
A Monitoring Infrastructure
for the Quality Assessment of
Cloud Services

Priscila Cedillo, Javier Gonzalez-Huerta, Silvia Abrahao
and Emilio Insfran

Abstract Service Level Agreements (SLAs) specify the strict terms under which
cloud services must be provided. The assessment of the quality of services being
provided is critical for both clients and service providers. In this context, stake-
holders must be capable of monitoring services delivered as Software as a Service
(SaaS) at runtime and of reporting any eventual non-compliance with SLAs in a
comprehensive and flexible manner. In this paper, we present the definition of an
SLA compliance monitoring infrastructure, which is based on the use of mod-
els@run.time, its main components and artifacts, and the interactions among them.
We place emphasis on the configuration of the artifacts that will enable the mon-
itoring, and we present a prototype that can be used to perform this monitoring. The
feasibility of our proposal is illustrated by means of a case study, which shows the
use of the components and artifacts in the infrastructure and the configuration of a
specific plan with which to monitor the services deployed on the Microsoft Azure©
platform.

A prior version of this paper has been published in the ISD2015 Proceedings (http://aisel.aisnet.
org/isd2014/proceedings2015/).

P. Cedillo � S. Abrahao � E. Insfran
Department of Computer Systems and Computation,
Universitat Politècnica de València, Valencia, Spain
e-mail: sabrahao@dsic.upv.es

E. Insfran
e-mail: einsfran@dsic.upv.es

P. Cedillo (&)
Department of Computer Science, Faculty of Engineering,
University of Cuenca, Cuenca, Ecuador
e-mail: priscila.cedillo@ucuenca.edu.ec; icedillo@dsic.upv.es

J. Gonzalez-Huerta
Département d’Informatique, Université du Québec à Montréal,
Montreal, Canada
e-mail: gonzalez_huerta.javier@uqam.ca

© Springer International Publishing Switzerland 2016
D. Vogel et al. (eds.), Transforming Healthcare Through Information Systems,
Lecture Notes in Information Systems and Organisation 17,
DOI 10.1007/978-3-319-30133-4_2

17

http://aisel.aisnet.org/isd2014/proceedings2015/
http://aisel.aisnet.org/isd2014/proceedings2015/

Keywords Model driven engineering � Models@run.time � Quality assessment �
Cloud services � Service level agreements � Software as a service

1 Introduction

Software as a Service (SaaS) has emerged as a software deployment model in recent
years that makes software available entirely through the use of a web browser,
while hiding the details regarding where the software is hosted or its underlying
architecture [1]. SaaS is increasingly being used by web-based applications owing
the benefits it provides for both users and service providers [2]. The terms under
which a SaaS application is provided must be expressed by using Service Level
Agreements (SLAs). Each service is typically accompanied by an SLA that defines
the minimal guarantees that the cloud provider offers to its customers [3] (e.g.
ensuring the availability of a service at least 99.5 % of the time). Service providers
are becoming interested in monitoring cloud services in order to assess compliance
with the SLA, thus avoiding possible penalizations and improving service quality
[4]. On the customer side, service monitoring provides information and Key
Performance Indicators (KPIs) that are useful in the decision-making process [5].

Traditional monitoring technologies are restricted to static and homogeneous
environments, and cannot therefore be appropriately applied to cloud environments
[6]. Cloud computing has led to the emergence of new issues, challenges, and needs
as regards measuring quality (e.g. elasticity, scalability, adaptability, timeliness) [5].
Moreover, when compared with other distributed systems such as Grid Computing,
the monitoring of a cloud is more complex because of the differences in both the trust
model and the view of resources/services presented to the user [7], in addition to the
presence of multiple layers and service paradigms [5]. Unfortunately, existing cloud
and general purpose monitoring solutions have several limitations, as reported by
Muller et al. [8]: the SLAs they support are not sufficiently expressive to model
real-world scenarios. They couple the monitoring configuration with a given SLA
specification, the explanations of the violations are difficult to understand and even
potentially inaccurate, and some proposals either do not provide an architecture or
the cohesion of their elements is low. Furthermore, it is important to have flexible
quality monitoring infrastructures that will allow service providers to modify the
non-functional requirements (NFRs) to be monitored, based on SLAs variations.

