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Abstract 

A simple introduction of inelastic structural analysis for seismic vulnerability by considering the 

definition of pushover analysis and using a simple elasto-plastic material model to compare analytical 

and numerical results. The modal pushover method is explained to approximate the response due to 

”El Centro 1940” ground motion for MDOF systems. The properties of Modal Pushover analysis is 

used to plot capacity curves vs ground motion spectra in order to perform a one limit state fragility 

curve using the maximum likelihood method.  All explanation are done by following a step by step 

procedure, then it is applied to a benchmark structure, the 9 storey SAC building. 

 

Introduction 

Earthquakes are among the most surprising and aggressive natural phenomena, however now we have 

more knowledge of their physical origin, and still the vibrations transmitted to the structures remain 

staggering. From all natural phenomenon only earthquakes produce devastating forces over a 

relatively small time span, the most recent catastrophic examples such as Kobe (Japan, 1995, M=7.3), 

Izmit (Turkey, 1999, M=7.6), Boumerdes (Algeria, 2003, M=6.7), Sichuan (China, 2008, M=7.9), 

Haiti (Haiti, 2010, M=7.0), earthquakes demonstrate the relative weakness of urban environments  to 

such destructive forces. 

The number of earthquakes has neither increased nor decreased, approximately 50000 earthquakes 

occurs on average per year (Dietz 1961), however risk has increased due to the growth of urban 

population along active seismic faults.  The greatest cause of damage in all cases is due to the 

collapse of masonry buildings often built before the application of construction codes and without 

control during the construction stage, the latter is a very common practice in third world countries. 

Despite this, there are countless structures designed without the application of earthquake design rules. 

These considerations led to the development of seismic vulnerability methods as a methodology to 

represent the capacity of structures to support seismic ground motions. 

This paper is based on a mechanical method using the modal pushover analysis (MPA) (Chopra and 

Goel 2002) to derive a fragility curve for the probability of reaching the yielding point as a limit state. 

A step by step procedure details the methodology and results. At the end, the same steps are performed 

to the 9 storey SAC building, which is used in several papers as a benchmark structure for a non-linear 

analysis (Goel and Chopra 2004). 

The maximum likelihood method (Shinozuka and Feng 2000) is used to plot the fragility curve. The 

Eurocode 8 type 1 spectrum for different PGA levels is used as target to select 90 scaled ground 

motions spectrum from the on-line strong-motion record data base “peer.berkeley.edu”. 
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Nonlinear analysis 

Introduction 

An inelastic behaviour of structures on seismic areas should always be considered for in responsible 

designs. There are several methods based on dynamic and static nonlinear analysis used by engineers 

to design new buildings. In some cases the analysis of a single building can be performed by a 

complete dynamic analysis, however for the analysis of existing buildings as is the case for seismic 

vulnerability analysis, this task can become impossible or hardly difficult to achieve. Therefore 

nonlinear static analysis is still very common, this method can capture the response parameters that 

could be obtained by more complex and expensive techniques, e.g., Incremental dynamic analysis 

(Magliulo et al. 2007).  

 

Pushover analysis 

Pushover analysis was introduced in the mid-1970s for a quick evaluation of the vulnerability of naval 

constructions (Freeman et al. 1975) and for seismic engineering. The pushover analysis is a technique 

by which a building is subject to monotonically increasing forces with a predetermined unvarying 

distribution, until a target displacement is reached. The structural resistance is evaluated and the 

stiffness matrix is updated at every increment of the lateral force, until convergence. 

The basic problem is to find the equilibrium of the structure corresponding to the applied loads. 

             (1)  

Herein,    represents the external applied nodal point forces and    the corresponding nodal forces 

from the elements stresses at time t wherein n is a convenient variable to represent the different 

intensities of load applications at different time steps, this response is carried out by using a step by 

step incremental solution (Bathe 2006), therefore it considers that the solution at time t is known, and 

that the solution at the next step t+Δt is required. 

                 (2) 

               (3)  

  

Herein,    is the force corresponding to the element stresses during the increment step. This vector can 

be approximated using a tangent stiffness matrix 
t 
K. 

    
t 
K     (4) 

Substituting equations 4 and 3 into equation 2 to obtain equation 5 

 
t 
K               (5)  

The reliability of the method depends on the effective evaluation of    and 
t 
K. 

