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A B S T R A C T

Energy conservation is of increasing importance in contemporary society. A large fraction of energy end-use can
be attributed to space conditioning. Therefore, intelligent control systems were devised and commercialised
in the form of smart thermostats. Hereto, the availability of occupancy information is essential such that
heating and/or cooling schedules can be tailored to user needs. This way energy savings can be obtained
without jeopardising user satisfaction. However, preceding studies generally rely on simulations to estimate
the potential reduction in energy consumption. This work aims at quantifying the potential based on a real life
experiment. The development of a smart heating system is presented along with the results of an actual field
test of retrofitting this system in 14 single-user student rooms of a university residence hall. An experiment
was conducted in which the heating was automatically steered for 1 week (26 March 2018–01 April 2018).
Total energy savings range between 26.9% and 59.5% and calculated thermal comfort was not significantly
affected by the autonomous control. Furthermore, an environmental impact reduction of 3.2 to 12.9 EcoPoints
is estimated for the controlled week, resulting in a reduction of 37.5 to 150.2 𝑘𝑔𝐶𝑂2𝑒𝑞.
1. Introduction and related work

Encouraging environmentally conscious behaviour (ECB) of con-
sumers has been the subject of a substantial number of research efforts
such as [1–3]. Advances in electronics and information technology
have paved the way to automate some of these resource minimisation
strategies [1]. The most well-known examples are probably smart
thermostats, which have received substantial attention as result of a
growing environmental awareness and the large proportion of space
heating in total building energy consumption (over 40% for both
residential and commercial buildings in the US [4,5], and 68% for
residential space heating in the EU [6]). These thermostats try to
overcome the limitations of simple programmable thermostats, which
do not necessarily save energy compared to traditional, manually con-
trolled thermostats [7] as a result of improper use due to complex
user interfaces, lengthy user manuals, etc. [8]. To realise this, the
availability of occupancy information is essential such that heating
schedules can be tailored to user needs, which comprises reaching the
desired temperature in anticipation of user arrival and automatically
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switching to a setback temperature in case of vacancy. This way energy
savings can be obtained without jeopardising user satisfaction.

Such intelligent heating systems have been extensively researched
and a number of smart thermostats are commercially available, such
as the Nest,1 Heat Genius2 and Anna3 solutions, but their intelli-
gent features are not always well-received [9] These systems typically
rely on motion sensors to infer occupancy schedules or on geofenc-
ing. Kleiminger respectively categorises these as schedule-based and
context-aware approaches [10], of which an overview is discussed
next. Starting with the former, in [11] a sensor network and machine
learning techniques are used to model and predict the number of
occupants in order to optimise heating control. Erickson et al. employed
a combined network of cameras and motion sensors and a blended
Markov chain for prediction in [12]. The Smart Thermostat [13] relies
on basic sensing technology and a hidden Markov model to exploit
occupancy and sleep patterns. Neural networks in combination with a
look-up table to exploit the periodicity of human conduct, registered
by a network of sensors, are used for occupancy-based conditioning in
Mozer’s Neurothermostat [14]. Preheat [15], finally, relies on motion
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sensors to detect occupancy and uses 𝑘-nearest neighbours to identify
similar days, which are then used for prediction. Gupta’s GPS thermo-
stat [16], which evidently uses GPS information to predict occupancy,
is an example of a context-aware technique. Contextual information is
also used in TherML [17], which also uses GPS data, and [18] which
uses cellular and WiFi connection information to predict occupancy.
Krumm and Bush [19], finally, make use of both contextual information
and occupancy schedules as they represent the task of learning presence
schedules as a linear matrix problem, solve it using least squares and
combine it with the driving time heuristic of Gupta’s GPS thermostat.

The question this paper aims to answer is whether such smart
heating systems effectively save energy, and whether these savings are
obtained at the expense of user comfort or not. Where other studies
generally rely on simulations and report savings varying from 10% till
42% [20], this research quantifies the savings potential based on a real-
life experiment in a residence hall. To this end, an experiment was
conducted in 17 student rooms in a residence hall in Leuven, Belgium.
In a first stage, i.e. the learning phase, user occupancy and preferences
of these rooms are gathered and used to train prediction models.
Then, in the control stage, heating is steered automatically based on
predicted occupancy and a comparison of the energy consumption is
made between the manual and automatic heating control.

Savings from actual experiments are also reported in [21] where
AC energy consumption is reduced by 13% in a conference room,
and [7] where occupancy-responsive thermostats were retrofitted in
three dormitories resulting in 5%–8% of savings in heating energy con-
sumption. However, the implemented thermostats in [7] were reactive,
not predictive, meaning that rooms cannot be preheated in anticipation
of user arrival. Also, the underlying algorithms nor the occupancy
detection accuracy have been discussed. Furthermore, the effect on
thermal comfort and the environmental impact were not investigated.
These limitations are tackled in this work, which is structured as
follows. Section 2 outlines the design of the experiment, followed by
a description of the underlying algorithms in Sections 3 and 4 , which
respectively discuss the learning and control phase. The performance
of the smart heating system is evaluated in Section 5 and finally,
conclusions are formulated in Section 7.

2. Methodology

2.1. Experiment design

For this study 17 single-user student rooms of a residence hall
in Leuven, Belgium, were equipped with two multi-purpose sensors
(Aeotec Multisensor 64 and Zipato multisensor quad5) which together
record motion, temperature, light intensity, humidity and the position
of the door, i.e. open or closed. All residents were between 18 and
23 years of age, 11 of them were female and 6 were male. Two types
of rooms can be distinguished, those consisting of only one space (10)
and those with a separate bedroom (7). All sensor data are accumulated
by two home controllers (Vera Edge6), which are strategically placed
to maximise signal strength. This sensor network is extended by a bi-
directional, wireless Danfoss thermostatic radiator valve7 (TRV). On
the one hand, the valve transmits the user-defined set point to the
controller such that it can be stored in the database. On the other
hand, the controller can set a new desired temperature, which, for
example, allows to switch to a setback temperature in case of vacancy.
Furthermore, at any point in time, the user can override the system by
adjusting the TRV to the desired set point. The sensors communicate

4 https://aeotec.com/z-wave-sensor
5 https://www.zipato.com/product/multisensor-quad
6 http://getvera.com/controllers/veraedge/
7 https://www.smartheating.danfoss.com/en/a-solution-for-every-

home/danfoss-link/connect-thermostat/
2

Fig. 1. Overview of the sensing environment, where the red box marks the room, the
green and blue semicircles signify the multi-sensors, and the yellow box represents the
radiator with TRV and energy metre.

with the home controllers using the Z-Wave protocol. Energy con-
sumption, finally, is measured by an ultrasonic thermal energy metre
(Kamstrup Multical 3028), which measures the flow rate and change
in temperature between outflow and return of the heat transfer liquid
(i.e. radiated heat), for each room individually at a resolution of 15-
minutes. Figs. 1 and 2 present an overview of the sensing set-up. The
existing reference heating regime is a continuous heating strategy with
a maximum temperature of 21 ◦C.

Occupancy patterns depend on the academic calendar, as lecture
schedules, assignments, extracurricular activities of the first and second
semester can be significantly different. Moreover, occupancy during
normal academic periods, holidays and exam periods is also expected
to differ substantially. These phenomena, in combination with clima-
tological aspects, limit the timing of the experiment. Training data
were collected for four weeks, from 26 February 2018 until 25 March
2018 (offline phase), followed by one week, 26 March 2018 till 1 April
2018, for automated heating control (online phase). Table 1 presents
an overview of the dataset.