We believe that Model Driven Engineering (MDE) may be a solution as regards
providing the flexibility required to monitor infrastructures. However, establishing
all the NFRs to be monitored when designing the monitoring infrastructure is not
always possible (e.g., owing to SLA renegotiations, the addition of new NFRs to be
monitored, changes in the cloud platform). In this context, Baresi and Ghezzi [9]
advocate that future software engineering research should be focused on providing
software with intelligent support at runtime, thus breaking across the current rigid
boundary between development-time and runtime. It is therefore necessary to define
approaches that will allow cloud services to be monitored and will also permit the
addition of new requirements or the modification of existing ones at runtime

18 P. Cedillo et al.

without interrupting the service execution. This challenge can be confronted by
using models@run.time [9]. A model@run.time is employed at runtime in a system
and its encoding enables its processing at runtime [10]. Besides, a model@run.time
is causally-connected to the running system, meaning that a change in this model
triggers a corresponding change in the running system and/or vice versa [10].

In a previous paper, we presented the definition of a monitoring process for cloud
services by using models@run.time [11], in which we established the tasks involved
in the monitoring process. In this paper, we extend that work by presenting the
monitoring infrastructure that using models@run.time is able to: (i) retrieve data
from the cloud services during their execution; (ii) calculate derived metrics based
on these data; and (iii) report any eventual SLA violations. The contribution of this
paper is therefore the definition of a monitoring infrastructure, its main components
and the artifacts used by the Monitoring Configurator (i.e., quality meta-models with
which to generate the Requirements Quality Model, the SaaS Quality Model and the
Runtime Quality Model), along with the interactions among them. The feasibility of
our proposal is illustrated through a case study, which shows the use of the com-
ponents and artifacts involved in the infrastructure and the configuration of a specific
monitoring plan for the Microsoft Azure© platform.

The paper is structured as follows: Sect. 2 discusses the existing solutions. Section 3
presents the monitoring infrastructure, its components and artifacts. Section 4 presents
a case study. Finally, Sect. 5 presents the conclusions and future work.

2 Related Work

Several studies whose aim has been to analyze the monitoring tools and approaches
that are available (e.g., [5, 12]) and their weaknesses and needs have appeared over
the last few years. Fatema et al. [12] report the results of a survey in which they
analyze cloud and general purpose monitoring tools. They identify practical capa-
bilities that an ideal monitoring tool should possess in order to fulfill the objectives
of both cloud providers and customers in different cloud operational areas. They
conclude that most general purpose monitoring tools were not designed with the
cloud in mind, signifying that most monitoring capabilities (e.g. multi-tenancy,
scalability, non-intrusiveness) are improved using cloud based monitoring tools.
However, one of the drawbacks of cloud monitoring tools is their portability. This
reinforces the fact that many cloud specific monitoring tools are commercial and
vendor dependent, which makes the tools less flexible and portable and means that
their results are neither extensible nor comparable to other platforms. Aceto et al. [5]
analyze and discuss the properties of a monitoring system for the cloud. They
conclude that cloud monitoring tools should have quality characteristics (e.g.,
scalability, elasticity, adaptability) that will enable them to tackle the challenges that
cloud monitoring implies. However, they also conclude that current solutions still
require considerable effort if desirable characteristics are to be attained.

Many cloud providers offer their customers the ability to monitor cloud services
using monitoring tools available for CPU, storage and network [13]. These tools are

A Monitoring Infrastructure for the Quality Assessment … 19

closely integrated with their own cloud solutions. They are only concerned with
monitoring quality attributes for the hardware resources (CPU, storage, and network)
and lack the ability to monitor application-specific QoS parameters and SLA
requirements (i.e., latency, performance). In addition, the majority of commercial
tools (e.g., CloudWatch, LogicMonitor) are not sufficiently flexible to allow service
providers to extend the QoS parameters provided to monitor the fulfillment of SLAs.

Various approaches have also been proposed in academic environments. For
instance, Emeakaroha et al. [14] propose an application monitoring architecture
named Cloud Application SLA violation Detection architecture (CASViD). This
architecture monitors and detects SLA violations on the application layer, and
includes tools for resource allocation, scheduling, and deployment. Although their
approach provides a good solution, it does not have a flexible means to change the
NFRs and metrics to be monitored at runtime. Katsaros et al. [15] present a moni-
toring system that facilitates on-the-fly self-configuration in terms of both the
monitoring time and the monitoring parameters. They propose the use of scripts to
collect data; however, they do not specify how NFRs are matched with raw data
gathered from scripts and how they interact with cloud services. Müller et al. [8]
designed and implemented SALMonADA, a service-based system with which to
monitor and analyze SLAs in order to provide an explanation of violations. They
describe SLAs using a Monitoring Management Document (MMD) to be consumed
by the monitoring infrastructure; however, the platform does not support those users
who wish to choose alternative means to measure quality requirements. Smit et al.
[16] present and implement an architecture using stream processing to provide
service monitoring. They emphasize that their infrastructure is intended be used to
monitor hybrid clouds and two tiered cloud architectures working on streaming data.
The possibility of gathering information therefore depends on the information that
can be provided by other solutions. Montes et al. [17] propose a cloud monitoring
taxonomy, which is used as the basis to define a layered cloud monitoring archi-
tecture. They implement GMonE, a general-purpose cloud monitoring tool, which is
claimed to cover all aspects of cloud monitoring by specifically addressing the needs
of modern cloud infrastructures. Similarly, Povedano-Molina et al. [18] propose
DARGOS, a distributed architecture for resource management and monitoring in
clouds, which ensures an accurate measurement of physical and virtual resources in
the cloud in an attempt to keep overheads down. However, the latter two approaches
confront the provision of only physical and virtual resources and do not emphasize
the specific quality aspects of SaaS. In summary, to the best of our knowledge
commercial tools are mostly tightly coupled with certain cloud platforms, support
the monitoring of specific NFRs, and have pre-established low-level metrics; they
are therefore not sufficiently versatile to support the modification of NFRs or the
customization of their operationalizations1 at runtime. There are other proposals that

