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Epidemics are complex dynamical processes that are difficult tomodel. As revealed by the SARS-CoV-2pandemic,
the social behavior and policy decisions contribute to the rapidly changing behavior of the virus' spread during
outbreaks and recessions. In practice, reliable forecasting estimations are needed, especially during early conta-
gion stages when knowledge and data are insipient. When stochastic models are used to address the problem, it
is necessary to consider new modeling strategies. Such strategies should aim to predict the different contagious
phases and fast changes between recessions and outbreaks. At the same time, it is desirable to take advantage of
existingmodeling frameworks, knowledge and tools. In that line,we takeAutoregressivemodelswith exogenous
variables (ARX) and Vector autoregressive (VAR) techniques as a basis. We then consider analogies with epi-
demic's differential equations to define the structure of themodels. To predict recessions and outbreaks, the pos-
sibility of updating the model's parameters and stochastic structures is considered, providing non-stationarity
properties and flexibility for accommodating the incoming data to the models. The Generalized-Random-Walk
(GRW) and the State-Dependent-Parameter (SDP) techniques shape the parameters' variability. The stochastic
structures are identified following the Akaike (AIC) criterion. The models use the daily rates of infected, death,
and healed individuals, which are themost common and accurate data retrieved in the early stages. Additionally,
different experiments aim to explore the individual and complementary role of these variables. The results show
that although both the ARX-based and VAR-based techniques have good statistical accuracy for seven-day ahead
predictions, some ARXmodels can anticipate outbreaks and recessions.We argue that short-time predictions for
complex problems could be attained through stochastic models that mimic the fundamentals of dynamic equa-
tions, updating their parameters and structures according to incoming data.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Complex dynamical systems are commonly described by a set of dif-
ferential equations containing the phenomenon's qualitative features
[1]. However, while the processes-based models provide essential in-
sights into the dynamics and non-linear interactions involved in com-
plex problems, for some phenomena, the quantity and nature of such
interacting factors could significantly complexify the phenomenon's
evolution. We are especially interested in cases for which rapid
ering, University of Cuenca, Av.

Mendoza).
variations might occur. This is likely to happen when the phenomenon
is sensitive to highly volatile factors that are prone to fast changes in
their states, which makes analysis and prediction challenging [2].

A phenomenon of the kind described above is the case of epidemics'
spread. Systems of ordinary differential equations describing the evolu-
tion of contagious diseases have been available for a while and still have
a great scientific interest [3–5]. The solutions of these deterministic
equations provide information about the epidemic advance and its
coarse-grained features [6]. An interesting example is provided by [7],
who successfully applied a set of ordinary differential equations that
consider the effect of asymptomatic patients over the SARS-CoV-2
virus spread [8,9]. However, the COVD-19 pandemic shows us that so-
cial behavior and policy decisions could cause serious discrepancies be-
tween deterministic models and observations (e.g., [10–18]).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.112097&domain=pdf
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The COVID-19 pandemic has involved severe human health, social
and economic problems. Moreover, during the first months of the
virus's spread, the consequences were catastrophic, collapsing the
health systems in several places, partly due to the lack of predictive as-
sessments [19,20]. Alternatives were presented for this complex task,
such as, for example, the approach proposed by [21], which uses fractal
theory combined with fuzzy logic for time series forecasting. Also, [22,
23] have performed spatial analysis and classifications of the contagious
dynamics. However, in line with [24], the efforts should continue, and
they should tackle short and long time series predictions, as well as spa-
tial analysis to effectively and objectively inform decision-makers about
policies and coordination strategies.

Apart from being complex, pandemics are of serious risk at their be-
ginning, thus limiting the time for sophisticated applications or the de-
velopment of deterministic theories. Therefore, it is desirable to use
existing knowledge and modeling frameworks to deal with the prob-
lem.

Although originated in a different context, an example of an applied
technique that uses an existing framework in an innovative fashion is
the “Forecasting at scale” approach proposed by [25–28]. This technique
is devised as a flexible tool working in a generalmathematical structure,
capable of identifying changing points during the training phase for in-
ferring future curve inflections. Other alternatives are, for instance, the
well-known Neural Networks, with interesting applications such as
the one proposed by Melin et al. [23,29], who combined it with fuzzy
logic to predict the virus spread in Mexico, or the approach presented
by Namasudra et al. [30], who applied nonlinear neural networks.

As a motivation here, we apply the “Forecasting at scale” technique
and the Autoregressive Neural Networks (NNA) for the forecasting of
the number of infections variable (as indicated in Fig. 1) in COVID-19
pandemics. Both techniques are implemented as R-packages with the
names of “nnetar” and “Prophet” [25,31]. We performed sequential
forecasting tasks for several periods of seven days (i.e., seven-day
ahead forecasting) using the COVID-19 data sets of Iraq and Iran,
which show pronounced recessions and outbreaks in their curves, mak-
ing them challenging for prediction. Each sequential forecasting was
attained by calibrated models using the complete set of past observa-
tions relative to the forecasted period. This entails that both the Prophet
and the ANN parameters are re-estimated for each forecasted period as
more data were progressively integrated into the observations set for
Fig. 1. SARS-CoV-2 contagious curves for Iraq and Iran. Dotted lines identify seven-days per
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the training task. The forecasting results in (Fig. 1) evidences the diffi-
culty in anticipating recessions and outbreaks.

Due to the complexity of predicting COVID-19 cases, the need for
testing different stochastic strategies is suggested [32]. Nonetheless,
considering the unusual statistical characteristics of a virus' spread,
such as the fact that it follows fat-tail distributions that limit the predic-
tion by probabilistic approaches [33], these stochastic models must
scape the conventional applications as mentioned by Santosh [34]. In
this context, we regard a strategy as unconventional if it relies, at least
partly, on the possibility of combining existing knowledge and tools in
an innovative manner. The continuous development of these strategies
will facilitate fast predictive implementations in future pandemics.
Nonetheless, two questions arise before devising such innovations:
1) How to deal with the complex changing conditions of the problem?
and 2) When using stochastic approaches, which should be the under-
lying theory constraining the models?

Regarding the first question, it may be that fast fluctuations of the
phenomenon (such as the triggering of outbreaks and sudden reces-
sions) depend on some natural states of the contagious curves or de-
pend significantly on the surrounding conditions in time. Thus, the
parameters of any model for the forecasting task should be determined
to a great degree by the information closer to the forecast time. For cap-
turing the complex changing conditions, the parameters should update
their values progressively. Moreover, the stochastic structures them-
selves should be updated. As a consequence, the simultaneous updating
of both the parameters and stochastic structures should provide the
modeling strategy with inherent non-stationary features and greater
flexibility for accommodating the incoming data and training it for
short-term forecasting tasks. Examples of techniques dealingwith shap-
ing the models' parameters in time, or making them dependent on
states, are the well-known Generalized-random-walk (GRW) and the
State-dependent parameters (SDP) theories.

Regarding the second question, we choose to frame the stochastic
structures considering the governing ordinary differential equations of
epidemics (in this case, the Susceptible-Infected-Recovered-Deceased
SIRD equations). The main idea is to constrain these structures so that
they are not entirely oblivious of conceptual or dynamical consider-
ations. The aforementioned pursues, in some sense, the Data-based-
modeling's (DBM) philosophy, which in many cases reached high fore-
casting performances, partly because they are linked to differential
iods. Dashes lines are forecasted resulted. Orange for ANN and grey for Prophet model.
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equations mechanisms (please refer to [35] book and the examples
given therein).

Autoregressions with exogenous variables (ARX) and Vector
autoregressions (VAR) are useful stochastic techniques because their
structures could be devised to incorporate the form of the differential
equations. More precisely, some the SIRD equations are considered to
some extent in order to define the structure of the models proposed
here [35–38]. Furthermore, the GRW and SDP techniques are merged
with the ARX into the Recursive-time series theory, as detailed in
Young [35], and implemented in the Matlab package CAPTAIN (which
is freely available in http://wp.lancs.ac.uk/captaintoolbox/). It is worth
mentioning that the CAPTAIN tool does not provide VAR models. How-
ever, under certain assumptions (detailed later in this document), the
GRW can be merged with VAR techniques using the available
CAPTAIN options.

In addition, some important considerations for the proposed meth-
odology are the following:

1) Since the CAPTAIN tools enables different GRW options – such as
Random-Walk (RW), Integrated-Random Walk (IRW) – each ARX-
based andVAR-basedmodelwill be used considering several combi-
nations of the GRW options.

2) The stochastic structures are analogous to the differential equations
and they use the daily rate of deaths and healings as exogenous var-
iables handling the number of infections curve in the ARXmodel. For
the VAR model, the three variables are treated as endogenous vari-
ables.

3) We restrict the prediction period to a window of seven days in the
future, motivated by the time-average period for incubation of the
virus into the human body [39].

4) We hypothesize that the exogenous variables could be sensitive to
spread's changes in the previous days (seven days), carrying with
them implicit information of recessions and outbreaks in advance.
To test this hypothesis and at the same time to unveil the role that
different variables have on the problem, we conducted an experi-
ment through the exploration of different model types, which are.
a) ARXmodels considering one and two lagged exogenous variables.
b) Different VAR models' combinations between the endogenous
variables.

In summary, we propose a novel modeling strategy for the complex
COVID-19 forecasting task based on existing tools and knowledge. The
stochastic models are based on analogies to the epidemic's differential
equations. Moreover, they simultaneously perform the updating of
their parameters and structures for fitting the incoming data. In addi-
tion, we explore different ARX and VAR model configurations with dif-
ferent GRW techniques to unveil the usefulness and roles that the
variables have on the anticipation of outbreaks and recessions. To the
authors' knowledge, all this is a non-conventional strategy, which
takes advantage and adapts the existing knowledge and tools to the
problem of forecasting a complex phenomenon. This systematic model-
ing approachmight support practical applications and decisionmaking,
especially when knowledge and data are insipient during the early con-
tagion stages. Furthermore, the method could help forecast other com-
plex problems.