2.2. Smart heating system

The operation of the implemented smart heating system can be split
into two stages, an offline and an online phase. Gathering occupancy
data and identifying patterns for each room is the focus of the first
stage. This entails transforming the raw sensor data into properly
formatted occupancy and set point information, and exploiting the his-
torical data to model user behaviour. The occupancy detection system
distinguishes three states: absent, present (active) and sleeping. Fur-
thermore, the thermal characteristics of the room need to be learned.
Hereto, the heating controller is simulated, such that the required time

8 https://www.kamstrup.com/en-en/products-solutions/thermal-energy-
meters/multical-302
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Fig. 2. Location of the monitored rooms (coloured) in the entire building. The 3 green
rooms are not included in the control stage as either the resident did not want to
participate or some sensor(s)/actuator malfunctioned.

Table 1
Dataset summary.

Equipment
Sensors

Aeotec Multisensor 6,
Zipato Multisensor quad,
Kamstrup Multical 302

Actuator Danfoss Link Connect TRV
Controller 2LVera Edge

Data

Period Learning: 26/02–25/03/2018
Control: 26/03–01/04/2018

Rooms 17 (learning), 14 (control)

Variables

Temperature, Humidity,
Light, Motion,
Door, Set points,
Energy consumption

Residents 18-23 years old
11 female, 6 male

to reach a certain temperature can be estimated. This enables heating
the room just-in-time for expected user arrival. Moreover, this allows
to significantly lower the temperature in case of vacancy. The online
control stage computes which pattern is applicable for the current day
and dynamically updates this prediction throughout the day. The set
point of the expected state, i.e. present, absent or sleeping, is then
sent to the corresponding TRV. An overview of the entire system is
presented in Fig. 3.

The system is evaluated in terms of energy and environmental im-
pact savings, and thermal comfort. Two methods were used to compute
the realised energy savings. First, the degree day method is used, which
normalises the energy consumption for differing weather conditions
based on the number of heating degree days. The second method is
based on ASHRAE Guideline 14 [22] and [7] in which a regression
model of the building’s energy consumption is built and used to project
the consumption for the test week, allowing a comparison with the
3

actual, measured consumption for that week. The environmental im-
pact reduction is computed by a life cycle impact assessment (LCIA)
study. Fanger’s Predicted Mean Vote (PMV) and Predicted Percentage
Dissatisfied (PPD) [23] are used to evaluate thermal comfort. These
metrics estimate the thermal sensation of a large group of subjects for a
particular combination of air temperature, mean radiant temperature,
relative humidity, air speed, metabolic rate, and clothing insulation.
However, as some of these variables are difficult to measure, assump-
tions were made as discussed in Section 5.3. In addition, the number
of system overrides is also investigated.

3. Offline learning

Prior to controlling the heating system, its characteristics and user
preferences must be inferred. This section discusses the three compo-
nents that constitute this learning stage, i.e. occupancy detection, user
modelling and heater simulation.

3.1. Occupancy detection

A wide variety of technologies is available for occupancy detection,
ranging from motion sensors, over ultrasonic sensors to cameras. An
overview of approaches is presented in [24]. As many of the presented
technologies are either expensive, intrusive, complex to install or a
hassle for the user (e.g. wearables based on for example RFID or
GPS), wireless networks of simple sensors are by far the most popular
approach in literature [20]. Therefore, two multi-purpose sensors were
installed in each room, one on a wall facing a desk and the other
one on the door frame (see Fig. 1). These sensors register motion,
temperature, light intensity, humidity and the position of the door,
allowing to distinguish between a ‘‘Present’’, ‘‘Absent’’ and ‘‘Sleeping’’
state by means of a simple post-processing logic. The raw sensor data
are first formatted into time-series of 15-minute intervals and cleaned
by noise removal techniques. Then, detection is performed by logical
inference from the preprocessed data. To this end, the following series
of user actions is defined:

Enter 𝐷 ∧𝑀 ⟹ }}𝑃𝑟𝑒𝑠𝑒𝑛𝑡ε

Go to sleep ¬𝑃𝑆𝑙𝑒𝑒𝑝𝑖𝑛𝑔 ∧ (𝑃𝑃𝑟𝑒𝑠𝑒𝑛𝑡 ∨𝑀) ∧ (𝐻 ≥ 22 ∨𝐻 ≤ 5)

∧(𝐿 − 𝐿𝑡−1 < −5) ⟹ }}𝑆𝑙𝑒𝑒𝑝𝑖𝑛𝑔ε

Wake up 𝑃𝑆𝑙𝑒𝑒𝑝𝑖𝑛𝑔 ∧ (𝐻 > 5) ∧ (𝐿 − 𝐿𝑡−1 > 5) ⟹ }}𝑃𝑟𝑒𝑠𝑒𝑛𝑡ε

Leave ¬𝑃𝐴𝑏𝑠𝑒𝑛𝑡 ∧𝐷 ∧ ¬𝑀 ⟹ }}𝐴𝑏𝑠𝑒𝑛𝑡ε

Sleep ¬𝑃𝐴𝑏𝑠𝑒𝑛𝑡 ∧ (𝐻 ≥ 22 ∨𝐻 ≤ 8) ⟹ }}𝑆𝑙𝑒𝑒𝑝𝑖𝑛𝑔ε

Stay home 𝑃𝑃𝑟𝑒𝑠𝑒𝑛𝑡 ∧𝑀 ⟹ }}𝑃𝑟𝑒𝑠𝑒𝑛𝑡ε

Move 𝑀 ⟹ }}𝑃𝑟𝑒𝑠𝑒𝑛𝑡ε

Stay outside 𝑃𝐴𝑏𝑠𝑒𝑛𝑡 ∨ (¬𝑀𝑡−1 ∧ ¬𝑀𝑡−2) ⟹ }}𝐴𝑏𝑠𝑒𝑛𝑡ε

where 𝑀 denotes that one of the sensors detected movement, 𝐷 that
the door is open, 𝑃𝑠𝑡𝑎𝑡𝑒 the previous state, 𝐻 the hour of the day [0-23],
𝐿 the lighting level in the room [lux, ∈ Z>0] and 𝑡 the current timeslot
[0-95]. The actions are evaluated in this specific order. If none of the
actions are valid, the state of the previous time slot is assumed. Some
safety measures were built into the detection logic. For example, if the
user enters the room (𝑃𝐴𝑏𝑠𝑒𝑛𝑡) but somehow the sensor missed the event
of opening the door, the action ‘‘Move’’ catches this in case one of the
motion detectors is triggered.

To evaluate the detection algorithm, three residents were asked to
note their presence on a timetable attached to the door for a period
of two weeks. On average a detection accuracy of 92% was achieved,
validating the implemented approach for further use. Mismatches can
be attributed to imprecise registration of the user, sensor failures
(missing data, false positives and false negatives), the aforementioned
safety measures, and to the logic that might not cover all sorts of events.



Sustainable Computing: Informatics and Systems 31 (2021) 100585Y. De Bock et al.
Fig. 3. Overview of the smart heating system. The offline and online stages are respectively indicated by green and red dashed lines. The remaining components are part of both
stages.
3.2. User modelling

For each room, the gathered occupancy data are segmented into
days and organised into 15-minute resolution arrays. Typical days are
then identified by the user modelling technique presented in [25],
which essentially groups similar days into clusters. This method uses a
Dirichlet process mixture (DPM) model [26,27], implemented by Gibbs
sampling [28], to infer the underlying patterns from the data. The
grouping is performed by the stick-breaking process [29], which essen-
tially generates weights representing the probability of a day belonging
to a certain cluster. As opposed to many standard unsupervised learning
techniques, the number of patterns does not have to be specified in
advance. Instead an upper bound 𝐾, here set to 20, has to be defined
and the different clusters 𝐶 (𝐶 ≪ 𝐾) will automatically emerge as
a result of the sampling process. Another advantage over many of
the discussed occupancy prediction algorithms is that this approach
can deal with multiple activities, in this case ‘‘Present’’, ‘‘Absent’’ and
‘‘Sleeping’’. In addition, this strategy returns intuitive user profiles
providing valuable insights into the users’ behaviour and outliers are
automatically detected and grouped in an outlier cluster.