1Operationalizing a measure consists of establishing a mapping between its generic description and
the concepts represented in the software artifacts to be measured [30].

20 P. Cedillo et al.

allow the verification of SLA compliance, but they are not enough flexible to support
different operationalizations according to the specific cloud platform involved.

3 Monitoring Infrastructure

In this section, we present the Monitoring Infrastructure that has been designed to
support the monitoring process defined in Cedillo et al. [11] (see Fig. 1). This
infrastructure allows: (i) the specification and configuration of NFRs to be moni-
tored; (ii) an interaction with cloud services to assess their quality at runtime;
(iii) and the generation of reports containing any eventual SLA violations. In order
to achieve these goals and provide the required degree of flexibility when defining
NFR metrics, in addition to supporting different means to gather information from
cloud services, we have defined a set of components and artifacts that conform to
the monitoring infrastructure by using models@run.time. The solution is oriented to
be applied in any platform, a detailed instantiation of the middleware to a defined
platform is presented in Cedillo et al. [19].

The Monitoring Infrastructure has two main components: the Monitoring
Configurator and the Monitoring and Analysis Middleware. The Monitoring
Configurator uses the Monitoring Requirements Model and the SaaS Quality Model
to configure the monitoring of services and obtain the Runtime Quality Model. The
Monitoring and Analysis Middleware uses this Runtime Quality Model and relies
on two engines: the Measurements Engine, which permits cloud service monitoring
through the use of the raw service quality data gathered from cloud services and
takes the measurements, and the Analysis Engine, which compares the expected
values with the monitored values and can generate the SLA violations report. The
details of each process and artifact are detailed in the following subsections.

Cloud Services

Monitoring & Analysis
Middleware

Monitoring Configurator

Monitoring
Requirements

Model

Raw Data
Counters

SaaS Quality
Model

Runtime
Quality Model

Analysis Engine

Measurements Engine

Service Quality
Raw Data

Monitoring Infrastructure

List of Raw Data
Counters

NFRs Violations
Report

SLA+Additional
NFRs

Fig. 1 Monitoring infrastructure

A Monitoring Infrastructure for the Quality Assessment … 21

3.1 Monitoring Configurator

The Monitoring Configurator is a component of the Monitoring Infrastructure (see
Fig. 1) and has a front-end which is used by stakeholders to configure the moni-
toring directives. It allows the high level NFRs to be monitored that are included in
the Monitoring Requirements Model and the raw service quality data retrieved from
cloud services to be matched. This matching is supported by the SaaS Quality
Model, which acts as a guide that allows the selection of appropriate operational-
izations for metrics. When the matching is done by stakeholders, the Runtime
Quality Model is generated and can be consumed by the Monitoring and Analysis
Middleware. A detailed description of the artifacts involved in the Monitoring
Configurator and the interactions among them is shown below.

Monitoring Requirements Model This model specifies the NFRs to be monitored
comprehensible way for the Monitoring Infrastructure, compliant with the WSLA
Language Specification [20] to represent NFRs in a standardized manner.
Moreover, in our solution, the model is extended to support additional NFRs that
are not part of SLAs but which may be of interest to stakeholders. Figure 2 shows
the monitoring requirements meta-model, which incorporates all the SLA sections.
The SLA specifies the parties, divided into signatory parties and supporting parties.
On the one hand, signatory parties, namely service provider and service customer,
are assumed to “sign” the SLA, while on the other, supporting parties are sponsored
by signatory parties to provide service measurements and audits. The meta-model
includes the SLAParameter meta-class, which represents the NFRs to be monitored
and the Metrics used to perform measurements. A Service Object is the abstraction
of a service, whose quality characteristics and attributes are relevant as regards
defining the SLA’s terms. Characteristics and attributes are specified as