 

Pushover curve 

An important solution from the pushover analysis is the plot of force vs displacement, usually the 

bottom shear force vs the top storey displacement. This solution, which comes from a MDOF analysis 

can be related to the response of an equivalent SDOF system (Krawinkler and Seneviratna 1998) this 

allows a much simple model for seismic analysis. 
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Example part I 

The model used in this example will be the same through the presentation of all the paper. A 9.144m 

steel column is part of a large viaduct highway system, on the tip a $766622kg mass, which represents 

the superstructure, see figure 1 and 2. The intention is to find the pushover curve for a continuous 

element given the following properties. 

 

Figure1. Long viaduct 

The steel properties are: E=210000MPa and ѵ=0.3 

The section properties are: fy = 235MPa, Izz = 7.118*10
-3

m
4
, A = 0.0852m

2
 

 

Figure2. W24x450 section 

If a constant section is assumed throughout the column height, then: 

      (
   

  
 
    

 

  
)
 

 
     (6)  

Equation 6 Represents the yielding capacity moment of the section, and 

      (
   

 
 
    

 

 
)
 

 
     (7)  

Equation 7 represents the ultimate capacity moment of the section using an elastic perfectly plastic 

model. Figure 3 shows the elastoplastic model; figure 4 shows the stress increment. In the latter figure, 

initially the farthest fibers from the neutral axis reach the yielding stress figure 4a due to My, 

subsequently any moment increment enlarges the yielding area figure 4b and figure 4c, at the end the 

total section yields figure 4d, which corresponds to Mu. 
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The pushover curve is obtained as a plot of the bottom shear force vs the tip displacement in the X 

direction; these values correspond to a continuum load increment applied to the top of the column. If 

V is the bottom shear force and M is the resistant moment, then the first three points are easily 

obtained for the curve, these are: V=0 for M=0, Vy=My/9.14 and Vu=Mu/9.14; hence there is a linear 

relation between V and Vy, and a nonlinear relation between Vy and Vu, this nonlinear relation depends 

on the type of material, section geometry and material law. Here, these points will be obtained by 

considering a continuous increment of the yielding area. 

From figure 2 we can see that e1 = (h - h1)/2, e2 = b - b1 and yn = h/2 - en; where e represents the 

increment of the yielding area and it is define for 0 ≤ e < h/2. Assuming that the cross section of the 

column during bending remains plane and normal to the deflection curve, and that the longitudinal 

fibers of the column are in condition of simple tension or compression (Timoshenko 1956) then 

equation 8 represents the radius of curvature for small displacements. 

  
 ⁄  

  

  
        (8)  

Due to the sections geometry (see figure 2) the analysis must be divided in two parts. The first part, 

considers the yielding area going from e = 0 to e = e1, the second part when the yielding area goes 

from e = e1 to e = h/2.  

For the first part 0 ≤ e < e1  

      (
    

 

  
 
    

 

  
)
 

  
   (

    

 
    

 )    (9)  

 

For the second part 0 ≤ e < h/2 

                                   [
 

 
    

     (     )    (     )(         )]    (10)  

This methodology consists of increasing e in order to calculate y, r and M. For the section in figure 2, 

My = 4535.50kN-m and Mu=5459.38kN-m; Mu is the value when all the area has yield (see figure 4 

part d),      (
   

 
 
    

 

 
) When en=h/2, yn=0 the displacement in equations 8 and 11 tend to 

infinity and the moment tends to Mu; see figure 5. 
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In order to obtain force vs displacement for the pushover curve is necessary to define a relation for the 

top deformation and yn. This is done by using the stiffness (        ) of a cantilever beam with a 

tip load to then obtain equation 11, which allows plotting figure 6. 

   
   

 

    
  (11)  

 

 Figure 5. Moment of curvature   Figure 6. Pushover curve 

 

This example showed a simple incremental method to derive a pushover curve for a single element, 

considering a tip load and using an elastoplastic material model. 

 

Modal pushover analysis (MPA) 

In the Modal pushover analysis the system is converted into a MDOFs divided in m elements, then the 

load is applied in the nodes with a distribution corresponding to the principal mode shapes of the 

structure; therefore different pushover curves are obtained for each load configuration. 

              (12)  

Equation 12 represents the shape of the forces to be applied to the structure, M and ϕ are the mass and 

mode shape matrices, L is the influence diagonal matrix which indicates the excited degrees of 

freedom. To achieve good results, it is recommended that an effective modal mass of at least 90% of 

the total mass of the structure should be considered in the analysis (Gueguen 2013), in the majority of 

cases this requirement is achieve with the first three modes. 