A graphical representation of the model is depicted in Fig. 4. Here
𝐿 represents the number of users/rooms (as the modelling is performed
for each room independently, 𝐿 is always equal to 1), 𝑁 the number of
days in the data set, and 𝐾 a predefined upper bound on the number
of clusters. The day of the week 𝑞𝑛 is parametrised by multinomial
distribution 𝜎𝑘 with prior Dirichlet distribution 𝛾, class assignment 𝐳𝑛 is
generated from the multinomial distribution 𝜋𝑘 with prior Beta distribu-
tion 𝛼 (stick-breaking process), and the observation 𝐱𝑛,𝑙 is parametrised
by the multinomial distribution of the classes 𝜇𝑘 with prior Dirichlet
distribution 𝛽.

As described in [25], the stick-breaking weights 𝜋 are initially
uniformly assigned, i.e. 𝜋𝑘 = 1

𝐾 ∀𝑘 ∈ 𝐾. Then the observed days 𝑥
are randomly allocated to the 𝐾 classes by sampling the multinomial
distribution (𝐳𝑛|𝜋), where 𝜋 = [𝜋1,… , 𝜋𝐾 ]. As a result, each cluster
𝑘 will have approximately the same number of data points. After this
initialisation, the weights are updated based on the number of days in
each cluster. Then, each day is reallocated, while fixing the assignments
of the other data points, based on the new weights and the likelihood
4

Fig. 4. Graphical model for identifying typical days in occupancy data [25,30].

of the data points’ weekday and occupancy pattern given the cluster’s
weekday distribution and average occupancy profile respectively. The
process is finally repeated until convergence. As such the 𝐾 clusters will
dynamically evolve into 𝐶 typical days. An overview of the number of
identified day types, for the different rooms, is presented in Table 2,
and an example of those day types for one of the rooms is shown
in Fig. 5. The first day type clearly represents holidays, weekends or
days without lectures (when most students typically return home9).
The second and third cluster depict regular weekdays with lectures in
the morning, and for the second cluster also in the afternoon. These
assumptions are also evident from the weekday distribution of the
cluster assignments as illustrated in Table 3.

In addition to identifying occupancy patterns, the residents’ temper-
ature preferences have to be inferred. To this end, the most frequently
user inflicted set point during training was selected as the desired tem-
perature in case of presence. For the absent state a setback temperature

9 In Belgium most students typically return home during weekends and
holidays.
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Table 2
Overview of the number of occupancy patterns for
each room.

Room # Clusters Room # Clusters

1 2 10 2
2 3 11 2
3 3 12 2
4 3 13 2
5 3 14 2
6 2 15 2
7 3 16 3
8 2 17 3
9 2

Fig. 5. Typical occupancy patterns as obtained for room 5. Some noise, preventing the
probabilities to reach 0 or 100, occurs as a result of the sampling process.

of 16 ◦C was defined; and for the sleeping state a set point of 19 ◦C was
specified.

3.3. Heater simulation

Besides modelling user behaviour, enabling anticipation of future
heating requirements, the system also has to learn the thermal charac-
teristics of the room and more specifically, the time required to reach
a certain temperature. This enables preheating the room in such a
way that the comfort temperature is reached at precisely the time of
expected resident arrival. To this end a simplified model of the room
5

Table 3
Weekday distribution of cluster assignments for room
5.

Weekday Cluster 1 Cluster 2 Cluster 3

Mon. 10.3% 11.8% 8.1%
Tue. 8.4% 31.3% 10.6%
Wed. 4.9% 7.0% 44.9%
Thu. 4.3% 31.2% 8.2%
Fri. 23.8% 6.6% 9.9%
Sat. 25.0% 7.0% 9.3%
Sun. 23.3% 5.1% 9.1%

was built to simulate the heater control and its effect on the room
temperature. The model is dependent on heat gain from the radiator
and heated adjacent rooms, heat losses through (exterior) walls and
windows, and room characteristics such as dimensions and thermal
resistance.

3.3.1. Room characteristics
The single rooms measure 5 m by 2.7 m and are 3 m high, making

up a volume of 40.5 m3. Double-spaced rooms are, since they only have
one radiator, treated as one large room with dimensions of 3.5 m by 6 m
by 3 m, thus comprising a volume of 63 m3. Half of the single rooms
are oriented north, while the other half face south with the external
window. Of the 7 double-spaced rooms, 4 are south-west oriented and 3
north-east. As the rooms were constructed in the 1950s or earlier, they
are rather poorly insulated and have single pane windows. However,
since the specific details are unknown, the thermal resistance of the
room is estimated by simulation.

3.3.2. Dynamic temperature calculation
The rate of change of the room temperature can be computed

from the exchange of thermal energy between the heat sources and
the room on the one hand and between the room and the outdoor
environment on the other hand, respectively known as heat gain and
heat loss. The former is given by the heater output, which will be
simulated, and the latter is defined in Eq. (1) where 𝑇𝑟𝑜𝑜𝑚, 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒
and 𝑇𝑖 respectively represent the room, outside, and adjacent room
temperature, 𝑅 represents the thermal resistance and 𝑁 the number of
adjacent rooms. Finally, the rate of temperature change is calculated
by the difference between heat gain and heat loss, divided by the heat
capacity of the air in the room, as specified in Eq. (2) where 𝑚𝑟𝑜𝑜𝑚 𝑎𝑖𝑟
and 𝑐𝑎𝑖𝑟 respectively represent the mass of the air in the room and the
specific heat capacity of air.

𝑑𝑄𝑙𝑜𝑠𝑠
𝑑𝑡

=
(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒)

𝑅1
+

𝑁
∑

𝑖=0

(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑖)
𝑅2

(1)

𝑑𝑇𝑟𝑜𝑜𝑚
𝑑𝑡

= 1
𝑚𝑟𝑜𝑜𝑚 𝑎𝑖𝑟𝑐𝑎𝑖𝑟

(
𝑑𝑄𝑔𝑎𝑖𝑛

𝑑𝑡
−

𝑑𝑄𝑙𝑜𝑠𝑠
𝑑𝑡

) (2)

𝑅 = 𝐷
𝑘𝐴

(3)

Before simulating the heater output, the thermal resistance of the
room is estimated. Hereto, Eq. (2) is used to approximate the measured
indoor temperature and a grid search is performed on the 𝑅 parameters.
The heat gain is in this case directly given by the measurements of the
heat metre on the radiator. Thermal resistance (Eq. (3)) is defined as
the depth, i.e. thickness, of the surface 𝐷 over the thermal conductivity
𝑘 of the material, times the surface area 𝐴. For example, the thermal
resistance of the inner wall 𝑅2 of room 1 was found to be 3𝑒−6ℎ𝐾∕𝐽 .
The surface area 𝐴 equals 13.5𝑚2 and the thickness 𝐷 of the walls is
around 10 to 15 cm. Therefore, the walls have a thermal conductivity
𝑘2 of 0.686–1.029 𝐽∕ℎ𝑚𝐾 which corresponds to the conductivity of
building bricks as specified in [31].
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Fig. 6. Example of the heater simulation, for room 1 for 1 day.
3.3.3. PID control
Lastly, the behaviour of the heater is simulated to estimate the rate

of heat gain from the radiator. The implemented radiator valves are
proportional–integral–derivative (PID) controllers, which continuously
compute the difference between the set point and current temperature,
i.e. the error 𝑒(𝑡), and correct for this with proportional (P), integral (I)
and derivative (D) gains, hence their name. As these parameters, set
by Danfoss, are unknown, they have to be estimated. The proportional,
integral and derivative terms are respectively defined in Eqs. (4)–(6),
where 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are tuning parameters, 𝑒 is the error value, 𝑡
represents the current time and 𝜏 ∈ [0, 𝑡]. The heater output 𝑄𝑔𝑎𝑖𝑛 is
then given by 𝑃+𝐼+𝐷 ∈ [0, 𝑄𝑚𝑎𝑥], where 𝑄𝑚𝑎𝑥 represents the maximum
power of the heater. 𝑄𝑚𝑎𝑥 was extracted from the historical energy
metre measurements.