Fig. 2 Monitoring requirements meta-model

22 P. Cedillo et al.

SLAParameters. Each SLAParameter can be measured by using metrics. The
SLAParameter meta-class has an attribute named isSLATerm, which differentiates
an SLA term from an NFR that is not included in the SLA. The Obligation
meta-class contains two types of obligations: (i) a Service Level Objective, which is
a guarantee of a particular state of SLA parameters in a given time period. (e.g. the
average response time must be 5 ms) and (ii) The Action Guarantee, which specifies
the provider’s commitment to doing something in a specific situation [21] (e.g. if a
violation of a guarantee occurs, a notification is sent specifying a penalty). The
values used as thresholds are obtained from the Action Guarantee meta-class (e.g.
the response time must be <0.7 unless the transaction rate is >1000). In this
meta-model, a metric can be measured by using the formula agreed by the parties.
A more detailed specification of the WSLA used to define the meta-classes, with
examples, can be found in Ludwig et al. [20].

SaaS Quality Model This model is aligned with the ISO/IEC 25010 standard
(SQuaRE) [21]. Figure 3 shows the meta-model supporting the SaaS Quality
Model. This model allows the definition of the whole set of Characteristics,
Sub-characteristics, Attributes, their Impact (i.e., the relationships among attri-
butes), and Metrics that specify how NFRs should be measured to assess the quality
of cloud services. Each metric can be operationalized in different ways. A metric
Operationalization can be considered at different Cloud Levels (i.e., SaaS, PaaS,
IaaS). This is useful owing to the fact that there are a number of quality require-
ments (e.g., scalability, elasticity, security) that need to be monitored for different
levels of service provision [5]. Moreover, it is important to specify the stakeholder
that will use the monitoring information; for example, for a service provider, it may
be interesting to know the average number of users requesting a service at a
particular time. The purpose of having perspectives associated with each opera-
tionalization is to express whether a given operationalization is stakeholder-specific.
This information is useful during the processes of comparing, improving mea-
surements, or choosing different formulas with which to measure each NFR. The
DirectMetricOperationalization meta-class represents a measure of an attribute that
does not depend upon any other measure, whereas the

Fig. 3 SaaS quality meta-model

A Monitoring Infrastructure for the Quality Assessment … 23

IndirectMetricOperationalization meta-class represents measures that are derived
from other DirectMetricOperationalizations or IndirectMetricOperationalizations.
The Platform and MeasurementMethod meta-classes have been added to the SaaS
Quality Model to maintain a list of raw platform dependent data counters to
facilitate the retrieval of information from a specific platform. Finally, the
meta-model includes particularities of each operationalization, such as the Unit
meta-class, which expresses the magnitude related to a particular quantity. The
Scale meta-class represents a set of values with continuous or discrete properties
used to map the operationalization.

Runtime Quality Model This is a model@run.time, which specifies the moni-
toring requirements, metrics, operationalizations, and configurations that will be
used during the monitoring. Lehmann et al. [22] argue that meta-models at runtime
must provide modeling constructs that will enable the definition of: (a) A pre-
scriptive part of the model, specifying what the system should be like; (b) A
descriptive part of the model specifying what the system is like; (c) Valid model
modifications of the descriptive parts, executable at runtime; (d) Valid model
modifications of the prescriptive parts, executable at runtime; (e) Causal connec-
tion, which is in the form of an information flow between the model and the entity
being monitored. Figure 4 shows the Runtime Quality Meta-model, which is an
extension of the SaaS Quality Model. It has many of the meta-classes included in
the SaaS Quality Model described previously, plus meta-classes that represent the
prescriptive part, the descriptive part, and the characteristics of the cloud platform
that allow the causal connection.

The CloudService meta-class also describes the service to be monitored. The
prescriptive part of the model thus includes the Threshold, which is obtained from
the obligations part of the SLA, or an AdditionalNFR threshold set by the

Fig. 4 Runtime quality meta-model

24 P. Cedillo et al.

stakeholder. The descriptive part of the model is formed of the RawDataInstance
meta-class, which contains the values captured directly from the cloud, and the
CalculatedMetric meta-class, which contains the measurement results of the cal-
culated metrics. The ConfigurationFile meta-class contains specific information for
each platform that allows an interaction to take place between the monitoring
infrastructure and the cloud service. It can therefore be considered as the class that
is used to attain the causal connection between the monitoring infrastructure and
services when a change needs to be reflected. Finally, the Indicator meta-class
represents a measure that is derived from the other measures using an Analysis
Model as a measurement approach [23]. In conclusion, the Runtime Quality Model
allows our proposal to obtain the desirable characteristics related to flexibility and
maintainability, since changes in the Runtime Quality Model can be easily reflected
in the monitoring infrastructure.