2. Materials

2.1. Data

We used daily data retrieved by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University (https://github.com/
CSSEGISandData/COVID-19). From all the collected time-series infor-
mation, our main interest lies in three different data sets:

a) Accumulated infections (Ia): the daily incremental number of
confirmed diagnosed individuals with the virus
3

b) Accumulated recoveries (H) and deaths (D): the daily incremental
number of healed and dead victims of the virus

c) Infection-curve (I): The infected individuals calculated by
subtracting H and D from the Ia, for each i-th day.

Since the (I) data-set describes the change of infections through time
(here referred to as the epidemic-curve), the modeling process will be
focused on emulating this variable. The (H) and (D) data-sets will play
the role of the exogenous variables in the ARX models and endogenous
variables in the VAR techniques. The Ia information will be used for
estimating non-linear functions in the modeling process, as explained
in Section 3.4.

Data from Iraq, Iran (Fig. 1) show interesting dynamics in the conta-
gious evolution, which are challenging to be emulated, offering the op-
portunity for evaluating differentmodels' abilities. Fig. 1 shows the daily
infection curves and accumulated infections, recoveries, and deaths of
Iraq and Iran populations. Although in different scales in the number
of affections, both curves present the typical growing phases and de-
scending parts probably related to the first trigger on the number of in-
fections and the posterior restrictive measures for alleviating the
conditions. Interestingly, new outbreaks in both curves are present
after the descending phase. These rapidly changing conditions make
the forecasting's task a challenge, whichmotivates the experiments car-
ried out in this work.

3. Methods

3.1. The SIRD model

The Susceptible-Infected-Recovered-Deceased (SIRD) model is fre-
quently used for modeling epidemics [3–5]. The model follows the
well-known low-mass-action principle for describing a dynamical inter-
action between the four different compartments in a system of ordinary
differential equations.

_S tð Þ ¼ −β
I tð ÞS tð Þ

N
; S 0ð Þ ¼ So ð1aÞ

_I tð Þ ¼ β
I tð ÞS tð Þ

N
−γI tð Þ−μI tð Þ ; I 0ð Þ ¼ Io ð1bÞ

_H tð Þ ¼ γI tð Þ ; H 0ð Þ ¼ Ho ð1cÞ

_D tð Þ ¼ μI tð Þ ; D 0ð Þ ¼ Do ð1dÞ

The (N) denotes the total population of individuals involved in the
process, while (S), (I) (H), and (D) indicates the susceptible, infected,
healed, and dead individuals with their respective initial conditions
(So, Io, Ho, Do). The β, γ, and μ are the rates of infection, healings, and
deaths, respectively estimated from data. The healed (H) and deaths
(D) can be aggregated into a single variableR(t) = H(t) + D(t); where
(R) denotes the removed cases from the population.

The model assumes a constant balance in the flux of individuals
through the compartmentsS(t) + I(t) + R(t) = N. The latter is proper
for epidemics with faster time evolution than the balance between
birth and death rates (vital dynamics process). Since the transmission
speed of the SARS-CoV-2 virus is highly similar to its predecessors
(SARS-CoV and MERS-CoV) [40,41], the vital-dynamics process could
be omitted without significant detriment. The model also assumes
that the removed cases (R) do not interact with the remaining suscepti-
ble (S) population. This property is directly related to the acquired im-
munity of recovered individuals (at least for a period larger than our
short-term forecasting experiment), protecting them from new conta-
gious and limiting the spread of the virus, as has been argued for the
SARS-CoV-2 case [42].

The assumptions made by the SIRD justify the study of the SARS-
CoV-2 contagious dynamics by analyzing the SIRD mathematical

http://wp.lancs.ac.uk/captaintoolbox/
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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properties and solutions [43–48]. However, rather than solving the set
of differential equations directly, we use them as theoretical support.
Thus, we build a restated mathematical expression, which is more con-
venient here, as detailed below.

When its equivalent balance replaces the component of susceptible
individualsS(t) = N − I(t) − R(t), and the Eqs. (1b), (1c), and (1d)
are combined in a single mathematical form, we obtain the Eq. (2a).

I tð Þ ¼ a tð ÞI tð Þ−R tð Þ; with a tð Þ ¼ β N− I tð Þ þ R tð Þ½ �f g=N ð2aÞ

This expression indicates that the rate of change of infections (I) in
an instant (t) is proportional to the present quantity of infected individ-
uals (I), minus the rate of change of the total removed cases ( _R). It is
worth noticing that (a) is considered a non-stationary parameter, syn-
thesizing the β, I, R, and N variability.

Eq. (2a) can be reformulated in a transfer function form by introduc-
ing the differential operator (s) and the auxiliary variable (b) (see
Eq. (2b)).

I tð Þ ¼ −
b tð Þ

1þ b tð Þs
_R tð Þ; with b tð Þ ¼ −

1
a tð Þ ð2bÞ

Furthermore, under certain assumptions, the previous continuous
expression can be approximated following a discrete transfer function,
which is analog to the continuous transfer function, as shown by
Eq. (2c).

I kð Þ ¼ B z−1
� �

A z−1ð Þ
_R k−τrð Þ þ C z−1

� �
A z−1ð Þ e kð Þ; e kð Þ~N 0,σ2� � ð2cÞ

For the sake of brevity, we have focused on the most critical aspects
of the theory supporting our work. However, for more details about the
analogies and relations between the continuous and discrete forms, the
reader should refer to the book of [35]. Here, it is sufficient to mention
that Eq. (2c) is the autoregressive moving average with exogenous vari-
ables (AMARX) model. For simplicity, we will use the related
autoregressive with exogenous variables (ARX) model.

3.2. The ARX approach

We degenerate Eq. (2c) to the expression (3a), also known as
autoregressive with exogenous variables (ARX) model.

I kð Þ ¼ B z−1
� �

A z−1ð Þ
_R k−τrð Þ þ 1

A z−1ð Þ e kð Þ; e kð Þ~N 0,σ2� � ð3aÞ

Such that:

A z−1� � ¼ 1þ a1z−1 þ a2z−2 þ :: . . . anz−n

B z−1� � ¼ b0 þ b1z−1 þ b2z−2 þ :: . . . bmz−m

In Eq. (3a), ( _R) denotes the daily rate of change of the removed
individuals (exogenous variable), which is approximated by
_R ¼ R kð Þ−R k−1ð Þ. The (e) indicates a white noise and zero-mean error
in the k-th daily time step. The (τr) is a pure time delay parameter
acting on the exogenous-variable, which we established according to
the restricted minimum period of seven days for allowing forecasting
tasks. The A(z−1) and B(z−1) denotes the transfer function's
polynomials of the backward shift operator (z), which build auto-

regressive structures of (I), plus regressive forms of (R
:

) information.
Eq. (3a) supports some of the modeling hypotheses to be tested

here. For instance, the parameters n andm,which define the regressive
structures, must be identified according to some statistical criteria.
Commonly, the identification process uses the total available data,
hopefully deriving a suitable model structure that generalizes the
main aspects of the phenomenon. However, as mentioned previously,
4

attempting to capture the complex dynamic elements of the epidemic
in the early stages, the identification process should evolve according
to the updated data retrieved by the monitoring systems.

Eqs. (3a) and (3b) also suggest exploring how sensitive are the exog-
enous variables ( _H) and ( _D) in leading themodel and how they interact
with it. For that purpose, the experimentationmust consider the follow-
ingmodeling options. 1) Pure auto-regressive (AR)models, considering
the exogenous variable R = I. 2) An ARXH model, assuming the
exogenous component as R = H. 3) An ARXD model assuming that
R = D. 4) An ARXH+D model including the total removed cases R =
H + D. 5) And finally, an ARXH&D model considering two independent
exogenous variables into it, shown in Eq. (3b).

I kð Þ¼ B z−1
� �

A z−1ð Þ
_H k−τhð Þ þ C z−1

� �
A z−1ð Þ

_D k−τdð Þ þ 1
A z−1ð Þ e kð Þ; e kð Þ~N 0,σ2� �

ð3bÞ

Such that:

A z−1� � ¼ 1þ a1z−1 þ a2z−2 þ :: . . . anz−n

B z−1� � ¼ b0 þ b1z−1 þ b2z−2 þ :: . . . bmz−m

C z−1� � ¼ c0 þ c1z−1 þ c2z−2 þ :: . . . cpz−p

As noticed, Eq. (3b) has two exogenous variables. The B(z−1) and C

(z−1) are polynomials acting on (H
:

) and (D
:

), while (τh) and (τd) are
their pure time delay parameters. Here, three parameters define the
model's structure (n.m,p), while (e) denotes a white noise and zero
mean error in the k-th daily time step again. The discrete ARXH&D

transfer function does not have a transfer function analogy to the
continuous SIRD equations (i.e., not in the sense that ARX of Eq. (3a)
has with Eq. (2b). Nonetheless, intending to test whether such a follow-
ing analogical meaning conceptualized herein has predictive advantages
over other alternatives, Eq. (3b) is an interesting contrasting experiment.

It is essential to mention that since parameter (a) in Eq. (2b) is non-
stationary – because it synthesizes great variability of several factors –
this non-stationarity should be inserted in the discrete ARX approxima-
tions. In that respect, the Generalized-Random-Walk (GRW) and the
State-dependent-parameter (SDP) are adequate complementary tech-
niques for tackling the non-stationarity problem. These GRW and SDP
techniques are described briefly below using model (3b) (ARXH&D) as
a vehicle for explaining in a more general sense how these techniques
can deal with the non-stationarity of the ARX's parameters. From the
latter, it is only a matter of adding or removing the corresponding ele-
ments for the rest of the ARX models,

3.3. The GRW technique for time variable parameters (TVP)

The backward shift operator in Eq. (3b) is lifted, obtaining in this
way the expanded form of the ARXH&D model (see Eq. (4a))

I kð Þ ¼ zT kð Þρ kð Þ þ e kð Þ ð4aÞ

where:

zT kð Þ ¼ ½−I k−1ð Þ−I k−2ð Þ: . . .−I k−nð Þ _H k−τhð Þ _H k−τh−1ð Þ _H k−τh−2ð Þ: . . .

