for classification problems, the result is the class with the 

majority of votes.  

In summary, the highest-level node of a DT is split into two self-similar lower-level nodes 

according to simple conditions related to the input data, and until stopping criteria are met. This 

process is repeated to obtain purer nodes than their precedent ones. The split of each node is 

performed by randomly selecting several features from the total number of features. The random 

component is used to both resample the data and to determine the optimal successive features 

(directions) for splitting the data. Every terminal node represents a regression or classification 

model applying in that very node only. A complete description of the RF algorithm can be found 

in the studies of Breiman [77], [78]. 

Among RF hyperparameters, some control the structure of decision trees (e.g., depth of the tree 

minimum number of samples in the leaf nodes, the maximum number of leaf nodes in the trees, 

etc.), some others control diversity in the forest (e.g., number of trees, number of features for the 

splitting, percentage of dataset employed for build trees), and more advanced hyperparameters 

define the internal divisions on each tree (e.g., decision quality, and minimum samples for dividing 

an internal node, etc.). Now, considering the efficiency and popularity of the RF, we conducted a 

sensibility analysis experiment for determining the most relevant RF hyperparameters for runoff 

forecasting. From this analysis, it is now well established that considerably higher accuracies and 

reduction of equifinality are obtained for an optimal number of trees and an adequate combination 

of the depth of the tree and the number of features [79]. Moreover, for lead times exceeding the 

concentration time of the catchment, more effort must be put into the hyperparameterization since 

forecasts’ efficiency depends more on an appropriate hyperparameterization. 
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2.1.5 Multi-layer Perceptron 

The multi-layer perceptron (MLP) is a type of fully-connected feedforward artificial neural networks 

(ANNs) that can be used for both regression and classification applications. A perceptron is a 

linear classifier used for separating inputs into two categories for producing a single output. The 

architecture of the MLP is multiple neurons allocated in fully-connected multiple layers. The first 

layer of MLP corresponds to the input feature space, and all other nodes are employed for relating 

inputs to outputs through the use of linear combinations with weights and bias terms together with 

an activation function. 

The advantage of MLP when compared to the single-layer case is that MLP can reproduce non-

linear functions by the addition of several so-called hidden layers. For the classification case, the 

probabilities of belonging to a class are calculated with the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function (equation 1). The 

efficiency of MLP can be evaluated with a logistic loss function based on the limited memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). A more detailed and comprehensive description 

of MLP can be found in [80]. 

2.3 Methodology for developing ML peak runoff forecasting models 

The methodology for developing ML peak runoff including flash flood forecasting models was 

based on the study of Muñoz et al. [47], and it is summarized in Figure 2.1. In short, the first step 

of the methodology contemplates the composition of an input feature space from which ML 

forecasting models can learn. An input feature space is composed of three components: i) 

features coming from the available timeseries of precipitation and runoff, ii) past features (lags) 

of the information in the first component, according to statistical analyses, and iii) additional 

features derived from the application of FE strategies (Chapters Four and Five of this thesis).  

The second step is referred to the model construction process, where it is initially required to split 

the input feature space into training and testing subsets. For timeseries modeling, the data 

splitting contemplates continuous hydrological periods for training/testing rather than randomly 

selected samples. Whereas for event-based modeling, a fraction of the events can be selected 

for training (around 70 %) and the remaining events are left for testing purposes. For the cases 

when the number of events is reduced, a more exhaustive evaluation consists of using the leave-

one-out cross-validation (LOOCV) algorithm [81]. 
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Moreover, an hyperparameterization task is performed for the specific hyperparameters of each 

ML technique.  This task is carried out on the training subset and can be done either by using a 

full or random grid-search (RGS) procedure for finding the optimal combination of 

hyperparameters for a selected efficient metric.  Then, a feature selection algorithm is applied for 

retaining only relevant features and trimming off noisy features for the forecasting process. 

The last step encompasses model evaluation on the testing subset according to a combination of 

performance metrics (comparison between forecasts and observations) and graphical analyses 

to account for flash floods. The metrics selected depend on the ML modeling approach, i.e., 

classification or regression. Below we detailed some of the steps of the methodology. 

 

Figure 2.1. Step-wise methodology scheme for developing ML peak runoff forecasting models.  

2.3.1 Statistical lag analyses 

For ML peak runoof forecasting, the information on endogenous (i.e., runoff) and exogenous 

variables (e.g., precipitation) at the current time is not sufficient for describing the inner relations 

in the runoff generation process. Additional information can be derived from past endogenous 

and exogenous data (lagged information). 



   

Paul Andrés Muñoz Pauta 

 

31 

The utility of lagged information of exogenous variables is the addition of physically relevant 

processes to the model. For instance, in the case of precipitation, this information can be added 

as additional features to the input feature space to mimic the soil moisture state of the system. 

Thus, for the cases when the soil is non-saturated (dry periods), lagged precipitation information 

informs ML models that an initial precipitation water volume is used for saturating the soil before 

becoming overland flow. Conversely, for already saturated conditions in the system (wet periods), 

lagged precipitation indicates that most of the precipitation volume becomes runoff. Thus, the lack 

of consideration of antecedent soil moisture conditions in runoff models has been reported to lead 

to runoff underestimation and overestimation issues during dry and wet periods, respectively [36]. 

The statistical analyses contemplate a qualitative method proposed by [82] for determining the 

adequate number of lags from endogenous and exogenous variables. The application of this 

method avoids complex and computationally-intensive trial-and-error procedures for determining 

the optimal number of lags. For exogenous variables, the optimal number of lags is determined 

through cross-correlation analyses between each exogenous variable and the endogenous 

variable (i.e., runoff). In addition, a correlation threshold has to be set for removing the neglectable 

influence of certain lags on runoff. The threshold value depends on the correlation level between 

the station and runoff timeseries. However, Muñoz et al. [47] have suggested a threshold value 

of 0.2. For runoff, the number of lags is determined by the autocorrelation function (ACF), and the 

partial autocorrelation function (PACF). The ACF and PACF are applied with 95 % confidence 

levels. 

2.3.2 Model hyperparameterization 

Once the input feature space is composed, the optimal architecture or combination of 

hyperparameters (for a given ML technique) has to be defined during the training stage of the 

modeling process. The optimal hyperparameter combination is intended in this research to 

maximize accuracy. For this, we selected performance metrics of accuracy for both ML problems; 

these are the Nash-Sutcliffe efficiency (NSE) for regression, and the f1-macro score for 

classification. The NSE and f1-macro scores are described below in section 2.4. 

In terms of ML computational cost, both the full or RGS procedures can be applied together with 

a k-fold cross-validation scheme to reduce computation times and overfitting. This means that the 

full searching procedure develops models with all possible combinations of hyperparameters, and 
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determines the optimal combination based on maximum accuracy between observations and 

forecasts. Whereas for the RGS procedure, the evaluation focuses on a discretized continuous 

hyperparameters’ domain. In any case, the k-fold cross-validation scheme means that the training 

dataset is split into k folds (subsets); the models were iteratively fitted on the k-1 folds, and 

accuracy is evaluated on the remaining one.  

The LR, KNN, NB, RF, and MLP techniques as well as the hyperparameter searching procedures 

were implemented through the scikit-learn package for ML in Python® (Pedregosa et al., 2011). 

Table 2.1 presents the hyperparameters for each ML technique and their search space for tuning. 

Table 2.1. Model hyperparameters of the most-employed ML techniques for flash flood 

forecasting. 

ML 
technique 

Hyperparameters 

LR C penalty    

KNN neighbor’s weights metric algorithm  

RF* 
Number of 

trees 
max_features max_depth min_samples_leaf min_samples_split 

MLP solver max_iter alpha hidden_layers  

* Most relevant hyperparameters for runoff forecasting according to the study of [79] 

2.3.3 Feature space reduction 

The development of ML models deals with the assimilation of high-dimension and complex input 

feature spaces. Assimilation is referred to the ability of ML models to exploit input information to 

find their relations with the output variable (i.e., runoff) during the learning process (training). High 

dimensionality results from the use of a large number of features necessary for learning spatial 

and temporal relations between inputs and outputs. On one hand, the use of high-dimension 

spaces demands substantial amounts of memory and computational costs, and on the other hand, 

the use of high-dimension feature spaces might include information that might not be relevant to 

the model. In other words, although the inclusion of a certain feature might be conceptually 

correct, the internal relations between that feature and the target, and the interactions between 

features might be noisy rather than useful. Thus, the ML efficiency is reduced. 
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For these reasons, a feature space reduction procedure is recommended for including only the 

features relevant to the model and trimming off the noisy ones. Apart from shortening computation 

times, in some cases, feature space reduction even improves the model’s accuracy [83].  

Feature space reduction can be done in several ways. One intuitive approach is the application 

of a principal component analysis (PCA). The PCA is aimed at finding the dimension of maximum 

variance to exclude correlated features that do not add information to the model. However, since 

each ML technique assimilates data differently, instead of defining a fixed threshold of variance 

explanation (e.g., 80-90%), the optimal number of components can be treated as an additional 

ML hyperparameter. The threshold selected ultimately depends on the specific problem, i.e., on 

the required trade-off between accuracy, computational cost, and model complexity to address 

parsimony criteria. Another alternative for feature reduction is the application of a process known 

as feature selection. Feature selection can be done based on e.g., a variance sensitivity analysis, 

univariate statistical tests, or recursive elimination, among other methods. Here, we rely on the 

sensitivity analysis proposed by [84]. 

The selected sensibility analysis measures the output’s variance produced by a single feature 

without the influence of the feature’s interaction. As a result, the isolated impact of each feature 

can be calculated to keep only the features accounting for a certain total relative importance, for 

instance, 80 %. Thus, the remaining features can be considered unimportant, and removed from 

the input feature space.  

The variance (𝑉𝑘) and its relative importance (𝑅𝑘) can be calculated with equations 4 and 5, 

respectively. 

𝑉𝑘 =
∑ [�̂�𝑡−𝑘(𝑗)− �̂�𝑡−𝑘(𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]2𝐿

𝑗=1

𝐿−1
     Equation 4 

𝑅𝑘 =
𝑉𝑘

∑ 𝑉𝑖
𝑚
𝑖=1

𝑥 100 %      Equation 5 

Where �̂�𝑡−𝑘(𝑗) is the model output when all 𝑚 features are held at their average values except 

t�̂�𝑡−𝑘, which can vary through its entire range with 𝑗 ∈  {1, … , 𝐿} levels. 
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2.4 Evaluation of machine learning peak runoff forecasting models 

Model efficiency or performance can be determined by a direct comparison between model 

outputs (forecasts) and observations. Outputs and observations can be either quantities 

(regression problems) or labels (classification). Thus, considering the nature of the problem we 

develop an evaluation framework for both cases. 

2.4.1 Evaluation of ML qualitative models 

The evaluation of classification models for the cases of extreme values (e.g., peak flows) turns 

into an imbalanced classification problem. This is because peak runoffs (minority class) are rare 

events that occur with a lower frequency when compared to normal conditions runoff magnitudes 

(majority class). Moreover, a classification problem aimed at forecasting more than two (non-

binary) flood warning labels such as no-alert, pre-alert, and alert of flash floods becomes a multi-

class problem. The imbalance problem for this case is that ML classification algorithms focus on 

the minimization of the overall error rate, i.e., the minimization focuses on the majority class (no-

alert) which leads to high errors in the minority (pre-alert and alert classes) [85]. 

The imbalance problem can be treated by resampling the class distribution of the data to obtain 

an equal number of samples per class. However, a more accepted approach relies on training 

ML models with the assumption of imbalanced data. Training imbalanced models contemplates 

the penalization of errors in samples belonging to the minority classes rather than under-sampling 

or over-sampling data. In practice, this means that for a given efficiency metric, its overall score 

is the average metric for all classes after being multiplied by a weight factor according to class 

distribution.  The weight factors for each class can be calculated using equation 11. 

𝑤𝑖 =
𝑁

𝐶 𝑛𝑗
      Equation 11 

where 𝑤𝑖  is the weight of class 𝑖 , 𝑁  is the total number of observations, 𝐶  is the number of 

classes, and 𝑛𝑗 the number of observations in class 𝑖. This implies that higher weights will be 

obtained for minority classes. 
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2.4.1.1 Efficiency metrics 

The efficiency metrics for imbalanced datasets can be derived from the well-known confusion 

matrix. These are the 𝑓1 𝑠𝑐𝑜𝑟𝑒, the geometric mean (𝐺– 𝑚𝑒𝑎𝑛), and the logistic regression loss 

(𝐿𝑜𝑔 𝑙𝑜𝑠𝑠) score. For a proper model evaluation, it is suggested to use the 𝑓1 𝑠𝑐𝑜𝑟𝑒, 𝐺– 𝑚𝑒𝑎𝑛 and 

𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 together since they complement each other [85]–[90].  

F1 score 

The 𝑓 𝑠𝑐𝑜𝑟𝑒  is a metric that relies on precision and recall, which is an effective metric for 

imbalanced problems. When the 𝑓 𝑠𝑐𝑜𝑟𝑒  as a weighted harmonic mean, we name this score 

𝑓1 𝑠𝑐𝑜𝑟𝑒. The latter score can be calculated with equation 12. 

𝑓1 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙 )
    Equation 12 

Where precision and recall are defined with the following equations: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     Equation 13 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     Equation 14 

Where 𝑇𝑃 stands for True Positives, 𝐹𝑃 for False Positives, and 𝐹𝑁 for False Negatives. 

The 𝑓1 𝑠𝑐𝑜𝑟𝑒 ranges from 0 to 1, indicating perfect precision and recall. The advantage of using 

the 𝑓1 𝑠𝑐𝑜𝑟𝑒 compared to the arithmetic or 𝐺– 𝑚𝑒𝑎𝑛 is that it penalizes models most when either 

the precision or recall is low. However, classifying a No-Alert label as Alert might have a different 

impact on the decision-making than when the opposite occurs. This limitation scales up when 

there is an additional state, e.g., Pre-alert. Thus, the interpretation of the 𝑓1 𝑠𝑐𝑜𝑟𝑒 must be taken 

with care. For multiclass problems, the f1 score is commonly averaged across all classes and is 

called the 𝑓1 − 𝑚𝑎𝑐𝑟𝑜 𝑠𝑐𝑜𝑟𝑒 to indicate the overall model performance. 

Geometric-mean 

The geometric-mean (G– mean) measures simultaneously the balanced performance of TP and 

True Negative (TN) rates. This metric gives equal importance to the classification task of both the 
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majority (No-alert) and minority (Pre-alert and Alert) classes. The G– mean  is an evaluation 

measure that can be used to maximize accuracy to balance TP and TN examples at the same 

time with a good trade-off [87]. The G– mean can be calculated using equation 15. 

𝐺– 𝑚𝑒𝑎𝑛 = √(TPrate ∗ TNrate)    Equation 15 

Where 𝑇𝑃𝑟𝑎𝑡𝑒 and 𝑇𝑁𝑟𝑎𝑡𝑒  are defined by: 

𝑇𝑃𝑟𝑎𝑡𝑒 = 𝑅𝑒𝑐𝑎𝑙𝑙     Equation 16 

𝑇𝑁𝑟𝑎𝑡𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
     Equation 17 

The value of the 𝐺– 𝑚𝑒𝑎𝑛  metric ranges from 0 to 1, where low values indicate deficient 

performance in the classification of the majority class even if the minority classes are correctly 

classified. 

Logistic regression loss 

The metric logistic regression loss (𝐿𝑜𝑔 𝑙𝑜𝑠𝑠) measures the performance of a classification model 

when the input is a probability value between 0 and 1. It accounts for the uncertainty of the 

forecast based on how much it varies from the actual label. For multiclass classification, a 

separate 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 is calculated for each class label (per observation), and the results are summed 

up. The 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 score for multi-class problems is defined as: 

𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑖𝑗 log(𝑝𝑖𝑗)𝑀

𝑗=1
𝑁
𝑖=1     Equation 18 

where 𝑁 is the number of samples, 𝑀 the number of classes, 𝑦𝑖𝑗 equal to 1 when the observation 

belongs to class 𝑗; else 0, and 𝑝𝑖𝑗 is the predicted probability that the observation belongs to class 

𝑗. Starting from 0 (best score), the 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 magnitudes increase as the probability diverges from 

the actual label. The 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠  penalizes worse errors more harshly to promote conservative 

predictions. For probabilities close to 1, the 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 slowly decreases. However, as the predicted 

probability decreases, the 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 increases rapidly. 

Although we can directly compare performance metrics of ML alternatives and claim to have found 

the best one based on the score, it is not certain whether the difference in metrics is real or the 
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result of statistical chance. Different statistical frameworks are available allowing us to compare 

the performance of classification models (e.g., a difference of proportions, paired comparison, 

binomial test, etc.). 

Among them, Raschka et al. [91] recommend using the chi-square test to quantify the likelihood 

of the samples of skill scores, being observed under the assumption that they have the same 

distributions (null hypothesis). The assumption states, therefore, that the results (error rates) of 

the two ML models are equal. If the null hypothesis is rejected, it can be concluded that any 

observed difference in performance metrics is due to a difference in the models and not due to 

statistical chance. In practice, the chi-square test applied to ML flash flood forecasting models 

can be used to assess whether the difference in the observed proportions of the contingency 

tables of a pair of ML algorithms (for a given lead time) is significant. For this, a significance value 

of 0.05 is often agreed for proving the statistically significance of model 

improvements/degradations. 

2.4.2 Evaluation of ML quantitative models 

For the evaluation of regression models, previous research has established the need of using a 

combination between goodness-of-fit metrics and graphical analyses [36], [92]. This is because 

a single efficiency metric represents the mean performance of a model without consideration of 

the unbalanced influence of peak runoffs such as flash floods. Moreover, graphical interpretation 

techniques serve to further identify model strengths and weaknesses that might be hidden in a 

single value measure of efficiency. 

2.4.2.1 Efficiency metrics 

In terms of goodness-of-fit (efficiency) metrics, we used a collection of four indices following the 

guidelines of Moriassi et al. [92]. Among them, the Nash-Sutcliffe Efficiency (𝑁𝑆𝐸) [93] can be set 

as the reference metric for measuring and comparing the overall fit of model forecasts and 

observations. The complementary metrics are the Kling-Gupta Efficiency (𝐾𝐺𝐸) [94] to account 

for extreme value underestimations/overestimations, the Percent Bias (𝑃𝐵𝐼𝐴𝑆), and the Root 

Mean Square Error (𝑅𝑀𝑆𝐸). The corresponding equations are as follows: 

NSE = 1 −
∑ (𝑄𝑠(𝑖)−𝑄𝑜(𝑖))

2𝑛
𝑖=1

∑ (𝑄𝑜(𝑖)−𝑄𝑜̅̅ ̅̅ )2𝑛
𝑖=1

     Equation 19 
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KGE = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2   Equation 20 

PBIAS =
∑ (𝑄𝑜−𝑄𝑠)𝑛

𝑖=1

∑ 𝑄𝑜
𝑛
𝑖=1

      Equation 21 

RMSE =  √
1

𝑛
∑ (𝑄𝑠 − 𝑄𝑜)2𝑛

𝑖=1       Equation 22 

Where 𝑛 is the number of instances, 𝑄𝑠 is the simulated runoff, 𝑄𝑜 is observed runoff, 𝑄𝑜
̅̅̅̅  is the 

mean observed runoff, 𝑄𝑠
̅̅ ̅ is the mean simulated runoff, 𝑟 is the correlation coefficient between 

𝑄𝑠 and 𝑄𝑜, 𝛼 =
𝜎𝑠

𝜎𝑜
 is the variability ratio, 𝛽 =

𝑄𝑠̅̅ ̅ 

𝑄𝑜̅̅ ̅̅  
 is the bias ratio, and 𝜎 is the standard deviation. 

