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Abstract: 

Introduction 

Dental pulp fibroblasts (DPF) are the most abundant cell type in the dental pulp. 

They play pivotal roles; however, they are often mistaken to be involved only in the 

repair and maintenance of this connective tissue.  

Methods 

We used the search terms “pulp fibroblast,” “complement system proteins,” “pulp 

inflammation,” “angiogenesis,” and “dentin pulp regeneration” to identify articles from 

the PubMed and Scopus databases  

Results 

These sentinel cells produce all complement system proteins participating in defense 

processes, control of inflammation, and dentin-pulp regeneration; produce several 

proinflammatory cytokines and chemokines and express patternrecognition 

receptors, demonstrating their involvement in immunoregulatory mechanisms; 

express neuropeptides and their receptors, playing an important role in neurogenic 

inflammation and dental pulp wound healing; secrete angiogenic growth factors as 

well as neurotrophic proteins, essential for dentin-pulp regeneration; regulate 

neuronal plasticity processes; and can sense the external environment.  

Conclusion 

This review highlights that DPFs are more than mere passive cells in pulp biology 

and presents an integrative analysis of their roles and functions. 

Keywords: Dental pulp. Fibroblasts. Regenerative endodontics. Dental pulp 

disease. Complement system proteins 
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1. Introduction 

The dental pulp is a unique connective tissue containing fibers, cells, extracellular 
matrix, and a wide nerve and vascular plexus (1). The most studied cell populations 
of this tissue are the odontoblasts, representing the first line of defense against injury 
(2); dental pulp stem cells (DPSC), which have a high proliferative potential for 
selfrenewal and the ability to differentiate into classical mesodermal lineages (3); 
and dental pulp fibroblasts (DPF), which are the most abundant cells in the dental 
pulp (1,4). DPFs exhibit some singularities with respect to fibroblasts present in other 
connective tissues, such as the expression of tenascin, osteonectin, and 
tissuerelated extracellular matrix (ECM) proteins (5). The role of DPFs in the 
synthesis and replacement of collagen and other components of the ECM is well 
known (1); however, these cells reportedly have an important role in pulp function. 
Investigations show that DPFs produce all complement system proteins (6), 
indicating their participation in defense processes, control of inflammation, and 
dentin-pulp regeneration (4,7,8). These cells also produce several proinflammatory 
cytokines and chemokines (9–11) and express pattern-recognition receptors (PRRs) 
(12), which are involved in many immunoregulatory mechanisms and express some 
neuropeptides and their receptors (13,14), thus playing an important role in 
neurogenic inflammation. Another study has cited the role of pulp myofibroblasts 
(specialized fibroblasts) in dental pulp wound healing (15), and others have analyzed 
the role of DPFs in 3 neuronal plasticity processes (16–18), in sensing the external 
environment (19), and in the synthesis of angiogenic growth factors (20–24) and 
neurotrophic proteins (16,17). Figure 1 summarizes their pivotal aspects. 
 