_H k−τh−mð Þ _D k−τdð Þ _D k−τd−1ð Þ _D k−τd−2ð Þ: . . . _D k−τd−pð Þ�

ρT kð Þ ¼ a1 a2: . . . an b b0 b1 b2: . . . bm c0 c1 c2: . . . cp
� �

¼ ρ1 ρ2 ρ3 . . .ρnþmþp

h i

The elements in (z) are the daily historical observations of the vari-
able I, _H, and _D, while the elements in (ρ) vector are the parameters in
the linear ARXH&D model, whose notation is conveniently redefined to
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follow an ordinal sequence (ρi). In turn, each (ρi) parameter is
determined by a two dimensional state-vector ρi(k) = [li(k) di(k)]T,
which follows a Generalized-Random-Walk (GRW) process (see eq. 4b)
defining their non-stationarity, as follows.

ρi kð Þ ¼ Aρi k−1ð Þ þ Dηi k−1ð Þ ð4bÞ

where:

Ai ¼
αi βi

0 γi

� �
; Di ¼

δi 0
0 εi

� �

In the Eq. (4b), each ηi(k) = [η1,i(k) η2,i(k)]T is also a two
dimensional zero mean vector, with their noise defined by a diagonal
covariance matrix Qη,i. Each α, β, γ, δ, ε, as well as the elements of Qη,i

(or usually the NVR matrix Qnvr = Qη,i / σ2) are the so-called
hyperparameters, which are time-invariant, and are estimated from
data through optimization. Such optimization uses likelihood functions
based on the innovations obtained from theKalman-Filter process. Once
the hyperparameters are optimized, the recursive Kalman-Filter and the
Fixed-Interval-Smoothing (KF/FIS) technique gives the desired time-
variability property to each parameter in the model. For more details
about these techniques, the reader should refer to specialized literature
[35].

The GRW process includes several random walk types, from which
the most important are: the random walk (RW), the integrated random
walk (IRW), and smoothed random walk (SRW). The ARX model with
constant parameters, the RW and the IRW process, can be set out in
the MATLAB-CAPTAIN toolbox, which is available at http://wp.lancs.ac.
uk/captaintoolbox/ [49]. Actually, for the reasons explained in the tech-
nical notes below, we experiment with different modeling approaches
combining the available GRW options to evaluate their effects on the
phenomenon.

3.4. The SDP technique

Briefly, the State-Dependent-Parameter technique redefines the output
variable (I) of Eq. (4a) to make it dependent on some state-variable (χ).
The non-parametric functions for each parameter (ρi), respecting to (χ),
can be estimated by the KF/FIS algorithm and its GRW techniques,
which are finally parameterized through curve-fitting procedures. Fur-
thermore, the algorithm can be extended for considering different state-
variables (χi) through thewell-knownBack-fitting algorithm and theMod-
ified-Dependent-Variables (MDVs). This work does not provide a detailed
explanation of this technique, but the reader could refer to [35,50] for
the extended minutia. In summary, the model is defined as follows:

I kð Þ ¼ zT kð Þρ kð Þ þ e kð Þ ð5aÞ

ρ kð Þ ¼ ρ1 χ1 kð Þf g ρ2 χ2 kð Þf g: . . .ρnþmþp χnþmþp kð Þ
n oh iT

ð5bÞ

Weconveniently rewrite the linearmodel (4a) in (5a) for coupling it
with the expression (5b), which denotes a vector containing the collec-
tion of the parameters (ρi). In turn, each element (ρi) is a function of a
(χi) state variable, which is defined in k-th time step. Of course, the
observation vector (z) is built from autoregressive information of the
(I) epidemic curve, plus regressive structures of ( _H) and ( _D) daily
rates observations, of orders n, m, and p, respectively.

Regarding the (χ) state variables, the accumulated infections (Ia) is
setting here as the independent variable defining the functions for all
the parameters of the autoregressive components (i.e., the parameters
ρ1,2,..n). The (Ia) is equivalent to (I + R) expression, whose variability is
included in the parameter (a) of Eq. (2a). Because of the latter, it is a
logical assumption to make each parameter in the A-polynomial (see
Eqs. (3a) and (3b)) dependent on the Ia variable state. Nonetheless, it
is worth mentioning that we are implicitly assuming that the
5

variability of Ia absorbs the non-stationarity of (β) in the SIR model,
and the population (N) remains constant for simplicity.

Extending the modeling experimentation, we will consider that the
set of parameters of both exogenous variables ( _D) and ( _H) (see the pa-
rameters of B and C polynomials in Eq. (3a) and (3b) will act as state
variables for themselves. This experimentation is motivated by the pos-
sibility that abrupt time changes related to outbreaks or recessions
might be more sensible to be detected in the ( _H) and ( _D) daily-rates
fast fluctuations. The latter hypothesis was also one of the reasons for
including such a daily-rates as exogenous variables instead of using
the daily soft evolutions of (H) and (D) data.

The SDP is also freely available in the MATLAB-CAPTAIN toolbox at
http://wp.lancs.ac.uk/captaintoolbox/ [49]. Therefore, similar to the
ARXmodeling, we will use the mentioned toolbox for a comprehensive
modeling experiment considering different combinations between con-
stant, RW and IRW options, which mainly define the smoothing shape
process of thenon-parametric functions estimated by theBack-fitting al-
gorithm.

The estimated SDP functions' parameterization is usually attained
through fitting curve techniques with meaningful physical or concep-
tual forms. Nonetheless, for the sake of simplicity, we use linear and
quadratic interpolations between two and three consecutive points of
the non-parametric functions as surrogate parameterizations. Suppose
any state variable value χ(k) falls outside the non-parametric function's
domain in the prediction phase. In that case, we use linear and quadratic
extrapolations using seven data points from the extremes of the curve.
Similar options have been used for other purposes [51].

3.5. The VAR technique

One main limitation of the ARX model is the unidirectional relation
between the exogenous variables (D) and (H) and the output variable
(I). However, as described by the SIRD equations, the phenomenon's be-
havior is an interaction between the different compartments, and they
have a simultaneous influence on each other in their evolutive pro-
cesses. In that regard, the autoregressive vector framework can consider
such feedback between these variables, treating each one as endogenous.
In otherwords, a Vector-Autoregressive (VAR) technique comprises one
equation per variable into the system been described [52].

Consider the set of Eqs. (2b), (1c), and (1d). Thereon, following a
similar argument as explained in Section 3.1, and discretizing ( _D) and
( _H), one can arrive at a set of ARX discrete analogical approximations
as expressed by Eqs. (6a)–(6c) in the expanded form.

I kð Þ ¼ zT kð Þρ kð Þ þ e kð Þ ð6aÞ

H kð Þ ¼ φT kð Þμ kð Þ þ e1 kð Þ ð6bÞ

D kð Þ ¼ ψT kð Þξ kð Þ þ e2 kð Þ ð6cÞ

where
zT kð Þ ¼ −I k−1ð Þ−I k−2ð Þ: . . .−I k−nð Þ _R k−τrð Þ _R k−τr−1ð Þ _R k−τr−2ð Þ: . . . _R k−τr−mð Þ

h i

φT kð Þ ¼ H k−1ð Þ I k−τIh
� �

I k−τIh−1
� �

I k−τIh−2
� �

: . . . I k−τIh−q
� �� �

ψT(k) = [D(k − 1) I(k − τI d) I(k − τI d − 1) I(k − τI d − 2). …I
(k − τId − s)]

ρT kð Þ ¼ ρ1 ρ2 ρ3 . . .ρnþm

� �

μT kð Þ ¼ 1 μ1 μ2 . . . μq

h i

ξT kð Þ ¼ 1ξ1ξ2 . . . ξS½ �

The reader is already familiarized with the notation and meaning of
Eqs. (6a)–(6c). Nonetheless, it is worth mentioning that the (e), (e1),

http://wp.lancs.ac.uk/captaintoolbox/
http://wp.lancs.ac.uk/captaintoolbox/
http://wp.lancs.ac.uk/captaintoolbox/
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and (e2) errors are considered white noise processes that may be
contemporaneously correlated (i.e., correlated just for the k-th time
step). In the context considered herein, the discrete Eq. (6a) and its sim-
ilarity with the continuous form 2b was already justified. Also, the re-
gressive structures of the (I) variable in Eqs. (6a) and (6b) surrogate
the time-variability nature of (γ) and (μ) parameters in the differential
Eqs. (1c) and (1d).

The set of Eqs. (6a)–(6c) interactwith each other, allowing recursive
predictions. Although the models have no restrictions about the future
prediction's horizons, we have limited these to a seven days ahead ho-
rizon for comparison purposes with the remaining modeling alterna-
tives.

Eq. (6a) imposes a minimum time delay (τr) of onemonth to ensure
the first k-th prediction of (I) as a function of _R. After that, (H) and (D)
can be estimated through Eqs. (6b) and (6c), respectively. In turn, the
last H and D estimations are used for a new estimation of (I),
continuing in this manner until the desired prediction future step.

For the case herein, we implemented these models (6a) to (6c_
using the TVP concept. Thus, the parameters in the (ρ), (μ), and (ξ)
vectors follow the GRW process (as explained in Section 3.3). The latter
modeling perspective is not directly available in the MATLAB-CAPTAIN
toolbox. However, we implemented an algorithm for including more
than one endogenous variable working recursively between them,
using the same computational framework.

Since we use the CAPTAIN framework for our purposes, the
hyperparameter optimization is reached individually for each equation
in the system through their error innovations obtained from the
Kalman-Filter process. The latter rules out the possibility of any
cointegrated process herein, which is a more complex modeling process
that escapes the scope of this work.