The NSE is dimensionless and ranges between −∞ and 1.0, being NSE = 1 the optimal value. A 

limitation of NSE is the underestimation of peak flows and overestimation of low flows, in such 

cases, the KGE is suggested (Gupta et al., 2009), with KGE = 1 as the optimal value. Additionally, 

the optimal value of PBIAS is 0, positive values indicate model underestimation bias and negative 

values overestimation bias. Finally, RMSE measures how model residuals are spread out from the 

best fit between simulations and observations, being RMSE = 0 the optimal value. 

Moreover, for event-based forecasting, the LOOCV algorithm treats each event as an 

independent testing dataset while the remaining events are used for training purposes. In the end, 

the overall model efficiency corresponds to the average NSE obtained for all scenarios (each 

event used as a testing dataset). 

2.4.2.2 Graphical techniques focused on flash-floods 

For the evaluation of peak runoffs and flash floods, we complemented the goodness-of-fit metrics 

with graphical techniques including the peak values frequency distribution, and the Box-Cox 

transformation for runoff. For the first case, the behavior of the distribution towards the tail for both 

observations and forecasts determines whether the performances of the models are acceptable 

for peak conditions. Whereas, for the second case, the Box-Cox transformation aims at dealing 

with the oversensitivity of model residuals for peak values. The Box-Cox transformation is 

calculated with the following equation: 

𝐵𝑜𝑥 − 𝐶𝑜𝑥 (𝑄) =
 𝑄𝜆−1

𝜆
     Equation 23 
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Where 𝑄 is runoff, and 𝜆 is the parameter graphically calibrated until reaching homoscedasticity 

in the residuals (i.e., constant standard deviation). For runoff, a reference value of 𝜆 = 0.25 is 

suggested in the study of [95]. 

An additional consideration for peak flow evaluation is the serial dependence of runoff magnitudes 

to the timescale employed (hourly scale for flash floods). This means that the graphical evaluation 

of flows suffers from a higher representation of low flows when compared to the reduced number 

of peak flows in the timeseries. Moreover, the serial dependence for extreme peak flows is 

stronger for shorter timesteps. To overcome this issue, nearly independent observations must be 

selected by splitting the runoff timeseries in events and using one value per event. This can be 

done using the Peak-over-threshold approach [95]. 
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Chapter three: exploration of quantitative and qualitative machine learning flash flood 

forecasting using ground-based precipitation data. 
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n this chapter, we present two machine learning (ML) case studies, one for qualitative and 

one for quantitative flash flood forecasting. Each case study has a different aim. For the 

qualitative (classification) forecasting application, we aimed at developing a semaphore-like flood 

early warning system (FEWS) with three warnings (river states), no-alert, pre-alert, and alert of 

flash flooding. Moreover, considering that very little attention has been paid to the selection of the 

optimal ML qualitative technique, we evaluated and compared the forecasting efficiencies of 

FEWSs powered by the most-employed ML techniques for flash flood forecasting. 

On the other hand, for the quantitative (regression) forecasting application, we investigated the 

ability of one single ML technique, the random forest (RF), for developing operational runoff 

forecasting models with special attention to flash floods. We selected the RF for three main 

reasons. The first one is that extensive research for quantitative hydrological forecasting has 

already demonstrated that the RF algorithm is a suitable ensembled tool for obtaining accurate 

forecasts, producing promising results in comparison to more advanced ML techniques such as 

support vector machines (SVMs) and artificial neural networks (ANNs). The second reason is 

O 
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certain RF advantages for its implementation in real-time applications, for instance, fewer 

parameters to calibrate and higher accuracies when compared to other ML techniques, model 

robustness, overfitting reduction, and the possibility to interpret results through calculation of 

estimator importance [47], [48], [55], [77], [79], [85], [96]–[98]. These advantages have some 

implications, for instance, the construction process of RF models is shorter when compared to 

other ML techniques. Another example is that, contrary to ANN models, RF models do not require 

input normalization for the training stage of models. And the third reason is the opportunity to 

exploit the ability of the RF algorithm to deal with small-size samples and complex data structures 

as encountered in complex systems such as the Andes (extreme heterogeneity and temporal and 

spatial data scarcity, issues [54], [99]–[102].  

Both the ML classification and regression approaches are applied in a meso-scale hydrological 

system, the Tomebamba catchment in southern Ecuador. For both case studies, we used the 

existing ground-based precipitation data. 

3.1 Aim and objectives 

To explore the use of ML for flash flood forecasting using ground-based precipitation data. 

Objectives: 

- To develop and evaluate qualitative ML flash flood forecasting models using ground-based 

precipitation data. 

- To develop and evaluate quantitative ML flash flood forecasting models using ground-

based precipitation data. 

3.2 Qualitative ML flash flood forecasting 

3.2.1 Introduction 

Flood Early Warning Systems (FEWSs) have proved to be cost-efficient solutions for life 

preservation, damage mitigation, and resilience enhancement [57], [103]. To date, there is no 

report of any operational FEWS in the Andean region for scales other than continental [56], [57], 

[104]. An alternative attempt in Peru was targeted to derive daily maps of potential floods based 

on the spatial cumulated precipitation in the past days [105]. Other endeavors in Ecuador and 

Bolivia focused on the monitoring of the runoff in the upper parts of the catchment to predict the 
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likelihood of flood events in the downstream basin area [56], [106]. However, such studies are 

unsatisfactory as countermeasures against floods and especially flash floods, where it is required 

to have reliable and accurate forecasts with lead times shorter than the response time between 

the farthest precipitation station and the runoff control point. 

In this context, this classification application aims at developing FEWSs for the Tomebamba 

catchment. For this, the most-employed ML-based classification models were implemented and 

a comparison and ranking of the efficiency of flash flood forecasting was performed. The ML 

models were evaluated concerning their capacity to forecast three flood warning stages or river 

states (No-alert, Pre-alert, and Alert of flash floods) for varying lead times of 1, 4, and 6 hours 

(flash-floods), but also 8 and 12 hours to further test whether the lead time can be satisfactorily 

extended with sufficient accuracy. 

3.2.2 Dataset and processing 

Data comprises 4 years of hourly time series of precipitation and runoff for the Tomebamba 

catchment (see Figure 3.1). The study period runs from January 2015 to January 2019.  

Precipitation data were derived from 3 tipping-bucket rain gauges, respectively Toreadora (3955 

m a.s.l.), Virgen (3626 m a.s.l.), and Chirimachay (3298 m a.s.l.), installed along the altitudinal 

gradient of the catchment. Whereas runoff measurements were obtained from the Matadero-

Sayausí hydrological station (2693 m a.s.l).  

For the labeling of flash flood warnings or river states, we rely on the definitions of the Empresa 

Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento de 

Cuenca (ETAPA-EP). ETAPA-EP is the local water company for the city of Cuenca and defined 

three flood alert levels at the Matadero-Sayausí station in the Tomebamba catchment. These are: 

i) No-alert when runoff at the outlet of the catchment is less than 30 m3/s, ii) Pre-alert when runoff 

varies between 30 and 50 m3/s, and iii) Alert warning when runoff exceeds 50 m3/s. With these 

definitions, it is clear that the No-alert warning stands for the majority of the data, while the Pre-

alert and Alert warnings comprise the minority yet the most dangerous classes (Figure 3.1). 

Moreover, for ML training and testing, we split the available dataset into training (from 2015 to 

2017), and testing (2018) subsets. 
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Figure 3.1. Time series of precipitation (Toreadora) and discharge (Matadero-Sayausí). 

Horizontal dashed lines indicate the mean runoff and the currently employed flood alert levels 

for labeling the Pre-alert and Alert flood warnings classes. 

3.2.3 Methodology 

Figure 3.2 depicts the methodology employed for the development of ML classification forecasting 

models. The following is based on the methodology described in Chapter Two for qualitative ML 

modeling. 

In summary, the available dataset (precipitation and labeled runoff) is split into training and testing 

subsets. Then, the corresponding input feature spaces are composed according to statistical 

analyses and the lead times selected. For a given lead time, the selected ML techniques (LR, 

KNN, RF, NB, and MLP) are used to construct, hyperparameter, and evaluate the corresponding 

forecasting models. Finally, the intercomparison and ranking of ML models across lead times 

were supported by a statistical test aimed at proving significance in improving/deterioration of the 

efficiency. 
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Figure 3.2. Methodologic scheme for the development and testing of ML flash flood forecasting 

models. 

3.2.3.1 Feature space composition 

Concerning input feature space composition, we defined specific training and test feature spaces. 

Feature spaces were composed of features (predictors) coming from two variables: precipitation 

and runoff. The amount of precipitation and runoff features (current time and lagged instances) 

was determined according to statistical analyses on precipitation and runoff timeseries. 

For precipitation, the number of lags from each station was selected by setting up a Pearson 

correlation threshold of 0.2 according to the recommendations of [47]. Whereas for runoff, we 
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relied on correlations from partial and auto-correlation analyses applied to the runoff timeseries 

with the consideration that the number of runoff features triples since we replace each runoff 

feature with 3 features (one per flood warning class). This is a process known as one-hot encoding 

or binary encoding. In practice, each feature denotes 0 or 1 when the correspondent alarm stage 

is false or true, respectively. Moreover, features in the input spaces were transformed using a 

standardization process before the computation stage of the KNN, LR, NB, and NN algorithms. 

To this end, we subtracted the mean and scale it to unit variance, resulting in a distribution with a 

standard deviation equal to 1 and a mean equal to 0. 

3.2.3.2 Model hyperparameterization 

All ML techniques and the random-grid search (RGS) hyperparameterization procedure were 

implemented through the scikit-learn package for ML in Python® [107]. For the 

hyperparameterization, we selected the 𝑓1 𝑠𝑐𝑜𝑟𝑒 as the objective function for finding the optimal 

hyperparameter combination for each forecasting model. Table 3.1 presents the relevant 

hyperparameters for each ML technique and the search space selected for tuning. It is worth 

noting that feature reduction was applied by adding a hyperparameter for controlling the number 

of components for the PCA. 

Table 3.1. Model hyperparameters and their ranges/possibilities for tuning. 

ML 
technique 

Hyperparameters 

LR 

C penalty    

0.001 - 
1000 

{'l1','l2'}       

KNN 

neighbor’s weights metric algorithm  

3 - 75 
{'uniform', 
 'distance'} 

{'euclidean', 
'manhattan', 
'minkowski'} 

{'auto','ball_tree', 
'kd_tree','brute'} 

  

RF 

Number of 
trees 

max_features max_depth min_samples_leaf min_samples_split 

50 -1000 
{'auto', 'sqrt', 

'log2'} 
50 -1000 1-500 1-500 

MLP 
solver max_iter alpha hidden_layers  

{'lbfgs'} 10 - 5000 1 E-9 - 0.1 1 - 16  
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3.2.3.3 Model performance evaluation 

For model evaluation, we employed a compendium of metrics accounting for imbalanced and 

multiclass problems (see Chapter Two). For the imbalance problem, we employed weighting 

factors according to the frequency of samples in each warning class (No-alert, Pre-alert, and Alert 

of a flash flood). The selected efficiency metrics are the 𝑓1 𝑠𝑐𝑜𝑟𝑒, the 𝐺– 𝑚𝑒𝑎𝑛, and the 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠. 

Moreover, for the comparison and ranking of ML techniques, we used the chi-squared test to 

assess whether the efficiency difference of a pair of ML algorithms is significant under a value of 

0.05. In all cases, the MLP model was used as the base model to which the other models were 

compared. This was done since MLP models depicted the hightes eficicincies when compared to 

the remaining ML techniques (see next section). 

3.2.4 Results and discussion 

This section presents the results of the flood forecasting models developed with the LR, KNN, 

RF, NB, and MLP techniques, and for lead times of 1, 4, 6, 8, and 12 hours. For each model, we 

addressed the forecast of three flood warnings, No-alert, Pre-alert, and Alert. First, we present 

the results of the feature space composition process, taking the 1-hour lead time case as an 

example. Then, we show the results of the hyperparameterization for all models, followed by an 

evaluation and ranking of the performance of the ML techniques.  

3.2.4.1 Feature space composition 

Figure 3.3 shows the results of the runoff lag analyses for the 1-hour flood forecasting model. 

Figure 3.3a plots the ACF and its corresponding 95% confidence interval from lag 1 up to 600 

(hours). We found a significant correlation up to a lag of 280 h (maximum correlation at the first 

lag), and thereafter, the correlation fell within the confidence band. To complement the ACF, 

Figure 3.3b presents the runoff PACF and its 95% confidence band from lag 1 to 30 h. Here, we 

found a significant correlation up to lag 8 h (first lags outside the confidence band). As a result, 

based on the interpretation of the ACF and PACF analyses, and according to [47], we decided to 

include 8 runoff lags (hours) for the case of 1-hour flood forecasting models.  
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(a)  

 
(b) 

Figure 3.3. (a) Autocorrelation function (ACF) and (b) Partial-autocorrelation function (PACF) of 

the Matadero-Sayausí (Tomebamba catchment) discharge series. The blue hatch indicates in 

each case the correspondent 95% confidence interval. 

On the other hand, Figure 3.4 plots Pearson’s cross-correlation between precipitation at each 

location and runoff at the Matadero-Sayausí station. For all precipitation locations, we found a 

maximum correlation at lag 4 (maximum 0.32 for Chirimachay). With the fixed correlation 

threshold of 0.2, we included 11, 14, and 15 lags for Virgen, Chirimachay, and Toreadora stations, 

respectively. 

 

Figure 3.4. Pearson’s cross-correlation comparison between the Toreadora (3955 m a.s.l), 

Virgen (3626 m a.s.l.), and Chirimachay (3298 m a.s.l.) precipitation stations and the Matadero-

Sayausí discharge series. Note the grey horizontal line at a fixed correlation of 0.2 for 

determining the number of lags. 



   

Paul Andrés Muñoz Pauta 

 

48 

Similarly, the same procedure was applied for the remaining lead times (i.e, 4, 6, 8, and 12 hours). 

In Table 3.2, we present the input feature space composition and the resulting total number of 

features obtained from the lag analyses for each forecasting model. For instance, for the 1-hour 

case, the total number of features in the feature space equals 67, from which 43 are derived from 

precipitation (40 past lags and one feature from present time for each station), and 24 from 

discharge (one-hot-encoding). 

Table 3.2. Input feature space composition (number of features) for all ML models of the 

Tomebamba catchment. 

 
Discharge lags* 

(hours) 
Precipitation lags (hours)  

Lead time 
(hours) 

Matadero-
Sayausí 

Toreador
a 

Chirimachay Virgen 
Number of 
features 

1 8 15 14 11 67 

4 12 18 17 14 88 

6 14 20 19 16 100 

8 16 22 21 18 112 

12 20 26 25 22 136 

* Note that each discharge feature triples (three flood warning classes) after a one-hot-encoding 

process. 

3.2.4.2 Model hyperparameterization 

The results of the hyperparameterization including the number of PCA components employed for 

achieving the best model efficiencies are presented in Table 3.3. No evident relation between the 

number of principal components and the ML technique nor the lead time was found. In fact, for 

some models, we found differences in the 𝑓1 − 𝑚𝑎𝑐𝑟𝑜 score lower than 0.01 for a low and high 

number of principal components. See for instance the case of the KNN models where the optimal 

number of components significantly decayed for lead times greater than 4 hours. For the 1-hour 

lead time, 96% of the components were used, whereas for the rest of the lead times only less 

than 8%. 

If we turn to the evolution of models’ complexity with lead time (Table 3.3) more complex ML 

architectures are needed to forecast greater lead times. This is underpinned by the fact that the 

corresponding optimal models require for greater lead times a stronger regularization (lower 
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values of C) for LR, a greater number of neighbors (n_neighbors) for KNN, more specific trees 

(lower values of min_samples_split) for RF and more hidden layers (hidden_layers) for MLP. 

Table 3.3. Model hyperparameters and the number of principal components used for each 

specific model (ML technique and lead time). 

ML 
technique 

Hyperparameter 
Lead time 

1h 4h 6h 8h 12h 

LR 

C 0.01 0.00001 0.0001 0.0001 0.001 

penalty 'l2' 'l2' 'l2' 'l2' 'l2' 

PCA_components
* 

58 62 78 75 51 

KNN 

n_neighbors 15 15 23 33 55 

weights 'uniform' 'uniform' 'uniform' 'uniform' 'uniform' 

metric 
'minkowski

' 
'minkowski

' 
'minkowski

' 
'minkowski

' 
'minkowski

' 

Algorithm 'auto' 'auto' 'auto' 'auto' 'auto' 

PCA_components
* 

64 6 6 6 4 

RF 

n_estimators 700 700 700 700 800 

max_features 'sqrt' 'auto' auto 'log2' 'auto' 

max_depth 350 350 350 350 300 

min_samples_leaf 450 450 480 480 450 

min_samples_split 10 5 5 2 4 

PCA_components
* 

66 79 90 45 78 

NB 
PCA_components

* 
63 64 87 89 15 

MLP 

solver 'lbfgs' 'lbfgs' 'lbfgs' 'lbfgs' 'lbfgs' 

max_iter 2000 2000 2000 2000 2000 

alpha 0.0001 0.0001 0.0001 0.0001 0.0001 

hidden_layers 2 3 2 2 4 

PCA_components
* 

63 51 64 76 4 

 * From the total number of features: 1h=67, 4h=88, 6h=100, 8h=112, 12h=136 features 

3.2.4.3 Model performance evaluation 

Model performances were calculated with the 𝑓1 − 𝑠𝑐𝑜𝑟𝑒, 𝐺 − 𝑚𝑒𝑎𝑛, and the 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 metrics. 

The overall performances across all classes (warnings) were obtained by weighting factors 

according to class frequencies. Table 3.4 presents the frequency distribution for the complete 
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dataset respectively for the training and test subsets. Here, the dominance of the No-alert flood 

class is evident, with more than 95% of the samples in both subsets. With this information, the 

class weights for the training period were calculated as wNo−alert = 0.01 , wPre−alert = 0.55 

andwAlert = 0.51. 

Table 3.4. The number of samples and relative percentage for the entire dataset and the 

training and test subsets. 