 

Example part II 

The same example is modelled now using 16 elements, and then the eigenvalue problem is solved for 

a system with 48 degrees of freedom for which a plot of the first three modes shapes is obtained. The 

computations are performed using STABIL2.0 toolbox (Jansen 2010), the modes and principal 

frequencies are shown in figure 7. 

Matrix L from equation 12 is defined in such way that only the horizontal degrees of freedom are 

excited. Figure 8 illustrates the distribution of horizontal forces corresponding to each of the first three 

mode shapes using equation 12. 

    
  
   

    
      (13) 

      
       (14) 
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Figure 7. Principal mode shapes 

Equation 13 represents the modal participation factor; equation 14 represents the mass participation 

factor. The total mass including self-weight is 772735.04kg, then from equation 14, the corresponding 

mass participation M
*
 for mode 1 is 769761.33, mode 2 1579.96 and mode3 484.24. If M

*
 is compared 

with the total mass, then the mass participation factor for mode 1 is 99.62%, for mode 2 0.2% and for 

mode 3 0.063%. Thus it is only necessary to consider the first mode to obtain an accurate solution. 

 

Example part III, comparing results with SAP2000 

The same 16 elements model is implemented in SAP2000; an elastoplastic no hardening material 

model is considered. The horizontal loads obtained from equation 12 are implemented as initial loads 

to start the pushover analysis.  

Figure 9 shows the plot of the analytical and numerical solution of the pushover curve, the 

correspondence is almost perfect; the small difference can be due to convergence of SAP2000 near to 

the yielding point.  

This solution is important because the response of a MDOF can be related to the response of a 

combination of SDOFs. This can be extended to quantify the displacement of SDOF systems using 

spectra analysis. However in this example this result was easily obtained due to the dominance of the 

first mode, when more than one mode is important, then a relationship between modes and pushover 

curves is required. 

 

Figure 9. Analytical and numerical solution 
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Relation between spectra analysis and pushover analysis 

If the displacement imposed from a ground motion to a SDOF is known, then it could be used to 

define the target displacement for the pushover analysis and find the structural demands. This can be 

done by plotting the corresponding earthquake spectra versus the capacity curve; the latter is obtained 

by transforming the pushover curve in a plot of spectra acceleration in function of spectra 

displacements. 

   ̈    ̇    (   ̇)     ̈ ( )     (15) 

  ( )    ( )      (16) 

If 

    ( )      ( )      (17) 

Where 

                (18) 

  ̈        ̇  
  

  
   ̈ ( )      (19) 

       ( )      (20) 

The resistant force at any stage of the nonlinear static procedure: 

             (21) 

 

The base shear force at any stage of the nonlinear static procedure: 

             (22) 

   
 

  
     (23) 

In case the case of elastic analysis equation 22 can be written as:         ,  which can be simplified 

to obtain: 

    
   

  
    And    

   

     
     (24) 

Equation 24 can be extended to use it for nonlinear analysis. Equation 19 details an approximate 

solution for inelastic analysis, wherein a MDOFs is replaced by the combination of SDOF systems, i 

goes from 1 to the number of representative modes; for each mode, a pushover curve is obtained. 

Equation 24 is use to relate the pushover force in spectra coordinates, and it is called the capacity 

curve. This representation can be approximated by a bilinear function using the equivalent area 

method. 

In the equivalent area method used, first the initial and last point (target point) are fixed; then the 

original stiffness is used to draw the first part of the curve starting from the origin to an equivalent 

yielding point Dy which then is fixed by balancing the area of the original curve with the area of the 

bilinear curve. 

Equation 24 is used to transform the pushover curve into the capacity curve; herein the ordinates are 

represented by spectra acceleration and the abscissa by spectra displacement of the equivalent SDOF 

system. This important deduction makes possible to compare capacity curve with earthquake spectra 
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plot (figure 12), their intersection in the elastic range represent the displacement demand. Several 

ground motions can be compared with the same capacity curve, which is very helpful for the analysis 

of seismic vulnerability. 