Reminding that R(t) = H(t) + D(t), and following one of the objec-
tives herein, we explore the role of each variable inside the modeling
through the next experiments: 1) A model assuming that R = H (and
renaming τr by τh), excluding the Eq. (6c) (labeled as VARH). 2) A
model in which R = D (and renaming τr by τd), excluding the Eq. (6b)
(labeled as VARD). 3) A model in which R = H + D, excluding
Eq. (6c), and considering Eq. (6b) as R (labeled as VARH+D). 4) A
model including Eqs. (6a), (6b), and (6c) simultaneously (labeled as
VARH&D). And finally, 5) an extended model option in which for the
vector (z) of Eq. (6a), the variable (R) is separated on individual
components of (H) and (D), and the (φ) and (ψ) vectors of Eqs. (6b)
and (6c) include historical information of the endogenous variables.
The latter model is labeled as VARH&D-extended, with specific the vectors
of Eqs. (6a), (6b), and (6c) in the following forms:

zT kð Þ ¼ ½−I k−1ð Þ−I k−2ð Þ: . . .−I k−nð Þ _H k−τhð Þ _H k−τh−1ð Þ _H k−τh−2ð Þ: . . .

_H k−τh−mð Þ _D k−τdð Þ _D k−τd−1ð Þ _D k−τd−2ð Þ: . . . _D k−τd−pð Þ�

φT kð Þ¼ −H k−1ð Þ−H k−2ð Þ: . . .−H k−wð Þ I k−τIh
� �

I k−τIh−1
� �

I k−τIh−2
� �

: . . . I k−τIh−q
� �� �ψT kð Þ

¼ −D k−1ð Þ−D k−2ð Þ: . . .−D k−uð Þ I k−τId
� �

I k−τId−1
� �

I k−τId−2
� �

: . . . I k−τId−s
� �� �

VARH&D-extended is not justified as analogical forms related to the
differential equations. Thus, this model contrasts the results against
those VAR models defined here as analog to the differential equations.

3.6. Modeling process, considerations and technical notes

So far, we have outlined different techniques,whichwill be the vehi-
cle for our purposes. Nonetheless, it is necessary to precise themodeling
process, as well as some important technical aspects.

For instance, since the problem is complex, we implemented an
adaptive modeling strategy, in which the structure of the models
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(i.e., m, n, p, q, w, r, s, and τ, depending on ARX or VAR) changes for
best fitting to the historical and new incoming data. As mentioned,
this adaptive strategy attempts to emulate the natural conditions of
the epidemic evolution. This emulation practice helps evaluate the po-
tential of the models in supporting the decisions through continuous
monitoring systems, using the most common data retrieved in the
early stages of the epidemic phenomenon.

The first structures of ARX and VARmodels were identified using 21
data observations to avoid computational errors. After, the models'
structures were updated according to the inclusion of every seven data
observations sequentially incorporated. The process is repeated until
reaching the final seven-day string. Each forecasted seven-day string
was attained using the correspondingmodels' structures identified pre-
viously to the predicted period. In the end, periodical predictions every
seven days were obtained and contrasted whit its observations.

Although the central core of the modeling process was summarized
in the previous lines, it is essential tomention some other important as-
pects, which we pointed out in the following paragraphs.

• For the ARX and VAR techniques, the identification of the models'
structures was based on the statistical selection from a wide variety
of combinations betweenm. n, p, q, w, r, s, and τ parameters, building
a model that better fitted the observed data. We use the well-known
Akaike-Information-Criterion (AIC) as the statistical parameter for
selecting the most convenient structure [53,54]. To avoid the explo-
sion of combinations in the identification task, we impose amaximum
bound of seven steps form. n, p, q, w, r, s, and τ for themodel's param-
eters. Of course, the latter bound for the ARX models was established
after lagging the data for a minimum of seven days, allowing the
seven-step-ahead forecasting using historical observations.

• While the forecasting estimations were attained by lagging the exog-
enous variables a minimum of seven days in the ARX modeling, the
forecasted estimations using VAR techniques are attained by integrat-
ing sequentially one-step-ahead forecasted values as new inputs. The
latter ARX's and VAR's forecasting strategies are known as “DirRec”
and “Recursive,” respectively [55]. The latter constitutes an interesting
contrasting experiment for evaluating the forecasting estimations
using only observations as inputs (in the ARX's models), versus the
forecasting using predicted values surrogating observed data (as in
VAR's models).

• It is recalled that only the GRW technique was used for modeling the
parameters' non-stationarity for the VAR models, while for the ARX
kind of models, both GRW and SDP techniques were tried. In all the
cases, we explore the modeling of the parameters considering three
different combinations: RW, IRW and stationarity (SP) (i.e., constant
parameter). For the sake of simplicity, we built the combinations in
such a way that the same GRW option is established for the entire
set of parameters belonging to the same polynomial (i.e., A, B, or C
polynomial depending if ARX or VAR model kind).

• The idea of combining the available GRWoptions formodeling the pa-
rameters' non-stationarity is motivated by the fact that a user in prac-
tice could not know the best approach a priori in that regard.
Therefore, it would be reasonable to test several GRW combinations
for the parameters on each of the five ARX and VAR experiments (de-
tailed Sections 3.2 and 3.5). Since different GRW render different fore-
casting estimations, we select the 50-quantile (median) to synthesize
the models' predictive capability (predictive accuracy). Additionally,
the 25 and 75 quantiles are considered indicators of the variability be-
tween the different predictions attained under different GRW combi-
nations. A comparison against the model with the best-fitted
approach through all the predicted strings was made to validate the
median as a reasonable indicator of the predictive capacity. In the au-
thors' opinion, the adopted modeling strategies, such as the adaptive
model's structures and combinations of different GRW and SDP tech-
niques, constitute an unconventional endeavor to objectively tackle
such a phenomenon's predictive complexity.



Fig. 2. Seven-days forecasting of Iraq's infection curve. Vertical dotted lines delineate data strings groups of seven days. Blue-dots indicate themedian estimations calculated from the fore-
casted combination using different GRWoptions. Green-lines are the best fittedmodels for all the strings, following a specific GRWprocess. Red-dots indicates the 25% percentile and 75%
percentile values from all forecasted values.
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4. Results and discussion

To analyze the forecasting abilities on different curve phases of the
contagious curve, we segmented the data into several strings of seven
values each and numbered them, as shown in Figs. 2 and 3. For Iraq
(Fig. 2), strings 1 and 2 correspond to the initial growing phase of the
epidemics. String 3 contains a maximum, followed by a decrement in
the number of cases as shown by string 4. String 5 is the segment
where an inflection point occurs before a new outbreak arises in string
6. String 7 and 8 are the growing evolution of the contagious curve of
the second outbreak.

For Iran (Fig. 3), string 1 corresponds to the initial growing phase of
the epidemics. After a sharp peak, the curve experiments a decrement in
the number of cases during the strings 2, 3, and 4. String 5 shows a slight
inflection change in the curve, followed by a new increment in the num-
ber of cases that continues for the strings 6, 7, 8, 9, and 10. Interestingly,
strings 8 and 9 show a slow-down in the contagious during the second
increment, accelerating in string 10.

The results referent to the different string data portions are dis-
cussed in the following paragraphs for both study cases, Iraq's and
Iran's virus spread.

4.1. Predictions for Iraq's case

• As indicated by Table 1a and Table 1b, when using the GRW tech-
niques in both the ARX and VAR models, the median's prediction
curve (calculated from the models using different GRW
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combinations) is statistically similar to the best predictions attained
under a specific GRW with the best performance. Since in real-time,
modelers would not know an optimum GRW option a priori, the me-
dian of all the forecasted values could be considered as a reliable pre-
dictive curve. The latter is an alternative against the blindness
regarding an optimum GRW combination for the ARX and VAR pre-
dictions.

• Table 1a indicates that pure autoregressive (AR) models using GRW
techniques are statistically more accurate than those using external
variables for the ARX kind. The ARmedian's prediction curve captures
the initial growing epidemics, ameliorating the overshooting effect of
the peak (strings 1, 2, 3, and 4 in Fig. 2). More interesting, after the de-
scendent part (strings 4 and 5), the ARmodel seems to be able to cap-
ture the second outbreak that suddenly appears on the curve (string
6) and continuing its growth (strings 7 and 8). The latter supports
the hypothesis about the implicit information in the historical obser-
vations and their potentials in supporting predictive tasks of complex
dynamics features when used as input variables in a model.

• Although not with the best performance, the ARXH+D modeling with
GRW techniques seems to shape the peak (strings 2, 3, and 4) and
the second outbreak of the curve (string 6), as shown by Fig. 2. Ac-
cording to ARXH and ARXD in Fig. 2, the role played individually by
the daily rates of H and D variables for representing the latter effects
are very similar. Interestingly, the variability of the ARXD's
predictions – represented by the percentile 25 and 75 in Fig. 2 –is
narrower than the alternative ARXmodels. The latter could be related
to the identification process (Appendix 1_Table a), in which the



Fig. 3. Seven-days forecasting of Iran's infection curve. Vertical dotted lines indicate data strings groups of seven days. Blue-dots indicate themedian estimations calculated from the fore-
casted combination using different GRWoptions. Green-lines are the best fittedmodels for all the strings, following a specific GRWprocess. Red-dots indicates the 25% percentile and 75%
percentile values from all forecasted values.

Table 1b
Coefficient of determination (R2) for Iraq (VAR models).

Parameter's
modeling

VARH VARD VARH+D VARH&D VARH&D-extended

GRW-TVP 0.862
(0.888)

0.927
(0.931)

0.911
(0.88)

0.701
(0.772)

0.702(0.763)

The values outside and inside the brackets contain the R2 coefficient for the median and
the best model (using a specific GRW combination as specified in Appendix 1_Tables c,
d, e), estimated and chosen from all the GRW combinations, respectively.
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structures' evolution reached by the ARXD are statistically efficient,
especially when included the critical curvatures (i.e., strings 5, 6, and
7) sequentially. Because the number of deaths during an epidemic is
probably the most reliable register, the fact that the models'
predictivity respond to this variable could be advantageous.