Interaction Among Models Figure 5 shows the interactions among the models.
The first interaction (1) occurs between the SaaS Quality Model and the Monitoring
Requirements Model. Stakeholders can use the SaaS Quality Model, which contains
a standardized classification of characteristics, sub-characteristics, metrics, and
attributes, as support in order to define the Monitoring Requirements Model. The
second interaction (2) then occurs between the Monitoring Requirements Model
and the Runtime Quality Model. Here, the stakeholder uses the Monitoring
Configurator Interface to capture the NFRs and metrics included in the Monitoring
Requirements Model to define the Runtime Quality Model. Finally, the third
interaction (3) occurs between the Runtime Quality Model and the SaaS Quality
Model. This interaction allows the means used to gather information from cloud
services to be specified. In this scenario, the SaaS Quality Model is useful as
regards matching the high level attributes contained in the Monitoring
Requirements Model with raw service quality data. Here, the SaaS Quality Model

Fig. 5 Interaction among models

A Monitoring Infrastructure for the Quality Assessment … 25

enables a choice to be made from among many equivalent operationalizations with
different measurement methods, thus providing our approach with flexibility.

3.2 Monitoring and Analysis Middleware

The Monitoring and Analysis Middleware consists of the Measurements Engine,
which uses the Runtime Quality Model obtained as result of the configuration as
input, and this applies metrics with which to measure the quality of services. There
is also the Analysis Engine, which permits the analysis of quality and reports SLA
violations. A description of the Monitoring Middleware components has been
addressed in Cedillo et al. [19].

4 Case Study

An exploratory case study was performed following the guidelines presented in
Runeson et al. [24] in order to analyze the feasibility of the configuration task. The
stages of the case study are: design, preparation, collection of data, and analysis of
data, each of which is explained below. In this case study, we have used a metric to
illustrate the configuration task. In Cedillo et al. [19], it can be found other
examples to have a better idea about the configuration and application of other
NFRs to this solution.

4.1 Design of the Case Study

The case study was designed by considering the five components proposed in
Runeson et al. [24]: purpose of the study, underlying conceptual framework,
research questions to be addressed, sampling strategy, and methods employed.

The purpose of this case study is to analyze the feasibility of configuring the
monitoring of services by means of the Monitoring Configurator, and to use these
configurations to generate the Runtime Quality Model. The Monitoring and
Analysis Middleware will take this model as input to monitor the cloud services.
The conceptual framework that links the phenomena to be studied is based on the
Monitoring Process [11] and an infrastructure that supports this process (i.e.,
components, artifacts). The research questions to be addressed are: (a) is the
strategy of configuring and matching the NFRs with quality raw data retrieved from
cloud services to obtain the desired monitoring information useable and effective?;
(b) what are the limitations of the monitoring configurator?

Here, the sampling strategy is based on monitoring configuration tests carried
out by a subject who is an IT professional with programming skills and who has

26 P. Cedillo et al.

been working as a Cloud Provider Service Specialist for two years. In accordance
with Lethbridge et al. [25], we have applied the second degree of data collection
techniques, in which the researcher directly collects raw data without interacting
with the subject during the data collection.

In order to collect the monitoring information, we developed a prototype of the
Monitoring and Analysis Middleware that allows the collection of raw data through
the use of the Runtime Quality Model generated in the configuration task. The
monitoring configuration was carried out as follows: the subject used the
Monitoring Requirements Model to match NFRs with quality parameters and
instructions that gather data from a service running in the cloud. The technique used
to obtain feedback regarding the feasibility of the monitoring configuration per-
formed was an analysis of the monitoring results obtained using a prototype of the
Monitoring Engine to obtain the data needed to prove whether the values gathered
were those expected by the subject.

4.2 Preparation of the Case Study

The context of this case study, was a test scenario in which the subject carried out
the monitoring configuration. The SaaS Quality Model was used to support the
matching between the NFRs to be monitored and the platform information. Once
this information had been matched, it was possible to generate the Runtime Quality
Model, which was then used by the Monitoring and Analysis Middleware to gather,
measure and analyze quality data obtained from cloud services. The services used in
this case study were implemented in compliance with an Open Reference Case
(ORC) proposed in Ludwig et al. [20], which was used as an open source
demonstrator to highlight the achievements of the European research project
SLA@SOI. The ORC is an extension of the CoCoMe implementation [26], which
provides a service oriented retail solution that can be used in a supermarket trading
system to handle the sales and stocking process [27]. The set of services defined by
ORC was deployed as a SaaS on the Microsoft Azure© platform. We considered
the actions (i.e., create, read, update, and delete operations) related to the inventory
service and the sales service. The objective was to configure the monitoring
infrastructure in order to perform quality evaluations of cloud services. The NFRs
to be monitored were reliability and latency.