 
Figure 1 A schematic representation of the leading roles of dental pulp fibroblasts 
(DPF) in pulp pathophysiology. Dental pulp fibroblasts (DPFs) participate in 
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extracellular matrix (ECM) remodeling through the synthesis of collagen and 
fibronectin and its degradation by matrix metalloproteinases (MMPs). In response to 
bacterial stimulation, DPFs express all complement proteins, including the 
membrane attack complex (MAC), allowing the lysis of cariogenic bacteria. 
Furthermore, these cells have the ability to secrete and respond to various cytokines. 
DPFs also express the NLRP3/caspase-1 inflammasome, generating the release of 
interleukin (IL)-β, the most potent proinflammatory cytokine. They express tolllike 
(TLR) and nucleotide-binding oligomerization domain (NOD) receptors, and thus 
recognize pathogen-associated molecular patterns (PAMPs) and regulate the 
expression of various proinflammatory mediators, through the recognition of PAMPs 
like lipoteichoic acid 4 (LTA) and lipopolysaccharides (LPS). In response to 
inflammatory mediators, DPFs secrete Substance P (SP) and express receptors for 
neuropeptides such as neurokinin-1 receptor (NK-1) and NPY Y1 receptor (NPY Y1), 
thus participating in neurogenic inflammation and dental pulp wound healing and 
amplifying the pulp immune response. DPFs contribute to dental nociception, by 
secretion of neural growth factor (NGF) that sensitizes afferent nerve fibers and 
express transient receptor potential channels (TRP) that are sensors of external 
environment. TRP channels could allow DPFs to perform ephaptic transmission, 
although this is yet to be elucidated. DPFs interact with macrophages and modulate 
their differentiation into M1 (proinflammatory) macrophages to control infection and 
M2 (antiinflammatory) to start pulp healing, demonstrating the active participation of 
DPFs in local immune response and inflammation. DPFs also actively participate in 
dentin-pulp regeneration through the secretion of growth factors such as 
transforming growth factor beta-1 (TGF-β1), basic fibroblast growth factor (FGF-2), 
vascular endothelial growth factor (VEGF), complement proteins (C3a and C5a), and 
NGF, allowing dental pulp stem migration and odontoblast-like differentiation. They 
also secrete angiogenic growth factors for pulp angiogenesis. DPFs secrete the 
brain-derived neurotrophic factor (BDNF) when C5a binds to their C5aR receptor, 
decreasing the expression of NGF, which increases in inflamed pulp tissue; BDNF 
decreases when C5a binds to the C5L2 receptor. Both, NGF and BDNF are essential 
for neuronal plasticity. Finally, DPFs participate in dental pulp wound healing and 
dentin-pulp regeneration by transdifferentiating into myofibroblasts; these latter cells 
facilitate the reorganization of the ECM in injured pulp and can differentiate into 
odontoblastlike cells, with the capacity to synthesize reparative dentin. The figure 
was created with BioRender. 
 
Notwithstanding the abovementioned investigations that describe many 
physiological and pathological functions of DPFs, to our knowledge, the present 5 
review is the first study to integrate all the roles of DPF that have been ascribed, until 
now, in a single review, including their potential clinical application in pulp therapy. 
This review presents an integrative analysis of the roles and functions of DPFs, 
highlighting that DPFs are not mere passive cells, as is often mistakenly assumed, 
but play a leading role in various functional and pathological situations. For this 
purpose, we searched the available literature in PubMed and Scopus databases to 
identify relevant articles published until June 30, 2021, using the search terms “pulp 
fibroblast,” “complement system proteins,” “pulp inflammation,” “angiogenesis,” and 
“dentin pulp regeneration.” In this study, we included only articles published in 
English. A manual search of the reference lists of the initially selected articles was 
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performed to complement the electronic search. We also examined endodontic 
journals for papers in press or with an early view. 

2. Fibroblasts: basic aspects and physiological roles 

  Fibroblasts are ubiquitous mesenchymal cells and one of the most abundant cell 
types present in the stroma of many tissues. They exhibit a spindle or stellate shape 
and regulate tissue homeostasis, scaffolding support, repair, and maintenance of 
connective tissue (25) through the synthesis of collagen and fibronectin, and 
degradation of the ECM by matrix metalloproteinases (MMP) (26). Moreover, 
fibroblasts also play significant physiological roles in innate immunity (27) and 
dentin-pulp complex regeneration through the secretion of growth factors 
(16,23,28,29). 6 The exact cell that gives rise to fibroblasts is unknown due to the 
lack of definitive cell surface markers (30,31), their cellular heterogeneity (32–34), 
and similarities with mesenchymal stem cells (MSCs) (35–37). It has been 
suggested that fibroblasts should be named MSCs based on the current criteria 
provided by the International Society for Cell Therapy (35,38). Both cells are 
described as plastic-adherent cells, with an almost identical proliferation potential 
(36,37,39,40) and are phenotypically indistinguishable in culture (36). Furthermore, 
both fibroblast and MSCs have similar immunomodulatory properties in vitro (36,41) 
and have the potential to differentiate into many cell types in vivo (42,43) and in vitro 
(39,41,42,44–51). Conversely, other studies report that fibroblasts lack this latter 
capacity (37,52,53). These contradictory results may be due to the presence of 
external factors such as the age of the donor (35,54), in vitro life of the cells (55), 
and the topographical differentiation of the fibroblast (56). It is speculated that MSCs 
are immature fibroblasts, and an aging-associated process distinguishes the two 
cells more than the differentiation process (35). Therefore, the distinction capacity 
between these two cells remains unclear (35,36,41).  