𝑃 = 𝐾𝑝𝑒(𝑡) (4)

𝐼 = 𝐾𝑖 ∫

𝑡

0
𝑒(𝜏)𝑑𝜏 (5)

𝐷 = 𝐾𝑑
𝑑𝑒(𝑡)
𝑑𝑡

(6)

The values for the tuning parameters 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are then found
by performing a grid search while minimising the difference between
the measured and simulated heater output and room temperature.
Fig. 6 presents an example of the simulation, using these optimised PID
parameters for room 1 for 1 day. The variables of the model are given
in Table 4. Although the model is a simplified representation of the
real environment, it is sufficiently rich to capture the main dynamic
thermal behaviour of the room. This model enables the calculation
of the required time to reach a certain temperature. As such, the
heating can be controlled in anticipation of the expected occupancy
and weather conditions, making up for the lack of predictive abilities
of more advanced controllers such as model predictive control (MPC).

4. Online control

In this section the online control stage, comprising occupancy pre-
diction and heating control is discussed. The number of rooms included
in the experiment is in this stage reduced to 14 as either some sensors
were malfunctioning or the residents preferred not to participate.
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Table 4
Model parameters for room 1.

Variable Description Value Unit

𝜌𝑎𝑖𝑟 Density of air 1.205 kg/m3

𝑚𝑟𝑜𝑜𝑚 𝑎𝑖𝑟 Mass of air in the room (𝜌𝑎𝑖𝑟 * volume) 48.8 kg
𝑐𝑎𝑖𝑟 Specific heat capacity of air 10005.4 J/kgK
𝑅1 Thermal resistance with outdoor environment 12𝑒−6 hK/J
𝑅2 Thermal resistance with adjacent room(s) 3𝑒−6 hK/J
𝑄𝑚𝑎𝑥 Maximum heater output 1500 W
𝐾𝑝 Proportional gain 85 –
𝐾𝑖 Integral gain 0.01 –
𝐾𝑑 Derivative gain 80 –

4.1. Occupancy prediction

Once the residents’ occupancy behaviour and heating control are
modelled, the system can take over and intelligently steer the heating
system by anticipating future events. The user’s occupancy state is eval-
uated in real-time and serves as an input for the prediction algorithm.
More specifically, the occupancy vector of the current day (until the
current time slot) is matched with the patterns identified in Section 3.2,
resulting in a likelihood of this day belonging to any of those profiles.
As human conduct typically exhibits periodic activities on a weekly
basis, e.g. academic lectures, weekday information is also taken into
account by selecting the likelihood of each pattern occurring on the
current weekday. Furthermore, the general likelihood of each pattern,
i.e. the ratio of the number of times a pattern occurs to the total number
of training days, also conveys valuable information about the future
occupancy probability. These likelihoods are then multiplied to find
the most likely pattern for the current day. Finally, the prediction is
given by the occupancy information of the most likely pattern from
the current time slot till the end of the day.

However, since the prediction relies on probabilities for each of the
states, a threshold has to be applied. Therefore the pattern’s probabili-
ties are first binarised by a user tolerance (UT) parameter as defined
in [32]. For each state the signal is transformed by discarding the
lowest UT% of the state’s probabilities and bringing the remaining
probabilities to one, as illustrated in Fig. 7. As a result multiple states
could have a value of one simultaneously. In this case, to limit user
inconvenience, the state with the highest set point is selected (except
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Fig. 7. Example of the discretisation process of the third pattern of Fig. 5.

between midnight and 6 am, where the sleeping state is preferred over
the present state). For this experiment a UT of 10% was used. In further
research, the tolerance level of a user will be inferred from his feedback
to the system, such as observed overrides.

4.2. Heating control

Control of the heating system is subject to both current and pre-
dicted occupancy, and desired temperature. Furthermore, during au-
tomatic control, the user can still perform overrides. To differentiate
between system changes and overrides, each system initiated set point
change is stored in an array. If during the next time slot the most recent
set point in this array differs from the set point of the radiator, an
override occurred.

Initially, the temperature set point corresponding to the current
occupancy state is communicated to, and implemented by the radiator
valve. Then, the system identifies the next change in the expected
occupancy pattern, i.e. where the predicted state is different from the
current state, and acts as follows:

• if the set point resulting from the expected state change is higher
than the current set point, the system computes the time required
to reach that set point, using the simulator of Section 3.3.3 and
acts accordingly;

• if on the other hand, that set point is lower than the current de-
sired temperature, the temperature is lowered half an hour before
7

Fig. 8. Total energy consumption, outside and ambient temperature during the learning
and control period.

the anticipated event. This way, some extra energy can be saved
and the user will not suffer any or very limited inconvenience.

Finally, the system checks whether the current set point corresponds
with the set point of the current occupancy state and that no override
occurred. If necessary, faulty predictions (e.g. presence is detected
while absence was expected) are corrected. In the event of an override,
the temperature of the override is maintained until the next change, as
is the case in today’s thermostats.

5. Performance analysis

It was envisaged to demonstrate energy savings per room by com-
paring the weather (and occupancy) normalised energy consumption
of the learning and testing periods. However, as was concluded in [7],
individual rooms cannot be considered independently. The building
must be evaluated as a whole, as the temporal and spatial distribution
of vacancy events affect the way thermal energy flows within a building
and each room can react in a unique way. Attempts of assessing the
smart heating system per room corroborate these findings.

Therefore, data of all monitored rooms were aggregated and treated
as a complete building. Since the monitored rooms are adjacent (see
Fig. 2), heat losses and gains to and from neighbouring rooms (un-
der study) are incorporated. The data is then used to evaluate the
smart heating system in terms of energy savings and thermal comfort.
Moreover, the performance of the underlying algorithms is assessed.

5.1. Energy savings

From Fig. 8 it is clear that consumption during the control pe-
riod was generally lower, although in line with the downward trend.
Furthermore, the lower values might be attributed to the mentioned
climatological and behavioural differences between the two periods.
The analytical assessment of energy savings is therefore performed by
two industry standard approaches, the degree day method [33] and
an approach based on ASHRAE guideline 14 [7,22]. Both compare
the energy consumption during the learning and control period while
correcting for differences in weather conditions. In case of the ASHRAE
based approach, changes in occupancy are also taken into account.
However, it must be noted that some other exogenous factors, that
these methods do not take into consideration, could still have changed
between the two periods.
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Fig. 9. Scatter plot with a regression line (𝑅2 = 0.93), illustrating the linear relationship
between energy consumption and the number of HDDs during the learning period. As
the accuracy of linear regression improves with more data, some extra days prior to
the learning period and after the control period were included.

