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a b s t r a c t 

The COVID-19 has been creating a global crisis, causing countless deaths and unbearable panic. Despite 

the progress made in the development of the vaccine, there is an urge need for the discovery of antivi- 

rals that may better work at different stages of SARS-CoV-2 reproduction. The main protease (M 

pro ) of the 

SARS-CoV-2 is a crucial therapeutic target due to its critical function in virus replication. The α-ketoamide 

derivatives represent an important class of inhibitors against the M 

pro of the SARS-CoV. While there is 

99% sequence similarity between SARS-CoV and SARS-CoV-2 main proteases, anti-SARS-CoV compounds 

may have a huge demonstration’s prospect of their effectiveness against the SARS-CoV-2. In this study, 

we applied various computational approaches to investigate the inhibition potency of novel designed α- 

ketoamide-based compounds. In this regard, a set of 21 α-ketoamides was employed to construct a QSAR 

model, using the genetic algorithm-multiple linear regression (GA-MLR), as well as a pharmacophore fit 

model. Based on the GA-MLR model, 713 new designed molecules were reduced to 150 promising hits, 

which were later subject to the established pharmacophore fit model. Among the 150 compounds, the 

best selected compounds (3 hits) with greater pharmacophore fit score were further studied via molec- 

ular docking, molecular dynamic simulations along with the Absorption, distribution, metabolism, excre- 

tion, and toxicity (ADMET) analysis. Our approach revealed that the three hit compounds could serve as 

potential inhibitors against the SARS-CoV-2 M 

pro target. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The spread of novel coronavirus disease COVID-19, caused by 

erious acute respiratory syndrome coronavirus-2 (SARS-CoV-2), 

as had significant morbidity, mortality, and social and economic 

isruption throughout the globe. This disease has occurred firstly 

n Wuhan, Hubei Province, China, where a pneumonia of an un- 

nown cause was detected in December 2019. As of now, SARS- 

oV-2 has spread over to almost all parts of the world (213 na- 

ions) with over 120 million confirmed cases and over 2.67 million 

onfirmed deaths worldwide at the time of writing (15th March 

021) [1] . In the 21st century, SARS-CoV-2 is the 3rd Coronaviridae 

amily member after the SARS-CoV in 2002 and the Middle East 

espiratory syndrome coronavirus MERS-CoV in 2012 that have in- 
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022-2860/© 2021 Elsevier B.V. All rights reserved. 
ected 8422 (mortality rate of about 10%) and 1700 people (mor- 

ality rate of about 36%), respectively [ 2 , 3 ]. 

Like other coronaviruses, SARS-CoV-2 genome is around 30 kb 

n size and its genomic organization followed the gene character- 

stic order to known CoVs, [5 ′ -replicase ( rep ), spike ( S ), envelope

 E ), membrane ( M ), and nucleocapsid ( N ) −3 ′ ] [4] . The 5 ′ termi-

al more than two-thirds of the genome contains two long open 

eading frames, ORF1a and ORF1b which are translated into two 

olyproteins pp1a and pp1b to encode 16 non-structural proteins 

 nsp1-nsp16 ) which form the viral replicase-transcriptase complex 

RTC). On the other hand, the 3 ′ third of the genome contains the 

emaining ORFs that encode the 4 viral structural proteins ( S, M, 

 and N ) as well as the 9 auxillary proteins ( ORF3a, ORF3b, ORF6,

RF7a, ORF7b, ORF8, ORF9a, ORF9b and ORF10 genes) [5] . The RTC 

onsists of multiple enzymes, the main protease (M 

pro , nsp5 ) and 

he papain-like protease (PLpro, nsp3 ) participate in the cleavage 

f the polyproteins to produce nsp2-nsp16 involved in the RTC [6] . 

https://doi.org/10.1016/j.molstruc.2021.130897
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2021.130897&domain=pdf
mailto:cherqaoui@uca.ma
https://doi.org/10.1016/j.molstruc.2021.130897
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The M 

pro is essential for viral replication and maturation. It has 

een paid attention to the M 

pro (i.e. 3C-like protease (3CLpro)) as 

n attractive target for anti-COVID-19 drug discovery and develop- 

ent [7] . The M 

pro monomer is made up of three domains: domain 

, II, and III with amino acid residues 8–101, 102–184, and 201–306, 

espectively. The catalytic dyad composed of CYS145 and HIS41, 

here is located at the cleft between domains I and II, is reported 

o initiate the activation through dimerization process mechanism 

6] . Thus, it may therefore be logical to block the catalytic site in

rder to inhibit the main protease function. 