• Splitting the exogenous daily rates for constructing the ARXH&D does
not increase the critical strings' predictive performance in the
contagious curve (i.e., strings 3 and 6). The previous is interesting
since such a forecasting accuracy is opposite to the fitting in the iden-
tification process, reaching efficient values during both, R2 andAIC pa-
rameters (Appendix 1_Table b). Since the fitting is accurate (as shown
by R2 and AIC, respectively), the forecasting failure could be more re-
lated to the transfer functions not being in a direct analogy with the
continuous forms derived from the differential equations. Because of
the latter, the model is over-parameterized.

• It is worth mentioning that although the ARX models using the SDP
technique do not attain the best forecasting effects (Table 1a), these
show an interesting predictive accuracy during and posterior the sec-
ond outbreak (i.e., for strings 6, 7, and 8), especially for the AR and for
Table 1a
Coefficient of determination (R2) for Iraq (ARX models).

Parameter's modeling AR ARXH

GRW-TVP 0.934(0.929) 0.888(0.926)
SDP 0.605(0.724) 0.696(0.769)

The values outside and inside the brackets contain the R2 coefficient for the median and the be
mated and chosen from all the GRW combinations, respectively.
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the ARXH+Dmodels. The SDP technique can unravel the implicit infor-
mation carried by the historical and the exogenous variables, whose
non-parametric functions allow the dynamic curve to capture the
non-linear changes. Nonetheless, since the ability of SDP relies on
the number of observations, it might be that for early stages the
models have enough observations to more widely identify the critical
states that cause severe changes. Therefore, the model should be
tested in later contagious phases, but this is an open future task.
ARXD ARXH+D ARXH&D

0.910(0.911) 0.906(0.932) 0.608(0.683)
0.224(0.765) 0.804(0.598) 0.573(0.781)

st model (using a specific GRW combination as specified in Appendix 1_Tables a, b), esti-



Table 2b
Coefficient of determination (R2) for Iran (VAR models).

Parameter's
modeling

VARH VARD VARH+D VARH&D VARH&D-extended

GRW-TVP 0.947
(0.942)

0.906
(0.955)

0.916
(0.917)

0.854
(0.803)

0.863(0.76)

The values outside and inside the brackets contains the R2 coefficient for the median and
the best model (using a specific GRW combination as specified in Appendix 1_Tables h, i,
j), estimated and chosen from al the GRW combinations, respectively.
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• When daily rates are separated for constructing the ARXH&D the
predictive capacity does not improve in any sense. The latter
supports the hypothesis that stochastic approximations must be
analogous to the differential equations describing the phenomenon,
regardless of the technique behind the parameter modeling
(i.e., GRWor SDP). This could be because ARX stochastic structures fol-
lowing analogies with the differential equations provide the models
with conceptual robustness, implicitly helping with the problem of
over-parameterization and, consequently, the over-fitting problem.

• On the other hand, as shown in Table 1b, VAR models have similar
performances to those attained by the ARX models using GRW tech-
niques. The best model performance is reached when the interacting
components are given between the contagious variable (I) and the
daily rates of deaths (D), determining the VARD model. Also, as
indicated by Fig. 2, the prediction's variability using different GRW
combinations is narrower for the same VARD model than its
alternatives. As in ARX models, the low prediction variability could
be related to the high statistical fitting and efficiency reached during
the identification process (Appendix 1_Table c). Thementioned is no-
torious even when the critical strings with pronounced curvatures
(i.e., strings 5, 6, and 7) are included in the identification process.
Since variables (I) and (D) are endogenous in the VAR models, they
can be simultaneously predicted, as shown in Appendix 3. This simul-
taneous prediction capacity is in the best interest of health systems
during an epidemic process.

• Fig. 2 reveals that the peak and the second outbreak curvatures
(i.e., strings 3, 4, 5, and 6) are captured by VARH, VARD, and VARH+D,
but those predictions are not as efficient as the ones attained by the
ARX models. Although the VARD model shows better statistics than
its relative VAR models, both exogenous daily rate (H) seems to play
an essential role in predicting these complex peaks and outbreaks as
shown by the model VARH in Fig. 2. Furthermore, other important
features such as the descendent section of the contagious curve
(strings 4 and 5) are well captured by the VARH+D model, which is a
notorious ability compared with the remaining VAR options. Interest-
ingly, the fitting statistics of VARH+D structures are lower than those
reached by the VARH and VARD models (Appendix 1_Table d).

• Making the daily rates H and D endogenous variables interacting sep-
arately with the contagious (I) variable as specified by VARH&D model
(see the extendedmodel in Section 3.5) do not increase the predictive
capacity (Table 1b and Fig. 2). Moreover, the inclusion of more
historical information into each endogenous variable in the VARH&D-

extended alternative does not improve any predictive capacity either,
despite its good fitting performance (R2) and efficiency (AIC) during
the identification process (Appendix 1_Table e). The latter and the
ARX results indicate that better predictions are attained when the
model's structures follow similar analogies to the differential equa-
tions describing the phenomenon. These forecasting results obey to
the overall strategy proposed here, which is sympathetic with the
ARX and VAR models. In other words, for the short-term forecasting
problem, the ARX and VAR techniques that follow differential equa-
tions on their structures, are capable to anticipate rapid curve changes
if the parameters (following GRW models) and stochastic structures
are updating at the same time.
Table 2a
Coefficient of determination (R2) for Iran (VAR models).

Parameter's modeling AR ARXH

GRW-TVP 0.885(0.891) 0.889(0.909)
SDP 0.847(0.681) 0.729(0.873)

The values outside and inside the brackets contains the R2 coefficient for the median and the b
mated and chosen from al the GRW combinations, respectively.
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4.2. Predictions for Iran's case

• Table 2a and Table 2b indicates that the medians attained from the
GRW combinations are statistically similar to the best predictions ob-
tained by a specific GRW with the best performance. These results
support the stated for the Iraq case about the median predictive
curve as a reliable indicator of the model's predictive capacity, surro-
gating the predictions attained by an optimum model.

• Table 2a reveals an ARXD model with the best predictions compared
to ARXH and ARXH+D. Fig. 3 graphically confirms the ARXD's
predictive ability in all the forecasting strings. This predictive ability
is linked to the fitted statistics attained during the training process
(Appendix 2_Table f). This ARXD model captures the particular curve
dynamics, such as the slope changes in the curve from the strings 5
to 6 (Fig. 3). Also, the prediction variability from the different GRW
combinations is narrower than the alternative ARX models, which is
the same report for the Iraq case.

• Although not with the best prediction accuracy and fitted perfor-
mance (Table 2a and Appendix 2_Table f, respectively), the AR
model reveals abilities to capture the pronounced curvatures in the
strings 5, 6, and 7 shown in Fig. 3. The latter ability of the AR model
for capturing the curvature changes is even better than the model
ARXD, which confirms that historical data of the contagious curve
encodes useful information for predicting new breakouts during the
epidemic evolution.

• The statistics shown in Table 2a for the ARX models using SDP tech-
niques are more efficient than those estimated for the Iraq case
(Table 2a). Still, Fig. 3 shows serious inaccuracies, especially on strings
1 to 6. However, interesting results are shown for the strings 6 to 10,
especially for the ARXH and ARXD models. The latter supports the
argument derived from the Iraq predictions that although SDP is not
helpful in the early stages of the phenomenon, it can be beneficial
when the number of observations increases in future phases. The lat-
ter has the potential for predicting the strong non-linear behavior in
the curves.

• As in Iraq's case, splitting the exogenous H and D daily for the model
ARXH&D does not improve the predictive capacity in both
quantitative and qualitative (Table 2a and Fig. 3). Since the fitting
statistics are relatively high with the other ARX models (Appendix
2_Table g), the deficient predictions could result from an over-fitting
effect. The over-fitting responds to the excess of parameters repre-
senting the mathematical structure of the phenomena. Thus, as long
as themodel follows analogies directly connectedwith the phenome-
non's differential equations, it attains better predictions under a more
efficient stochastic form.
ARXD ARXH+D ARXH&D

0.947(0.951) 0.907(0.915) 0.882(0.944)
0.842(0.833) 0.890(0.907) 0.846(0.86)

est model (using a specific GRW combination as specified in Appendix 2_Tables f, g), esti-
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• On the other hand, VARmodels applied over the Irandata have similar
statistics to those using ARX models for predictions. Here, the best
predictive performance is reached when the predictions are recur-
sively given by an interaction between the components of the conta-
gious curve (I) and the recovered individuals (H), as shown by
Table 2b for the VARH model. This result is the opposite of the ARX
models' results and does not follow the same predictive features of
Iraq's modeling case.

• The VARHmodel seems to alleviate the overshooting effect at the peak
of the contagious curve. (i.e., strings 1 and 2 Fig. 3). Although VARH,
VARD, and VARH+D achieved acceptable predictive accuracies
(Table 2b), they cannot predict the intense changing slopes in the
contagious curve, except the particular accuracy of prediction in
string 8 given by the VARD model. It is worth mentioning that string
8 is a complicated zone for being adjusted when using VARD and
VARD+H techniques (according to Appendix 2_Tables h and i).

• Reminding that ARX models work under the “DirRec” scheme for
predictions, while the VAR models estimate the predictions using
the “Recursive” scheme, the Iran cases give important insights
about the differences in predictions for both types of forecasting
approaches. In that regard, although the VAR models provide
good predictions according to the statistical parameters, the ARX
models show the potential for capturing the slope changes of the
curve better than the VAR models. The latter is also replicated in
the Iraq data. Thus, one could say that “DirRec” approaches to the
forecasting problem attain good results in both quantitative and
qualitative aspects of prediction.