Figure 6 presents an excerpt of an instance of the Monitoring Requirements. It
shows the service, its operations (e.g. NewItemInventory) and the NFRs
(SLAParameters). The NFRs to be monitored are the reliability and latency of the
inventory and sales cloud services. Reliability is defined as “the ability of an item to
perform a required function under stated conditions for a stated time period” [28].
Customers and suppliers often measure service reliability as Defective operations
Per Million attempts (DPM) [29]. In this case study, the SLA term included the
following clause: “the service could have a maximum of ten defective operations
per million” (i.e., “99.999 % service reliability”). Service latency was, meanwhile,

A Monitoring Infrastructure for the Quality Assessment … 27

defined as “the time that has elapsed between a request and the corresponding
response” [29], and thus “the maximum service latency is 130 ms”. TheMonitoring
Requirements Model includes the DPM metric which measures reliability. It was
then necessary to select the DPM equivalent operationalization, which allows the
measurement of the reliability NFR in cloud services deployed on the Microsoft
Azure © platform. Our SaaS Quality Model contains three equivalent metric
operationalizations (i.e. DPM1, DPM2, and DPM3). The subject select one of them
depending on the Monitoring Requirements Model and the Raw Service Quality
Data to be retrieved.

The operationalizations included in our SaaS Quality Model to calculate DPM
are:

DPM 1 ¼ OperationsAttempted� Operations Successful
Operations Attempted

� 106 ð1Þ

DPM 2 ¼ Operations Failed
Operations Attempted

� 106 ð2Þ

DPM 2 ¼ Operations Failed
OperationsSuccessfulþOperationsFailed

� 106 ð3Þ

The subject can select an equivalent operationalization by considering the
advantages and disadvantages of the selection (e.g. overheads). Once the Runtime
Quality Model has been generated, the Monitoring and Analysis Middleware can
collect information, measure data, and report SLA violations. Here, data is captured
by using the Azure Diagnostics Service. However, this could change depending on
the facilities of each cloud platform. Here, the subject can use one of the three
equations (1)–(3) to match that selection with Diagnostics counters. Finally, the
matched formula was used for the Monitoring and Analysis Middleware using
Diagnostics counters.

4.3 Collection of Data

The data was collected in two stages: (1) when the subject carried out the con-
figurations depending on the NFRs and matched these NFRs with raw
platform-specific data counters to generate the Runtime Quality Model using the

Fig. 6 Monitoring
requirements model instance
excerpt

28 P. Cedillo et al.

SaaS Quality Model; (2) when the monitoring engine gathered and measured
information provided by cloud services based on the Runtime Quality Model.
A prototype of the Monitoring and Analysis Middleware was implemented as a
Microsoft Azure cloud service, which stores the results in a data base. Figure 7
shows the results with the calculated metrics.

4.4 Analysis of Data

The monitoring configuration was analyzed so as to address our research questions.
The subject used the Monitoring Requirements Model, which contained the NFRs
to be monitored, and their metrics and thresholds. The subject then matched the
metrics with the appropriate operationalizations specific to the platform. In order to
illustrate the process used to monitor the reliability, the other NFRs were monitored
following analogous steps. The reliability threshold was 99.999 %, and we the
considered operationalization (1) which was set up by matching formula (4) with
the Azure Counters:

• RequestsTotal=@“\ASP.NET Applications(_Total_)\Requests Total”
• OperationsSuccessful=@“\ASP.NET Applications(_Total_)\Requests Succeeded”

DPM ¼ RequestsTotal� RequestsSucceded
RequestsTotal

ð4Þ

The Runtime Quality Model should include Formula (4). When checking
whether the monitoring infrastructure would be able to monitor the behavior of the
cloud services by using the runtime quality model, we intentionally introduced
exceptions into the ORC services’ source code to generate reliability and latency
problems.

It was necessary to determine whether the configuration gathers the expected
information from the cloud services by using the Runtime Quality Model and to
find possible limitations or inaccurate results. Here, we have concluded that the

Fig. 7 Metrics calculated by using the monitoring infrastructure

A Monitoring Infrastructure for the Quality Assessment … 29

Runtime Quality Model produced the expected values shown in the table presented
in Fig. 7, in which the exceptions introduced were reflected in the monitoring
results (the reliability offered was 99.999 % and the actual Reliability was
93.0595 % for the inventory service, signifying that the SLA was violated).