Class (Warning) Complete Training Test 

No-alert 32596 (96.1%) 24890 (96.2%) 7706 (95.7%) 

Pre-alert 720 (2.1%) 473 (1.8%) 247 (3.1%) 

Alert 609 (1.8%) 509 (2.0%) 100 (1.2%) 

The results of the model performance evaluation for all ML models and lead times (test subset) 

are summarized in Table 3.5. We proved for all models that the differences in performance metrics 

for a given lead time were due to the difference in the ML techniques rather than to the statistical 

chance. As expected, ML models’ ability to forecast floods decreased for a longer lead time. For 

instance, for the case of 1-hour forecasting, we found a maximum 𝑓1 − 𝑚𝑎𝑐𝑟𝑜 𝑠𝑐𝑜𝑟𝑒  of 0.88 

(MLP) for the training and 0.82 (LR) for the test subset. Whereas, for the 12-hour case, the 

maximum 𝑓1 − 𝑚𝑎𝑐𝑟𝑜 𝑠𝑐𝑜𝑟𝑒 was 0.71 (MLP) for the training and 0.46 (MLP) for the test subset. 

The extensive hyperparameterization (RGS scheme) powered by 10-fold cross-validation served 

to assure robustness in all ML models and reduced overfitting. We found only a small difference 

between the performance values by using the training and the test subsets. For all models, 

maximum differences in performances were lower than 0.27 for the 𝑓1 − 𝑚𝑎𝑐𝑟𝑜 𝑠𝑐𝑜𝑟𝑒 and 0.19 

for the 𝐺 − 𝑚𝑒𝑎𝑛. 
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Table 3.5. Models’ performance evaluation on the test subset. Bold fonts indicate the best 

performance for a given lead time. 

Lead time (hours) RF KNN LR NB MLP 

𝑓1 − 𝑚𝑎𝑐𝑟𝑜 𝑠𝑐𝑜𝑟𝑒 

1 0.59 0.73 0.82 0.57 0.78 
4 0.47 0.57 0.59 0.46 0.62 
6 0.47 0.45 0.50 0.41 0.51 

8 0.44 0.41 0.44 0.45 0.51 
12 0.42 0.36 0.44 0.43 0.46 

𝐺 − 𝑚𝑒𝑎𝑛 

1 0.86 0.77 0.88 0.81 0.83 
4 0.75 0.63 0.76 0.73 0.71 
6 0.70 0.56 0.72 0.68 0.62 
8 0.73 0.53 0.67 0.62 0.62 
12 0.69 0.50 0.69 0.64 0.56 

𝐿𝑜𝑔 − 𝑙𝑜𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 

1 0.28 0.38 1.09 3.14 0.09 

4 0.38 0.46 0.74 4.10 0.11 
6 0.45 0.58 0.47 4.71 0.14 
8 0.50 0.65 0.53 0.59 0.16 
12 0.59 0.70 0.57 2.17 0.20 

Note: All improvements and degradations are statistically significant 

In general, for all lead times, the MLP model obtained the highest 𝑓1 − 𝑚𝑎𝑐𝑟𝑜 𝑠𝑐𝑜𝑟𝑒, followed by 

the LR model. This performance dominance was confirmed by the ranking of the models 

according to the 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 𝑠𝑐𝑜𝑟𝑒. The ranking of the remaining models was highly variable and 

therefore not conclusive. For instance, the results of the KNN models obtained the second-highest 

score for the training subset, but the lowest for the test subset, especially for longer lead times. 

This is because the KNN is a memory-based algorithm and therefore more sensitive to the 

inclusion of information different from the training subset in comparison to the remaining ML 

techniques. This can be noted in Table 3.4, where the training and test frequency distributions 

are different for the Pre-alert and Alert classes. 

On the other hand, for the 𝐺 − 𝑚𝑒𝑎𝑛, we obtained a different ranking of the methods. We found 

the highest scores for the LR model, followed by the RF and MLP models. Despite this behavior, 

the values of the g-mean were superior to the 𝑓1 − 𝑚𝑎𝑐𝑟𝑜 𝑠𝑐𝑜𝑟𝑒𝑠 for all lead times and subsets. 

This is because the 𝑓1 𝑠𝑐𝑜𝑟𝑒 relies on the harmonic mean. Therefore, the 𝑓1 𝑠𝑐𝑜𝑟𝑒 penalizes a 

low precision or recall in comparison with a metric based on a geometric or arithmetic mean. 

Results of the 𝐺 − 𝑚𝑒𝑎𝑛 served to identify that the LR is the most stable method in terms of 
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correctly classifying both the majority (No-alert) and the minority (Pre-alert and Alert) flood 

warning classes, while the MLP model could be used to focus on the minority (flood alert) classes. 

To extend the last idea, we analyzed the individual f1 scores of each flood warning class. This 

unveils the ability of the model to forecast the main classes of interest, i.e., Pre-alert and Alert. 

Figure 3.5 presents the evolution of the 𝑓1 − 𝑠𝑐𝑜𝑟𝑒 of each ML algorithm at the corresponding 

lead time. We found that for all ML techniques, the Alert class is the most difficult to forecast when 

the 𝑓1 − 𝑚𝑎𝑐𝑟𝑜  score was selected as the metric for the hyperparameterization task. An 

additional exercise consisted in choosing the individual 𝑓1 − 𝑠𝑐𝑜𝑟𝑒 for the Alert class as the target 

for hyperparameterization of all models. However, although we obtained comparable results for 

the Alert class, the scores of the Pre-alert class were highly deteriorated, even reaching scores 

near zero. 

The most interesting aspect of Figure 3.5 is that the most efficient and stable models across lead 

times (test subset) were the models based on MLP and LR techniques. It is also evident that for 

all forecasting models, we found a lack of robustness for the Pre-alert warning class, this means 

major differences between the 𝑓1 − 𝑠𝑐𝑜𝑟𝑒𝑠 for the training and test subsets. An explanation for 

this might be that the Alert class implies a Pre-Alert warning class, but not the opposite. 

Consequently, this might mislead the learning process causing overfitting during training and 

leading to poor performances when assessing unseen data during the test phase. 

Moreover, although we added a notion of classes’ frequency distribution (weights) to the 

performance evaluation task, it can be noted that for all models, the majority class is most perfectly 

classified. This is because the No-alert class arises from low-to-medium discharge magnitudes. 

This helps and simplifies the learning process of the ML techniques since these magnitudes can 

be related to normal conditions (present time and past lags) of precipitation and discharge. 
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Figure 3.5. 𝐹1 𝑠𝑐𝑜𝑟𝑒𝑠 per flood warning state (No-alert, Pre-alert, and Alert) for all combinations 

of ML techniques and lead times. The brightest and dashed lines in each case (color coding) 

represent the scores for the test subset. 
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3.2.4.4 Discussion 

In this application, we developed and evaluated five different FEWSs relying on the most common 

ML techniques for flood forecasting, short-term lead times of 1, 4, and 6 hours for flash floods, 

and 8 and 12 hours to assess models’ operational value for longer lead times. Historical runoff 

data were used to define and label the three flood warning scenarios to be forecasted (No-alert, 

Pre-alert, and Alert). We constructed the feature space for the models according to the statistical 

analyses of precipitation and discharge data followed by a PCA analysis embedded in the 

hyperparameterization. This was aimed at better exploiting the learning algorithm of each ML 

technique. In terms of model assessment, we proposed an integral scheme based on the 𝑓1 −

𝑠𝑐𝑜𝑟𝑒 , 𝐺 − 𝑚𝑒𝑎𝑛 , and the 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 𝑠𝑐𝑜𝑟𝑒  to deal with data imbalance and multiclass 

characteristics. Finally, the assessment was complemented with statistical analysis to provide a 

performance ranking between ML techniques. For all lead times, we obtained the best forecasts 

for both, the majority and minority classes from the models based on the LR, RF, and MLP 

techniques (𝐺 − 𝑚𝑒𝑎𝑛). The two most suitable models for the dangerous warning classes (Pre-

Alert and Alert) were the MLP and LR (𝑓1 and 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠  scores). This finding has important 

implications for developing FEWSs since real-time applications must be capable to deal with both 

the majority and minority classes. It can therefore be suggested that the most appropriate 

forecasting models are based on the MLP technique. 

The results on the evolution of model performances across lead times suggest that the models 

are acceptable for lead times up to 6 hours, i.e., the models are suitable for flash-flood applications 

in the Tomebamba catchment. For lead times greater than 6 hours, we found a strong decay in 

model performance. In other words, the utility of the 8 and 12-hour forecasting models is limited 

by the models’ operational value. This is because, in the absence of precipitation forecasts, the 

assumption of future rain is solely based on runoff measurements at past and present times. This 

generates forecasts that are not accurate enough for horizons greater than the concentration time 

of the catchment. The concentration time of the Tomebamba catchment was estimated between 

2 and 6 hours according to the equations of Kirpich, Giandotti, Ven Te Chow, and Temez, 

respectively. A summary of the equations can be found in [108]. This results in an additional 

performance decay for the 8 and 12-hour cases in addition to the error in modeling. 

The study of Furquim et al. [67] is comparable since they analyzed the performance of different 

ML classification algorithms for flash-flood nowcasting (3 hours) in a river located in an urban area 



   

Paul Andrés Muñoz Pauta 

 

55 

of Brazil. They found that models based on neural networks and decision trees outperformed the 

ones based on the Naive Bayes technique. However, this study only evaluated the percentage of 

correctly classified instances which is a simplistic evaluation. Thus, we recommend a more 

integral assessment of model performances, like the one in the current study, which allows for 

better decision-making support. Other studies related to quantitative forecasting such as Aichouri 

et al. [66], Khosravi et al. [68], and Solomatine and Xue [69] revealed that neural network-based 

models usually outperform the remaining techniques proposed in our study. Nevertheless, in 

certain cases, the use of less expensive techniques regarding the computational costs produces 

comparable results as in Solomatine and Xue [69]; this is also the case in our short-rain and flash-

flood flood classification problem. As a further step, we propose the development of ensemble 

models for improving the performance results of individual models. This can be accomplished by 

combining the outcomes of the ML models with weights obtained, for instance, from the log-log 

scores. Another alternative that is becoming popular is the construction of hybrid models as a 

combination of ML algorithms for more accurate and efficient models [37], [68], [69]. As stated by 

Solomatine and Xue [69], inaccuracies in forecasting floods are mainly due to data-related 

problems. In this regard, Muñoz et al. [20] reported a deficiency in precipitation-driven models 

due to rainfall heterogeneity in mountainous areas, where orographic rainfall formation occurs. In 

most cases, rainfall events are only partially captured by punctual measurement, and even the 

entire storm coverage can be missing. 

In general precipitation-runoff models will reach at a certain point an effectiveness threshold that 

cannot be exceeded without incorporating new types of data such as soil moisture  [109], [110]. 

In humid areas, the precipitation-runoff relation also depends on other variables such as 

evapotranspiration, soil moisture, and land use, which leads to significant spatial variations of 

water storage. However, these variables are difficult to measure or estimate. 

3.3 Quantitative flash flood forecasting  

3.3.1 Introduction 

The necessity of flash flood qualitative forecasting can be understood by analyzing the report of 

the Andean community for the period 1970–2007 (http://www.comunidadandina.org). In this 

report, it is revealed that in the Andes of Ecuador, 263 floods and 357 landslides (as a side effect, 

mostly in the city of Cuenca) caused 429 human deaths as well as the destruction of 2149 houses. 

http://www.comunidadandina.org/
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Moreover, according to the Empresa Pública Municipal de Telecomunicaciones, Agua potable, 

Alcantarillado y Saneamiento de Cuenca (ETAPA-EP), city of Cuenca is annually affected by 

flood events from which local media have reported human losses, destruction of infrastructure 

(e.g., bridges), and interruption of the water supply for the city and surrounding rural areas. 

As a countermeasure against these flash flood impacts, it seems crucial for ETAPA-EP to count 

with quantitative runoff and flash flood forecasts for proper water management in aspects related 

to risk communication and mitigation, and for ensuring water production. Therefore, ETAPA-EP 

launched in 2014 a flash flood monitoring program that merely consists of monitoring (in real-

time) the main currents at specific locations with the purpose to inspect the hydrograph transit 

[106]. The limitation of this monitoring program is the dependence on instrumentation which could 

be damaged during extreme events. Additionally, the time in advance in which an alert can be 

emitted is in the order of one or two hours, insufficient for taking mitigation actions. 

In this context, the objective of this application is to develop flash flood forecasting models for the 

Tomebamba catchment. We produced forecasting models based on the RF algorithm and the 

forecasting ability was tested for lead times of 4, 8, 12, and 24 hours. 

3.3.2 Dataset and processing 

Data comprises precipitation and runoff hourly timeseries for the periods Jan/2015 to Sep/2018. 

We used the information of 3 rain gauges installed within the Tomebamba catchment and along 

its altitudinal gradients, Toreadora, Chirimachay, and Virgen, at elevations of 3955, 3626, and 

3298 m asl, respectively. For model development purposes, we split the length of the data for 

training and testing. Training runs from Jan/2015 to May/2017 and testing from Feb/2017 to 

Jan/2019. 

3.3.3 Methodology 

Similar to the classification application, the development of a quantitative flash flood forecasting 

model begins with the composition of the input feature space, followed by model 

hyperparameterization, feature selection, and finally model performance evaluation. Figure 3.6 

summarizes the methodology employed (see Chapter Two). 
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Figure 3.6. Methodology scheme for parsimonious model development. 

3.3.3.1 Feature space composition 

The feature space composition phase consists of correlation analyses to determine the necessary 

number of previous timesteps (lags) of precipitation and runoff that have a major influence on 

runoff forecasting. Here, we expect similar results when compared to the feature space 

composition for the classification application. In practice, this means similarity in the results of the 

ACF and PACF analyses for runoff and the Persian cross-correlation analysis for precipitation. 

3.3.3.2 Model hyperparameterization 

For the RF algorithm, the structure of the trees in the forest and their level of randomness can be 

controlled by RF hyperparameters [111]. And although the algorithm can be run with default 

hyperparameters, the study of Contreras et al. [79] showed that higher accuracies can be 

obtained by tuning the most relevant hyperparameters to the algorithm (see Table 3.6). For the 

hyperparameterization task, we employed a RGS procedure aimed to find the best combination 

(lower model residual) of hyperparameters from a previously defined grid of parameter ranges 

(Table 3.6). To avoid overfitting during the RGS process, a 3-fold cross-validation scheme was 

selected. 
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Table 3.6. Random Forest most-relevant model hyper-parameters and their search domain for 

tuning. 

Hyperparameter Value 

n_estimators* 50-700 

max_features ‘auto’, ‘sqrt’, and ‘log2’ 

min_samples_split 2, 5 and 10 

min_samples_leaf 1, 2 and 4 

max_depth* 10-700 

* Increment of 10 units 

3.3.3.3 Model performance evaluation and feature selection 

For a proper comparison between forecasts and observations, we employed a goodness-of-fit 

statistic, the NSE, which gives a measure of agreement focused on mean runoff values. To 

complement this analysis and evaluate the forecasting ability for flash floods, we employed a Box-

Cox transformation to the discharge timeseries, and employ only nearly-independent peak runoff 

events. 

In the pursuit of model parsimony, we develop alternative parsimonious forecasting models based 

on the feature selection process. For this, for the full input models, we calculated the relative 

importance of each feature to the model´s output with the purpose to keep only features 

accounting for 80 % of the total relative importance. This means that the remaining features we 

trimmed off from the model’s input of the parsimonious models. The idea was to contrast the 

forecasting efficiency between the full input and the reduced models (parsimonious). 

3.3.4 Results and Discussion 

3.3.4.1 Feature space composition 

We obtained similar results than for the classification application in section 3.2. These are the 

inclusion of  8 runoff lags (hours) according to ACF and PACF analyses. For precipitation, we 

found a maximum cross-correlation with runoff at lag 4 (maximum 0.33 for Chirimachay). Based 

on this result, we decided to use 24, 10, and 15 lags for Toreadora, Virgen, and Chirimachay 
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precipitation stations, respectively. For the Pearson cross-correlation, we employed a correlation 

threshold of 0.2. 

3.3.4.2 Model hyperparameterization and feature selection 

The previous process to select lags provides a starting point for constructing RF forecasting 

models, however, in the pursuit of model parsimony, we applied a feature reduction process. For 

the 4-hour forecasting model, we found that including 9 lags from each precipitation station and 

8 discharge lags would be enough to achieve 80.36% of the total relative importance. The 

percentage of reduction of model features was 58%. Table 3.7 summarizes the input feature 

space composition and the total number of features utilized for the RF forecasting models for all 

lead times. 

Table 3.7. Input feature space composition of the RF models and their parsimonious versions 

(4, 8, 12, and 24-hour lead time) for the Tomebamba catchment. 

Lead time Discharge Toreadora Chirimachay Virgen Total 

[hours] lags lags lags lags Features 

4 8 24 15 10 60 

4* 8 9 9 9 38 

8 8 32 23 19 85 

8* 8 15 15 15 56 

12 8 36 27 23 98 

12* 8 18 18 18 65 

24 15 48 39 35 140 

24* 15 21 21 21 81 

*  Parsimonious version 

3.3.4.3 Model performance evaluation 

Table 3.8 presents the obtained model performances in terms of the NSE. Notice that the NSE 

was calculated for the whole spectrum of flows. In this table, we also contrast the NSE coefficients 

of the full-input and their parsimonious model obtained through a feature selection process. 

Results prove that NSE coefficients obtained from the parsimonious models do not differ 

significantly from the correspondent full-input version of the model (maximum difference in 
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calibration and validation of 0.01). In some cases, parsimonious models even outperform their 

correspondent full-input models. 

Table 3.8. Model performance of the RF models and their parsimonious versions (4, 8, 12, and 

24-hour lead time). 

Lead time Total Features NSE 

[hours] [#] Training Test 

4 60 0.9193 0.8604 

4* 38 0.9211 0.8682 

8 85 0.8486 0.7494 

8* 56 0.8441 0.7523 

12 98 0.8131 0.6759 

12* 65 0.8074 0.6799 

24 140 0.7541 0.538 

24* 81 0.7483 0.5454 

* Parsimonios version 

Regarding RF model overfitting, we found maximum differences between the NSE coefficients of 

the calibration versus the validation period of 0.20. 

For the evaluation focused on flash floods, Figure 3.7 shows the empirical extreme peak value 

distributions for all forecast horizon models (4, 8, 12, and 24 hours). For this, we employed the 

simulations obtained from the so-called parsimonious models. Overall results for both 

catchments, revealed that the underestimation of peak flows towards the upper tail of the 

distribution becomes stronger as the lead time increases. We found maximum underestimations 

of 48, 53, 57, and 66% for the 4 8, 12, and 24-hour forecasting models, respectively. 

On the other hand, Figure 3.8 presents a scatter plot of forecasts (vertical axis) and observed 

discharge (horizontal axis) for peak flows. Here, model residuals are represented by the horizontal 

and vertical differences between each point and the bisector line. The dependence of the standard 

deviation on the flow magnitude was disrupted (constant standard deviation) with a λ-value of 

0.25. Results confirm the observed in Figure 3.8 where higher scatters and biases were found for 

longer forecast horizons. 
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Figure 3.7. Empirical extreme value distribution of peak flows (flash floods). 

 

Figure 3.8. Comparison of nearly independent peak flow maxima 

3.4 Summary and conclusions 

In this chapter, we presented two case studies (qualitative and quantitative) peak runoff and flash 

flood forecasting in a meso-scale hydrological system representative of the tropical Andes of 

Ecuador. For this, we exploited precipitation data obtained from available ground-based 

measurements. 