As the SARS-CoV-2 genome has over 80% identity to SARS- 

oV (about 99% sequence similarity for their M 

pro ), previously re- 

orted 21 α-ketoamides SARS-CoV M 

pro inhibitors may have sig- 

ificant efficacy to show against the SARS-CoV-2 [3] . In this view, 

arious computational approaches including QSAR modeling, phar- 

acophore modeling, molecular docking, molecular dynamic (MD) 

imulations, and Absorption, distribution, metabolism, excretion, 

nd toxicity (ADMET) test were used to investigate the possible in- 

ibitory activity of novel designed α-ketoamide-based compounds. 

ndeed, the aim of this work consists of: 
√ 

Establishing a reliable QSAR model using GA-MLR method 

that can be able to predict the SARS-CoV-2 M 

pro inhibitory 

activity of α-ketoamides. √ 

Developing a pharmacophore fit model based on the struc- 

tural features of the studied SARS-CoV-2 M 

pro inhibitors. √ 

Proposing new drug candidates and screening for new hits 

through the investigation of the effect of active groups. √ 

Elucidating the dynamics of the complexes and the underly- 

ing inhibition mode of the proposed hits at the active pocket 

of the target protein and evaluating their pharmacological 

profiles. 

. Materials and methods 

.1. Data collection and molecular descriptor calculation 

A dataset of 21 compounds of α-ketoamides derivatives with 

ARS-CoV inhibitory activity were collected from the published 

ork by Zhang et al. (Table S1) [8] . The retrieved IC 50 values were

onverted to their corresponding pIC 50 (-log 10 (IC 50 )) and used as 

 dependent variable. The ChemDraw 18.0 software was used to 

raw the chemical structures and their geometries were optimized 

sing the AM1 method in the gas phase. This optimization was 

mplemented in the Gaussian 09 program package [9] . Frequency 

nalysis was used to verify the energy minima of the optimized 

amples. 

Molecular descriptor values (0D-3D) of the aforementioned 

ompounds were calculated with the OCHEM server (it is a free 

mplementation environment, available online https://ochem.eu) 

10] . The variables (nearly 50 0 0) were collected and pre-filtered by 

liminating constant and nearly constant value ( > 80%). Pairs of a 

ighly correlation coefficient ( > 0.95) were pruned, avoiding de- 

elopment of any biased models. The process continued till a set 

f the relevant 10 descriptors from the initial computed pool was 

elected. Finally, four descriptors listed in Table S2 provided the 

est QSAR model. 

.2. 2D-QSAR model construction and validation 

The statistically robust 2D-QSAR model based on the genetic 

lgorithm-multiple linear regression (GA-MLR) has been estab- 

ished utilizing the QSARINS software [ 11 , 12 ]. This model was sub-

ected to various thorough statistical validations as per the Organi- 

ation for Economic Co-operation and Development (OECD) guide- 

ines. The general procedure for developing the QSAR model is 

omposed of three main sessions: 
2 
(i). The dataset comprising the 21 α-ketoamide analogs was 

randomly divided, using the splitting option in the QSARINS 

software, into 70% training set (14 compounds) and 30% test 

set (7 compounds). The training set was employed for model 

construction and the test set for the external validation. 

(ii). The GA-MLR 2D-QSAR model was constructed using default 

parameters of the QSARINS program. During the model de- 

velopment, the selected molecular descriptors were utilized 

to derive a simple and an informative GA-MLR model. 