4.5 Case Study Conclusions and Lessons Learned

With regard to the first research question stated for this case study, we provide
support to help the configuration of NFRs to be monitored using our approach and
that the configuration was effective as regards monitoring Azure cloud services.
Moreover, the suitability of this approach is shown by the fact that it is feasible to
use the Monitoring Configurator to match the NFRs included in the Monitoring
Requirements Model with the raw service quality data gathered from the cloud
service and provide the expected information. With regard to the second research
question, the Monitoring Infrastructure is able to detect SLA violations from a wide
range of NFRs. However, it is important to take into account that not all the NFRs
can be monitored owing to the restriction of the infrastructure that provides the raw
service quality data from the services. One solution to this issue would be to use
wrappers for services in order to capture the information required in a customized
manner, which constitutes one of the next steps in our research.

As lessons learned this case study has allowed us to observe the potentialities
and limitations of our proposal. The monitoring configurator allows a wide variety
of operationalizations and platform counters to be matched. However, it depends on
the facilities used to provide raw service quality data. During the execution of the
case study, several aspects related to how the configuration can be facilitated have
been discovered. For example, the SaaS Quality Model provides a simple means to
choose the operationalizations and it is possible to add operationalizations to the
SaaS Quality Model, which represents a knowledge base that saves efforts and
minimizes possible mistakes when the configuring task is being carried out.

5 Conclusions and Future Work

In this paper, we have presented a monitoring infrastructure for cloud services,
which allows data to be retrieved from cloud services in order to calculate moni-
toring metrics and eventually report non-compliance with the SLA. The monitoring
infrastructure uses the Runtime Quality Model, which is generated by using two
additional models: the Monitoring Requirements Model and the SaaS Quality
Model. The feasibility of the approach has been illustrated by means of a case study
which shows the monitoring of services deployed on the Azure platform.

The use of models@run.time provides flexibility and eases maintainability when
the SLA and additional NFRs to be monitored change. Moreover, the facility of

30 P. Cedillo et al.

changing the model and not the monitoring infrastructure makes it easier to operate
and understand when they are not familiar with the middleware implementation.

As future work, we plan to deliver our Monitoring and Analysis Middleware in
other platforms (e.g. Amazon AWS, Google) to be able to monitor and analyze
services deployed in these platforms. We also plan to carry out a systematic review
of the quality characteristics, sub-characteristics, attributes, and metrics of cloud
services. The findings will be included in the SaaS Quality Model in order to study
the monitoring mechanisms provided by other commonly used cloud platforms
such as Google App Engine or Amazon AWS. Moreover, we plan to study generic
means to encapsulate the raw data collected from the cloud services in order to
obtain common interfaces for many platforms (e.g., APIs, proxies, plugins). Finally,
we plan to improve the efficiency of the proposal by taking in account issues such
as overheads, security, etc. and to empirically validate the approach using con-
trolled experiments.

Acknowledgments This research has been supported by the Value@Cloud project
(TIN2013-46300-R), Scholarship Program Senescyt-Ecuador, NSERC (Natural Sciences and
Engineering Research Council of Canada) and Microsoft Azure for Research Award Program.

References

1. Sriram, I., Khajeh-Hosseini, A.: Research agenda in cloud technologies. In: 1st ACM
Symposium on Cloud Computing, SOCC, pp. 1–11 (2010)

2. Song, J., Han, F., Yan, Z., Liu, G., Zhu, Z.: A SaaSify tool for converting traditional
web-based apps to SaaS application. In: 4th International Conference on Cloud Computing,
CLOUD, pp. 396–403 (2011)

3. Baset, S.A.: Cloud SLAs: present and future. ACM SIGOPS Oper. Syst. 46, 57–66 (2012)
4. Hassan, M., Song, B., Huh, E.-N.: A market-oriented dynamic collaborative cloud services

platform. Ann. Telecommun. 65, 669–688 (2010)
5. Aceto, G., Botta, A., de Donato, W., Pescapè, A.: Cloud monitoring: a survey. Comput. Netw.

57, 2093–2115 (2013)
6. Shao, J., Wei, H., Wang, Q., Mei, H.: A runtime model based monitoring approach for cloud.