• As for Iraq's case, daily rates H and D endogenous variables
interacting separately with the contagious (I) variable as specified
by VARH&D model do not increase the predictive capacity as
evidence by Table 2b and Fig. 3. Moreover, more historical
information into each endogenous variable in the VARH&D-extended

model does not improve any predictive capacity, despite its good
fitting performance (R2) and efficiency (AIC) during the
identification process shown in Appendix 2_Tables i and j.

5. Summary and conclusions

Based on existing tools and knowledge, we propose a novel
modeling strategy for the complex SARS-CoV-2 forecasting task. We
used Autoregressive with exogenous variables (ARX) and Vector
Autoregressions (VAR) techniques. The stochastic structures of ARX
and VAR techniques follow analogies with the epidemic's differential
equations, thusmaking them not entirely oblivious of conceptual or dy-
namical interpretations. To tackle the problem that entails an accurate
forecasting task of rapid variations, the models simultaneously perform
the updating of their parameters and structures for fitting the incoming
data. In addition, we explore different ARX and VAR model configura-
tions to unveil the usefulness and roles that the variables have in antic-
ipating outbreaks and recessions.

The experiment was addressed using the Iraq and Iraq data. Due to
the complexity, the time forecasting horizon was set in seven days,
and the parameters in the model's equations were considered non-
stationary. The well-known Generalized-Random-Walk (GRW), as
well as the State-variable-parameter (SDP) techniques, were used for
shaping parameters non-stationary for the ARX models, while for the
VAR models, a scheme using the GRW techniques was tried. The use
of GRW techniques is motivated because they are compatible with the
hypothesis that fast fluctuations in the contagious curve depend signif-
icantly on the surrounding previous conditions before the event. The
SDP techniques are compatible with the alternative hypothesis that
rapid fluctuations in the contagious curve depend on some natural
states.

Different GRW and SDP combinations render different forecasting
estimations that are finally represented by the median. The
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investigation limits its applicability to the early stages of the phenome-
non's evolution in Iraq and Iran, emulating the problem of data scarcity
and uncertainty under high-demand circumstances of predictive skills
during stages inwhich rapid variations can occur (such as sudden reces-
sions and outbreaks). Motivated by this, the authors consider an adap-
tive fashion of the model's structures simultaneously with the
parameters' updating for tackling the rapid dynamic variations of the
phenomenon.

The nature of ARX and VAR models allows the evaluation of dif-
ferent forecasting approaches. On the one hand, the ARX models
use both observed historical data of exogenous variables and recur-
sive estimations retrieved from the endogenous variable through
its autoregressive structures, in an approach known as “DirRec” for
the forecasting task. On the other hand, the VAR techniques' feat
the interaction between each endogenous variable recursively
through one-step-ahead estimations until the desired prediction ho-
rizon. According to the general argot, the last forecasting procedure
is known as “Recursive”.

This experiment suggests that the forecasting task of a short-term
horizon is possible for a complex phenomenon with a high dynamical
variability when using the ARX models and VAR models with GRW
techniques. The results show that the forecasting estimations repre-
sented by the medians of all the GRW combinations are similar to the
best models among those combinations, thus providing reliability to
the criterion used in the strategy. Moreover, the models can capture
qualitative features such as the intense curvature changes, especially
those minimums related to new outbreaks in the contagious curve. Al-
though SDP techniques applied in the ARX models do not attain good
predictions in the early stages of the phenomenon, evidence suggests
its capacity for accurately capturing the non-linear qualitative features
as observations increase.

The ARX models and GRW techniques seem to be more skillful in
predicting strong curvatures than the VAR models using the same
GRW approaches. Such ability appears to rely partly on the main differ-
ence between “DirRec” and “Recursive” methods, explained above. In-
terestingly, historical observations of contagious and daily rates of
deaths that are closer to rapid curve changes (recessions and out-
breaks), seem to play an essential role in the models for anticipating
these qualitative features.

One of the most important aspects derived from the experimental
modeling is the suggestion that better predictions are attained when
stochastic approaches are analogous to the differential equations
governing the phenomenon. The reason could be that these analogies
implicitly provide the models with conceptual robustness, also control
over-parameterizations and over-fittings a priori. Moreover, for
predicting a phenomenon of such complexity, it was necessary to con-
sider the time variability of the model's parameters and consider an
adaptive structure according to the retrieved information. To the au-
thors' knowledge, the latter is a novel approach for emulating this
kind of problemwith uncertain conditions in critical stages of its evolu-
tion, using the most common and available data.

In summary, the processes proposed for the forecasting strategy are
complementary. On the one hand, although the central role of the anal-
ogies between ARX and VAR stochastic structures with differential
equations is to provide themodelswith conceptualflavor, this implicitly
provides the techniques with efficiency and robustness, ultimately con-
trolling over-parameterizations and over-fitting. On the other hand, the
success of GRW techniques suggests that rapid curve variations more
likely depend on the surrounding observations when these changes
occur, as hypothesized in the introduction. Finally, updating the sto-
chastic structures supports capturing rapid changes that could entail
strong discontinuities in the evolution of the infection.

In the end, this strategic stochastic modeling with adaptive struc-
tures is approved as a promising alternative for estimating predictions
in complex phenomena, such as the case of an epidemic spread, with
the potential for anticipating rapid curve changes as such recessions
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andoutbreaks. This experience could be helpful for supportingdecisions
in continuous monitoring systems.

Future work could consider the following activities: 1) The evalua-
tion of the SDP abilities, usingmore information for training themodels.
The suggestion relies on the fact that although SDP does not help in the
early stages of the contagious process, it could be useful in advanced
states when the model accounts for more detailed observations for the
learning process. 2) The analysis of possible mechanisms behind the
stochastic structures. This is suggested because ARX and VAR have anal-
ogies to differential equations. Thus, these analogies could be translated
into explicit dynamic interpretations. 3) Other alternative techniques
should be tested using a similar strategy, such as Autoregressive
Neural-Networks or Fractal theory. However, other alternatives might
require more extended work about developing theoretical aspects and
S
S
S
S
S
S
S
S
B

S
S
S
S
S
S
S
S
B

S
S
S
S
S
S
S
S

11
software for allowing certain advantages that the recursive time series
theory already has implemented.
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Appendix 1

Table a
. Iraq_ARX models: identified structures and fitted statistics.
AR model
 ARXH model
 ARXD model
Data portion
 n
 m
 τ
 R2
 AIC
 n
 m
 τh
 R2
 AIC
 n
 m
 τd
 R2
 AIC
tring 1
 2
 1
 10
 0.913
 4.970
 2
 3
 7
 0.502
 6.915
 1
 4
 8
 0.910
 5.204

tring 2
 1
 2
 10
 0.968
 5.366
 2
 1
 10
 0.844
 6.962
 4
 3
 7
 0.940
 6.304

tring 3
 4
 6
 10
 0.992
 5.917
 1
 6
 10
 0.981
 6.600
 1
 3
 8
 0.961
 7.131

tring 4
 1
 4
 11
 0.950
 8.105
 1
 6
 14
 0.937
 8.435
 1
 1
 7
 0.971
 7.429

tring 5
 1
 7
 8
 0.863
 9.298
 4
 2
 8
 0.754
 9.798
 2
 1
 7
 0.955
 7.967

tring 6
 5
 3
 9
 0.664
 10.057
 3
 2
 14
 0.408
 10.514
 2
 2
 7
 0.957
 7.845

tring 7
 5
 6
 8
 0.506
 10.495
 5
 6
 14
 0.518
 10.471
 1
 1
 7
 0.847
 9.035

tring 8
 1
 4
 10
 0.815
 9.488
 1
 1
 13
 0.532
 10.331
 5
 5
 7
 0.969
 7.858

est_GWR
 C
 RW
 C
 RW
 RW
 C
 TVP
RW
 C
 C
 RW
 RW
 C
 SDP
Notations of headers follow Eq. (3a). The model's structures evolve according to the data strings sequentially included in the identification process. R2 and AIC are the Coefficient-of-de-
termination and Akaike-Information-Criteria, respectively, estimated during the identification process. The last line indicates the best GRW combinations.

Table b
. Iraq_ARX models: identified structures and fitted statistics.
ARXH+D model
 ARXH&D model
Data portion
 n
 m
 τh+d
 R2
 AIC
 n
 m
 p
 τh
 τd
 R2
 AIC
tring 1
 1
 1
 9
 0.652
 6.257
 1
 1
 1
 10
 9
 0.960
 4.193

tring 2
 7
 1
 7
 0.982
 5.147
 1
 7
 3
 9
 8
 0.998
 3.251

tring 3
 4
 4
 10
 0.990
 5.962
 1
 7
 7
 11
 10
 0.997
 5.142

tring 4
 1
 6
 14
 0.952
 8.172
 3
 2
 7
 11
 10
 0.995
 6.168

tring 5
 6
 4
 8
 0.768
 9.907
 3
 7
 7
 9
 7
 0.992
 6.843

tring 6
 7
 1
 12
 0.492
 10.470
 2
 7
 2
 12
 7
 0.985
 7.042

tring 7
 1
 3
 10
 0.431
 10.412
 6
 7
 3
 14
 7
 0.973
 7.751

tring 8
 1
 1
 7
 0.511
 10.375
 3
 2
 3
 9
 7
 0.972
 7.698

est_GWR
 C
 RW
 RW
 C
 C
 TVP
RW
 RW
 RW
 C
 C
 SDP
Notations of headers followEqs. (3a) and (3b). Themodel's structures evolve according to thedata strings sequentially included in the identification process. R2 andAIC are theCoefficient-
of-determination and Akaike-Information-Criteria, respectively, estimated during the identification process. The last line indicates the best GRW combinations.