Although it has been stated that fibroblasts and MSCs express the same surface 
markers (36,37), some markers and genes have been found to allow their correct 
differentiation. CD 106 (39,57–59), CD 146 (57,59–63), ITGA11 (57,64), SSEA-4 
(57,65), GD-2 (57), Stro‐1 (66), CD 271 (66), CD 166 (57), and IGF-2 (57) are 
specific to MSCs, and CD 9 (57,58), CD 10 (52,57,67), and CD 26 (52,57) to 
fibroblasts. Therefore, although some surface markers have been used to identify 7 
fibroblasts in distinct tissues, when used alone or in combination, they do not reliably 
identify fibroblast subpopulations in all tissues (68). 

 Specifically, concerning DPF, fibroblast surface protein (FSP) staining analysis by 
immunofluorescence microscopy and flow cytometry has been used in in vitro 
experiments to properly characterize these cells by the explant outgrowth method 
(6,16,69–72). As for DPSCs, immunostaining with six stem-cell markers (STRO-1, 
CD 44, CD 90, CD 105, CD 146, and CD 166) has been used in cells obtained by 
STRO-1 magnetic cell sorting. The co-expression of these stem-cell markers and 
STRO-1 by sorted cells was clearly visible under fluorescence microscopy and flow 
cytometry, thus ensuring a high quality and purity of DPSCs obtained by this method 
(6).  
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In general, fibroblasts are a heterogeneous population, depending on the stage of 
development, anatomical sites, or the tissue microenvironment (36); different 
subtypes can be present within the same tissue (32,73). Differences in cell behaviors 
likely result from a combination of intrinsic and extrinsic factors, such as mechanical 
forces originating from gravity, blood flow, and body movement, which differ between 
different regions of the body (32,56). Unicellular technologies have studied the 
heterogeneity in fibroblasts, which accurately determine the differences in genes, 
gene expression profiles, and protein production within individual cells (74–77).  

A progressive decrease in fibroblasts is part of the pulp aging process (78). DPFs 
show great variation in proliferative activity, which cannot be explained by the age of 
the donor, the source, or the number of passages (73). Additionally, after injury, 
mechanical stress, or inflammation (15), fibroblasts can undergo a phenotypic 8 
transformation into cells that possess the features of fibroblasts with cytoskeletal 
characteristics of contractile smooth muscle cells. These specialized fibroblasts are 
known as myofibroblasts (79), which are regularly present in a few tissues (25). 
However, in injured tissues, such as the dental pulp, they synthesize abundant 
collagen to restore the damaged tissues (80).  

3. DPFs in innate immunity and inflammation 

 
 Fibroblasts act as sentinel cells in the connective tissues, producing inflammatory 
mediators in response to several microorganisms (81). These cells recognize 
pathogens, induce the recruitment of inflammatory cells, and express antimicrobial 
peptides, proinflammatory cytokines, chemokines, and growth factors, thus 
displaying immunological attributes that regulate the innate immune response 
(82,83). DPFs also exert these functions to maintain homeostasis in the pulp and 
support tissue repair and regeneration (83,84), as described in the following 
sections. However, no reports regarding the production of antimicrobial peptides by 
DPFs have yet been published, unlike fibroblasts in other tissues (85–87) and 
odontoblasts (88,89).  
 
3.1. DPFs and complement system 

The dentin-pulp complex defends itself against injury by generating inflammatory 
reactions and eliminating bacteria, which are considered the initial steps of tissue 
regeneration (84,90). Complements are a powerful innate immune response 
involved in initiating inflammation and its subsequent resolution (7,17,91). The liver 
is the primary origin of these proteins (92); however, poorly vascularized tissues, 9 
such as the dental pulp, are a possible extrahepatic source when there is tissue 
damage (6). Within the dental pulp, mechanical trauma (93), carious lesions (6,94), 
and restorative procedures activate complements (95) and initiate dentin-pulp 
regeneration. In this sense, DPFs constitutively express C1q and C7; however, after 
stimulation with lipoteichoic acid (LTA), which is used to simulate the presence of 
gram-positive bacteria in the pulp, these cells express all complement molecules, 
C1 to C9 (6), including the membrane attack complex (MAC) (90). The function and 
fixation of MAC are assumed to be similar in gram-negative bacteria (96).  