For the qualitative forecasting case study, we developed FEWSs using ML techniques, and 

special attention was taken to the selection of the most appropriate technique among the universe 

of ML techniques. We assessed FEWSs with three warning or river states, No-alert, Pre-alert, 
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and Alert for flooding, and for lead times between 1 to 12 hours. In terms of modeling, we used 

the most-employed ML techniques that belong to five different ML strategies, which are the Multi-

Layer Perceptron (MLP), Logistic Regression (LR), K-Nearest Neighbors (KNN), Naive Bayes 

(NB), and Random Forest (RF). For all lead times, the MLP models achieved the highest 

performance followed by LR models, with 𝑓1 − 𝑚𝑎𝑐𝑟𝑜 (𝐿𝑜𝑔 𝑙𝑜𝑠𝑠) scores of 0.82 (0.09) and 0.46 

(0.20) for the 1- and 12-hour cases, respectively. The ranking was highly variable for the 

remaining ML techniques. According to the 𝐺 − 𝑚𝑒𝑎𝑛, the LR models correctly forecast and show 

more stability at all states, while the MLP models perform better for the Pre-alert and Alert 

warnings. 

For the qualitative application, the following main conclusions can be drawn: 

- In contradiction to other studies, our results related to model comparison are statistically 

significant and validate our results regarding model performance comparison and ranking. 

- For all lead times, the most suitable models for flood forecasting were based on the MLP 

models followed by the LR techniques. Based on the performance metrics, we believe that 

the LR models are the most efficient and stable option for the classification of both the 

majority (No-alert) and minority (Pre-alert and Alert) classes. While we recommend the 

MLP models when the interest lies in the minority classes. 

- The forecasting models developed in this study were robust. Differences in the averaged 

𝑓1 𝑠𝑐𝑜𝑟𝑒𝑠, 𝐺 − 𝑚𝑒𝑎𝑛, and 𝐿𝑜𝑔 𝑙𝑜𝑠𝑠 𝑠𝑐𝑜𝑟𝑒𝑠 between training and test were consistent for 

all models. The utility of the models for flash-flood applications (lead times up to 6 hours) 

is limited. For longer lead times, we recommend improvement in precipitation 

representation, and even forecasting this variable for lead times longer than the 

concentration time of the catchment.  

- A more detailed model assessment (individual 𝑓1 𝑠𝑐𝑜𝑟𝑒𝑠 ) unveiled the difficulties to 

forecast the Pre-alert and Alert flood warnings. This was evidenced when the 

hyperparameterization was driven for the optimization of the forecast for the alert class 

and this, however, did not improve the model performance of this specific class. 

For the quantitative forecasting case study, we examined the feasibility to develop precipitation-

runoff forecasting models and their ability to forecast flash floods according to a multi-criteria 

evaluation framework. We used a methodological framework to develop flash flood forecasting 
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models for several lead times (4, 8, 12, and 24 hours). We found that derived models can reach 

maximum validation performances (NSE) from 0.860 (4-h) to 0.545 (24-h) for optimal inputs 

composed only by features accounting for 80% of the model’s outcome variance.  

For the regression the following main conclusions can be drawn: 

- As expected, the ability of the RF models to forecast flash floods decreased with 

increasing lead time. 

- The use of a feature selection technique (based on the output´s variance) proved to be 

successful not only in reducing models’ complexity due to the dimension of the input 

feature space but also to keep forecasting efficiencies. 

- It was demonstrated the difficulty to forecast flash floods rather than mean runoffs. From 

a data-driven perspective, this is occasioned by imbalance data problems (i.e., the number 

of independent events for peak flows is scarce. The solution would be to collect more data 

on flash floods or to develop specialized models (event-based modeling).  

Now, based on both applications we can conclude that overall, the forecasting of flash floods is 

challenging mainly due to a lack of or insufficient resolution of relevant data (driving forces), and 

insufficient extreme events from which ML models can learn and forecast. For instance, for the 

meso-scale Tomebamba catchment (dominated by a paramo ecosystem), it is well-known that 

soils govern flow processes, and therefore, lack of direct measurements limits the forecasting of 

extreme flows. Moreover, the extreme spatial and temporal variability of precipitation in this 

catchment representative of the Ecuadorian Andes is hardly collected by a few rain gauge stations 

within the catchment. 

The logical solution would be then to expand the precipitation monitoring network to improve the 

representativeness of precipitation. This will improve, to a certain degree, model performances. 

However, it must be taken into account that the major shortcoming of the use of rain gauges in 

the Andean region is the occurrence of focalized precipitation events due to complex topography. 

Thus, an adequate representation of the spatial variability of precipitation is rarely available for 

forecasting applications. Moreover, budget constraints in the Andean region and particularly in 

Ecuador often limit its viability. 
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To overcome this issue, there is the opportunity to use spatial precipitation estimations from 

remote sensing products such SPPs, or even combine this spatial information with available 

ground-based data. Other future directions for flash flood forecasting with ML techniques can 

encompass a deep exploration of the effect of input feature space composition, and the FE 

strategies aimed at improving data representation, and thus, forecasting efficiencies. 

These ideas will be explored in the following Chapters of this thesis for the case of regression. 

This is because in this way we can test the quantitative accuracy of forecasting models and their 

ability to forecast peak flow magnitudes in a more detailed way. Another reason for selecting a 

regression approach is due to the superior number of applications or uses that can be derived 

from quantitative flash flood forecasting when compared to the classification approach. Some 

applications are for instance the management of water plants or hydropower dams where peak 

runoff forecasts can also be used to close entrance gates and avoid the adverse effects of high 

levels of water contamination and sediments coming from erosion processes produced by flash 

floods. 

Finally, the utility of these two forecasting case studies for the Tomebamba catchment, and other 

comparable systems, is conclusive. Although further recommendations for improving model 

performance have been identified, the models and the methodology followed in both applications 

can be immediately used and the results interpreted by decision-makers and politicians.  
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Chapter four: a feature engineering strategy for exploiting of satellite-based 

precipitation data in machine learning models. 

 

 

Related publication: 
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real-time satellite precipitation data and machine learning to improve extreme runoff 
modeling. AGU books. Accepted. Authorea. doi: 10.1002/essoar.10508861.1 

 

 

he lack of sufficient and relevant ground information in the tropical Andes limits the 

applicability of physically-based models for runoff and—by extension—peak runoffs. In 

contrast, the use of machine learning (ML) techniques allows data-driven models to exploit the 

available data in order to provide adequate simulations. Beyond its capacity to provide accurate 

simulations, ML has also received critical attention due to its potential to infer hydrological 

processes in a particular system [112]–[116]. 

It is argued, for instance, that conceptualizing and understanding forcing processes in a system 

would enable ML models to simulate the hydrological response beyond the range of training data, 

or even to transfer models to similar ungauged systems [1]. The process of adding hydrological 

knowledge to ML models is known as feature engineering (FE). Several FE strategies have 

proven to be successful in hydrological modeling, for instance, runoff separation into subflow 

components [50], [95], [117], exploitation of topographic characteristics [118], the addition of 

stream network information [118], [119], the addition of mass and energy balance equations for 

the training task [120], or various ways of employing hydrological knowledge in choosing input 

attributes [114]. 

On the other hand, to deal with ground data scarcity, the continuous development of SPPs has 

dramatically enhanced the quantity and quality of areal precipitation observations. Yet, SPPs 

obtained from a single satellite hardly provide accurate estimations [121]. This has stimulated the 

development of multi-satellite SPPs  such as the NASA Global Precipitation Measurement (GPM) 

T 
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Integrated Multi-satellitE Retrievals for GPM (IMERG) [122], and the Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [23]. These two SPPs 

exhibit the highest spatial (< 11 km x 11 km) and temporal resolutions (< 1 hour), and latency 

times (< 5 hour), which are useful for flash flood forecasting and/or real-time applications. 

However, a major problem in the use of the IMERG and PERSIANN products is the fact that the 

accuracy of these SPPs have only been validated with ground information in certain regions, 

leading to precipitation uncertainties in unvalidated regions such as the Andes. 

The validation of SPPs with ground information is mandatory in the cases when the interest lies 

in providing accurate precipitation estimations (see for instance precipitation validation studies of 

Laverde-Barajas et al. [123]and Li et al. [124]) or for providing precipitation inputs for traditional 

physically-based hydrological models. Nonetheless, one of the greatest opportunities about the 

use of ML for hydrology is the freedom to employ unvalidated SPP estimates for complex systems. 

This is because ML exploits not quantitative precipitation but rather precipitation differences within 

the system. The hypothesis is that precipitation uncertainties at local scales remain more or less 

constant. Investigating FE strategies for improving SPPs assimilation in ML is a continuous 

concern within the field of hydrological modeling [125]–[127]. A successful strategy is the use of 

object-based methods for deriving precipitation attributes from satellite imagery [48], [123], [124], 

[126], [128], [129]. With these attributes, there is the potential to build specialized runoff models 

able to discriminate between different precipitation event types. This is based on the concept that 

different precipitation events produce different runoff responses as a result of different runoff 

generation processes, mainly infiltration and saturation excess [130]. 

In summary, it seems that a robust solution to the difficulty to forecast peak runoffs is the 

development of ML models able to exploit and digest spatial SPPs data, and account for key 

hydrological concepts about the functioning of the system. Both concerns can be faced through 

the application of a combination of FE strategies aimed at assisting ML forecasting. But since the 

FE application attempts to add hydrometeorological knowledge of the system, the hypothesis 

employed and their implementation must first demonstrate success in runoff and flash flood 

modeling (current-time) before forecasting. 

Thus, in this chapter, we propose and implement FE strategies for improving flash flood modeling 

in a complex mountain systems in terms of spatial and temporal data scarcity. Among FE 

strategies, we focused on: i) an object-based methodology for processing SPPs imagery to derive 
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additional features meaningful for the ML learning process, and ii) classification of precipitation 

events leading to peak runoffs. The ML technique selected is the Random Forest (RF) algorithm 

for regression given its demonstrated flexibility, accuracy, and competent computation times for 

operational hydrology (Chapter Three).  

This chapter is organized as follows, first we defined the aforementioned two FE strategies for 

assisting the assimilation of SPPs to ML models. Second, we test the CCA in a study for the 

Jubones basin, and discuss the advantages and disadvantages in developing specialized ML 

models according to precipitation conditions triggering peak runoffs. 

4.1 Aim and objectives 

To implement a FE strategy for assisting ML flash flood modeling through the exploitation of 

satellite-based precipitation data.  

Objectives: 

- To propose a FE strategy, the connected component analysis (CCA), for exploiting 

satellite-based precipitation data and for deriving precipitation attributes. 

- To demonstrate the utility of the CCA for flash flood modeling. 

4.2 Feature engineering strategies 

4.2.1 Object-based Connected Component Analysis (CCA) 

The opportunity to employ SPPs is essential for characterizing the spatial distribution of 

precipitation events to produce accurate flash flood forecasts. However, characterizing small-

scale precipitation dynamics with SPPs is still a major concern within the remote sensing field 

[131]. This is because most studies have evaluated SPPs in terms of efficiencies and correlations 

but have failed to address the description of key attributes to flash flood forecasting, these are for 

instance total water volume, storm location, and type of precipitation event, among others [123].  

In this regard, object-based methods are an alternative for analyzing spatial precipitation. A simple 

yet effective object-based method is the Connected Component Analysis (CCA) proposed 

by Laverde-Barajas et al. [123]. The CCA extracts precipitation attributes from SPP data through 

a multidimensional connected component labeling algorithm. The extracted attributes provide a 
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physical description of precipitation events (localization, centroids, area), and meteorological 

features (duration, volume, maximum intensity, etc.). For exemplifying and summarizing the main 

CCA steps, we used a precipitation image covering the Jubones basin. The main CCA steps are 

as follows: 

i. Precipitation retrieval for selected flash flood events, and imagery clipping to the 

Jubones basin (Figure 4.1a). 

ii. Detection and localization (latitude, longitude, see Figure 4.1b) of precipitation objects. 

For this, a detection sensitivity threshold is defined to remove noise and keep only 

clear precipitation objects in the precipitation imagery (Figure 4.1c). The detection 

sensitivity was calibrated on a trial-and-error basis with a precipitation threshold 

volume of 0.5 mm. This means that precipitation objects associated with a depth of 

less than 0.5 mm were trimmed-off. 

iii. Precipitation object filtering according to size criteria. We defined a minimum object 

area corresponding to two pixels of the finest-resolution product (∼39 km2). 

iv. Morphologically closure of precipitation objects found in step (iii). For this, a dilation-

and-erosion algorithm was used to refine precipitation objects (Figure 4.1d); dilation 

expands objects while erosion removes the boundaries of the expansion. 

v. Extraction of physical (centroid and extension area) and meteorological attributes 

(volume of precipitation, maximum intensity, precipitation duration) from the objects 

refined in step (iv). We defined that two precipitation objects are considered 

consecutive (i.e., belong to the same event) when the time between their appearance 

is shorter than 3 h. This threshold was also calibrated on a trial-and-error basis. These 

characteristics are then used for classifying precipitation events which can 

be paired with their associated runoff responses (see the next section). 
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(d) 

 
(a) 

 
(b) 

Figure 4.1. Precipitation identification with an object-based Connected Component Analysis 

(CCA) Illustration of the PERSIAN-CCS 2021-12-25 05:00 UTC image. (a) Jubones basin 

boundary, (b) Precipitation identification in mm from the PERSIANN-CCS product, (c) 

Identification of three precipitation objects with the CCA, and (d) Final identification of two 

precipitation objects after object size filtering and morphological closing. 

4.2.2 Classification of precipitation events leading to peak runoffs 

Precipitation events can be distinguished (classified) by applying object-based methods to SPP 

data [123], [124], [128], [129], [132], [133]. From the CCA, precipitation events triggering peak 

runoffs can be classified by focusing on two precipitation attributes, the extension of the 

precipitation objects (local and spatial extensive) and the duration of the events (short and long). 

As a result, four precipitation event classes can be defined: i) Local and short-duration extreme 

events (LSE), ii) Local and long-duration extreme events (LLE), iii) Spatially extensive extreme 

events (SEE), and iv) Spatially extensive and long-duration extreme events (SLE) [123]. 

Once classified, there is the potential to produce specialized flash flood forecasting models for 

each precipitation class (LSE, LLE, SEE, and SLE). Here the idea is to reduce noise during the 

learning process of ML models. Let’s think of a single ML model without precipitation 

characterization. This single model has to learn different precipitation runoff mechanisms, and it 

is well known that flash flood responses can be the result of more than one mechanism, for 

instance, infiltration- and saturation-excess. The arising problem is that the learning of multiple 
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mechanisms will be biased toward the occurrence of the main mechanism and associated 

precipitation attributes, thus, failing to model the response of other flash flood events. As a 

solution, we rely on the premise that the development of specialized models will produce more 

accurate forecasts than a single model for all precipitation classes. 

4.3 Implementation of FE strategies for peak runoff modeling 

In this study, we develop specialized ML peak runoff models for the Jubones basin, a 3393-km2 

basin in Ecuador. We used a combination of FE strategies, the CCA to improve the areal 

representation of precipitation, and specialized runoff modeling to maximize model efficiencies by 

identifying and classifying precipitation events associated with flash flood responses.  

4.3.1 Dataset and processing 

The dataset for this application comprises hourly satellite-derived precipitation covering the 

Jubones basin, and hourly runoff data collected at a hydrological station situated in the outlet of 

the basin, consisting of the Minas-San Francisco hydropower dam. Since the dam was completed 

in 2018, the study period ran from November 2018 to April 2021 (~2.5 years). As mentioned in 

Chapter One, precipitation data were retrieved from two near-real-time databases (considering 

the absence of ground-based precipitation stations), the IMERG-Early Run (ER), and the 

PERSIANN-Cloud Classification System (CCS) products. Data were extracted at the finest 

temporal resolution and then aggregated to the hourly time step. Mean (maximum) annual 

precipitation depths are 729 (1167) and 1532 (2759) mm, for the PERSIANN-CCS and IMERG-

ER, respectively.  

Hourly time series of runoff at the outlet of the Jubones basin were derived from the server of the 

Corporación Eléctrica del Ecuador (CELEC EP, https://www.celec.gob.ec/), the company that 

manages the Minas-San Francisco hydropower dam. Figure 4.2a depicts the runoff information 

for the study period, whereas Figure 4.2b the corresponding probability of runoff exceedance. 
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(b) 

 

Figure 4.2. (a) Hourly runoff and precipitation (PERSIANN-CCS) time series at the outlet of the 

Jubones basin. Peak flow events are displayed as dots. (b) Exceedance probability for the study 

period (18/11/2018 to 01/04/2021). 

4.3.2 Methodology 

A summary of the methodology employed in this application is as follows. First, flash flood events 

must be selected from the runoff timeseries. Second, for the selected events, precipitation 

information from both SPPs is retrieved and the CCA (FE strategy) is applied to derive 

hydrometeorological attributes. Third, these attributes are used to classify precipitation events 

leading to a flash flood response. Fourth, differentiated modeling is performed for each class. 
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Fifth, to evaluate the performance and utility of specialized models, we contrast the performance 

of specialized models with base models developed with the same input information but without 

consideration of precipitation classes. For the comparison, we employ a combination of efficiency 

metrics focused on mean and extreme values. Below, we describe the most important aspects of 

the methodology. 

4.3.2.1 Selection of nearly independent flash flood events 

Flash flood events were derived from the runoff time series by applying the following two criteria: 

i) flash flood events must exceed 90% of runoff quartile values (98.8 m3.s-1), and ii) flash flood 

events must be nearly independent. For meeting both criteria, we used the WETSPRO time series 

tool developed by Willems [95]. The WETSPRO splits the runoff series in nearly independent 

peak flow events following a peak-over-threshold approach. For this, the WETSPRO has two 

parameters to be calibrated, the inter-event time and peak height. In other words, flash flood 

events were selected from the runoff timeseries with a definition of independence controlled by 

the recession time and peak height difference of two consecutive runoff events. 

4.3.2.2 Object-based CCA 

To apply the CCA, we designed a modular approach for SPP data acquisition. This was aimed to 

deal with the cases when a SPP fails to observe precipitation yet there is a flash flood response. 

For instance, when no precipitation is observed by the PERSIANN-CCS product, we switched the 

precipitation data source to IMERG-early imagery, following a simple spatially under-sampling 

technique. This means that an IMERG-early run cell of size 0.1x0.1o was directly divided into ~6.4 

cells with a resolution of 0.04x0.04o, matching the resolution of the PERSIANN-CCS product. This 

modular approach assures that flash flood events are trained with an existent precipitation signal, 

reducing noise and improving the learning process. 

Apart from processing SPP data, the CCA served to derive two meteorological attributes, the 

extension of the precipitation objects, and the duration of the precipitation events. The CCA was 

implemented through the scikit-image processing package in Python® version 3.7 [134]. 
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4.3.2.3 Classification of precipitation events 

Precipitation data passed through the CCA, and from this analysis, we defined extension and 

duration thresholds. According to this threshold, we established four precipitation event classes: 

i) Local and short extreme events (LSE), ii) Local and long-duration extreme events (LLE), iii) 

Spatially extensive extreme events (SEE), and iv) Spatially extensive and long-duration extreme 

events (SLE). The classified events were used to develop specialized flash flood models. 