 

        Figure 10. Bilinear approximation         Figure 11. Capacity curve 

 

Figure 12. “El Centro” spectrum & mode 1          Figure 13. Tip displacement 

capacity curve   

Approximate nonlinear dynamic solution 

Dynamic analysis can be performed using an approximate solution, where the uncoupling of modes is 

extended to inelastic systems using equation 19; this equation represents the dynamic differential 

equation of a SDOF system corresponding to mode n, then equation 16 and equation 18 are used to 

return to normal coordinates. The inelastic behaviour is represented by the tangent stiffness using the 

bilinear approximation obtained from the modal pushover analysis.  Each response can be combined in 

the same manner as in the case of elastic analysis. An explicit or implicit time integration method can 

be used. Figure 13 compares the tip displacement due to ``El Centro'' ground motion by considering 

the approximate and the full transient solution, in both cases using the Newmark method. 

 

Fragility analysis 

Introduction 

A statistical procedure for fitting fragility functions to structural analysis data when the structural 

analysis is performed using different ground motions at each intensity level. A well accepted 

methodology for such cases is the maximum likelihood estimation method (MLE) (Shinozuka et al. 

2000) which is also is easy to implement. 

MLE can be implemented for a variety of situations; however this paper will be focus on collapse 

fragility functions obtained from structural analysis data. The structural response quantity to estimate 
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from structural analyses is the probability of collapse (exceed the elastic capacity) as a function of 

ground motion intensity using spectral acceleration. 

 

Conditional spectrum 

A conditional type 1 spectra from EuroCode 8 is generated as target spectrum, it will be used to select 

different ground motions at each PGA level. For each level, a group of 90 ground motions are selected 

using the peer.berkeley.edu/ PEER Ground Motion Database. 

A type a soil and 0.05 damping ratio are used to build the spectrum. The PGA level varies from 0.1g 

to 1g, with an increment of 0.05g and two additional values of 1.3g and 2g. Figure 14 shows the 

different ground motion spectra used to fit a 0.25g spectrum. 

 

Figre 14. Target spectrum for PGA = 0.25g 

 

Maximum likelihood method (MLE) 

The MLE method is used to account for the non-constant variance of the observed fractions of 

collapse (Shinozuka et al. 2000). First, the probability of observing zj collapses out of nj ground 

motions with Sa=xj is given by the binomial distribution. 

  (     )  (
  
  
)  

 

  (   )          (25) 

Where Pj is the probability that a ground motion with Sa = xj will exceed the yielding point of the 

structure, which can also be denoted as P(C\Sa = x). The goal is to find the fragility function which 

best fits p, the MLE estimation chooses the function with the highest probability of observing the limit 

state considering all Sa values. This is done by taking the product of binomial probabilities at each 

PGA levels. 

            ∏ (
  
  
)  

 

  (   )      
        (26) 

Herein m represents the number of Sa values for which z and n are already known; the fragility 

function will be the one that maximizes this likelihood. A log normal cumulative distribution function 

is used to fit the data. 

  (      )   (
     

 
)     (27) 

Replacing equation 27 into equation 26 to obtain: 

                                         ∏ (
  
  
) (

      

 
)   (   (

      

 
))

     

   
       (28) 
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To obtain the fragility function parameters, it is necessary to maximize the likelihood function. 

                               ̂  ̂  
   
   ∏ (

  
  
) (

      

 
)   (   (

      

 
))

     

   
        (29) 

The values for the right side of equation 28 are known from the pushover analysis. The Matlab 

Statistical toolbox is used to perform the optimization and find  ̂ and  ̂. 

 

Example part IV, fragility curve 

A comparison between the modal pushover analysis curve and each of the spectra for a given PGA 

value, allows determining an intersection, which will exceed or not the yielding point. If the 

intersection exceeds, then 1 is assigned to a variable, and if it is not exceeded 0 is assigned to the 

variable, this is implemented in a subroutine using Matlab. In figure 15, three spectra and the capacity 

curves are plotted for  PGA = 0.25g; two of the spectra intersect the capacity curve on the left side of  

the yielding point and one at the right side, hence the variable would storage (0 0 1) which can resume 

the procedure used to count observations; this is repeated for all  PGA levels. 

 

                Figure 15. Spectra and capacity curve       Figure 16. Yielding point fragility curve 

 

Table 1. Collapses 

PGA Collapses 

0.10 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

3 

12 

42 

62 

80 

83 

84 

87 

89 

90 

  

 

For the cantilever structure, PGA values above 0.55g produce 90/90 collapses, and then it is not 

necessary to calculate for higher levels. The information data of the number of collapses, equation 29 

and Matlab Statistical toolbox are used to plot the fragility curve, which is shown in figure 16. 
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Sac 9 storey building 

Herein the procedures explained in detail in the previous sections will be applied to a benchmark 

structure, the SAC 9 storey building. The resume of characteristics for this structure is presented next. 