Complement proteins secreted by DPFs allow direct lysis of the pathogens through 
the formation of MAC, which is clearly visible after 30 min of coculture with cariogenic 
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bacteria (70). Furthermore, DPFs allow the release of proinflammatory mediators, 
recruitment of leukocytes to the site of inflammation, and modulation of their 
phagocytic activity by producing C5a and C3a (7,97). The opsonization of cariogenic 
bacteria stimulates phagocytosis through the expression of C3b (72). These steps 
inhibit bacterial progression through the dentin-pulp complex (98), and thus, DPFs 
provide powerful control of inflammation through local activation of the complement 
system (6). 

3.2. DPFs as producers and target cells of proinflammatory cytokines 

DPFs play an important role in local immune regulation by expressing various 
receptors for cytokines, such as interleukin-10 receptor (99), interleukin-17 receptor, 
and various pro-inflammatory cytokines (11), which regulate the intensity and 
duration of pulp and periapical inflammatory processes (99–101), such as CCL3, 10 
CXCL12 (10,11), interleukin (IL)-6 (9,83,102), IL-1β (103), IL-8 (83,104,105), 
CXCL10 (106), and CCL2 (78,107), in response to bacterial stimulation (11,107). 
However, other cytokines can also stimulate these cells (83,106,108–110), sensory 
neuropeptides (111), leptin (112), and dental materials (113), and thus produce 
cytokines/chemokines (111), MMPs (114–116), tissue inhibitor of 
metalloproteinase1 (116), colony-stimulating factor (110), and cyclooxygenase 2 
(COX-2) (100,117), which amplify the immune response (106,109). 
 
IL-1β is one of the most potent proinflammatory cytokines among various cytokines, 
and a multi-protein complex called NLRP3/caspase-1 inflammasome controls its 
release (87). This molecular platform boosts the innate immune response and 
regulates the adaptive immune response (118,119). In the dental pulp, DPFs 
express inflammasomes in response to bacteria and bacterial products (120–122) 
and get activated by lipopolysaccharides through a process involving the 
ATPactivated P2X7 receptor and reactive oxygen species (121,122). Therefore, 
inflammasome regulates the secretion and bioactivity of IL-1β, which is crucial for 
the immunological defense of the dentin-pulp complex (123,124). 

3.3. PRRs in DPFs 

DPFs express innate immune receptors such as PRRs (12) to recognize 
pathogenassociated molecular patterns (PAMPs) and damage-associated 
molecular patterns (124,125). PRRs are toll-like receptors (TLRs) bound to the cell 
membrane (125,126) and nucleotide-binding oligomerization domain (NOD), which 
are implicated in the intracellular recognition of bacterial components (125,127). 
DPFs constitutively 11 express TLR2 (12,27), TLR3 (27), TLR4 (12,27), and TLR 5 
(128) in response to LTA, viral double-stranded RNA, lipopolysaccharides, and 
flagellin, respectively, and NOD1 and NOD2 (12). These receptors recognize 
invading microorganisms (109) and regulate the expression of various 
proinflammatory mediators (12,27,128,129). TLR2 acts synergistically with NOD2 
and the histamine-1 receptor to induce an inflammatory response during microbial 
infection (12,128). All these functions actively show that DPFs recognize invading 
microorganisms and initiate immune/inflammatory events in the pulp (128). 