4.3.2.4 Model construction, hyperparameterization, and evaluation 

The specialized LSE, LLE, SEE and SLE models, and the base models were built using the  RF 

for regression. The input feature space to each model was formed with hourly precipitation and 

runoff, as well as an indicator of the belonging precipitation class. In addition to current-time 

precipitation and runoff information, we used past lag information which is determined according 

to statistical correlation analyses: partial- and auto-correlation functions for runoff, and cross-

correlation functions for precipitation (see Chapter Two).  

For the hyperparameterization task, we tuned the most-influencing RF hyperparameters, these 

are the number of trees in the forest (n_trees), the maximum number of features to perform the 

splits of the data (max_features), and the maximum depth for pruning purposes (max_depth) [79]. 

For all models, we determined the optimal combinations of hyperparameters following a RGS 

procedure implemented with a 10-fold cross-validation process to prevent overfitting. The 

measure of agreement was evaluated according to the coefficient of determination (R2) between 

simulations and observations for the training subsets. Table 4.1 presents the domain of the 

selected hyperparameters which forms the search space for the optimization task. 

For the evaluation of specialized models, and the comparison with the base model, we used four 

goodness-of-fit metrics for evaluating the efficiencies of the four runoff models. The NSE was set 

as the reference for measuring and comparing the overall model accuracy. To complement the 

analysis, we relied on KGE, the PBIAS,  and the RMSE. All equations are described in Chapter 

Two. 
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Table 4.1. Search space (grid) of the RF runoff models. 

Hyperparameter Domain 

n_trees* 40;800;10* 

max_features n_features,n_features(1/2), log2(n_features) 

max_depth* 40;800;10* 

* Domain defined by min, max, and increment. 

4.3.3 Results 

4.3.3.1 Determination of nearly independent flash flood events 

The WETSPRO tool for the Jubones basin was calibrated using the following parameters: inter-

event time of 12 hours, and a maximum ratio of runoff drop down of 0.6. Moreover, we considered 

only events exceeding the 90% quartile values of the runoff time series (98.8 m3.s-1). With these 

criteria, we obtained 55 nearly independent peak hydrological events (see Figure 4.2a). 

4.3.3.2 Object-based CCA 

For the 55 peak hydrological events, we first retrieved hourly precipitation maps from the 

PERSIANN-CCs and the IMERG-early run subproducts. Then, we applied the CCA algorithm with 

the precipitation threshold volume of 0.5 mm to derive the meteorological attributes and classify 

the precipitation event. The step-by-step application of the CCA algorithm for the map 

corresponding to the PERSIAN-CCS 2021-12-25 05:00 UTC is presented in Figure 4.1.  

CCA results showed that, for 15 extreme hydrological events, there was nearly or even an 

inexistent precipitation signal from the PERSIANN-CCS product. For these 15 cases, we 

performed the CCA algorithm on the IMERG-ER dataset, and this resulted in a reduction of 40% 

of the events without any precipitation signal. In other words, although we used two precipitation 

satellite sources, we encountered 9 hydrological events where either no precipitation at all was 

observed or any precipitation object was identified according to the CCA algorithm. Therefore, 

these events were trimmed off, leaving 46 events available for further analysis. The utility of the 

precipitation modular approach can be seen in the events depicted in Figure 4.3. For the event 

from 2019 to 07-13 20:00 to 2019-07-14 20:00 UTC (Figure 4.3a), it seemed evident that the 

higher resolution of the PERSIANN-CCS product lead to a stronger precipitation-runoff relation 
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when compared to precipitation obtained from the IMERG-ER product. Thus, the precipitation 

data from the PERSIANN-CCS were used to feed the forecasting models. The opposite was true 

for the event from 2019 to 10-07 at 16:00 to 2019-10-08 at 16:00 UTC (Figure 4.3b), where the 

PERSIANN-CCS signal was nonexistent for almost 24 h before the runoff peak, whereas there is 

a significant amount of precipitation from the IMERG-ER product. 

 

(a) 

 

(b) 

Figure 4.3. Illustration of the precipitation-retrieval modular approach using PERSIANN-CCS 

and IMERG-ER  data sources, respectively for the events from (a) 2019-07-13 18:00 to 2019-

07-14 18:00 UTC, and (b) from 2019-10-07 12:00 to 2019-10-08 12:00 UTC. 

Moreover, the precipitation objects identified with the CCA algorithm for each one of the 46 

extreme hydrological events were tracked down. From this analysis, the following information was 

retrieved: quantity, localization (centroids) and extension of precipitation objects, precipitation 

duration, total precipitation volume, and precipitation maximum intensity. This information is 

summarized in Figure 4.4 and served to infer duration and extension thresholds of 7 hours and 

50 km2, respectively. These thresholds were used in the following subsection to classify the 

precipitation events. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4.4. Meteorological precipitation information was retrieved from 46 extreme hydrological 

events: (a) maximum intensity, (b) duration, (c) total volume, and (d) maximum area. 

Moreover, analysis of the centroid occurrence of the precipitation objects did not reveal any 

precipitation hotspots in the basin that could be associated with peak runoff events (see Figure 

4.5). There was no evidence that centroid occurrence is driven or can be related to any physical 

attribute of the Jubones basin (e.g., soil type, land use, elevation, topography, etc.). This might 

https://www.sciencedirect.com/science/article/pii/S1364815222002821#fig8
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indicate the nonexistence of orographic precipitation enhancement (i.e., cloud formation due to 

orographic lifting of air masses).  

 

Figure 4.5. Localization of precipitation object centroids (blue dots) associated with extreme 

hydrological events in the Jubones basin. 

4.3.3.3 Classification of precipitation events 

The combination of duration and extension thresholds of 7 hours and 50 km2 served to define four 

precipitation classes. We determined 24 extreme hydrological events for the LSE precipitation 

class, 5 for the LLE, 7 for the SEE, and 10 for the SLE. Figure 4.6 depicts the visual discrimination 

between precipitation classes, from which it is apparent that the majority of extreme hydrological 

events occurred as a result of short-duration and spatial local (LSE) precipitation events, and 

long-duration and spatially extensive events (SLE). 
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Figure 4.6. Precipitation classes associated with extreme hydrological events: Local and short 

extreme events (LSE), Local and long-duration extreme events (LLE), Spatially extensive 

extreme events (SEE), and Spatially extensive and long-duration extreme events (SLE). 

4.3.3.4 Event-based flash flood modeling 

First, we defined the dimension of the input feature space. Results from ACF and PACF for runoff 

suggested using past lags (hours) from 1 up to 12 lags, with a 95% confidence level for both 

correlation functions. Similarly, the cross-correlation function for precipitation determined 13 past 

lags (hours) of precipitation with correlations higher than 0.2. These results are congruent with 

the concentration time of the Jubones basin, which was estimated at 11 hours by averaging the 

concentration times found with the equations of Giandotti, Johnstone, and the U.S. Army Corps 

of Engineers (equations recommended for the basin area, see [135]. 

Once the input feature space was defined, we constructed RF models for each precipitation class 

and the base model. For the model training and testing of each model, we assigned 70% of the 

events for training and the remaining 30% for testing. For instance, there were 24 events available 

for the LSE precipitation class; therefore, we assigned 17 events for training and 7 for testing. 

Moreover, since the objective was to simulate the hydrographs corresponding to each event, we 

used a time frame of 24 hours before and after peak events. Concerning RF 

hyperparameterization, Table 4.2 presents the optimized combination of hyperparameters for 
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each runoff model. The coefficient of determination between simulations and observations for the 

training subsets of each model was always higher than 0.91. 

Table 4.2. RF hyperparameterization of extreme runoff models. 

Hyperparameter None LSE LLE SLE SEE 

n_trees* 300 280 250 300 300 

max_features 2100(1/2) log2(2100) n_features(1/2) 2100(1/2) log2(2100) 

max_depth* 200 200 150 180 200 

Table 4.3 summarizes the number of events used for developing extreme runoff models, and a 

comparison of the NSE coefficients obtained for each precipitation class and the base model. It 

is apparent from this table that LSE and especially SEE precipitation events are causing decay in 

the overall NSE-value of 0.83 (see also Figures 4.7b and 4.7d). Surprisingly, LSE presents the 

majority of extreme hydrological events, and it seems contradictory that for LSE events, the higher 

number of events for training did not result in a higher NSE. This suggests that there are physical 

processes not well represented in the input feature space that disturbs the learning process of 

the RF models, as further discussed. 

Table 4.3. The number of events and efficiencies on test subsets of runoff models specifically 

developed for different precipitation events. 

Precipitation 

class 

# Total Events 

(Test) 

NSE 

 

KGE 

 

PBIAS 

 

RMSE 

 

None 46 (14) 0.83 0.85 4.49 55.38 

LSE 24 (7) 0.67 0.71 -1.45 35.00 

LLE 5 (2) 0.72 0.74 -23.94 41.76 

SEE 7 (3) -1.93 -0.48 -61.44 60.44 

SLE 10 (3) 0.90 0.94 -2.72 69.09 

From the data in Figure 4.7, we can infer the spectrum of the runoff magnitudes modeled for each 

precipitation class. What is striking from the subfigures in Figure 4.7 is that regardless of the 

spatial extension, short-duration precipitation events (LSE and SEE classes) caused the lowest 

extreme runoff magnitudes at the outlet of the Jubones basin. Now, since we developed models 

for extreme runoff, we maximized the efficiencies for the highest runoff magnitudes. Therefore, it 
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is evident that the lowest NSE coefficients for the LSE and SEE classes are found. Physically, 

this finding may be explained by the fact that the runoff response of short-duration events is 

somehow softened by the infiltration and saturation processes. This means that the volume of 

precipitation that becomes streamflow is somehow lower when compared to long-duration 

precipitation classes (LLE and SLE). If we now turn to the modeling of all extreme hydrological 

events (Figure 4.7a), we can infer that the learning process is biased towards lower runoff 

magnitudes, and the results for the highest magnitudes are more spread out. However, the bias 

for long-duration events was reduced by classifying precipitation types before the modeling task 

(Figure 4.7c and Figure 4.7e). 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 4.7. Scatter plot between extreme runoff observations and simulations for (a) No-

precipitation event classification, (b) LSE events, (c) LLE events, (d) SEE events, and (e) SLE 

events. 

4.3.4 Discussion 

In this study, specialized flash flood models were developed for a 3391-km2 representative basin 

of the Ecuadorian tropical Andes. The efficiencies of the developed ML models are comparable 

and outperformed the ones obtained with traditional physically-based models such as HEC-RAS 

(see the study of Belabid et al. [29]), wflow-sbm (see Laverde-Barajas et al. [126]), and the 

hydrologic-hydraulic HiResFlood-UCI model (see Nguyen et al.[30]). Particular to this finding is 

that, unlike physically-based models, data-driven runoff models exploit precipitation satellite data 

without prior ground validation. Therefore, this study represents a solution for cases when ground 

precipitation networks are scarce or even inexistent. 

The specificities of our extreme runoff models were delineated for four precipitation-event types 

based on a combination of their duration and spatial extension (LSE, LLE, SEE, and SLE). 

Developing specialized models served to identify the hidden strong-and-weak points of the base 

runoff model without precipitation classification. For instance, this approach could be used in the 

study of Belabid et al. [29], where they obtained, in some cases, unacceptable runoff efficiencies 

(negative NSE). 
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For the Jubones basin, the vast majority of extreme hydrological events are the result of local and 

short-duration (LSE) precipitation events. In addition, we found that the centroids of LSE-

associated objects were well distributed across the Jubones basin. These results indicate that 

small precipitation volumes are concentrated on many small different land use areas, 

characterized by a variety of specific runoff generation processes. Therefore, even for a 

discriminated LSE precipitation event, multiple precipitation-runoff responses can mislead the 

learning process of RF models. This explains the lower model efficiencies of LSE events 

(NSE=0.67) in comparison to SLE (0.90) and LLE (0.72) events. The opposite occurred in the 

case of long-duration and spatially extensive events (SLE), which were associated with the most 

extreme runoff magnitudes. For such events, even though we had less than half of the events 

available for LLE, model efficiencies reached the maximum (NSE=0.72). The SLE runoff model 

was optimized for extreme runoff magnitudes (KGE=0.94). Physically, this is explained by the fact 

that the RF learning process becomes straightforward after a greater portion of the basin is 

saturated, and any additional precipitation volume is directly converted into streamflow. The major 

difficulty comes from the modeling of extreme runoff triggered by spatially-extensive and short-

duration precipitation events (SEE). 

The efficiencies of the developed and tested models highlighted the advantage of developing 

specialized extreme runoff models but also revealed the need to include additional information on 

antecedent soil saturation and its dynamic along with extreme hydrological events. This is 

particularly required for short-duration precipitation events (SEE and LSE), where the runoff 

generation process is governed by the antecedent saturation state of the basin. Foregoing is the 

reason why short-duration and non-extreme precipitation intensities can trigger extreme 

hydrological events. Given this, we encourage the approach employed by Massari et al. [136] 

where they used satellite soil moisture observations to improve extreme runoff forecasting. 

Moreover, unveiling the limitations of runoff modeling for the Jubones basin opens the path for 

future research focused on exploring additional ML algorithms. We recommend, for instance, the 

exploration of additional ML algorithms for the modeling of LSE and SEE events, and come up 

with a superior model consisting of an ensemble of specialized runoff models. 

4.3.5 Conclusions 

This study exploits the possibility of using two near-real-time satellite precipitation sources 

(without ground validation) for the development of specialized flash flood models for a 3391-km2 
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basin. Specialized models are characterized by the use of a ML algorithm assisted by a FE 

strategy for assimilating SPPs data, and for deriving hydrometeorological attributes for the 

classification of precipitation conditions leading to peak runoffs. The major finding emerging from 

this study is that improvement of the representation of precipitation maximizes the efficiency of 

flash flood models. In addition, precipitation classification also served to unveil the precipitation-

runoff scenarios misleading the learning process of RF extreme models. 

In general, we found that the spatial extension of precipitation events made no significant 

difference in the learning process of RF models when they occurred for long-duration periods. 

These particular events produced the highest runoff magnitudes at the outlet of the basin. 

Physically, the success in modeling such precipitation events is attributed to a clear precipitation-

runoff signal resulting from a gradual soil saturation process before precipitation is turned into 

runoff. This signal served to improve the learning process of RF models by reducing noise and 

maximizing model efficiencies. In terms of input data, the present study tested two near-real-time 

precipitation satellite sources, the PERSIAN-CCS and IMERG-ER products. We used a modular 

framework of precipitation data acquisition that reduced 40% of precipitation events with nearly- 

or even inexistent precipitation signals. 

All in all, the knowledge gained from the functioning of the basin, the proposed feature engineering 

methodology, and the evaluation of near-real-time satellite precipitation sources provides 

hydrologists with the tools for the future development of real-time runoff forecasting models. In 

addition, this study can be used to assist decision-makers in the fields of flood forecasting, water 

resources management, optimization of hydropower generation, and many more. 

The success of the CCA for assisting the assimilation of SPPs by ML models opens the path for 

further applications focused on forecasting objectives and/or real-time applications. Moreover, an 

additional a fruitful area for further development would be the combination of  SPPs with ground-

based precipitation for the development of more accurate flash flood forecasting models. Both the 

CCA and the FE strategies represents promising tools for hydrologists to develop forecasting 

models following hydrological concepts in regions otherwise limited by data scarcity issues. 
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Chapter five: feature engineering strategies for exploiting ground- and satellite-based  

precipitation data and for adding process-based hydrological knowledge. 

 

 

Related publications: 

 Muñoz, P., Corzo, G., Solomatine, D., Feyen, J., & Célleri, R. (2023). Near-real-time 
satellite precipitation data ingestion into peak runoff forecasting models. Environmental 
Modelling & Software, 160, 105582. 
 

 Muñoz, P., Muñoz, D.F., Orellana-Alvear, J., & Célleri, R. (2023). Flash flood forecasting 
using readily-available satellite precipitation and machine learning feature engineering 
strategies. Hydrological Sciences Journal. In review.  

 

 

he application of FE strategies for improving the efficiency of ML flash flood forecasting 

models represents a promising opportunity for hydrologists. The opportunity is to understand 

the use of ML technique as a starting point for exploiting available information coming from 

ground- and satellite-based sources, and for adding hydrological knowledge by testing forecasting 

hypotheses on top of ML statistical/computational advantages. 

In terms of precipitation data availability, two common case scenarios can be encountered when 

developing forecasting systems for mountain complex systems such as the Andes. These 

scenarios are: i) the absence of ground-based data, or ii) the existence of insufficient ground-

based data for characterizing spatial precipitation patterns. The first scenario, i.e., precipitation 

ungauged hydrological systems, is commonly experienced in mountain macro-scale hydrological 

systems where climate variability and the complexity of the terrain makes it unfeasible to monitor 

precipitation. Here, the solution lies in exploiting precipitation from SPPs, and to use of FE 

strategies for deriving as much as process-based hydrological knowledge for improving ML 

forecasting efficiencies. 

T 
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Whereas the second scenario is referred to the cases when there is an existing yet insufficient 

ground-based precipitation monitoring network for precipitation, which is more often found in 

meso-scale hydrological systems.  For this case, the utility of SPPs is to complement its spatial 

representation with the accuracy of ground-based information in the pursuit of accurate flash flood 

forecasting models.  In addition, we added process-based hydrological knowledge such as flow 

division (directflow and baseflow), and the corresponding water residence times in the soil layers 

producing these subflows. For both case scenarios, the use of FE strategies for assisting ML 

techniques allows the use of unvalidated SPPs due to lack or low density of precipitation gauges. 

5.1 Aim and objectives 

To develop ML flash flood forecasting models assisted by FE strategies for the exploitation of 

satellite-based precipitation data and the addition of process-based hydrological knowledge in 

meso- and macro-scale hydrological systems. 

Objectives 

- To develop ML flash flood forecasting models using FE strategies to exploit SPPs in a 

precipitation ungauged macro-scale hydrological system. 

- To develop ML flash flood forecasting models assisted by FE strategies in a meso-scale 

hydrological system with an existent ground-based precipitation data. 

5.2 Peak runoff forecasting in a precipitation ungauged macro-scale hydrological system 

This case study addresses the knowledge gap in developing flash flood forecasting models for 

precipitation ungauged hydrological systems. For this, the solution is to employ non-validated 

near-real-time satellite products together with a combination of FE strategies for comprehending 

the functioning of a catchment for short-term lead times, and for improving the forecasting 

efficiency of RF models. The FE strategies selected were flow separation into baseflow and 

directflow, and precipitation-runoff event classification according to precipitation attributes derived 

from satellite imagery. This event-based forecasting approach was done for gaining an 

understanding of the hydrological functioning of the basin as well as for improving the forecasting 

efficiencies of peak runoffs. An additional objective was to unravel the influence of multiple 

precipitation-runoff responses through specialized runoff forecasting of the classified events. The 
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proposed methodology was applied to the Jubones basin located in the southern Andes of 

Ecuador, and for short-term lead times between 1 and 6 hours to account for peak runoffs. 