5.1.1. Degree day method
The degree day method is a well-known approach for weather

normalisation of energy consumption, which factors out the differences
in outside air temperature between two periods, allowing to fairly com-
pare the normalised consumption figures. Heating degree days (HDDs)
express how much (in degrees), and for how long (in days), the outside
temperature was below a specified base temperature, which in turn is
defined as the outside temperature above which heating is not required.
This base temperature depends on the set point temperature, insulation
level of the building, and sources of internal heat gain such as the
heat dissipation of the residents and equipment. Since the experiment
is performed in individual rooms, without cooking facilities the internal
heat gain is assumed to be very limited and thus ignored. The set point
temperature, however, does change over time and affects the energy
consumption in a direct way. Therefore, the number of daily HDDs is
computed (using BizEE’s Degree Days calculator10) for the weighted
average of the set point temperatures of the respective day, and its
relation to energy consumption during the learning period is illustrated
in Fig. 9. The regression model has an adjusted R-squared of 0.9318 and
its formula is given by:

𝑦 = 9.5856𝑥 − 21.5947, (7)

where 𝑥 and 𝑦 respectively represent the number of HDDs and energy
consumption (in kWh).

Now the linear relationship has been clearly established, energy
savings can be computed. However, since the set points during the
control period are determined by the smart heating system, the HDDs
for manual operation during that period cannot be computed. Hence,
the regression model cannot be used to project the energy consumption
of manual control into the future. Nevertheless, the HDDs for automatic
control can be derived. Energy savings can then be estimated by
dividing the measured consumption by the HDDs for both the learning
and control period. Finally, the resulting numbers are multiplied with
an average HDD value (e.g. the average HDD for 21 ◦C of 2017)
to get normalised values, allowing to fairly compare the pre- and
post-retrofit energy consumption (see Eq. (8), where �̃� represents the
normalised energy consumption). The normalised consumption of each
day of the control period is compared with the average normalised
consumption of the corresponding weekday during the learning period.
Table 5 presents the obtained savings. Average savings amount to
39.0% (36.0 kWh). Substantial savings are achieved from Monday till

10 www.degreedays.net#generate
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Table 5
Obtained absolute and relative savings by the degree
day method.

Savings

kWh %

Mon. 30.1 36.8%
Tue. 40.0 49.2%
Wed. 32.0 37.8%
Thu. 13.4 14.1%
Fri. 27.1 27.0%
Sat. 59.4 55.8%
Sun. 46.8 51.0%

Overall 36.0 39.0%

Fig. 10. Total occupancy rate of the residence hall during the control period.

Wednesday, on Friday and over the weekend. The latter should come
as no surprise as many Belgian students typically return home for
the weekend. On Thursday rather limited savings are accomplished
which might be explained by an elevated occupancy rate, as shown
in Fig. 10. On Friday, some students already return home. However,
this behaviour is rather stochastic and/or not sufficiently captured
by the profiling process as a result of limited training data. This, in
combination with the rather conservative prediction method, results in
slightly lower energy savings. The savings computed with the method
based on ASHRAE guideline 14 should provide a better estimate as the
occupancy rate is incorporated in the model.

�̃� = 𝑄
𝐻𝐷𝐷𝑠

⋅ 𝐻𝐷𝐷𝑠21 ◦C, 2017

Savings = �̃�𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 − �̃�𝐶𝑜𝑛𝑡𝑟𝑜𝑙

(8)

For a more elaborate assessment of the system, it is compared with
several baselines. The first baseline consists of a separate weekday and
weekend schedule, which are applicable to all rooms. During weekdays
the sleeping set point (19 ◦C) is applied from 23h until 06h30, the
present set point from 06h30 until 8h30 and again from 16h00 until
23h, and finally the absent set point (16 ◦C) from 08h30 until 16h00.
This schedule aims at simulating school days. For weekends, a distinct
schedule is defined for residents who return home and for those who
spend the weekend at the residence hall. The former is defined as
follows: 16 ◦C the entire day on Saturday; and 16 ◦C from midnight
until 17h00,11 22 ◦C from 17h00 until 23h00 and 19 ◦C from 23h00
until midnight on Sunday. In the latter, 19 ◦C is assigned from 23h00
until 09h00 and 22 ◦C from 09h00 until 23h00. The ratio of people
returning home was estimated at 75%. The second baseline, is more
oriented towards comfort. It implements 22 ◦C when the likelihood
of being present is larger than 25%, and the set point corresponding
to the most probable occupancy state otherwise (i.e. 16 ◦C in case of
absence and 19 ◦C in case of sleeping). The third and final baseline is

11 Many students return to the residence Sunday in the evening.
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Table 6
Obtained relative savings with the baselines.

Baseline 1 Baseline 2 Baseline 3

Mon. −3.7% −7.4% 4.8%
Tue. −10.2% −10.2% −2.6%
Wed. −6.4% −8.0% 0.8%
Thu. 4.5% 1.0% 10.8%
Fri. 12.3% 18.0% 23.0%
Sat. 36.2% 40.7% 42.2%
Sun. 17.0% 26.8% 32.7%

Overall 7.1% 8.7% 16.0%

Table 7
Discomfort and energy wastage of the different approaches.

Discomfort Energy waste

Baseline 1 39.2% 35.8%
Baseline 2 15.1% 27.6%
Baseline 3 45.0% 11.3%
Proposed approach 33.6% 9.5%

the most similar to the presented approach as its schedules are defined
by the average occupancy patterns of each weekday. As such a separate
schedule for each day of the week is generated. The heating degree days
can be computed according to the schedules of the respective baselines,
and can then be fed into Eq. (7) to estimate the corresponding energy
consumption. The savings achieved using the baselines are reported in
Table 6. These results are substantially lower, and sometimes even yield
higher consumption than with manual control, than those obtained
with the presented approach (Table 5). In addition, the efficiency of
the presented approach and baselines is analysed in terms of their
associated discomfort and energy waste in Table 7. Discomfort is com-
puted by the fraction of time slots where the absent set point was
implemented while the resident was present, by the total number of
presence time slots. And energy waste is calculated as the fraction of
time slots when the present set point was activated while the occupant
was absent, by the total number of absence time slots. As expected,
lowest discomfort is obtained with the second baseline, followed by the
proposed approach. In terms of avoiding energy wastage, the proposed
approach scores best.

5.1.2. ASHRAE guideline 14
ASHRAE guideline 14 consists of three approaches to compute

energy savings. In this case, the whole building approach was applied.
With this approach savings are estimated by developing a change-point
regression model12 on the learning data which describes consumption
as a function of the outside temperature, the average outside temper-
ature over the past 24h, the average occupancy state of the building,
the day of the week and the time of the day. For this method, the data
were formatted in arrays of 2h intervals. A variety of different models,
with different combinations of variables and change-points, was built
and 10-fold cross validation was used to select the best model, i.e. the
model with the highest adjusted coefficient of determination (𝑅2). In
addition, this model had the lowest coefficient of variation of the root
mean squared error (CV-RMSE), which expresses the uncertainty of the
model. The adjusted 𝑅2 equals 0.88 and the CV-RMSE is 13.7% which
is lower than the maximum 20% according to the ASHRAE guideline

12 All computations were made in R using Muggeo’s segmented pack-
age [34].
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Fig. 11. Projected and actual energy consumption during the control period.