Steel structure: Columns 345MPa, beams 248MPa 

Table 2. Sections 

Beams Level Columns Level 

W36x160 

W36x135 

W30x99 

W27x84 

W24x68 

 

Ground – 2
nd

 level  

3
rd

 – 6
th

 level 

7
th

 level 

8
th

 level 

9
th

 level 

W14x500 

W14x455 

W14x370 

W14x283 

W14x257 

Basement – 1
st
 level 

1
st
 – 3

rd
  

3
rd

 – 5
th

 level 

5
th

 – 7
th

 level 

7
th

 – 9
th

 level 

 

    

Geometry 

Bay widths: 9.15m. 

Storey heights: base level 3.65m, ground level 5.49m, 1
st
-8

th
 3.96m 

Modelling: 3 internal nodes for beams and 2 for columns. In total 337 nodes and 380 elements. 

Boundary conditions: Nodes 1- 6 fixed; nodes 19 and 24 ux = 0. 

 

Figure 17. SAC 9 storey building 

 

Modes and natural frequencies 

The model is created using SAP2000 and also using Stabil2 Toolbox. The first three modes and 

natural frequencies are shown in figure 18. 
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Mass participation factors 

The number of modes to be included will have to capture at least the 90% of the total mass. The first 

mode contributes with 76%, the second with 10% and the third with a 4%. Hence, the first three 

modes will be used for the analysis. 

 

Modal pushover forces 

From equation 12 the forces are obtained and applied to the left lateral nodes of the structure 

considering only horizontal degrees of freedom. 

  

Figure 18. Modes and natural frequencies 

 

Figure 19 shows the lateral forces for the first three modes. These forces are applied to the structure 

and analysed using SAP2000, thereafter three pushover curves are obtained. The three pushover 

curves and their bilinear approximation are shown figure 21. 

 

Bilinear capacity curves 

The bilinear capacity curves are obtained from the bilinear pushover curves using equation 24, see 

figure 22. 

     

Figure 19. Pushover force mode1,2 and 3 

 

Figure 21. Pushover curves 
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Figure 22. Capacity curves 

Dynamic analysis 

If each of the three capacity curves from figure 21 is used to solve their corresponding nonlinear 

SDOF, then from equations 20 and equation 17 the approximate responses can obtain as results for the 

MDOFs. Figure 23 shows the solution for the “El Centro” earthquake, which does not exceed the 

yielding point of the structure. 

 

MPA and uncoupled modal response history analysis 

The Modal Pushover Analysis and the Uncoupled Modal Response History Analysis (UMRHA) are 

compared using the ”exact” transient solution. 

First, it is necessary to clarify the dependence between both methods, the UMRHA uses the modal 

pushover curves as material models to solve equivalent SDOF systems, then the maximum 

displacement obtained from each of the UMRHA are used as the target displacement in the  MPA  to 

obtain the elements responses. In order to compare their accuracy, the response of lateral floor 

displacements is obtained and plot in figure 25. It is important to point out that the MPA displacement 

target can always be found using the UMRHA. 

 

 

Figure 23. Node 186 displacement and hysteresis for the “El Centro” ground motion 

 

Figure 24. Node 186 displacement and hysteresis for the “El Centro” ground motion x2 
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Figure 25 illustrates five curves, the vertical curve represents the transient solution, three curves 

represent the pushover solution considering one mode, two modes and three modes respectively, the 

forth curve represents the approximate dynamic solution. The modes were combined using the SRSS 

rule. From figure 25 it is clear that both methodologies are accurate to predict the top storey 

displacement (node 186), and that smaller errors are obtained using the MPA. This can be justified 

considering that the modal push over analysis is a real non-linear analysis, due to the stiffness matrix, 

which is updated at each increment and no simplifications are used in the material model. The 

UMRHA instead is based in some approximations, first the coupling of modes is neglected, and 

secondly the pushover curve is simplified by a bilinear function. 

 

Figure 25. Hise-wise variation of error in floor displacement for 2 x “El Centro”  

 

In the case of elastic analysis it can be simply obtained from the capacity curve, however for inelastic 

structures, the energy dissipated during the plastic deformation changes the system behaviour and the 

capacity curves is not always accurate to predict an approximate solution (Chopra and Goel 1999) 

Figure 24 shows the response using the “exact” solution and approximate solution for node 186 

imposed by the ``El Centro'' ground motion scaled by a factor of two, now the yielding is evident in 

the structure.  