5.2.1 Dataset processing 

The dataset comprises ~3.5 years of hourly information on two variables, precipitation, and runoff 

for the period January 2019 to June 2022. Precipitation data were retrieved from two near-real-

time databases, the IMERG-Early Run (ER), and the PERSIANN-Cloud Classification System 

(CCS) products. Data were extracted at the finest temporal resolution (30 minutes and 1 hour for 

the IMERG-ER and PERSIANN-CCS, respectively) and then aggregated to the hourly time step. 

Figure 5.1 presents the mean annual precipitation measured by both satellite products in the 

Jubones basin, with mean (maximum) annual precipitation depths of 729 (1167) and 1532 (2759) 

mm, respectively. The mean annual precipitation differences of 803 and 1592 mm for the mean 

and the maximum precipitation are attributed to the resolution differences as well as the 

measuring principle of each product. It is also worth noting the difference in the number of pixels 

(timeseries) obtained with each satellite product, 174 and 30 pixels for the PERSIAN-CCS and 

the IMERG-ER, respectively. 

  

Figure 5.1. Mean annual precipitation measured by the PERSIANN-CCS and the IMERG-ER 

satellite products for the study period from January 2019 to June 2022 (Jubones basin, 

Ecuador). 
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Moreover, although there is lack of ground precipitation gauges operating in the basin, a 

comparison with the study of Hasan and Wyseure [63]  was presented in Chapter One. As a 

result, it was concluded that for the period 1982-1998, mean annual ground-based precipitation 

better agreed with the PERSIANN-CCS product. Nevertheless, the PERSIANN-CCS validation 

with ground measurements is not a limiting issue since precipitation is merely an estimator of 

peak runoffs when ML techniques are employed. Thus, we rather exploited the spatiotemporal 

variability of both precipitation products under the assumption that the overall bias of each of them 

remains constant for the study area.  

On the other hand, hourly runoff data was collected for a hydrological station in the outlet of the 

basin, i.e., the entrance MSF hydropower dam. The runoff data were facilitated by the 

Corporación Eléctrica del Ecuador (CELEC EP, https://www.celec.gob.ec/), the company that 

manages the MSF hydropower dam. 

5.2.2 Methodology 

Figure 5.2 summarizes the methodology of this study. First, nearly-independent peak runoff 

events were selected, and the hourly runoff time series (total flow) was separated into baseflow 

and directflow series (Figure 5.2a). The purpose of separating total flow (runoff) is to characterize 

the different orders of magnitude of hydrological processes [95]. Here, the assumption is that 

differentiated subflow modeling, followed by the summation of both subflows will produce more 

efficient total flows than the modeling of total flow directly. This will also allow building ML models 

of different complexity for each subflow. For the subflow separation task, the generalized 

Chapman filter technique was selected following the recommendations of Willems [95], and Corzo 

and Solomatine [117]. The subflow filtering principle is based on a numerical digital filter 

implemented through a linear reservoir modeling concept. The subflow separation method is 

available within the WETSPRO tool [95]. 

Second, the precipitation imagery associated with peak events was processed using an object-

based Connected Component Analysis (CCA) to extract key precipitation object attributes (Figure 

5.2b). The CCA is applied to the precipitation dataset following a modular approach. This means 

that the CCA is preferably applied to the finest spatial-resolution product (PERSIANN-CCS), and 

for the cases when no precipitation is detected by the PERSIANN-CCS, the CCA is applied to the 

supplementary IMERG-ER database. The precipitation attributes extracted from the CCA serve 

about:blank
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to classify multiple extreme precipitation-runoff events. Third, for the development of forecasting 

models, we employed two internal ML sub-models, one for baseflow and the other one for 

directflow, which were summed up to provide the total flow (Figure 5.2c). Finally, we contrasted 

the performances of the developed forecasting models developed for increasing lead times and 

considered specialized models according to the classification of extreme events. A step-by-step 

explanation of the proposed methodology is presented in the following subsections. 

 

 

(a) (b) 

Figure 5.2. Scheme of the methodology for developing peak runoff forecasting models, (a) 

extreme peak runoff selection and subflow separation, (b) satellite precipitation processing, and 

(c) forecast modeling approach. 
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(c) 

Figure 5.2 (continuation). Scheme of the methodology for developing peak runoff forecasting 

models, (a) extreme peak runoff selection and subflow separation, (b) satellite precipitation 

processing, and (c) forecast modeling approach. 

5.2.2.1 Determination of nearly-independent flash flood events and subflow separation 

Flash events were selected from the complete runoff time series by using the WETSPRO time 

series tool [95]. For the subflow separation task, the generalized Chapman filter technique was 

selected following the recommendations of Willems [95] and Corzo and Solomatine [117]. The 

subflow separation method is also available within the WETSPRO tool. 

The calibration of the WETSPRO tool was done with the following parameter values. First, an 

inter-event time of 12 hours, i.e., two consecutive events are considered nearly independent when 
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separated by a period of at least 5 days. Secondly, a runoff maximum drop-down ratio of 0.6, 

which means that runoff, 𝑞, drops down in between two consecutive events to a ratio 
𝑞𝑚𝑖𝑛

𝑞𝑚𝑎𝑥
< 0.6). 

Based on the calibration, 81 nearly-independent peak flow events could be delineated. Figure 

5.3a shows the obtained hourly baseflow and directflow time series together with the 81 flash 

flood events depicted as blue dots, while Figure 5.3b plots the exceedance probability of total 

flow. 

 
(a) 

 

 

 
(b) 

Figure 5.3. (a) Directflow and baseflow separation from the total flow time series at the outlet of 

the Jubones basin. Peak flow events selected with the WETSPRO tool are displayed as blue 

dots. (b) Exceedance probability of total flow for the study period (01/01/2019 to 13/06/2022). 

5.2.2.2 Object-based CCA and precipitation-event classification 

The precipitation imagery corresponding to the selected flash events was processed using the 

object-based CCA developed by Laverde-Barajas [123] (see Chapter Four). Moreover, according 

to the modular approach for precipitation data acquisition, the IMERG-ER was used as a 

supplement dataset to the finest spatial resolution, the PERSIANN-CCS.  For this, we applied a 

simple under-sampling technique. It consisted of dispersing the information contained in a pixel 

into several subdivided pixels, i.e., the IMERG-ER cell of size 0.1x0.1o was converted into ~6.4 
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cells with a resolution of 0.04x0.04o. The CCA was implemented through the scikit-image 

processing package in Python® version 3.7 [134]. 

From the CCA, two attributes of each precipitation event were derived: the extension of the 

precipitation objects (local and spatial extensive) and the duration of the events (short and long). 

As a result, four precipitation event classes could be defined: i) Local and short-duration extreme 

events (LSE), ii) Local and long-duration extreme events (LLE), iii) Spatially extensive extreme 

events (SEE), and iv) Spatially extensive and long-duration extreme events (SLE) [123]. 

5.2.2.3 Development of peak runoff forecasting models 

The forecasting of peak runoffs was obtained by summing up the forecasts of two internal models, 

one model for baseflow and one model for directflow. The purpose of separating total flow into 

baseflow and directflow was to characterize the different orders of magnitude of hydrological 

processes, i.e., subflow responses to precipitation [95]. The subflow separation was done for the 

base model (considering all flash flood events) as well as for each precipitation event class. All 

the models were developed using the RF algorithm for regression (see Chapter Two).  

For the baseflow model, we assumed a slow (neglectable) response of this subflow to 

precipitation. As a result, baseflow is assumed to be solely affected by gradual changes in the 

past baseflow, i.e., fully autoregressive. On the contrary, the quick response of directflow to 

precipitation was assumed to be influenced by changes in precipitation and directflow.  

The input feature space construction for the RF models was conducted following the methodology 

used by [47]. In summary, the input feature space was formed by three elements. First, hourly 

precipitation (for each pixel) and runoff timeseries (i.e., baseflow and directflow). Second, two 

precipitation characteristics from the CCA: total volume and total area of the precipitation objects. 

And third, past lag information of precipitation (for each pixel) and runoff. The number of 

precipitation and runoff lags were determined according to statistical correlation analyses: partial- 

and auto-correlation functions for runoff, and cross-correlation functions for precipitation. 

Moreover, we performed a feature selection analysis to reduce the input dimension of the RF 

models. For this, we used a sensitivity analysis aimed at calculating the relative importance of 

each feature to the output [84]. This is done by measuring the variance of the output produced by 

a single feature without considering the interaction between features. The purpose was to retain 
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only features accounting for at least 80 % of the total relative importance. The variance produced 

can be calculated using the equations depicted in Chapter Two. 

Moreover, the implementation of the RF algorithm demands the tuning of several 

hyperparameters. For hydrological applications, the most influencing hyperparameters are the 

number of trees (n_trees), the maximum depth for pruning (max_depth), and the maximum 

number of features to perform the splits (max_features) [79]. We obtained the optimal combination 

of these three hyperparameters based on a RGS implemented under a 10-fold cross-validation 

algorithm to prevent overfitting. The NSE (defined in Chapter Two) between simulations and 

observations was used as a measure of agreement for the training subsets of each model. Table 

5.1 shows the search space (domain) of the selected RF hyperparameters for the optimization 

task. 

Table 5.1. Search space of the RF hyperparameters. 

Hyperparameter Domain 

n_trees* 20;1000;10 

max_features 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 Ψ, 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(1/2), log2(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

max_depth* 40;800;10 
* Domain defined by min, max, and increment. Ψ n_features refers to the 

number of estimators (features) in the input feature space 
 

5.2.2.4 Model evaluation 

For model evaluation, instead of selecting a fraction of the total number of peak flow events for 

training/testing purposes, we employed the leave-one-out cross-validation (LOOCV) algorithm. 

This means that each event was treated as an independent testing subset while the remaining 

events were used for training purposes. In the end, the overall performance of a model (NSE) 

was calculated by averaging the NSE on the testing subsets when all events were tested 

separately. This was done since only a few events might be available after the classification task. 

For each event, we simulated the peak runoff inside a 24-hour window for capturing the entire 

hydrograph. To quantify model performance, we used a collection of four metrics following the 

guidelines proposed by Moriasi et al. [92]. The NSE coefficient [93] was set as the reference 

metric for measuring and comparing the overall fit of model simulations to observations. The 
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evaluation was complemented with the KGE [94] to account for peak flow underestimations and 

low flow overestimations, the percent bias, and the RMSE. Moreover, we contrasted the average 

NSE coefficients of each model with the corresponding OOB errors (also calculated as NSE 

coefficients). The corresponding equations are listed in Chapter Two. 

5.2.3 Results 

First, CCA results for the 81 nearly-independent peak flow events showed that for 15 events (19 

%) there was no clear precipitation signal from the PERSIANN-CCS product. For these 15 cases, 

we applied the CCA to the IMERG-ER dataset following the modular approach described in 

Chapter Four.  From the CCA, we derived duration and extension thresholds of 7 hours and 50 

km2, respectively (Figure 5.4). These thresholds served to classify peak runoff events into four 

precipitation classes, 23 events for the LSE class, 24 for the LLE, 25 for the SEE, and 9 for the 

SLE. Moreover, analysis of the centroid occurrence of the precipitation objects did not reveal any 

precipitation hotspots in the basin that could be associated with peak runoff events. There was 

no evidence that centroid occurrence is driven or can be related to any physical attribute of the 

Jubones basin (e.g., soil type, land use, elevation, topography, etc.). This might indicate the 

nonexistence of orographic precipitation enhancement (i.e., cloud formation due to orographic 

lifting of air masses). 

On the other hand, the input feature space to each model with a certain lead time was partly 

formed with lagged information on precipitation and runoff.  For runoff, results of the ACF and 

PACF suggested using 12 lags (hours), with a 95% confidence level for both correlation values. 

Similarly, for precipitation, the Pearson cross-correlation function determined correlations higher 

than 0.2 for 13 lags (hours). Cross-correlation results are consistent with the estimated 

concentration time of the Jubones basin of 11 hours (average time using the equations of the U.S. 

Army Corps of Engineers, Johnstone, and Giandotti, being the equations recommended for the 

basin extension [108]). For the RF hyperparameterization of each model, we obtained averaged 

NSE coefficients between simulations and observations always higher than 0.98. Table 5.2 

exemplifies the optimized combination of hyperparameters found for the forecasting models of 1-

hour lead time.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.4. Meteorological precipitation information retrieved from 81 extreme hydrological 

events: (a) maximum intensity, (b) event duration, (c) total volume, and (d) maximum area 

Table 5.2. RF hyperparameterization of the forecasting models for the 1-hour lead time 

  Random Forest hyperparameters 

 Events [#] n_trees max_features max_depth 

Base model 81 300 21 200 

LSE 23 280 9 220 

LLE 24 250 21 190 

SLE 25 300 21 160 

SEE 9 300 9 180 

Concerning model efficiencies, Table 5.3 presents the averaged performance metrics for the base 

models, and for the specialized peak runoff forecasting models. In all cases, we present 

separately the performances for the baseflow, directflow, and the resulting total flow. The color 

mapping of this table was done on a column-by-column basis. This allows comparing the 

performances of the models (for a given metric) across lead times, and between the base and the 

specialized models. The darkest colors represent the best performances. 
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The first striking result visible in this table is that the base models proved to be satisfactory, with 

NSE coefficients for total flow varying from 0.86 to 0.59, for lead times between 1 to 6 hours, 

respectively. We contrasted these values with the NSE coefficients obtained for the validation 

subset (OOB errors), and we found an overall pattern for the OOB errors to be higher than NSE 

values using the LOOCV. We found a maximum difference of 0.14 for the 4-hour directflow model, 

whereas for baseflow models the differences were lower (maximum 0.06 for the 1-h models). The 

higher OOB errors can be attributed to the fact that the validation is performed on a randomly 

selected one-third of the training subset; thus, considering the 24-h window of each event, it might 

be possible that most of the scrutinized runoff does not correspond to peak values. As a result, 

the calculation of NSE coefficients using the LOOCV provides a more severe evaluation of the 

forecasting models. 

Moreover, according to the criterion of Singh et al. [137], the obtained RMSE values for the base 

models were also satisfactory for all lead times since their magnitudes were lower than half the 

standard deviation of measured total flow, 126.2 m3.s-1. The evolution of model performance with 

lead time is explained by previous thoughts and follows a logical path: the forecast ability of RF 

decreases with increasing lead time. Moreover, it was also clear that the modeling difficulty came 

from the modeling of directflow where NSE-values for the base models decayed to 0.36 (6-hour 

lead time). Nevertheless, the satisfactory performance for total flow was a remarkable outcome 

since the input feature space was derived from non-validated near-real-time satellite estimates 

using only the object-based CCA as the processing tool. 

Once the base models were evaluated, further analysis focused on the specialized peak runoff 

forecasting models. First, for total flow, it is apparent from Table 5.3 that spatially-extensive and 

short-duration events (SEE) produced the lowest performances (NSE values across lead times) 

when compared to the remaining event classes. These results were confirmed by the OOB errors, 

which followed a similar pattern across even types, where the lowest values were obtained for 

SEE. Therefore, it is apparent that SEE are the major source of error for the base models. Here, 

the hypothesis is that for SEE, precipitation over a mosaic of land uses and soil types produces 

complex directflow responses that are difficult to be learned by RF regressors. The reason is that 

small precipitation volumes over extensive areas might be lost before converting into runoff, 

especially in non-saturated conditions. Although this issue is strongly linked to land uses, soil 

types, and the saturation state of the basin, such biophysical information was neither available 



   

Paul Andrés Muñoz Pauta 

 

96 

(soil type and soil moisture) nor updated (land use) for the basin, and could therefore not be used 

as additional inputs to the forecasting models. 

Table 5.3. Model efficiencies (LOOCV evaluation framework) for the base and specialized 

forecasting models across lead times. 
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This can be also seen in Figure 5.5, where it stands out that overall LSE and LLE perform better 

than the base model, whereas SLE models perform almost similarly but have the advantage of 

forecasting the highest peak runoffs. For local events, irrespective of their duration (LLE and LSE), 

the runoff response strongly depends on the land use and soil characteristics where the 

precipitation occurs. In these cases, the error seems to be absorbed by the RF algorithm by 

relying on more specific trees. This can be seen in the higher values for the max_depth 

hyperparameter. On the contrary, RF models wityh lower max_depth values are less specific and 

complex, thus relying more on input data rather than in the complexity of the models. 

  

  

Figure 5.5. Comparison of the scatter plots of the observed and forecasted runoff for the base 

model and the specialized models for the 1-hour lead time. 

Regarding subflow separation for the specialized forecasting models, the NSE values for the 1-

hour lead time for baseflow and directflow were comparable for local precipitation events 

irrespective of their duration (LLE and LSE). On the contrary, for spatially extensive events (SLE 
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and SEE), there was a clear reduction in the ability of RF models to forecast directflow. This issue 

becomes critical as the lead time increases, where NSE values for directflow tend to completely 

deteriorate for the 6-hour case (SEE). Overall, for a given lead time, SLE and SEE models 

depicted the lowest NSE values for directflow, and consequently total flow. Therefore, the 

considerably greater amount of precipitation input features is rather producing noise in the 

directflow models. In such cases, the forecasting ability tends to rely more on their autoregressive 

power and not on what the models can learn from the processed satellite precipitation. 

Concerning the remaining performance metrics (KGE, RMSE, and PBIAS), we found patterns 

similar to NSE, between specialized runoff forecasting models, and across lead times. For 

instance, for any lead time, the PBIAS for SEE had the highest values between precipitation event 

classes, i.e., the highest propensity of forecasted values to be larger than the measured total flow. 

PBIAS for SEE were always higher than 51 %, with values up to 113 % for the 6-hour lead time. 

Similarly, the KGE metric, which exposes runoff variability to a greater extent than NSE, revealed 

the lowest efficiencies for SEE for all lead times. Physically, NSE- and KGE-values might be 

explained by the fact that the precipitation-runoff correspondence is clear (straightforward) for the 

cases when either soil saturation is reached or infiltration capacity is exceeded, SLE and LLE, 

respectively. The straightforward precipitation-runoff relations seem to be well detected by the RF 

models, especially LLE models, where the highest NSE- and KGE-values were obtained.  

5.2.4 Discussion 

In this case study, the RF algorithm was used to develop event-based flash flood forecasting 

models for a representative basin of the tropical Andes, where physically-based modeling is 

restricted by the lack of sufficient information. The methodology of this study proposes a solution 

for exploiting near-real-time satellite precipitation data even without validation with ground 

precipitation networks.  

We developed general base models for lead times between 1 and 6 hours to account for peak 

runoffs in the Jubones basin, which although representing a particular solution for the MSF 

hydropower dam, is useful for planning the operation of other dams under peak extreme runoff 

conditions.  In addition to the base models, we focused on characterizing extreme hydrological 

events by analyzing satellite precipitation through an object-based CCA. The development of 
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specialized models according to precipitation characteristics (duration and extension) served to 

identify the hidden strength and weaknesses of the already satisfactory base models. 