In: International Conference on Cloud Computing (CLOUD), pp. 313–320 (2010)
7. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree

compared. In: Grid Computing Environments Workshop (GCE 08), pp. 1–10 (2008)
8. Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M., Ruiz-Cortes, A., Rodriguez, M.:

Comprehensive explanation of SLA violations at runtime. IEEE Trans. Serv. Comput. 7,
168–183 (2014)

9. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and run-time.
In: Workshop on the Future of Software Engineering Research FSE/SDP, pp. 17–22. ACM,
USA (2010)

10. Giese, H., Bencomo, N., Pasquale, L., Ramirez, A., Inverardi, P., Wätzoldt, S., Clarke, S.:
Living with Uncertainty in the Age of Runtime Models. http://dx.doi.org/10.1007/978-3-319-
08915-7_3

11. Cedillo, P., Gonzalez-Huerta, J., Insfrán, E., Abrahao, S.: Towards monitoring cloud services
using Models@run.time. In: Workshop on Models@run.time, MODELS, pp. 31–40, Spain
(2014)

A Monitoring Infrastructure for the Quality Assessment … 31

http://dx.doi.org/10.1007/978-3-319-08915-7_3
http://dx.doi.org/10.1007/978-3-319-08915-7_3

12. Fatema, K., Emeakaroha, V.C., Healy, P.D., Morrison, J.P., Lynn, T.: A survey of cloud
monitoring tools: taxonomy, capabilities and objectives (2014)

13. Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P.P., Khan, S.U., Guabtni, A.,
Bhatnagar, V.: An overview of the commercial cloud monitoring tools: research dimensions,
design issues, and state-of-the-art. Computing, pp. 1–21 (2014)

14. Emeakaroha, V.C., Ferreto, T.C., Netto, M.A.S., Brandic, I., De Rose, C.A.F.: CASViD:
application level monitoring for SLA violation detection in clouds. In: Computer Software and
Applications Conference (COMPSAC), pp. 499–508 (2012)

15. Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis, D., Menychtas, A., Varvarigou, T.: A
self-adaptive hierarchical monitoring mechanism for Clouds. J. Syst. Softw. 85, 1029–1041
(2012)

16. Smit, M., Simmons, B., Litoiu, M.: Distributed, application-level monitoring for
heterogeneous clouds using stream processing. Future Gener. Comput. Syst. 29, 2103–2114
(2013)

17. Montes, J., Sánchez, A., Memishi, B., Pérez, M.S., Antoniu, G.: GMonE: a complete approach
to cloud monitoring. Future Gener. Comput. Syst. 29, 2026–2040 (2013)

18. Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler, J.M., Corradi, A., Foschini, L.:
DARGOS: a highly adaptable and scalable monitoring architecture for multi-tenant Clouds.
Future Gener. Comput. Syst. 29, 2041–2056 (2013)

19. Cedillo, P., Jimenez-Gomez, J., Abrahao, S., Insfran, E.: Towards a monitoring middleware
for Cloud services. In: International Conference on Services Computing (SCC), NY, USA
(2015)

20. Ludwig, H., Keller, A.: Web Service Level Agreement (WSLA) Language Specification,
pp. 1–110 (2003)

21. ISO/IEC: ISO/IEC 25010 Systems and Software Quality Requirements and Evaluation
(SQuaRE)—System and software quality models (2011)

22. Lehmann, G., Blumendorf, M., Trollmann, F., Albayrak, S.: Meta-modeling runtime models.
In: International Conference on Models in Software Engineering, pp. 209–223. Springer,
Berlin (2010)

23. García, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruíz, F., Piattini, M., Genero, M.: Towards
a consistent terminology for software measurement (2006)

24. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14, 131–164 (2009)

25. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection techniques
for software field studies. Empirical Softw. Eng. 10, 311–341 (2005)

26. Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krogmann, K.,
Koziolek, H., Mirandola, R., Hummel, B., Meisinger, M., Pfaller, C.: CoCoMe—the common
component modeling example. Presented at the (2008)

27. Wieder, P., Butler, J.M., Theilmann, W., Yahyapour, R. (eds.): SLAs for Cloud Computing.
Springer, New York (2011)

28. Quality Excellence for Suppliers of Telecommunications Forum (Quest Forum), TL 9000
Quality Management System Measurements Handbook 5.0 (2012)

29. Bauer, E., Adams, R.: Service Quality of Cloud-Based Applications. Wiley, Hoboken (2013)
30. Fernandez, A., Abrahão, S., Insfran, E.: A web usability evaluation process for model-driven

web development. In: International Conference on Advanced Information Systems
Engineering, pp. 108–122 (2011)

32 P. Cedillo et al.

	2 A Monitoring Infrastructure for the Quality Assessment of Cloud Services
	Abstract
	1 Introduction
	2 Related Work
	3 Monitoring Infrastructure
	3.1 Monitoring Configurator
	3.2 Monitoring and Analysis Middleware

	4 Case Study
	4.1 Design of the Case Study
	4.2 Preparation of the Case Study
	4.3 Collection of Data
	4.4 Analysis of Data
	4.5 Case Study Conclusions and Lessons Learned

	5 Conclusions and Future Work
	Acknowledgments
	References