 

 

Fragility analysis 

The same procedure applied to the cantilever column will be used to plot the fragility curve for the 

SAC structure. Figure 26 shows the fragility curve for the SAC building. 

Table 3. Counting collapses 

PGA Collapses PGA Collapses 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

 

0 

0 

1 

2 

5 

14 

23 

29 

50 

0.55 

0.60 

0.65 

0.70 

0.80 

0.90 

1.00 

1.30 

2 

63 

66 

67 

69 

71 

72 

74 

77 

85 
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Figure 26. Fragility curve SAC building 

 

If the fragility curve from figure 26 is compared with the fragility curve for the cantilever column, 

then the former is a much safer structure, due to a 50% probability of collapse for an PGA=0.5g level 

versus the 50% possibility of collapse but for an PGA=0.2g level. 

 

Conclusions 

A benchmark SAC 9 storey building has been chosen, starting from a dynamic analysis where the 

three principal modes were found as representative of the structure; then the MPA was applied to find 

the bilinear approximations for the pushover and capacity curves, the latter were used as material 

models for the UMRHA to obtain the relative displacements on node 186. The maximum 

displacement from the UMRHA method was used to recalculate the pushover curve considering the 

exact target. A comparison between MPA and UMRHA using the “exact” transient solution for floor 

displacement showed a smaller error for the MPA analysis. The fragility analysis using structural data 

and the Likelihood method for a single limit state derived the fragility curve.  

An important conclusion obtained from the analysis of the capacity curves and seismic demand is the 

fast attainment of results, which is useful for vulnerability assessment of structures; however the 

difficulty to know the target displacement for inelastic structures remains. A generalization of the 

capacity curve and seismic demand (spectra demand) analysis can be used to overcome this difficulty, 

where the seismic demand is properly reduced by an over damped or inelastic approach. These 

methods are recommended by ATC-40, Euro code 8, HAZUS, FEMA-356 and other technical codes. 

 

References 

Bathe, K.J. (2006). Finite element procedures. Prentice Hall, 2006 

Building Seismic Safety Council (2000). Prestandard and commentary for seismic rehabilitationof 

buildings. Report FEMA-356. 

Chopra, A. and Goel, R. (1999). Capacity demand diagram methods for estimating seismic 

deformations of inelastic structures. Civil and Environmental Engineering, 1: page 53. 

Chopra, A. and Goel, R. (2002). A modal pushover analysis procedure for estimating seismic demands 

for buildings. Earthquake Engineering & Structural Dynamics, 31(3): 561-582. 

Dietz R.S. (1961). Continent and ocean basin evolution by spreading of the sea floor. Nature, 

190(4779): 854-857. 

Freeman, SA. Nicoletti, JP. and Tyrell, JV. (1975). Evaluations of existing buildings for seismic risk- 

a case of study of Puget sound naval shipyard, Bremerton, Washington. In proceedings of the 1
st
 

US National Conference on Erathquake Engineering, Oakland, CA, 1975. Pages 113-122. 



GARCIA, Hernan Alfredo / FE 2014 16 

 

Goel, R. and Chopra, A. (2004). Evaluation of modal and FEMA pushover analyses: SAC buildings. 

Earthquake Spectra, 20(1): 225-254. 

Guegen, P. (2013). Sesimic vulnerability of structures. John Wiley & Sons, 2013 

Jansen, M. Schaalelement in de eindige elementententoolbox StaBil. Master’s thesis, Department of 

Civil Engineering, KU Leuven, 2010. 

Krawinkler, H. and Seneviratna, GDPK. (1998). Pros and cons of a pushover analysis of seismic 

performance evaluation. Engineering Structures, 10(4): 452-464. 

Magliulo, G. Maddaloni, G. and Cosenza, E. (2007). Comparison between nonlinear dynamic analysis 

performed according to ec8 and elastic and non-linear static analyses. Engineering Structures, 

29(11): 2893-2900. 

Shinozuka, M. Feng, MQ. Lee, J. Naganuma, T. (2000) Statistical analysis of fragility curves, Journal 

of Engineering Mechanics, 126(12): 1224-1231. 

Timoshenko, S. (1956). Strength of materials part II. New York, 1956.   