Table c
. Iraq_VAR models: identified structures and fitted statistics.
VARH model
 VARD model
Data portion
 n
 m
 –
 q
 τh
 τIh
 R2
 AIC
 n
 m
 –
 s
 τd
 τId
 R2
 AIC
tring 1
 2
 2
 1
 2
 2
 4
 0.758(0.978)
 6.093(2.117)
 1
 3
 1
 4
 1
 2
 0.904(0.990)
 5.168(−0.997)

tring 2
 1
 3
 1
 1
 2
 4
 0.989(0.978)
 4.347(3.452)
 4
 3
 1
 1
 4
 0
 0.988(0.980)
 4.662(0.983)

tring 3
 7
 2
 1
 1
 2
 5
 0.995(0.992)
 5.310(3.690)
 2
 7
 1
 5
 4
 0
 0.997(0.979)
 4.946(2.218)

tring 4
 2
 2
 1
 5
 4
 1
 0.920(0.997)
 8.530(4.426)
 5
 2
 1
 3
 1
 0
 0.995(0.983)
 5.983(2.425)

tring 5
 7
 7
 1
 7
 6
 0
 0.915(0.999)
 9.064(4.191)
 3
 2
 1
 5
 1
 0
 0.980(0.988)
 7.255(2.500)

tring 6
 5
 6
 1
 2
 6
 2
 0.711(0.999)
 10.016(4.855)
 2
 3
 1
 5
 2
 0
 0.993(0.988)
 6.096(2.613)

tring 7
 1
 6
 1
 4
 1
 0
 0.738(0.999)
 9.732(4.670)
 2
 2
 1
 6
 2
 0
 0.990(0.990)
 6.401(2.595)

tring 8
 1
 5
 1
 7
 1
 0
 0.731(0.999)
 9.895(5.123)
 3
 2
 1
 7
 1
 0
 0.992(0.992)
 6.359(2.543)

est_GWR
 C
 RW
 IRW
 RW
 C
 RW
 C
 IRW
 TVP
B
Notations of headers follow Eqs. (6a)–(6c). Themodel's structures evolve according to the data strings sequentially included in the identification process. R2 and AIC are the Coefficient-of-
determination and Akaike-Information-Criteria, respectively. Values outside and inside () are thefitting statistics of the equation components (6a) and (6b) for VARH, and (6a) and (6c) for
VARD, estimated during the identification process. The last line indicates the best GRW combinations.
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Table d
. Iraq_VAR models: Identified structures and fitted statistics.
S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

D
S
S
S
S
S
S
S
S
S
S
B

S
S
S
S
S
S
S
S
S

VARH+D model
12
VARH&D
Data portion
 n
 m
 –
 r
 τr
 τIr
 R2
 AIC
 –
 q
 –
 s
 τIh
 τId
 R2
 AIC
tring 1
 2
 1
 1
 1
 3
 3
 0.898(0.982)
 5.125(2.292)
 1
 2
 1
 4
 4
 2
 0.898(0.978)[0.990]
 5.125(2.117)[−0.997]

tring 2
 4
 1
 1
 1
 2
 4
 0.987(0.982)
 4.626(3.753)
 1
 1
 1
 1
 4
 0
 0.987(0.978)[0.980]
 4.626(3.452)[0.983]

tring 3
 2
 5
 1
 1
 2
 7
 0.995(0.992)
 5.250(4.196)
 1
 1
 1
 5
 5
 0
 0.995(0.992)[0.979]
 5.250(3.690)[2.218]

tring 4
 3
 1
 1
 2
 1
 7
 0.927(0.997)
 8.440(4.464)
 1
 5
 1
 3
 1
 0
 0.927(0.997)[0.983]
 8.440(4.426)[2.425]

tring 5
 4
 7
 1
 6
 2
 1
 0.797(0.999)
 9.817(4.566)
 1
 7
 1
 5
 0
 0
 0.797(0.999)[0.988]
 9.817(4.191)[2.500]

tring 6
 1
 3
 1
 1
 2
 5
 0.624(0.999)
 10.023(5.082)
 1
 2
 1
 5
 2
 0
 0.624(0.999)[0.988]
 10.023(4.855)[2.613]

tring 7
 1
 5
 1
 3
 2
 1
 0.571(0.999)
 10.193(4.958)
 1
 4
 1
 6
 0
 0
 0.571(0.999)[0.990]
 10.193(4.670)[2.595]

tring 8
 1
 6
 1
 4
 1
 3
 0.750(0.999)
 9.850(5.323)
 1
 7
 1
 7
 0
 0
 0.750(0.999)[0.992]
 9.850(5.123)[2.543]

est_GWR
 C
 RW
 IRW
 C
 IRW
 C
 IRW
 C
 TVP
B
Notations of headers follow Eqs. (6a)–(6c). Themodel's structures evolve according to the data strings sequentially included in the identification process. R2 and AIC are the Coefficient-of-
determination and Akaike-Information-Criteria, respectively. Values outside and inside () are the statistics of the equation components (6a) and (6b) for VARH+D. For including Eqs. (6a),
(6b), and (6c) simultaneously in theVARH&D theparameters q, s, τIh, τId are coupled to the n,m and τr parameters. The values outside (), inside (), and inside [] are the statistics of Eqs. (6a),
(6b), and (6c), estimated during the identification process. The last line indicates the best GRW combinations.

Table e
. Iraq_VAR models: Identified structures and fitted statistics.
VARH&D-extended model
Data portion
 n
 m
 p
 w
 q
 u
 s
 τh
 τd
 τIh
 τId
 R2
 AIC
tring 1
 1
 2
 2
 2
 1
 1
 4
 2
 1
 4
 2
 0.975(0.979)[0.990]
 3.931(2.082)[−0.997]

tring 2
 1
 2
 3
 1
 1
 3
 1
 1
 5
 4
 6
 0.995(0.978)[0.987]
 3.766(3.452)[0.669]

tring 3
 4
 7
 7
 2
 3
 1
 5
 1
 4
 1
 0
 0.998(0.994)[0.979]
 3.042(3.591)[2.218]

tring 4
 2
 6
 1
 4
 5
 1
 3
 5
 2
 3
 0
 0.998(0.998)[0.983]
 4.920(4.248)[2.425]

tring 5
 3
 7
 3
 3
 2
 1
 5
 7
 2
 2
 0
 0.998(0.999)[0.988]
 5.011(3.970)[2.500]

tring 6
 4
 2
 3
 3
 2
 1
 5
 3
 3
 0
 0
 0.998(0.999)[0.988]
 5.156(4.690)[2.613]

tring 7
 2
 2
 3
 3
 4
 2
 7
 2
 1
 2
 0
 0.997(1.000)[0.992]
 5.404(4.470)[2.503]

tring 8
 2
 2
 3
 4
 3
 2
 5
 2
 1
 0
 1
 0.997(1.000)[0.992]
 5.475(4.886)[2.478]

est_GWR
 RW
 C
 IRW
 C
 C
 C
 C
 TVP
B
Notations of headers follow Eqs. (6a)–(6c). Themodel's structures evolve according to the data strings sequentially included in the identification process. R2 and AIC are the Coefficient-of-
determination andAkaike-Information-Criteria, respectively. The values in outside (), inside () and inside [] are the statistics of Eqs. (6a), (6b) and (6c), estimated during the identification
process for the extended VARH&D-extended model. The last line indicates the best GRW combinations.

Appendix 2

Table f
. Iran_ARX models: identified structures and fitted statistics.
AR model
 ARXH model
 ARXD model
ata portion
 n
 m
 τ
 R2
 AIC
 n
 m
 τh
 R2
 AIC
 n
 m
 τd
 R2
 AIC

tring 1
 1
 4
 11
 0.976
 13.622
 1
 6
 8
 0.977
 13.715
 1
 3
 12
 0.916
 14.802

tring 2
 1
 2
 11
 0.978
 14.525
 1
 4
 8
 0.978
 14.615
 2
 3
 8
 0.977
 14.685

tring 3
 2
 5
 13
 0.942
 16.078
 2
 1
 12
 0.939
 15.929
 2
 6
 11
 0.986
 14.676

tring 4
 4
 2
 14
 0.924
 16.160
 2
 1
 12
 0.594
 17.715
 3
 6
 12
 0.995
 13.538

tring 5
 1
 5
 8
 0.654
 17.519
 5
 1
 12
 0.540
 17.804
 3
 2
 14
 0.990
 13.896

tring 6
 1
 4
 8
 0.504
 17.712
 3
 4
 9
 0.472
 17.837
 6
 5
 12
 0.983
 14.500

tring 7
 1
 4
 8
 0.586
 17.418
 2
 2
 11
 0.107
 18.157
 3
 4
 8
 0.982
 14.331

tring 8
 1
 6
 11
 0.552
 18.079
 2
 7
 12
 0.503
 17.596
 2
 7
 12
 0.957
 15.142

tring 9
 1
 7
 10
 0.589
 17.299
 3
 7
 12
 0.489
 17.564
 7
 5
 14
 0.861
 16.308

tring 10
 1
 7
 9
 0.566
 17.304
 4
 2
 14
 0.673
 16.976
 1
 7
 7
 0.634
 17.133

est_GWR
 RW
 C
 RW
 C
 RW
 RW
 TVP
RW
 C
 RW
 C
 RW
 C
 SDP
Notations of headers follow Eq. (3a). The model's structures evolve according to the data strings sequentially included in the identification process. R2 and AIC are the Coefficient-of-de-
termination and Akaike-Information-Criteria, respectively, estimated during the identification process. The last line indicates the best GRW combinations.