3.4. DPFs and neurogenic inflammation 
DPFs are known to express neuropeptides such as substance P (SP) and its 
neurokinin-1 receptor (NK-1) (14). Similarly, these cells respond to neuropeptide Y 
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(NPY) since they express its receptor NPY Y1; however, unlike SP, these cells do 
not synthesize NPY (13). The expression of SP, NK-1, and NPYY1 increases in 
response to inflammatory mediators (13,14); therefore, their presence is marked in 
inflamed pulps compared to healthy pulps (130,131). SP is a pro-inflammatory 
neuropeptide that induces the release of inflammatory mediators that cause local 
vasodilatation, increase vascular permeability and local blood flow, and increase 
tissue pressure (132,133). In contrast, NPY plays an inhibitory role in neurogenic 
inflammation, antagonizing the effects of SP to avoid excessive inflammation in 
tissues (13). In addition, SP, neurokinin A, and calcitonin gene-related peptide 
(CGRP) induce pulp fibroblast growth in vitro (134). All these data confirm the role 
of DPFs as producers and target cells of neuropeptides, which play an important role 
in inflammation and wound healing after pulpal injury (131). 

 

3.5. DPFs and inflammation resolution 

Recently, a notable investigation using an elegant model (69) proposed that, during 
the carious process, DPFs subjected to cariogenic bacteria are located in the central 
inflammatory zone and stimulate M1 macrophage differentiation (with high 
phagocytic capacity), whereas DPFs located in the peripheral inflammatory zone, 
which is not in direct contact with bacteria, induce M2 macrophage differentiation, 
which has anti-inflammatory activity and thus limits pulp tissue damage. These 
results contradict the long-believed notion that macrophages are strictly of the M1 
phenotype during the inflammatory process and strictly of the M2 phenotype during 
the healing process. Nevertheless, a mixed M1/M2 population was present in both 
inflammatory zones, indicating that phenotypic plasticity is essential to regulate the 
balance of pulp inflammation and repair to avoid cell damage and chronic 
inflammation (69). This study is the only one that shows the indirect antiinflammatory 
role of DPFs in the context of dental pulp inflammation, which is significant because 
this cell is known to trigger the production of pro-inflammatory mediators. 

The interaction between fibroblasts and macrophages during inflammation and 
resolution is well recognized (135). Fibroblasts and macrophages are present in all 
tissues, and recent evidence supports that these cells maintain direct communication 
to influence the tissue microenvironment and thus affect disease onset, progression, 
disease outcomes, and resolution (136). Molecular programs linking these cell types 
could help understand their interactions and regulatory networks, for example, in 
pulp disease. One of these programs is The Atlas of Inflammation Resolution (137), 
13 a platform that covers over 30 highly interconnected submaps associated with 
acute inflammation onset, transition, resolution, and homeostasis at the molecular 
level, providing the user with an interactive interface to map time-series omics data. 

 

4. DPFs in dentin-pulp regeneration 
 

Dental pulp has great regenerative capacity due to the release of growth factors after 
the acid dissolution of carious dentin (21,51,138). Nonetheless, in germ-free 
animals, it has been observed that after surgical pulp amputation, the formation of 
reparative dentin can occur regardless of the growth factors released from dentin 
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(139), indicating that dental pulp represents another source of signals that induce 
regeneration of the dentin-pulp complex following traumatic injury (20,140,141). 
DPFs secrete various growth factors involved in the recruitment and differentiation 
of stem cells into odontoblast-like cells for reparative dentin synthesis (28,29), 
neoangiogenesis (23), and nerve regeneration (17). In addition, DPFs can form 
crystals with an X-ray diffractometry pattern similar to that of hydroxyapatite, which 
demonstrates that fibroblasts themselves can produce mineralized nodules as a 
defense mechanism (142). Further, DPFs can play important roles in pulp-dentin 
complex regeneration (90), as emphasized in the following subsections. 

4.1. Stem cell recruitment and differentiation 

Odontoblasts are considered postmitotic cells (143) with no potential for selfrenewal. 
Severe carious lesions, traumatic injuries, or aggressive restorative procedures can 
cause irreversible damage, such as apoptosis (144). For repair of the pulp-dentin 
complex, it is necessary to trigger signals that induce migration and differentiation of 
DPSCs into odontoblasts-like cells, which can synthesize reparative dentin (145). In 
this regard, DPFs secrete transforming growth factor beta-1 (TGFẞ1) (29), basic 
fibroblast growth factor (bFGF or FGF-2) (20), vascular endothelial growth factor 
(VEGF) (146), and complement proteins such as C3a and C5a, when LTA stimulates 
fibroblasts (6). These factors are important promoters of DPSC migration (147,148) 
and, TGF-ẞ1 (138), VEGF (149), FGF-2 (28), and neural growth factor (NGF) (150) 
participate in the differentiation of DPSCs into odontoblast-like cells, which generate 
reparative dentin (149). 