The performances obtained for the base models (NSE=0.86) are comparable to the results 

obtained in other studies using traditional physically-based models, such as HEC-RAS 

(NSE=0.92) in the study of Belabid et al. [29]), wflow-sbm (NSE=0.58) in the study of Laverde-

Barajas [126], and the hydrologic-hydraulic HiResFlood-UCI model (NSE=0.94) in the study of 

Nguyen et al.  [30]. And although this study did not aim at outperforming physically-based models, 

a clear advantage of the models hereby developed is the possibility to exploit raw near-real-time 

satellite precipitation. This possibility is, however, feasible under a modular approach for data 

acquisition, where a second satellite source is used to overcome detection issues of the primary 

satellite source. We are aware, however, that further analyses must be performed for choosing 

not only existing precipitation signals but the satellite source, or even data fusion such as the 

efforts of Chen et al. [138] and Xu et al. [139], presenting the highest correlations with observed 

runoff. For this, additional near-real-time data sources must be considered. 

The framework for unveiling the strengths and weakness of the base models can be replicated to 

understand the reasons behind unacceptable low performances (e.g., negative NSE), see for 

instance the study of Belabid et al. [29]. The superiority in performance of the developed local 

models when compared to spatially extensive events can be explained by the straightforward 

infiltration- and saturation-excess runoff generation processes in reduced portions of the basin. 

Conversely, whenever precipitation is extensively distributed within the basin, the forecasting 

models lower their ability to characterize and learn the specificities of the multiple precipitation-

runoff relations. For such cases, the forecasting ability is attributed to the autoregressive 

dependency in the flow time series. The performances of the specialized forecasting models 

revealed the need to include information describing the dynamics of antecedent soil saturation 

during extreme events. This is especially required for initializing the forecast of short-duration 

precipitation events (SEE and LSE). The antecedent soil saturation state will serve to explain why 

short-duration and non-extreme precipitation intensities can trigger extreme hydrological events. 

Given the previous assumption, a future direction would be to include satellite soil moisture 

observations to improve forecasting efficiencies in ungauged basins, as done in the study of 

Massari et al. [136]. 
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We are also aware that the findings of this study were obtained with a relatively shorth-length 

database when compared to other ML studies; however, the use of the RF together with 

processing tools, and severe evaluation framework for reducing overfitting served to ensure the 

use of the models for this study and the daily operation of the MSF hydropower plant. Particularly, 

for the Jubones basin, we did not find a pattern or hotspot of the precipitation storms that triggered 

extreme runoff responses in the study period. This has direct implications for the ability of  RF 

models to recognize patterns and demonstrates the necessity of developing specialized 

forecasting models according to other precipitation characteristics, and not only in distributed 

modeling (subbasins), which is commonly employed by traditional physically-based models. 

Finally, the findings and limitations encountered in this study open the path for future research on 

exploring additional ML techniques for the modeling of spatially-extensive events, or even model 

ensemble strategies. 

5.3 Flash flood forecasting exploiting ground- and satellite-based precipitation data in a 

meso-scale hydrological system 

This case study aims to develop flash flood forecasting models by leveraging ground-based and 

PERSIANN-CCS precipitation estimates for the Tomebamba catchment located in the tropical 

Andes of Ecuador. The hydrological model is based on the RF algorithm together with a 

combination of FE strategies including flow separation into baseflow and directflow, soil moisture 

modeling, and inclusion of precipitation attributes derived from satellite imagery. The accuracy 

and suitability of the PERSIANN-CCS are evaluated, and the forecasting ability is tested for lead 

times between 1 to 12 hours. 

5.3.1 Dataset processing 

The dataset comprises hourly information on two variables, runoff measured at the outlet of the 

catchment and precipitation within the catchment for the period Jan/2015 to May/2021. Runoff 

time series for the Sayausí station were obtained from the local drinking water facility of Cuenca, 

ETAPA-EP. 

Precipitation data were retrieved from ground and satellite sources. Ground estimates were 

acquired from three rain gauges installed in the upper and middle parts of the catchment, 

Toreadora at 3395, Virgen del Cajas at 3626, and Chirimachay at 3298 m a.s.l. These rain gauges 

are located within microcatchment M1 of the Tomebamba. On the other hand, satellite estimates 
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of precipitation were retrieved from the PERSIANN-CCS database, resulting in 15 pixels-based 

information for the Tomebamba catchment. Figure 1.3 (Chapter One) shows the PERSIANN-CCS 

coverage over the study catchment as well as a comparison between the annual cumulated 

precipitation measured by the satellite- and ground-based products for the study period. 

For training and testing purposes, the dataset was split up into training (Jan/2016 to May/2021) 

and testing (from Jan/2015 to Dec/2016) periods. The selection of these periods was aimed at 

capturing the highest runoff peaks in the training phase. 

5.3.2 Methodology 

5.3.2.1 Evaluation framework and metrics 

The evaluation framework consisted firstly in assessing the accuracy of PERSIANN-CCS 

precipitation data at a microcatchment-wide scale for hourly, daily, and monthly timescales. Then, 

we evaluated the PERSIANN-CCS suitability for runoff forecasting with special attention to peak 

runoffs (flash floods). 

The evaluation of quantitative precipitation estimates (QPEs) was performed by comparing the 

average PERSIANN-CCS and the available rain gauge measurements for the microcatchment 

M1, where the three rain gauges are installed. The accuracy of the PERSIANN-CCS estimates 

was evaluated through the coefficient of correlation (CC) and Bias. Whereas the precipitation 

detection ability was measured with the Probability of Detection (POD), the False Alarm Ratio 

(FAR), and the Critical Success Index (CSI). The corresponding metrics are presented in Table 

5.4 below. 
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Table 5.4. Efficiency metrics for precipitation. 

Metric Equation Ideal value 

CC 

∑ [(𝑃𝑖 − �̅�)(𝐺𝑖 − �̅�)]𝑛
𝑖=1

√∑ (𝑃𝑖 − �̅�)2𝑛
𝑖=1  √∑ (𝐺𝑖 − �̅�)2𝑛

𝑖=1

 
1 

Bias 
∑ (𝑋𝑠 − 𝑋𝑜)𝑛

𝑖=1

∑ 𝑋𝑜
𝑛
𝑖=1

 0 

POD 
𝐴

𝐴 + 𝐵
 1 

FAR 
𝐶

𝐴 + 𝐶
 0 

CSI 
𝐴

𝐴 + 𝐵 + 𝐶
 1 

Where 𝑛 is the number of instances, 𝑃 is satellite precipitation, 𝐺 is ground precipitation, �̅�  is 

the mean satellite precipitation, �̅� is the mean ground precipitation, 𝑋 = 𝑃 for precipitation, 𝑋 =
𝑄 for runoff, 𝐴 is the frequency of observed precipitation detected by satellite, 𝐵 is the frequency 
of observed precipitation not detected by satellite, and 𝐶 is the frequency of false precipitation 
detected by a satellite product.  

On the other hand, the comparison between runoff observations and forecasts was done using 

the NSE [93], KGE [94], the RMSE, and the percent bias (see Chapter Two). Additionally, for a 

more specific evaluation focused on flash floods, we complemented the performance metrics with 

graphical techniques such as the frequency distribution for peak values and a Box-Cox 

transformation of total flow.  

5.3.2.2 Satellite data processing using an object-based CCA 

The satellite data retrieved from the PERSIANN-CCS were processed before their use in a 

hydrological model. For this, we employed the object-based CCA developed by Laverde-Barajas 

et al. [123] (see Chapter Four). The CCA serves to identify precipitation objects (storms) and 

allows extraction of key meteorological features such as maximum intensity, maximum areal 

extension, maximum volume, storm location, etc. Among them, the use of maximum intensity and 

maximum areal extension as additional input features was proved to improve RF runoff modeling 

and forecasting performances [48], [140]. The maximum intensity of each satellite imagery 
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corresponded to the maximum value encountered among all precipitation objects; whereas the 

maximum areal extension was calculated as the sum of the areas of the identified objects.  

For the CCA detection and localization of precipitation objects, we defined a precipitation 

sensitivity threshold of 0.5 mm. The detected objects were then filtered according to a minimum 

threshold area corresponding to 2 pixels (~20 km2). Both thresholds were calibrated on a trial-

and-error basis to remove noise (e.g., isolated precipitation objects) in the satellite imagery. Then, 

the filtered objects were passed through a dilation-and-erosion algorithm for image refining. 

Lastly, the CCA extracted two precipitation attributes, maximum intensity, and maximum areal 

extension. The CCA was implemented through the scikit-image processing package in Python® 

version 3.7 [134]. 

5.3.2.3 Determination of nearly-independent flash flood events and subflow separation 

The separation of runoff (total flow) into baseflow and directflow components was performed using 

the generalized Chapman filter technique, according to the recommendations of Willems [95] and 

Corzo and Solomatine [117]. The separation method is implemented in the WETSPRO time series 

tool [95]. Moreover, for the extraction of nearly-independent peak runoff events using a peak-

over-threshold approach. Those events will be used for the evaluation framework focused on flash 

floods.  

The calibration of the WETSPRO tool was achieved with the following parameter values. First, 

recession constants of 8 days and 12 hours for baseflow and directflow, respectively. Second, an 

inter-event time of 10 hours, i.e., two consecutive events are considered nearly independent when 

separated by a period of at least 10 hours. And third, a runoff maximum drop-down ratio of 0.1, 

means that the minimum runoff, qmin, between two events is 0.1 of antecedent qmax. Figure 5.6 

shows the obtained hourly baseflow and directflow time series together with the 156 peak flows 

depicted as blue dots. 
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Figure 5.6. Hourly runoff (total flow) of the Sayausí station, and its subflow components 

(baseflow and directflow). 156 nearly-independent peak flows are displayed as green dots. 

Study period from Jan/2015 to May/2021. 

5.3.2.4 Hydrological forecasting model based on the Random Forest (RF) algorithm 

The RF hydrological model consisted of two internal sub-models, baseflow, and directflow, 

respectively. The forecasts were summed up to obtain the total flow. The subflow separation task 

was aimed to characterize the different orders of magnitude of hydrological processes [95]. Both 

models were based on the RF algorithm for regression, which is detailed in Chapter Two. 

In terms of model structures, the baseflow model was built as completely autoregressive, i.e., the 

baseflow response is forecasted regardless of the precipitation input (Figure 5.7). This 

assumption was based on the study of Mosquera et al. [59] for the same catchment, where isotope 

analyses revealed that water resides in the deeper soil layer for around 4 weeks, and this layer 

remains near saturation through the year. Thus, considering the fast response of the catchment 

(4 hours), flash-flood responses are rather explained by the dynamic of directflow. 
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Figure 5.7. Model structures for baseflow and directflow RF forecasting models. 

The directflow model considered the fast soil moisture reaction occurring in the rooted layer, with 

an approximate residence time of 2 weeks [59]. In this case, changes in both precipitation 

(ground- and satellite-based) and directflow are assumed to influence and/or control the directflow 

(Figure 5.7). Regarding precipitation features, in addition to the current time and lags of the 

precipitation series, we included the attributes derived from the CCA, and soil moisture dynamics 

in the directflow sub-model by adding a proxy feature that accounts for 2 weeks of cumulative 

precipitation. Moreover, the mean concentration time of each microcatchment served to weigh 

the precipitation input for the calculation of directflow. This served to account for different runoff 

responses according to the localization of precipitation storms. The concentration times were 

calculated by averaging the outputs of the equations of Johnstone, Corps Engineers, Williams, 

and Haktanir & Sezen, recommended for the extension of the microcatchments [141]. 

Model hyperparameterization 

Several hyperparameters are involved in the construction process of the forest, yet the most 

influencing for hydrological applications are the number of trees (n_trees), the maximum depth 

for pruning (max_depth), and the maximum number of features to perform the splits 

(max_features) [79]. The optimal hyperparameter combinations were obtained through a RGS 

under a 10-fold cross-validation approach. For this, we used the NSE between forecasts and 

observations as the measure of agreement for the training subsets. 
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5.3.2.5 Input feature space construction and feature selection 

The input feature space construction for the RF models was conducted following the methodology 

proposed by Muñoz et al., (2018). In summary, the input feature space was formed by three 

elements. First, hourly precipitation (for each pixel) and runoff timeseries, i.e., baseflow and 

directflow. Second, the two precipitation characteristics from the CCA: maximum intensity and 

maximum areal extension. Third, past lag information of precipitation (for each pixel) and runoff. 

The number of precipitation and runoff lags were determined according to statistical correlation 

analyses, the ACF and the PACF for runoff and Pearson cross-correlation functions for 

precipitation. 

Moreover, we reduced the input feature dimension by implementing a feature selection procedure. 

For this, we calculated the relative importance of each feature to the output using sensitivity 

analysis [84] (see Chapter Two). The input feature space was only composed of features that 

summed up to 80 % of the total relative importance.  

5.3.3 Results and discussion 

5.3.3.1 Satellite data validation at a microcatchment-wide scale 

Figure 5.8 presents the histograms of ground-based and PERSIANN-CCS hourly, nonzero 

precipitation. For both datasets, the occurrence of precipitation events according to their 

intensities follows an exponential distribution, where low precipitation intensities are far more 

frequent than higher values. What stands out in Figure 5.8 is that the PERSIANN-CCS 

underestimates the occurrence of very light precipitation (< 1 mm.hour-1), while it tends to 

overestimate the occurrence of higher precipitation intensities (> 5 mm.hour-1). The 

underestimation of very light events, which occurs > 80 % of the time, leads to a lower CC (0.04) 

and negative bias (-35 %) between satellite and ground-based measurements. This 

underestimation/overestimation is congruent with the findings of Hong et al. [142], who concluded 

that PERSIANN-CCS presents higher sensitivity to convective events at expense of missing light 

precipitation events. 



   

Paul Andrés Muñoz Pauta 

 

107 

 

Figure 5.8. Comparison of PERSIANN-CCS and average ground-based (microcathment M1) 

histograms of hourly precipitation. Considering the asymmetry of the data, the histograms were 

split up into different size class bins. 

Figure 5.9 shows the scatter density plots from rain gauges and the PERSIANN-CCS at daily and 

monthly averaged series, respectively. As shown in these figures, the highest correlation was 

found for the monthly (CC=0.49), with the lowest value for the daily scale (0.21). These 

correlations are comparable to those from the studies of Anjum et al. [143], Salehi et al [144]. 

Moura Ramos Filho et al. [145], Eini et al. [146], and Nguyen et al. [24]. Overall, for both time 

scales, it can be noted a tendency to underestimate precipitation based on the slope of the data 

(gray continuous line) when compared to the bisector line (blue dotted line). This is attributed to 

the error accumulation of the aforementioned underestimation/overestimation issues at the hourly 

timescale. 

On the other hand, the mean POD values are 0.07 and 0.24 for the daily and monthly timescales, 

respectively. The maximum POD values were obtained for intensities in the range 0-1 mm.hour-

1. The FAR and the CSI obtained were unsatisfactory for the hourly timescale, while for the daily 

scale, we obtained mean values of 0.5 and 0.2, respectively. Overall, the evaluation of QPEs 

seemed to be highly variable at sub-daily timescales, which matches the findings of J. Li et al. 

[147], Sadeghi et al. [148], and Zeweldi and Gebremichael [149]. Thus, we suggest that 

precipitation retrieved from PERSIANN-CCS could not be used with confidence for precipitation 

studies in the Tomebamba catchment without image correction/calibration/adjustment, thus 

limiting the use of traditional physically-based hydrological models. Nonetheless, although the 
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validation results were not very encouraging, the challenge of this study was rather to exploit the 

spatial characterization for runoff forecasting with the RF algorithm. 

 
(a) 

 
(b) 

Figure 5.9. Scatter density of PERSIANN-CCS estimates and corresponding ground-based 

precipitation at (a) daily and (b) monthly scales. Period of analysis from Jan/2015 to May/2021. 

5.3.3.2 Meteorological characteristics obtained from the object-based CCA 

We found that the majority of precipitation events had a duration of fewer than 8 hours (Figure 

5.10a), with predominant intensities below 5 mm.hour-1 (Figure 5.10b). If we now turn to areal 

extension, the majority of precipitation events can either cover most of the catchment area or less 

than 50 km2 (local events, see Figure 5.10c). Moreover, the combination of intensities, duration, 

and areal extension results in precipitation volumes of less than 0.0125 km3 or 38 l.m-2 per event 

(Figure 5.10d). Taken together, these results suggest that most extreme hydrological events in 

the catchment are rather driven by saturation excess and not infiltration excess processes, and 

their potential to trigger flash floods depends on areal extension and/or the proximity to the 

catchment outlet for local events. Similar to the previous section, we are aware that the derived 

precipitation features can be biased. However, the maximum intensity and maximum areal 

extension attributes were used to improve the learning process of the RF models. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.10. Precipitation-event characteristics derived from the CCA: (a) event duration, (b) 

maximum intensity plotted with different class widths, (c) areal extension, and (d) total volume 

plotted with different class widths. 

5.3.3.3 Hydrological modeling and hyperparameterization 

For the baseflow models, the input feature space for each lead time was constructed with 

baseflow data at the current time, 12 baseflow lags as determined by PAC and AC functions with 

95 % of confidence, and cumulated runoff volume for the past 7 days. The cumulated volume was 

initially set to 4 weeks since is the average residence time in the deeper soil layer; however, 7 

days seemed plausible for detecting rapid changes in water storage. This value was determined 

on a trial-and-error basis during the RF-hyperparameterization task, which is described at the end 

of this section. 

On the other hand, the directflow models for each led time were constructed with both flow and 

precipitation information. Flow information contemplated directflow data at the current time, and 

12 directflow lags (similarly to baseflow). Whereas the precipitation features included precipitation 

at the current time for each ground- and pixel-based in the catchment, and their corresponding 9 

lags as determined by cross-correlations results with a threshold of 0.2. The precipitation series 

were weighted according to the mean concentration times calculated for each microcatchment 

(4.6, 3.6, 4.2, 4.9, 1.6, and 1.5 hours for M1-M6, respectively). The mean concentration time of 
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the entire catchment is 6.4 hours. In addition, we employed the maximum intensity and maximum 

areal extension attributes derived from the CCA. Moreover, we included 2 days of cumulated past 

precipitation as a soil moisture proxy variable.  The late value was calibrated during the RF tuning 

task starting from 1 up to 14 days (to reach the average residence time in the rooted layer). 

With the aforementioned considerations, each RF model was hyperparameterized with all 

features available in the input feature space. Then, for each model, up to 70 % of the features 

were trimmed-off according to their calculated relative importance. For instance, the input feature 

space for the 4-hour lead time model for directflow contained the information of 114 features, and 

after trimming off the space dimension was reduced to 35 features. The optimal hyperparameter 

combinations are presented in Table 5.5 below.  

Table 5.5. Optimal combination of RF hyperparameters for the baseflow and directflow 

forecasting models across lead times. 

 Baseflow Directflow 

Lead time [h] n_trees max_features max_depth n_trees max_features max_depth 

1 330 3 (22 %*) 30 300 6 (6 %*) 70 
4 320 3 (22 %*) 40 320 6 (6 %*) 80 
8 270 8 (58 %*) 80 270 40 (35 %*) 110 
12 390 8 (58 %*) 100 420 60 (53 %*) 110 

*  Percentage of features from the total number of features employed 

For all models (different subflows and lead times), the NSE values between observations and 

simulations during training were always above 0.98. The most interesting aspect of Table 5.5 is 

that for lead times exceeding the concentration time of the catchment (4 hours), the forecasting 

performance relies more on the hyperparameterization task than on the information contained in 

the corresponding input feature space. This can be noted by the higher values obtained for the 

max_depth, and the max_features hyperparameters, which means that more specific trees and 

stronger randomization are required for obtaining optimal model performances. Conversely, for 

the 1- and 4-hour lead times, the input feature space provides information that better describes 

the response of the catchment to precipitation events. 