14. The formula of the segmented regression model is defined as:

𝑄 = 𝛽0 + 𝛽1 × 𝑇𝑂𝑢𝑡 + 𝛽2 × (𝑇𝑂𝑢𝑡 − 𝐶2)+ + 𝛽3
× 𝑇24ℎ + 𝛽4 × (𝑇24ℎ − 𝐶4)+ + 𝛽5 × (𝑇24ℎ
− 𝐶5)

+ + 𝛽6 × (𝑇24ℎ − 𝐶6)+ + 𝛽7 × 𝑂𝑐𝑐

+ 𝛽8 × (𝑂𝑐𝑐 − 𝐶8)+ + 𝛽9 ×𝑀𝑜𝑛 + 𝛽10

× 𝑇 𝑢𝑒 + 𝛽11 ×𝑊 𝑒𝑑 + 𝛽12 × 𝑇ℎ𝑢 + 𝛽13

× 𝐹𝑟𝑖 + 𝛽14 × 𝑆𝑎𝑡 + 𝛽15 × 𝐴𝑀 + 𝛽16×

𝑃𝑀 + 𝛽17 × 𝐸𝑉

= 5.601 − 0.179 × 𝑇𝑂𝑢𝑡 − 0.634 × (𝑇𝑂𝑢𝑡−

5.807)+ − 6.605 × 𝑇24ℎ + 15.042 × (𝑇24ℎ+

1.648)+ − 8.641 × (𝑇24ℎ + 0.915)+ + 4.037

× (𝑇24ℎ − 11.468)+ − 4.738 × 𝑂𝑐𝑐 + 6.669×

(𝑂𝑐𝑐 − 2.133)+ − 2.413 ×𝑀𝑜𝑛 − 2.375×

𝑇 𝑢𝑒 − 2.703 ×𝑊 𝑒𝑑 − 2.789 × 𝑇ℎ𝑢 − 1.793

× 𝐹𝑟𝑖 − 0.402 × 𝑆𝑎𝑡 − 0.740 × 𝐴𝑀−

0.669 × 𝑃𝑀 − 1.931 × 𝐸𝑉

(9)

where:

Q represents the energy consumption [kW],
𝑇𝑂𝑢𝑡 the average outside temperature per 2 h interval [◦ C],
𝑇24 the average outside temperature of the previous 24 h [◦ C],
𝑂𝑐𝑐 the average occupancy state of all rooms,
(…)+ terms that are evaluated when they are positive,
𝛽𝑖 model coefficients,
𝐶𝑖 change point beyond which 𝛽𝑖 is applicable.

Finally, 𝑀𝑜𝑛, 𝑇 𝑢𝑒, 𝑊 𝑒𝑑, 𝑇ℎ𝑢, 𝐹𝑟𝑖, 𝑆𝑎𝑡, 𝐴𝑀 , 𝑃𝑀 , 𝐸𝑉 are dummy
variables which indicate the interval’s weekday (Monday till Sunday)
and time of day (AM = 7 h–12 h, PM = 13 h–18 h, EV=19 h–0 h). The
dummies for Sunday and night time do not have to be included in the
model as they can be derived from the other variables.

The expected energy consumption during the testing period, with
manual control, is estimated by inserting the observed environmental
and behavioural conditions of the testing period into the regression
model. The difference between this projected and measured consump-
tion returns the energy savings, which amount to 366.5 kWh or 47.9%.
A 90% prediction interval was used to provide lower and upper bounds
on the savings, leading to savings between 26.9% (146.3 kWh) and
59.5% (586.7 kWh). Fig. 11 depicts the predicted and actual consump-
tion and Table 8 presents a breakdown of the energy savings per day.
From Monday till Thursday these savings, although slightly higher,
match relatively well with the results obtained with the degree day
method. However, from Friday until Sunday, the degree day method
underestimates the savings to a greater extent since the impact of the
occupancy rate is more significant as many students return home.
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Table 8
Obtained absolute and relative savings according to ASHRAE guideline 14.

Lower Fit Upper

kWh % kWh % kWh %

Mon. 6.4 9.2% 38.7 37.7% 70.9 52.6%
Tue. 31.9 40.5% 63.5 57.5% 95.1 67.0%
Wed. 7.3 12.4% 38.1 42.5% 68.8 57.2%
Thu. −19.3 −27.9% 12.1 12.0% 43.5 33.0%
Fri. 13.7 18.1% 45.0 42.1% 76.4 55.3%
Sat. 54.1 54.5% 85.6 65.5% 117.1 72.2%
Sun. 47.7 53.9% 80.6 66.5% 113.5 73.6%

Fig. 12. Contribution of different impact categories to the overall avoided
environmental impact using Europe ReCiPe H/A method [36].

5.2. Environmental impact

Additionally, the potential environmental impact reduction of the
smart heating system is assessed using the lifecycle assessment (LCA)
methodology. Background data from the Ecoinvent 3 LCI database13

[35] are used and the overall environmental impact is characterised
as a single score with the Europe ReCiPe H/A method [36]. The envi-
ronmental benefit is calculated based on the measured energy savings
and the environmental burden is estimated based on the required IT
equipment, i.e. sensors, home controller, (single-board) computer, and
data storage.

In total, an environmental impact reduction of approximately 8 Eco-
Points is calculated for the control week, translating to 280 EcoPoints
per year.14,15 From Fig. 12 it is clear that the smart heating retrofit has
the largest effect on the categories climate change (both Human Health
and Ecosystems) and fossil depletion.

The climate change impact category provides the largest contri-
bution to the single point score (>50%) and is given in terms of
saved kilogrammes of equivalent carbon dioxide (kgCO2eq), which is
0.256 kgCO2eq/kWh for the selected heating type (gas boiler). For the
control week this means a reduction of 93.8 kgCO2eq. and this can be
extrapolated to an annual14 impact reduction of 3257.0 kgCO2eq. As
was illustrated in previous work, for other heating types, such as fuel
oil, the impact reduction would be even larger [37].

Furthermore, the environmental impact assessment is completed
with an estimation of the environmental burden that is associated with
the use of the IT equipment required for the smart heating system.
The operation of the IT equipment is estimated to result in 0.065
EcoPoints/week and 0.58 kgCO2eq/week. This environmental burden
amounts to only 0.6% of the environmental benefit described above
and is therefore considered to be negligible.

Finally, the potential cost savings are estimated. According to the
Ecoinvent 3 LCI database, the gas and electricity consumption of the
selected heating type are respectively 0.0972 m3 and 0.0108 kWh

13 The LCI dataset that was used for the LCA study was: Heat, district or
industrial, natural gas Europe without Switzerland| heat production, natural
gas, at boiler modulating > 100 kW.

14 In [37] it was estimated that there are 243 number of heating days (days
where the average temperature between 7 and 18 h is lower than 20.5 ◦C) in
Leuven.

15 EcoPoints for the lower and upper bound of the energy savings respec-
tively amount to 3.2 and 12.9 for the control week, resulting in 111 and 448
EcoPoints per year.
10
per kWh of heat produced. Cubic metres of gas are converted to
kilowatt-hours by a conversion coefficient of 10.224 kWh/m3 for low
calorific gas,16 that is available in the region of Leuven, resulting
in a gas consumption of 0.993 kWh per kWh of heat. Multiplying
these numbers with the corresponding energy tariffs (0.035 e//kWh
for gas and 0.3 e//kWh for electricity) and summing them returns a
cost saving of 0.038 e//kWh or 13.81 e/ for the control week and
479.45 e//year14. The investment in IT equipment for the 14 student
rooms amounts to approximately 2450 e/ but could be reduced to
around 1600 e/ by discarding one of the multi-sensors, which means
the payback period equals 3.3 to 5.1 years.17

5.3. Thermal comfort

However promising the realised savings, they should not be ob-
tained at the expense of thermal comfort. Therefore, a pre- and post-
retrofit assessment of thermal comfort is performed. Hereto, the widely
popular PMV and PPD metrics [23] are used. PMV returns a score for
the thermal sensation of a population ranging from −3 (cold) to +3
(hot), with ideal values between −0.5 and 0.5. PPD, on the other hand,
indicates the percentage of people that will be dissatisfied under the
given conditions. ASHRAE standard 55 requires that at least 80% of
the occupants will be satisfied (or PPD ≤ 20%) [38]. Both PMV and
PPD are computed using the CBE Thermal Comfort Tool [39] , which
takes the following six comfort parameters as input:

1. Air temperature [◦ C]
2. Mean radiant temperature [◦ C]
3. Air speed [m/s]
4. Relative humidity [%]
5. Metabolic rate [met]
6. Clothing level [clo].