 

These factors act in the repair process through their actions. For instance, TGF-ẞ1 
increases collagen secretion by DPFs (151), plays a role in the differentiation and 
activation of myofibroblasts (80), and induces odontoblast-like cell differentiation and 
mineralization when capping materials such as calcium hydroxide, biodentine, or 
mineral trioxide aggregate (MTA) are applied directly to the dental pulp (152–154). 
VEGF promotes stem cells from exfoliated deciduous teeth to differentiate into 
functional odontoblasts, which generate tubular dentin, and endothelial cells with 
angiogenic capacity (149), whereas FGF-2 induces neovascularization (23), 
stimulates proliferation of fibroblasts in the proximity of the wound, and promotes 
hyaluronan secretion by pulp cells, which influences tissue repair by promoting 
antiinflammatory effects (155). 

 

Inflammatory reactions are a prerequisite for the migration of progenitor cells 
involved in pulp repair (3). An in vitro model of inflammation induced by nemosis 
verified this (156,157). In nemosis, normal fibroblasts are induced to form groups, 
called spheroids, which do not grow but undergo cellular activation and simultaneous 
15 programmed cell death (158,159); it occurs in DPFs in vitro and could occur in 
vivo during pulp inflammation (156,160). Nemotic fibroblasts release significant 
amounts of proinflammatory cytokines, chemokines (156), COX-2 (156,157), VEGF 
(156), and hepatocyte growth factor (160), triggered through direct cell-to-cell 
adhesion rather than external stimuli (158,160). Thus, under experimental 
conditions, nemotic DPFs could be a source of chemokines and cytokines that 
induce stem cell migration (160) and proangiogenic factors that induce angiogenic 
responses from endothelial cells during tissue repair (161). 
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4.2. Role of DPFs in angiogenesis 

Angiogenesis is an extremely complex process that is essential to provide nutrients 
and oxygen during the healing process and for the migration of progenitor cells to 
the injury site (162). This process occurs in physiological conditions, such as 
development and wound healing (163), and pathological conditions, such as 
irreversible pulpitis (146). DPFs play a pivotal role in dental pulp angiogenesis 
because they produce and release growth factors, such as VEGF (20,146), FGF-2 
(20,24), TGF-ẞ1 (164), platelet-derived growth factor (PDGF) (22,23), angiogenin, 
angiopoietin-2 (ANG-2), epidermal growth factor (EGF), leptin, heparin-binding EGF 
(HB-EGF), hepatocyte growth factor, and placental growth factor (22). 
 
The most potent and abundant factors in the revascularization and wound healing 
process are VEFG and FGF-2 (20). However, an in vitro study showed that ANG-2, 
PDGF, and HB-EGF were higher than the VEFG and FGF-2 levels, suggesting 
potential physiological roles in dental pulp (22). It is important to note that 16 
neuropeptides such as NPY, vasoactive intestinal peptide, CGRP, and SP can 
regulate the release of all angiogenic factors from DPF (22). 

4.3. Complement system and regeneration 

The complement system is widely known for its role in immune surveillance and 
inflammation (90); however, it also participates in pulp regeneration (6,148). As 
mentioned earlier, despite being non-immune and non-hepatic cells, DPFs can 
efficiently produce and activate their own complement components (6). C5a, 
secreted by DPFs, binds to progenitor pulp cells, which express C5aR(6). This 
interaction induces the migration of these cells to the site of injury in a 
gradientdependent manner (91), thus allowing the synthesis of reparative dentin, 
which is an essential step in the regeneration of the dentin-pulp complex (91,94). In 
contrast, DPFs express the C3aR receptor; the interaction between C3a and C3aR 
is involved in the proliferation and recruitment of DPFs following the C3a gradient 
(71). Furthermore, similar to that with C5a, DPSCs are mobilized and proliferate 
when subjected to a C3a gradient (148). Thus, it is evident that the complement 
molecules secreted by DPFs orchestrate the processes necessary for pulp 
regeneration. 