5.3.3.4 Model evaluation 

The forecasting performances (NSE) on the testing subset for baseflow, directflow, and total flow, 

and across lead times are provided in Table 5.6. This table is quite revealing in several ways. 
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First, the developed forecasting models proved to be satisfactory for lead times up to 3 times the 

concentration time of the catchment, i.e., 12 hours, with NSE varying from 0.95 to 0.61. The 

validity of the methodology proposed in this study can be demonstrated by the fact that we 

obtained efficiencies comparable to and even higher than in other studies using the PERSIANN-

CCS but under physically-based approaches [144], [146], [150]. Therefore, the success of this 

study has direct implications for the development of flash flood early-warning systems (FEWSs) 

not only for the study area but also for other Andean catchments where lack of data and non-

validated satellite precipitation has been the limiting reason for FEWSs implementation. 

Table 5.6. Forecasting performances for the baseflow, directflow, and total flow models across 

increasing lead times. 

Baseflow 

Lead time [h] NSE PBIAS RMSE KGE 

1 0.85 -6.99 0.53 0.89 

4 0.86 -6.76 0.52 0.90 

8 0.86 -6.54 0.50 0.90 

12 0.87   -6.30 0.49   0.90 

Directflow 

Lead time [h] NSE PBIAS RMSE KGE 

1 0.94 0.47 1.89 0.95 

4 0.81 -3.75 3.24 0.88 

8 0.65 -9.19 4.49 0.77 

12 0.54  -12.64  5.10  0.68  

Total flow 

Lead time [h] NSE PBIAS RMSE KGE 

1 0.95 -1.73 1.84 0.96 

4 0.85 -4.64 3.22 0.90 

8 0.70 -8.41 4.49 0.81 

12 0.61  -10.77  5.13  0.74  

Second, it is clear that the forecasting difficulty comes from the modeling of directflow, with NSE 

varying from 0.94 to 0.54 as the lead time increases. The fact that baseflows are well forecasted 

(NSE-values are always higher than 0.85) is due to the nearly year-round saturation of the deeper 

soil layer of the catchment [59]. Thus, the development of fully autoregressive baseflow models 

seemed to be sufficiently complex, and also fulfills the model parsimony criteria. On the other 
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hand, the higher complexity of the models for directflow depicted NSE values higher than 0.80 for 

lead times up to the concentration time of the catchment. For longer lead times, the decay in NSE 

(minimum 0.54) is attributed to an insufficient description of the governing forces of this subflow 

component (e.g., topsoil layers and land use information), but mainly due to the lack of relevant 

precipitation information considering the latency of the satellite imagery and the fact that 

precipitation is not being forecasted. Thus, precipitation events occurring between the most recent 

precipitation instance and the forecast horizon are not available for the forecasting task. All these 

results were corroborated by the remaining performance metrics (RMSE, bias, and KGE). 

Furthermore, consideration of weights according to the concentration times of each 

microcatchment served to characterize time differences in precipitation-runoff responses, 

especially for saturation excess processes where some of the precipitation water volume is used 

for saturating the topsoil layers and only a fraction reaches the outlet of the catchment. Although 

there were no substantial differences between the mean concentration times of M1-M6, this 

approach has the potential to substantially improve model efficiencies in larger catchments, as in 

the study of P. C. Huang and Lee [118] for an extension greater than 500 km2. 

Third, even though the PERSIANN-CCS database presented lower correlations with hourly 

ground-based measurements, the use of longer time scale estimates (as in the soil moisture proxy 

accounting for 2 days of precipitation) served to better relate the spatial precipitation patterns to 

directflow, and consequently total flow. Similarly, the addition of available ground-based satellite 

estimates was crucial for achieving a good trade-off between precipitation accuracy and spatial 

characterization. This was demonstrated since the efficiency of the forecasting models whose 

precipitation information was solely derived from ground-based data was inferior when compared 

to the models exploiting both satellite- and ground-based precipitation (maximum difference of 

0.15 in NSE). Another comparison can be done with the previous study of Muñoz et al. [47]  in 

the Tomebamba catchment, where the efficiencies of forecasting models using ground-based 

information alone, yet for a shorter study period (2.5 years), achieved efficiencies lower than the 

ones found in this study (maximum difference of 0.12 in NSE). 

In addition, a comparison between total flow forecasts and observations across increasing lead 

times is presented in Figure 5.11. The most striking result is the substantial difference in the 

degree of correlation for lead times shorter (Figures 5.11a-b), and longer (Figures 5.11c-d) than 
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the concentration time of the catchment. For the 8- and 12-hour lead times there is a trend of 

underestimating hourly runoff, thus negative biases of -8.4 and -10.8, respectively. 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 5.11. Scatter density plot of timeseries of forecasted total flow for the testing periods: (a-

d) plots for lead times of 1, 4, 8, and 12 hours, respectively. 

To complement the previous assessment, the empirical peak value distributions for both forecasts 

and total flow observations are provided in Figure 5.12a. Overall total flows up to 40 m3.s-1, there 

is a good match between observations and forecasts for lead times as long as the concentration 

time of the catchment (4 hours). On the other hand, for flows higher than 40 m3.s-1, which occur 

less than 2% of the time, there is a systematic underestimation of peak values towards the upper 

tail of the distribution. The underestimation becomes critical as the lead time increases. 
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Additionally, Figure 5.12b shows the correlation between forecasted and observed peak flows, 

where the mean error and the standard deviation correspond to the 1-hour forecasts. In this figure, 

model residuals are represented by the horizontal and vertical differences between each point 

and the bisector line, and the dependence of the standard deviation on the total flow magnitude 

was disrupted with a λ-value of 0.25 (Box-Cox transformation). What stands out in this figure is 

the higher scatter (higher standard deviation of peak flows from the bisector lines), and higher 

bias (systematically lower mean peak flows) for increasing lead times. 

 
(a) 

 
(b) 

Figure 5.12. (a) Empirical peak value distribution, (b) Comparison of nearly independent peak 

flow maxima. 

5.4 Summary and conclusions 

In this chapter, we addressed the two common case scenarios that can be encountered when 

developing peak runoff forecasting models for mountain complex systems. These are the cases 

of precipitation ungauged macro-scale hydrological systems, and meso-scale systems where 

there is an existence yet insufficiently-dense ground-based monitoring network for precipitation. 

In both cases, we developed forecasting models using FE strategies for exploiting SPPs data by 

ML models, and for adding process-based hydrological knowledge and concepts for improving 

forecasting efficiencies. 
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First, for the case of precipitation ungauged hydrological systems, we developed event-based 

forecasting models for the Jubones basin. For this application, the following main conclusions can 

be drawn: 

- The use of near-real-time SPPs data assisted by the CCA served to improve precipitation 

representation over the basin, and consequently, enhanced the performance of flash 

floods forecasting models. 

- FE strategies applied to precipitation and runoff datasets allowed the development of 

specialized models for precipitation events and for subflow components. This application 

also showed that for the Jubones basin, spatially extensive events are the most difficult 

precipitation scenarios to model without deep characterization of the study area (land use, 

soil moisture, and topography, among other features). 

- The description of soil saturation conditions might also enhance runoff forecasting 

associated with local precipitation events, yet their higher efficiencies are attributed to the 

straightforward infiltration- and saturation-excess runoff generation relations. 

- The best forecasting performances were obtained for peak runoffs triggered by short-

extension precipitation events (<50 km2) where infiltration- or saturation-excess runoff 

responses are well learned by the RF models. Conversely, the forecasting difficulty is 

associated with extensive precipitation events. For such conditions, a deeper 

characterization of the biophysical characteristics of the basin is encouraged for capturing 

the dynamic of directflow across multiple runoff responses. 

Second, for the case of systems with existent ground-based monitoring network, we developed 

continuous time-series flash flood forecasting models for the Tomebamba catchment. In this 

application, SPPs data served to complement the existing ground-based monitoring network. For 

this case study, the following main conclusions can be drawn: 

- The PERSIANN-CCS product was validated at a microcatchment-wide scale, and even 

though the quality of the hourly satellite data might be questionable, the development of 

forecasting models proved to be satisfactory. We attribute the forecasting success of this 

study to both the merging of ground- and satellite-based precipitation, and to the FE 

strategies applied for adding physical knowledge of the system to the forecasting models. 

For instance, for precipitation, the CCA served to derive key precipitation attributes that 

enriched the input feature space of the RF models. We are aware, of course, that the 
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uncertainties involved (occasioned by lack of precipitation accuracy) might be misleading 

when using physically-based models; however, instead of discarding this high-resolution 

information, this represented a great opportunity for the RF algorithm (or other ML 

techniques). 

- It was crucial to separate the total flow signal into baseflow and directflow components 

and model each subflow with different levels of complexity. This approach served also to 

efficiently forecast peak flows with anticipation times up to 12 hours (i.e., 3 times the 

concentration time of the catchment). Taken together, the findings of this research have 

significant implications for operational applications such as the development of FEWSs, 

but also for gaining an understanding of precipitation-runoff responses in catchments 

otherwise limited by insufficiently dense monitoring networks 

- This application has also shown differences in the hyperparameterization of the RF 

models across lead times. Overall, the inclusion of physical knowledge regarding the 

functioning of the catchment, and the reasoning behind the hyperparameterization task 

served to enlighten the always-questioned veracity of black-box, data-driven models. In 

this way, we attempt to endorse the use of ML hydrological models as a blank page, where 

hydrological forecasting hypothesis can be tested on top of statistical/computational 

advantages. 

Based on both case studies, it can be concluded that the application of FE strategies for assisting 

ML flash flood forecasting is a promising approach not only for modeling but for forecasting flash 

floods in macro- and meso-scale complex systems. Moreover, the proposed methodology for 

processing non-validated SPPs, and the modular approach for data acquisition have direct 

implications for operational hydrology where the lack of precipitation data has been a limiting 

issue. 

A natural extension of this work would be to better represent the physical conditions of the basin 

before and during a precipitation event, not necessarily extreme, which might cause a peak runoff 

response. It would be also advisable to explore additional ML algorithms, hybridization, and/or 

model assembling aimed at maximizing the encountered forecasting efficiencies.  
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Chapter six: summary, conclusions and feature work. 

his doctoral thesis presents original research that advances the field of machine learning 

(ML) peak runoff including flash flood forecasting. The research focuses on developing 

innovative methodologies for constructing efficient forecasting models in complex systems at both 

macro and meso scales considering that traditional physically-based hydrological models are not 

feasible due to the highly-variable and poorly-monitored flash flood driving forces. Therefore, the 

thesis aims to enhance ML peak runoff forecasting models through the implementation of feature 

engineering (FE) strategies. These FE strategies will allow for the effective utilization of ground- 

and satellite-based precipitation data and process-based hydrological knowledge in macro- and 

meso-scale complex systems. The ultimate goal of this research is to improve the accuracy and 

reliability of ML-based forecasting models. 

In our research, we focused on improving the accuracy of peak runoff forecasting models by 

implementing feature engineering (FE) strategies in both macro- and meso-scale systems. For 

the macro-scale system, we utilized satellite precipitation products (SPPs) data to not only obtain 

spatiotemporal information but also to derive process-based hydrological knowledge related to 

precipitation events that cause peak runoffs. This was made possible due to the areal extension 

of the system, which enabled us to extract features from the satellite precipitation imagery. 

On the other hand, for the meso-scale system, where local land use and topography significantly 

impact the occurrence of flash floods, we focused on exploiting the accuracy of ground-based 

precipitation data in conjunction with the spatial representation from SPPs using FE. Additionally, 

we incorporated process-based hydrological knowledge related to subflow division into directflow 

and baseflow, as well as the corresponding residence times in the soil layers producing these 

subflows. By implementing these FE strategies, we were able to improve the effectiveness of 

flash flood forecasting models in both macro- and meso-scale systems. 

In order to achieve the goal of our thesis, we conducted research on two primary aspects. The 

first one focused on utilizing the latest machine learning (ML) techniques to develop peak runoff 

forecasting models. The second aspect involved the implementation of a feature engineering (FE) 

strategy, specifically the connected component analysis (CCA), to leverage readily-available 

satellite precipitation products (SPPs) information and overcome issues related to spatial and 

temporal data scarcity. We explored the use of SPPs and FE in two distinct hydrological systems. 

T 
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Firstly, for a macro-scale system where ground-based data is lacking, we utilized SPPs and FE 

to address this data gap and improve the accuracy of the peak runoff forecasting model. Secondly, 

for a meso-scale hydrological system where ground-based data was available but insufficient for 

characterizing spatial precipitation patterns, we employed SPPs and FE to complement the 

existing data and further enhance the fflash flood forecasting models. By integrating these 

advanced ML techniques and FE strategies, we were able to significantly improve the accuracy 

of flash flood forecasting models in both macro- and meso-scale hydrological systems. 

To address the first aspect of our research, we focused on developing machine learning (ML) 

models for both qualitative and quantitative peak runoff forecasting, which are detailed in 

Chapters Two and Three of the thesis. Our approach utilized precipitation data sourced solely 

from ground-based stations, and we evaluated the forecasting performance of various commonly-

used ML techniques at varying lead times. Through our experimentation, we arrived at the 

conclusion that the random forest (RF) algorithm displayed the most potential for further 

development, given its high levels of accuracy, robustness, and ability to effectively handle 

complex, short datasets. As such, we identified RF as the most promising ML technique for 

operational hydrology and real-time applications. 

For the second aspect, we proposed FE strategies to exploit readily-available SPPs, as well as 

to inform ML models with process-based hydrological knowledge. We developed techniques to 

derive precipitation storm attributes, model runoff dynamics (including subflow modeling), and 

create specialized models for various precipitation conditions that trigger peak runoffs. Initially, 

we validated our approach in runoff and peak runoff modeling in current time, before transitioning 

to a forecasting problem (as discussed in Chapter Four). Our findings demonstrated that 

improving the spatial representation of precipitation using near-real-time SPPs data led to more 

accurate peak runoff forecasts. Furthermore, by developing specialized models based on 

precipitation attributes such as duration and areal extension, we were able to improve the 

efficiency of our models and identify precipitation-runoff scenarios that were previously difficult for 

the RF forecasting models to learn. 

Given the success of FE strategies for flash flood modeling, we employed the developed 

methodology for two case studies representative of macro- and meso-scale systems, i) a macro-

scale precipitation ungauged system, and ii) a meso-scale system with an existing yet insufficient 

ground-based precipitation data (Chapter Five). The first case study focused on event-based 
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forecasting for a macro-scale ungauged precipitation system. The use of FE not only improved 

the accuracy of peak runoff forecasting but also provided valuable insights into the hydrological 

behavior of the system. The second case study aimed to address operational hydrology problems 

for a meso-scale system with insufficient ground-based precipitation data. Continuous timeseries 

forecasting using the developed RF models was used to forecast both runoff and flash floods, 

demonstrating the versatility and effectiveness of the FE approach in various hydrological 

applications. 

In the case of the precipitation-ungauged macro-scale system, we found that the best forecasting 

results were obtained for peak runoff events triggered by short-duration precipitation events, 

which have simple infiltration- or saturation-excess runoff responses that can be effectively 

learned by the RF models (Chapter Five). Conversely, forecasting for extensive precipitation 

events with complex runoff responses was more challenging, as these events involve multiple soil 

types and land uses. For such macro-scale systems, we recommend using the developed 

methodology to create general or base models, while specialized forecasting would require a 

more detailed characterization of the system's biophysical characteristics to capture the dynamics 

of runoff across multiple response types. 

Whereas, in the case of the meso-scale system, our findings showed that the ML forecasting 

methodology, assisted by FE strategies, was effective in assimilating SPPs information, despite 

concerns about the quality of SPPs for short timescales (hourly). A key factor in achieving 

efficiency improvements was the separation of the total flow into baseflow and directflow 

components, as the developed ML models for baseflow and directflow had different levels of 

complexity according to soil dynamics. This demonstrates the importance of considering the 

hydrological processes underlying the data and tailoring the modeling approach accordingly, 

rather than relying solely on raw data inputs. 

The integration of ML techniques, SPPs, and FE strategies in peak runoff forecasting presents a 

significant advancement in the field of hydrology and has the potential to provide valuable 

information for decision-makers and hydrologists in complex mountain systems. These 

methodologies overcome the challenges associated with sparse monitoring networks and the 

limitations of traditional physically-based models. Our findings demonstrate that the proposed 

methodologies can be applied to other macro- and meso-scale systems with some modifications 

based on available data and system-specific characteristics. The development and evaluation of 
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peak runoff forecasting models in other systems can be facilitated using the methodologies 

presented in this study, which provides a significant contribution towards mitigating the 

devastating impacts of flash floods. 

One potential future direction of this work is to explore the derivation of new features to enhance 

the input space of ML models or to construct more complex models with specific physical 

conditions or restrictions. Terrain-based attributes, such as slope, soil types, land use, and the 

presence of depressions and floodplains, can be considered to calculate the water retention 

potential. Moreover, whenever sufficient data is available, physically-based hydrological modeling 

can be also a promising approach in complex hydrological systems (mountainous areas) [151]. 

Various studies adopt the Ensemble Kalman Filter and wavelet analysis to forecast precipitation, 

temperature, evaporation, and runoff [152], while others concentrate on generating multi-system, 

multi-member seasonal predictions of mountain snow depth and resources [153]. Additionally, 

hydro-meteorological ensemble prediction systems are employed for short, medium, and long-

term forecasting [154], [155], also exploiting both ground-based and remote sensing imagery of 

climatological and hydrological variables in these regions [156]. Physical models prove to be 

effective in flat terrains, however, in areas with sudden climate changes such as oceans and 

mountains, data-driven models, such as the LSTM model, exhibit higher accuracy in flat areas 

but lesser accuracy in mountainous or oceanic regions [157]. 

Another potential direction is to explore more advanced ML techniques, such as deep learning 

(DL). DL techniques, such as long short-term memory networks and convolutional neural 

networks, have shown superior forecasting performances compared to RF. Moreover, they have 

the potential to transfer parameters between systems, which can help to address one of the 

biggest issues of RF - the extrapolation of peak runoffs. However, the application of DL models 

requires considerable datasets (i.e., estimators and target variables), which may not be available 

for recently monitored systems. Nevertheless, DL models could be the future of forecasting 

models, and their development warrants further investigation. 

Finally, in addition to the development of flash flood forecasting models, it is crucial to consider 

the speed and effectiveness of communication to the public once a flood warning is triggered. 

Therefore, we recommend the development of a web portal and/or mobile applications to 

disseminate peak runoff and flash flood forecasts in a timely and effective manner. Such tools 

can enhance preparedness among the population and help authorities evaluate hazard risk. 
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Additionally, the development of an integrated action plan from a local and regional perspective 

can further mitigate the impact of flash floods. It is imperative to prioritize these developments 

alongside the advancement of forecasting models to ensure a comprehensive and effective 

approach to peak runoff management. 
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