As the available information is limited and some of these parameters
are hard to measure, assumptions have to be made. The air speed is
set to 0.05 m/s which is characteristic of most indoor environments;
the metabolic rate18 is set to 1 met (seated relaxed) when residents are
present or absent and to 0.8 met (reclining/sleeping) when residents
are sleeping; and the clothing level is set to 1 clo (typical winter
indoor clothing) for both the present and absent state and to 2.34
clo for the sleeping state.19 The mean radiant temperature can be
assumed to be equal to the air temperature [41], as is the case in
many indoor climate studies. Tables 9 and 10 show the PMV and
PPD results for the different occupancy states per room. From these
tables it is clear that calculated thermal comfort was not negatively
affected to realise the attained savings. On average thermal comfort
even slightly improved. For the absent state, thermal comfort worsened
for eight out of fourteen rooms. Which means that room temperature
dropped to a marginally lower level during the control period, further
illustrating the effectiveness of the autonomous system. A dependent t-
test is performed to assess if the results during the learning and control
period were statistically different. The respective p-values are 0.67,
0.06, 0.51, 0.38, 0.36 and 0.46, indicating that thermal comfort scores
with and without automatic control are not significantly different (with
a significance level of 0.05).

However, it must be noted that the PMV and PPD metrics represent
the average score of a population. Therefore, it does not necessarily

16 https://www.vreg.be/nl/aardgas-omrekening-van-m3-naar-kwh
17 Monetary savings for the lower and upper bound of the energy savings

respectively amount to 5.51 e/ and 22.11 e/ for the control week, resulting
in 191.29 and 767.61 e/ per year and a payback period of 12.81–3.19 years
(or 8.36–2.08 years in case of the one multi-sensor scenario).

18 https://www.engineeringtoolbox.com/met-metabolic-rate-d_733.html
19 2.34 clo corresponds to a person wearing sleepwear, sleeping on a

mattress covered by a quilt as specified in [40].

https://www.vreg.be/nl/aardgas-omrekening-van-m3-naar-kwh
https://www.engineeringtoolbox.com/met-metabolic-rate-d_733.html
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Table 9
Comparison of average thermal comfort for the present and sleeping state during
learning and control period. L and C respectively represent the learning and control
phase.

Room PMVpresent PPDpresent PMVsleeping PPDsleeping

L C L C L C L C

1 −0.25 0.00 6.9% 7.2% 0.28 0.38 7.1% 9.7%
2 −0.70 −0.25 16.3% 7.3% −0.05 0.11 5.9% 5.8%
3 −0.83 −0.72 22.0% 17.0% −0.40 −0.33 11.3% 7.9%
4 −0.49 −0.41 12.0% 8.8% 0.06 0.05 6.5% 5.4%
5 0.04 −0.31 9.3% 7.9% 0.12 0.37 6.3% 7.9%
6 −0.18 −0.35 7.8% 8.5% 0.22 −0.02 6.6% 5.5%
7 −0.02 0.06 6.1% 5.6% 0.30 0.35 7.3% 7.8%
8 −0.28 −0.35 7.4% 8.2% 0.22 0.16 6.4% 5.9%
9 −0.95 −0.68 24.5% 14.9% −0.28 −0.13 6.7% 5.4%
10 −0.29 −0.20 7.0% 5.8% 0.30 0.35 6.9% 7.5%
11 −0.23 −0.06 7.1% 5.2% 0.17 0.34 6.1% 7.5%
12 0.10 −0.02 5.6% 5.1% 0.44 0.47 9.1% 9.7%
13 −0.30 −0.60 7.3% 12.7% 0.19 −0.03 6.0% 5.0%
14 0.85 0.56 21.6% 15.5% 1.10 0.89 31.2% 24.8%

Overall −0.25 −0.24 11.5% 9.3% 0.19 0.21 8.8% 8.3%

Table 10
Comparison of average thermal comfort for the absent state during learning and control
period. L and C respectively represent the learning and control phase.

Room PMVabsent PPDabsent

L C L C

1 −0.33 −0.21 7.8% 8.1%
2 −0.72 −0.43 17.0% 10.0%
3 −0.79 −0.84 20.6% 21.1%
4 −0.42 −0.53 10.9% 11.2%
5 −0.32 −0.53 9.6% 11.1%
6 −0.34 −0.57 9.3% 13.7%
7 −0.04 0.06 5.8% 6.3%
8 −0.27 −0.44 6.8% 9.6%
9 −0.99 −0.73 26.0% 16.2%
10 −0.34 −0.26 7.7% 6.4%
11 −0.38 −0.16 9.1% 6.2%
12 0.09 −0.21 5.4% 6.7%
13 −0.32 −0.64 7.5% 13.8%
14 0.87 0.26 21.5% 10.0%

Overall −0.31 −0.38 11.8% 10.8%

mean that the particular resident is more comfortable when PMV and
PPD scores improve. For example, room 14 has substantially higher
PMV and PPD values, which is due to the resident regularly specifying
an unusually high (≥ 25◦ C) desired temperature. Since the intelligent
ontrol system assumed a 22 ◦C comfort temperature (present state) for
his resident, PMV and PPD values improved to some extent. However,
s apparent from the number of system overrides given in Table 11,
he resident often adjusted the heating to this unusually high set point.
n average, however, only 5.79 overrides or less than one per day
ere performed per room during the control period. The number of
ser interactions, i.e. set point changes, during the learning period are
eported as well. This allows to analyse the impact on user convenience.
he fewer the user has to intervene, the better. In general, the number
f interactions is somewhat lower during the control period. It must
e noted however, that during manual operation, the resident might
ccasionally forget to lower the heating to a setback temperature or de-
iberately maintain the comfort temperature (e.g. to avoid a cold room
pon arrival) during absence which might lead to an underestimation
f the control actions during this period.

.4. Predictive performance

Finally, the performance of the smart heating algorithm itself is
valuated. To this end, 5 standard classification metrics, accuracy,
atthews Correlation Coefficient (MCC), precision, recall and F1-score,
11
able 11
umber of system overrides during the learning and control period for each room.
Room Number of overrides Average daily number of

overrides

L C L C

1 45 15 1.61 2.14
2 15 3 0.54 0.43
3 33 7 1.18 1.00
4 15 3 0.54 0.43
5 13 0 0.46 0.00
6 17 3 0.61 0.43
7 22 2 0.79 0.29
8 15 2 0.54 0.29
9 33 8 1.18 1.14
10 31 3 1.11 0.43
11 79 7 2.82 1.00
12 21 9 0.75 1.29
13 18 1 0.64 0.14
14 57 18 2.04 2.57

Overall 29.57 5.79 1.06 0.83

are computed. Accuracy is defined as the proportion of data that has
been correctly classified, and is given by the formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑛
(10)

where 𝑇𝑃 and 𝑇𝑁 respectively represent the number of true positives
and true negatives, and 𝑛 is the total number of samples. Since the
frequency of the different activities, i.e. present, absent and sleeping,
is typically uneven, the results might be affected by the accuracy
paradox. This paradox entails that if one class dominates the dataset,
constantly predicting this class will still yield a high accuracy score.
Therefore, in order to account for this imbalance, MCC scores [42] were
computed as well. MCC scores range from −1 (total disagreement) to
+1 (perfect prediction), where 0 represents random prediction. For a
more detailed evaluation, per activity class, precision, recall and F1-
scores are reported. Precision represents the ratio of true positives
to the sum of true positives and false positives, 𝑇𝑃