4.4. DPFs in nerve sprouting, regeneration, and nociception 

DPFs express the C5aR receptor for C5a, both in vivo and in vitro (16), being the 
major cell type to do so in the inflamed pulp of carious teeth (165). The interaction 
between C5a and its receptor results in the upregulation of brain-derived 
neurotrophic factor (BDNF) in DPFs (17), which acts as a negative regulator of NGF, 
also expressed by this cell (16). The secretion of these neurotrophins by LTA- 17 
stimulated pulp fibroblasts promotes prominent neurite outgrowth toward the site of 
carious injury (16,17), which is required for pulp integrity and sensory function in 
dentin-pulp regeneration (18). In contrast, C5L2, another C5aR, is considered a 
nonfunctional receptor (166) that is co-expressed with C5aR under LTA stimulation 
(17,165); however, it represses BDNF secretion by human DPFs (165). The 
silencing of C5L2 dramatically increases the number of neurites at the injured site 
(167). 
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Transient receptor potential channels (TRP) are sensors for environmental stimuli 
and transduce various external stimuli into electrical signals that are ultimately 
perceived as pain (19). In dental pulp, odontoblasts express certain TRP channels 
that act as mechanoreceptors (168). Similar to what occurs in odontoblasts, DPFs 
express TRPs such as TRPA1 (19), TRPV1 (169), transient receptor potential 
melastatin 8 (TRPM8) (19), and TRPM2 (170). TRPA1 is activated by cold (19) and 
chemical irritants (171–173), TRPV1 by capsaicin, noxious heat, and acid conditions 
(169), TRPM8 by cold temperatures (174), and TRPM2 by oxidative stress (175). All 
these receptors demonstrate the ability of DPFs as sensing cells for noxious stimuli 
in the dental pulp (19). In contrast, the communication between odontoblasts and 
neurons could be an ephaptic transmission, that is, ion fields generated by 
odontoblasts may alter the excitability of nearby neurons (176). DPFs could also 
perform this transmission if we take into account that TRP channels respond to 
stimuli by the activation of calcium fluxes (177). In non-neural tissues, these 
channels act in concert with neurons to mediate pain and inflammation (178). 
 
Further, TRP channels potentially participate in pulp inflammation. The binding of 
capsaicin to TRPV1 induces the production of IL-6 in DPFs, which contributes to 
pulp inflammation (169). Similarly, TRPA1 and TRPM8 mediate neurogenic 
inflammation by releasing neuropeptides and inflammatory cytokines in the airway 
cells (172,179). In the case of the dental pulp, given that DPFs can recognize and 
synthesize neuropeptides (13,14) and express TRP, it is reasonable to speculate 
that the activation of TRPA1 in these cells could modulate neurogenic pulp 
inflammation. However, further studies are required to elucidate this process (19). 

4.5. Myofibroblast in pulp regeneration 

As mentioned previously, myofibroblasts are specialized contractile fibroblasts. They 
originate from various precursors, including resident fibroblasts, pericytes, vascular 
smooth muscle cells, epithelial to mesenchymal transition cells, endothelial to 
mesenchymal transition cells (180), and fibrocytes (181). In the dental pulp, 
myofibroblasts can originate from MSCs (182) or perivascular mesenchymal stem 
cells expressing Gli1 (15). Myofibroblasts are of two types: (i) proto-myofibroblasts, 
which are cellular intermediates between fibroblasts and myofibroblasts and contain 
actin microfilament bundles (stress fibers) but do not possess α-SMA-positive 
microfilament bundles; and (ii) myofibroblasts, which contain both bundles (183). 
The presence of α-SMA confers this cell with a high contractile capacity (184) and, 
therefore, is a defining property that helps distinguish proto-myofibroblasts from 
myofibroblasts and "normal" fibroblasts (183). 
 