Table g
. Iran_ARX models: identified structures and fitted statistics.
ARXH+D model
 ARXH&D model
Data portion
 n
 m
 τh+d
 R2
 AIC
 n
 m
 p
 τh
 τd
 R2
 AIC
tring 1
 2
 1
 8
 0.963
 13.931
 2
 1
 1
 8
 12
 0.968
 13.852

tring 2
 1
 5
 10
 0.985
 14.304
 1
 5
 1
 8
 13
 0.996
 13.170

tring 3
 4
 1
 9
 0.952
 15.812
 5
 4
 1
 12
 7
 0.998
 12.795

tring 4
 2
 3
 13
 0.666
 17.606
 2
 3
 7
 13
 10
 0.996
 13.480

tring 5
 1
 7
 11
 0.459
 18.041
 2
 1
 6
 8
 13
 0.993
 13.678

tring 6
 3
 3
 13
 0.722
 17.164
 3
 5
 2
 14
 14
 0.992
 13.803

tring 7
 3
 7
 12
 0.275
 18.125
 3
 5
 2
 14
 14
 0.992
 13.673

tring 8
 1
 8
 7
 0.326
 17.903
 4
 4
 7
 14
 11
 0.988
 14.048

tring 9
 2
 7
 11
 0.130
 18.073
 6
 1
 4
 10
 12
 0.980
 14.363
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Table g (continued)
S
B

S
S
S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S
S
S

ARXH+D model
13
ARXH&D model
Data portion
 n
 m
 τh+d
 R2
 AIC
 n
 m
 p
 τh
 τd
 R2
 AIC
tring 10
 3
 8
 11
 0.821
 16.489
 4
 1
 5
 12
 10
 0.981
 14.208

est_GWR
 RW
 C
 RW
 C
 IRW
 TVP
RW
 C
 RW
 C
 C
 SDP
Notations of headers followEqs. (3a) and (3b). Themodel's structures evolve according to thedata strings sequentially included in the identification process. R2 andAIC are theCoefficient-
of-determination and Akaike-Information-Criteria, respectively, estimated during the identification process. The last line indicates the best GRW combinations.

Table h
. Iran_VAR models: identified structures and fitted statistics.
VARH model
 VARD model
Data portion
 n
 m
 –
 q
 τh
 τIh
 R2
 AIC
 n
 m
 –
 s
 τd
 τId
 R2
 AIC
tring 1
 1
 5
 1
 2
 4
 1
 0.985(0.989)
 13.235(11.887)
 2
 3
 1
 1
 1
 3
 0.923(0.999)
 14.795(6.831)

tring 2
 5
 2
 1
 1
 5
 6
 0.993(0.996)
 13.597(11.673)
 2
 4
 1
 5
 2
 5
 0.989(0.997)
 13.990(8.511)

tring 3
 2
 7
 1
 2
 2
 1
 0.933(0.995)
 16.333(13.191)
 3
 4
 1
 6
 1
 1
 0.975(0.988)
 15.266(10.356)

tring 4
 4
 3
 1
 6
 7
 2
 0.825(0.997)
 17.042(13.880)
 2
 2
 1
 7
 7
 1
 0.970(0.992)
 15.168(10.254)

tring 5
 3
 7
 1
 2
 7
 4
 0.539(0.995)
 17.955(14.655)
 7
 5
 1
 4
 2
 0
 0.974(0.990)
 15.159(10.678)

tring 6
 6
 5
 1
 2
 5
 3
 0.555(0.997)
 17.797(14.547)
 3
 4
 1
 4
 1
 0
 0.981(0.989)
 14.500(10.893)

tring 7
 2
 1
 1
 2
 6
 2
 0.463(0.998)
 17.620(14.410)
 3
 4
 1
 4
 1
 0
 0.967(0.994)
 14.945(10.458)

tring 8
 3
 1
 1
 3
 3
 1
 0.530(0.999)
 17.411(14.294)
 2
 4
 1
 4
 1
 0
 0.958(0.994)
 15.048(10.439)

tring 9
 3
 1
 1
 2
 7
 3
 0.708(0.999)
 16.862(14.295)
 3
 3
 1
 4
 6
 0
 0.946(0.995)
 15.215(10.495)

tring 10
 5
 4
 1
 1
 5
 6
 0.856(0.999)
 16.229(14.520)
 4
 3
 1
 5
 7
 0
 0.940(0.995)
 15.298(10.553)

est_GWR
 RW
 RW
 IRW
 IRW
 C
 IRW
 C
 C
 TVP
B
Notations of headers follow Eqs. (6a)–(6c). Themodel's structures evolve according to the data strings sequentially included in the identification process. R2 and AIC are the Coefficient-of-
determination and Akaike-Information-Criteria, respectively. Values outside and inside () are the statistics of the equation components (6a) and (6b) for VARH, and 6a and 6c for VARD,
estimated during the identification process. The last line indicates the best GRW combinations.

Table i
. Iran_VAR models: identified structures and fitted statistics.
VARH+D model
 VARH&D
Data portion
 n
 m
 –
 r
 τr
 τIr
 R2
 AIC
 –
 q
 –
 s
 τIh
 τId
 R2
 AIC
tring 1
 1
 5
 1
 1
 3
 1
 0.966(0.993)
 14.055(11.843)
 1
 2
 1
 1
 1
 1
 0.966(0.989)[0.999]
 14.055(11.887)[6.831]

tring 2
 2
 3
 1
 6
 7
 3
 0.989(0.997)
 13.985(12.045)
 1
 1
 1
 5
 6
 2
 0.989(0.996)[0.997]
 13.985(11.673)[8.511]

tring 3
 2
 2
 1
 3
 7
 7
 0.946(0.997)
 15.873(13.074)
 1
 2
 1
 6
 1
 1
 0.946(0.995)[0.988]
 15.873(13.191)[10.356]

tring 4
 3
 2
 1
 4
 7
 5
 0.596(0.997)
 17.795(14.023)
 1
 6
 1
 7
 2
 7
 0.596(0.997)[0.992]
 17.795(13.880)[10.254]

tring 5
 3
 7
 1
 1
 7
 7
 0.728(0.996)
 17.428(14.747)
 1
 2
 1
 4
 4
 2
 0.728(0.995)[0.990]
 17.428(14.655)[10.678]

tring 6
 5
 4
 1
 4
 1
 1
 0.580(0.997)
 17.675(14.709)
 1
 2
 1
 4
 3
 1
 0.580(0.997)[0.989]
 17.675(14.547)[10.893]

tring 7
 2
 1
 1
 3
 4
 1
 0.381(0.998)
 17.763(14.518)
 1
 2
 1
 4
 2
 1
 0.381(0.998)[0.994]
 17.763(14.410)[10.458]

tring 8
 1
 6
 1
 2
 4
 3
 0.174(0.999)
 18.054(14.461)
 1
 3
 1
 4
 1
 1
 0.174(0.999)[0.994]
 18.054(14.294)[10.439]

tring 9
 6
 4
 1
 3
 5
 0
 0.966(0.993)
 14.055(11.843)
 1
 2
 1
 4
 3
 6
 0.966(0.989)[0.999]
 14.055(11.887)[6.831]

tring 10
 5
 4
 1
 3
 5
 1
 0.989(0.997)
 13.985(12.045)
 1
 1
 1
 5
 6
 7
 0.989(0.996)[0.997]
 13.985(11.673)[8.511]

est_GWR
 RW
 RW
 RW
 RW
 IRW
 IRW
 C
 C
 TVP
B
Notations of headers follow Eqs. (6a)–(6c). Themodel's structures evolve according to the data strings sequentially included in the identification process. R2 and AIC are the Coefficient-of-
determination and Akaike-Information-Criteria, respectively. Values outside and inside () are the statistics of the equation components (6a) and (6b) for VARH+D. For including Eqs. (6a),
(6b), and (6c) simultaneously in theVARH&D theparameters q, s, τIh, τId are coupled to the n,m and τr parameters. The values outside (), inside (), and inside [] are the statistics of Eqs. (6a),
(6b), and (6c), estimated during the identification process. The last line indicates the best GRW combinations for modeling the parameters for the TVP technique.

Table j
. Iran_VAR models: identified structures and fitted statistics.
VARH&D-extended model
Data portion
 n
 m
 p
 w
 q
 u
 s
 τh
 τd
 τIh
 τId
 R2
 AIC
tring 1
 1
 2
 2
 1
 2
 2
 3
 2
 7
 1
 1
 0.998(0.989)[0.999]
 11.321(11.887)[6.096]

tring 2
 2
 1
 6
 1
 1
 2
 1
 2
 1
 6
 1
 0.999(0.996)[0.997]
 12.190(11.673)[8.267]

tring 3
 1
 7
 7
 1
 2
 4
 5
 6
 2
 1
 1
 0.994(0.995)[0.999]
 14.143(13.191)[7.654]

tring 4
 1
 7
 7
 1
 6
 2
 4
 1
 2
 2
 0
 0.986(0.997)[0.999]
 14.843(13.880)[8.528]

tring 5
 2
 1
 6
 2
 2
 1
 4
 3
 6
 0
 0
 0.985(0.996)[0.990]
 14.490(14.616)[10.678]

tring 6
 3
 1
 5
 2
 2
 3
 7
 3
 6
 2
 0
 0.988(0.997)[0.996]
 14.131(14.470)[9.976]

tring 7
 3
 1
 4
 2
 2
 1
 4
 2
 7
 1
 0
 0.980(0.998)[0.994]
 14.485(14.398)[10.458]

tring 8
 2
 1
 5
 1
 3
 1
 4
 3
 6
 1
 0
 0.961(0.999)[0.994]
 15.038(14.294)[10.439]

tring 9
 4
 1
 3
 2
 2
 1
 4
 7
 5
 0
 0
 0.971(0.999)[0.995]
 14.644(14.275)[10.495]

tring 10
 5
 6
 3
 1
 1
 2
 5
 5
 1
 6
 0
 0.987(0.999)[0.996]
 13.899(14.520)[10.378]

est_GWR
 RW
 C
 RW
 C
 RW
 C
 RW
 TVP
B
Notations of headers follow Eqs. (6a)–(6c). Themodel's structures evolve according to the data strings sequentially included in the identification process. R2 and AIC are the Coefficient-of-
determination andAkaike-Information-Criteria, respectively. The values in outside (), inside () and inside [] are the statistics of Eqs. (6a), (6b) and (6c), estimated during the identification
process for the extended VARH&D-extended model. The last line indicates the best GRW combinations.
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Appendix 3
Fig. 4. Examples of VAR included accumulated Healings and Deaths for Iraq and Iran cases.
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