𝑇𝑃 +𝐹𝑃
. Recall, or

sensitivity is defined as the true positive rate (TPR), i.e. 𝑇𝑃
𝑇𝑃 +𝐹𝑁

. The
𝐹1 score combines precision and recall as in Eq. (11)

𝐹1 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(11)

The predictive capabilities are reviewed in Table 12. Generally
speaking, accuracy and MCC scores are rather modest. For the absent
state, precision is fairly high and recall is quite low. The opposite
is true for the present state. Lastly, both precision and recall are
reasonably high for the sleeping state. These results can be justified
by the user tolerance parameter (UT). As a result of applying UT to
the identified occupancy patterns, absence will only be predicted when
the algorithm is really sure the room will not be occupied, leading to
high precision and low recall scores. Since the present state is favoured
by the prediction algorithm, recall is rather high while precision is
fairly low. Sleeping is more predictable, as bedtime is relatively fixed,
resulting in high scores for both precision and recall. For a few rooms
some scores are not available, which means that the corresponding state
has not occurred. Rooms 4 and 5 have no scores for the sleeping state,
which might be the result of a malfunctioning light sensor. According
to Table 12 both room 9 and 13 are never vacant. In this case, the
occupancy detection system has failed to detect ‘‘Leave’’ events. If it
were not for this flaw in the detection system, even more savings might
have been achieved.

6. Discussion

The encouraging results suggest that the presented system can
generate substantial energy savings, while maintaining thermal comfort
and user convenience. The latter, measured by the number of user
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Table 12
Assessment of the underlying algorithm’s predictive abilities. A, P and S respectively
represent the absent, present and sleeping state.

Room Accuracy MCC Precision Recall F1-score

A P S A P S A P S

1 .75 .65 .82 .61 .94 .18 .93 .97 .30 .74 .95
2 .66 .52 .94 .19 .84 .56 .84 .93 .70 .31 .88
3 .69 .36 .81 .32 .74 .74 .48 .65 .78 .38 .69
4 .88 .44 .89 .96 .99 .28 .94 .44
5 .65 .38 .87 .50 .55 .85 .67 .63
6 .66 .35 .98 .09 .55 .64 .67 1.0 .77 .16 .71
7 .56 .41 .87 .19 .87 .44 .68 .94 .59 .30 .90
8 .72 .53 .92 .20 .78 .68 .66 .90 .78 .30 .84
9 .88 .80 1.0 .98 .84 .95 .91 .97
10 .74 .64 .92 .44 .91 .62 .81 1.0 .74 .57 .96
11 .56 .39 .94 .14 .73 .49 .67 .97 .64 .23 .83
12 .74 .34 .85 .35 .52 .80 .33 1.0 .83 .34 .68
13 .97 .95 1.0 .95 .97 .98 .98 .97
14 .66 .53 .70 .43 .94 .42 .72 .95 .53 .54 .95

Avg. .72 .52 .87 .46 .81 .59 .70 .94 .69 .49 .86

interactions, was, however, expected to be more significantly improved.
This might, in part, be due to residents not switching to a setback
temperature, either intentionally to avoid discomfort upon arrival or
involuntary, when leaving the room. As such the number of interactions
during the learning period could be underestimated. The profiling
algorithm was able to extract meaningful patterns from limited training
data comprising multiple activities (i.e. absent, present, sleeping). The
required number of days to construct reliable profiles naturally depends
on the rate with which recurrent behaviour occurs. Typically humans
exert daily, weekly or bi-weekly patterns. For example, universities in
Belgium often employ separate course schedules for even and uneven
weeks. As such, one month of data should suffice to capture most
patterns. Since throughout the (academic) year the residents’ occu-
pancy schedules may shift, the need to retrain the profiles might arise.
However, as discussed in [25] and [43], the algorithm can be extended
with a mechanism that deals with evolving data. In [25], the stability
and predictive power of the identified profiles is also demonstrated for
larger data sets.

Although the presented system seems promising, some important
limitations need to be addressed. First, occupancy detection is purely
based on motion and door sensors. Therefore, it is susceptible to
misclassifications when residents perform stationary activities such as
reading or studying. Extending the system with for example smart me-
tres to measure electricity consumption or network connectivity loggers
can help overcome this issue. Second, data is handled at a 15-minute
granularity, meaning that occupancy can only be derived once every
15 min. This granularity was initially chosen as it was empirically found
that the rooms could be heated to a reasonable temperature within
15 min. Thus requiring predictions 15 min ahead of time. Furthermore,
in case the resident is present at an unexpected moment in time, it
was deemed reasonable to endure a certain level of discomfort for
15 min. Nevertheless, the effect of more fine-grained data on system
performance demands further investigation. Finally, heat transfers from
adjoining rooms that were not part of the study could not be incorpo-
rated in the energy savings computations. However, since this applies
to both the learning and control period, its impact is believed to be
very limited. Thus, the computation stands when the savings of the
studied rooms are considered in isolation. However, when assessing
the reported savings in terms of the entire building, they may be
slightly overestimated as diminished consumption in the controlled
rooms might elicit an increase in consumption in the adjoining rooms.

7. Conclusions and future work

This paper investigates the energy saving potential of adopting
12

the proposed intelligent heating control in student rooms. This type
of application is particularly interesting as it is fairly straightforward
(only 1 room), and the rooms are vacant on a regular, though non-
deterministic, basis (lectures, holidays, weekends, etc.). Moreover, in
this case a continuous heating strategy is implemented.

As was also concluded in [7], the temporal and spatial distribution
of vacancy events and the influence of heated adjacent rooms limits
the assessment to the complete building. The extent to which energy
consumption was reduced in individual rooms can thus, unfortunately,
not be determined since a lowered consumption in one room could
induce elevated consumption in the neighbouring room(s). The way
thermal energy flows within the building, as a result of the vacancy
events, also complicates the heater simulation. Further research is
required to improve the simplified model.

An experiment was conducted in which the heating was auto-
matically controlled for 1 week. The corresponding consumption was
compared to the consumption of four weeks without the intelligent con-
trol, while normalising for occupancy and climatological differences.
Total savings range between 26.9%, or 146.3 kWh, and 59.5%, or 586.7
kWh. Additionally, the system was compared with and significantly
outperforms three baselines. Furthermore, the environmental impact
reduction was estimated to range from 3.2 to 12.9 EcoPoints or 37.5 to
150.2 𝑘𝑔𝐶𝑂2𝑒𝑞. In addition, the potential cost savings were estimated.
For the control week, these amount to 13.81 e/, leading to annual
savings of 479.45 e/ and a payback period of 3.3–5.1 years. Moreover,
calculated thermal comfort was not affected by the energy conservation
endeavour and few system overrides were registered.

However, more and longer of these real-life experiments, in varying
building types and regions, must be performed to establish an elaborate
view on the energy conservation capacity of smart thermostats in
general. Furthermore, savings should be compared to realistic bench-
marks. For example, many modern non-intelligent thermostats can be
programmed and controlled remotely over the internet, which, if used
properly, allows to optimise consumption. In contrast to regular pro-
grammable, offline, thermostats schedules and settings can be modified
in a very easy, intuitive way. Therefore, the potential consumption
reduction due to intelligent thermostats should also be compared with
reference to this case.
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