Corrigendum

María E. Peñañueloa⁎, José M. Matesanzb, Eulalia Vanegasa, Daniel Bermejoa, Rosa Mosteob, María P. Ormada

a Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
b Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), Department of Chemical Engineering and Environmental Technology, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain

The authors regret that the printed version of the above article contained a number of errors. The correct and final version follows. The authors would like to apologise for any inconvenience caused.

Table 1
List of equilibrium and kinetic models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium models</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Langmuir | \[
\frac{C_e}{q_e} = \frac{C_i}{q_m} + \frac{1}{R_L K_L} C_i
\] | \((R_L = 0), \text{ favorable (}0 < R_L < 1\), linear (}R_L = 1\) or unfavorable (}R_L > 1\) | (Food and Hammed, 2010; Xiao et al., 2021) |
| Freundlich | \[
\log q_e = \log K_F + \frac{1}{n} \log C_i
\] | | (Food and Hammed, 2010) |
| Brunauer-Emmet-Teller (BET) | \[
q_e = \frac{q_{S_{BET}} C_e}{C_{S_{BET}} - C_e}
\] | | (Ebadi et al., 2009) |
| Kinetic models | | | |
| Pseudo first order | \[
\ln(q_e - q_t) = \ln(q_e - q_i) - k_1 t
\] | | (Yuh-Shan, 2004) |
| Pseudo second order | \[
\frac{C_t}{q_t} = \frac{1}{K_2 q_e} + \frac{1}{t}
\] | | (Ho and McKay, 1999) |
| Weber and Morris | \[
q_t = K_d t^{1/2} + C
\] | \(R_i\) is the ratio of the initial adsorption amount (C) to the final adsorption amount (\(q_{ref}\)) | (Wu et al., 2009) |

a \(q_{ref}\) (mg g\(^{-1}\)) is the solid phase concentration at time \(t = t_{ref}\) for an adsorption system; \(t_{ref}\) is the longest time in the adsorption process.

Table 5
Kinetic parameters of CPX adsorption on SB and PAC.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Experimental</th>
<th>Pseudo-first order</th>
<th>Weber and Morris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_e) (mg g(^{-1}))</td>
<td>(q_e) (mg g(^{-1}))</td>
<td>(K_i) (min(^{-1}))</td>
</tr>
<tr>
<td>SB</td>
<td>5.72</td>
<td>5.73</td>
<td>0.046</td>
</tr>
<tr>
<td>PAC</td>
<td>50.12</td>
<td>50.0</td>
<td>0.083</td>
</tr>
</tbody>
</table>

http://dx.doi.org/10.1016/j.scitotenv.2022.154309
0048-9697/© 2022 Published by Elsevier B.V.
Fig. S2. Pseudo-first-order kinetic plots for the adsorption of CPX on SB and PAC (CPX: 20 mg L$^{-1}$, 30 °C, PAC: 0.3 g L$^{-1}$; SB: 3 g L$^{-1}$).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.