Myofibroblast activation is based on a positive feedback control, in which stress 
levels or mechanical tension are key stimuli for differentiation into 
protomyofibroblasts (185). In addition, the degradation of fibrillin-1 is necessary for 
myofibroblast differentiation in the dental pulp wound healing (186). Fibrillin-1 is a 
structural component of extracellular microfibrils that contributes to the maintenance 
of connective tissue architecture (187) but disappears during the healing of dental 
pulp wounds (186), which allows the release and activation of TGF-ẞ1 (188), the 
most important cytokine in the transdifferentiation of fibroblasts into α-SMA-positive 
myofibroblasts (80,189). 
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Myofibroblasts are key players in physiological and pathological tissue remodeling. 
They generate tension during normal wound healing due to intracytoplasmic stress 
fibers, deposit and remodel the ECM (183), and secrete proangiogenic factors (190). 
In the dental pulp, myofibroblasts have been temporarily characterized in rat molars 
after pulpotomy with MTA, migrating to sites of injury in response to released 
chemokines (15). Pulp myofibroblasts were detected at the wound site on day 5 and 
disappeared on day 14 after the dentin bridge formation was complete. Therefore, 
myofibroblasts may facilitate the reorganization of the ECM in injured pulp (15). 
 
In addition, some myofibroblasts could be the source of newly differentiated 
odontoblast-like cells with the capacity to synthesize reparative dentin (15,191). 
Therefore, these cells participate in dental pulp wound healing. After its regenerative 
action, myofibroblasts disappear mainly through apoptosis (192) or may even 
undergo dedifferentiation or senescence (193). However, when these mechanisms 
are delayed, myofibroblast activity becomes excessive and persistent, causing 20 
fibrosis (194). The latter is not precise in dental pulp, rather it involves pulp aging 
with a decrease in cell density and accumulation of fibrous tissue from the connective 
tissue sheaths of blood vessels and nerves (78,195). In these scenarios, fibroblasts 
do not show signs of high metabolic activity (196). 
 

5. DPFs as therapeutic agents 
 

Cell cultures have been extensively used to evaluate dental materials (197–199). 
Pulp cells, especially human (200–202) and animal (203,204) fibroblasts, are the 
models of choice for biocompatibility testing of dental materials, the cytotoxic effects 
of which directly affect the dental pulp (205). Furthermore, DPFs are highly sensitive 
to toxic substances and are therefore ideal to elucidate the possible adverse effects 
of restorative (206–208), endodontic (209–211), and novel therapeutic materials 
(212–215). It must be borne in mind that for cell cultures to be considered an 
acceptable model, it is necessary to demonstrate that the response of cells to the 
tested materials can be reproduced, that pulp cell cultures can be easily established, 
and that cell lines can be standardized (205). 
 
The chemical adhesion of epoxy resins to the tooth structure is produced by covalent 
bonds between the open epoxy groups and the exposed amino groups in the 
collagen network of the dentin. This is one of the reasons for the good dislodgment 
Fibroblasts are difficult to cultivate (205) and show great variation in proliferative 
activity, which the source, age of the donor, or the number of passages cannot 
explain (73). They also have a low long-term survival rate (216), which may be 
related to the age of the patient (73). These drawbacks can influence the 
reproducibility of the results among researchers, despite the use of identical culture 
techniques (73,217). Therefore, the data obtained from in vitro studies must be 
interpreted with caution. However, these cells remain representative of the dental 21 
pulp cell cultures (202,218), and therefore, the need for greater uniformity in the 
establishment of these cells and their use in experiments is evident (73).  
 
Further, DPFs can recognize warning signs and initiate inflammatory responses 
(122). Inflammation can be controlled at the point of initiation and resolution by 
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regulating fibroblasts (160). Therefore, these cells are potentially important targets 
for future anti-inflammatory therapies in pulp inflammation (219) and regeneration of 
the dentin-pulp complex (4). 
 

6. Conclusions and future perspectives 

 

Overall, considering the pivotal role of DPFs in health and disease, as well as their 

potential therapeutic application in regenerative endodontics, it is clear that this cell 

type is not a mere bystander in the pulp-dentin complex. In the near future, molecular 

programs (137,220), proteomic profiling (221), and artificial intelligence (222), owing 

to their unique characteristics and performance, could help confirm known findings 

and unveil novel functions of DPFs, further establishing their status as star cells of 

the pulp tissue. These approaches could also be an important milestone in 

developing fibroblast-based therapies. 
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