(iii). The confirmation of the model validity was proved by sub- 

jecting the established model to internal and external valida- 

tions, Y-randomization, and model applicability domain (AD) 

analysis. Indeed, the statistical quality and robustness of the 

GA-MLR-based 2D-QSAR model was ensured on the basis 

of: (a) internal validation based on leave-one-out (LOO) and 

leave-many-out (LMO) procedure (i.e. cross-validation (CV)); 

(b) external validation; 

(c) Y-randomization; and (d) fulfillment of respective thresh- 

old values for the statistical metrics: the determination co- 

efficient of the training set ( R 2 tr ) ≥ 0.6, the square of the 

CV correlation coefficient obtained from the leave-one-out 

(LOO) procedure ( Q 

2 
loo 

) ≥ 0.5, the leave-many-out (LMO) Q 

2 
lmo 

≥ 0.6, and the square of correlation coefficient obtained for 

the test set ( R 2 test ) ≥ 0.6. Finally, the root-mean square error 

( RMSE ) and the mean absolute error ( MAE ) values should be 

close to zero. Any QSAR model that did not satisfy any of 

these criteria is therefore omitted. 

.3. Virtual screening database preparation 

Virtual screening (VS) is a computational method employed to 

creen available chemical databases for filtering molecules that are 

ost likely to bind to a drug target by mapping them on gen- 

rated chemoinformatic models [13] . The hit identification, using 

S of compounds, is among the most popular computational tech- 

iques in drug design [ 14 , 15 ]. In this work, the screened database

as prepared using different strategies and a total number of 713 

olecules was generated. The first part was formed based on an 

nitial pharmacophore model created by the ZincPharmer online 

erver. Chemical features from the core structure of 13b and 11r 

ompounds ( Fig. 1 ), possessing significant SARS-CoV-2 inhibitory 

ctivities, were employed to generate initial pharmacophore mod- 

ls (Figure S1) [16] . These models were applied to retrieve a total 

umber of 197 compounds from the Zinc database [17] . The sec- 

nd part comprising 484 molecules was generated based on sev- 

ral modifications at the core structure of compounds 13b and 11r 

sing the “Expand Generic structure” option implemented in the 

hemDraw software. The modifications were made based on the 

ptimization of the P1’, P2, and P3 substituents in compounds 13b 

nd 11r ( Fig. 1 ). The P1 moiety was kept intact during the modifi-

ations due to its vital role in the interaction with the active pocket 

f the M 

pro . The last part which contains 32 molecules was taken 

rom a previously published series of α-ketoamide inhibitors [18] . 

Herein, the identified molecules were subjected to two filters. 

irstly, the above-mentioned GA-MLR model was employed in or- 

er to screen for compounds with the highest pIC 50 values from 

he list of 713 generated ones. Secondly, the features fitting of each 

ompound were evaluated through the application of advanced 

harmacophore fit model, facilitating the ranking of the screened 

olecules from the best GA-MLR QSAR model. 

.4. Ligand-based pharmacophore model 

Ligand-based pharmacophore approach has become an impor- 

ant tool in the identification and extraction of the main chemi- 

al features from a set of active compounds [ 19 , 20 ]. Over the 713

enerated compounds that were subject to the established GA-MLR 
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Fig. 1. Chemical structures of α-ketoamide inhibitors 11r and 13b. Colored regions (i.e. P1’, P2, and P3) highlight the position of substituents that were modified, P1 moiety 

was kept intact. 

Fig. 2. a | Ligand-based pharmacophore model generated by LigandScout software. The features are color coded as follows: green: HBA, red: HBD, and yellow: Hydrophobic 

(H). b | Pharmacophore model with distance constraints. 
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odel, the best 150 molecules were selected for advanced phar- 

acophore fit models. The pharmacophore models were generated 

ased on the initial 21 α-ketoamide analogs using LigandScout 

oftware [21] . On investigation, it was observed that a combination 

f three distinct chemical features of the molecules in the train- 

ng set, including hydrogen-bond acceptor (HBA), hydrogen-bond 

onor (HBD), and hydrophobic interaction (H), was found to effec- 

ively assess all critical chemical features ( Fig. 2 ). The inter-feature 

istance constraints were observed for this pharmacophore model 

ypothesis. During pharmacophore hypothesis generation, a min- 

mum of 5 pharmacophoric features (i.e. HBA, HBD, and H) were 

ncluded. The Maximum Inter-feature distance of 12.62 Å is re- 

ated to the distance between substituents P1’and P3. These chem- 

cal characteristics were generated in order to remain close to the 

ommon core structure of the studied α-ketoamide analogs and 

ater were employed to screen for new hit molecules. Finally, 3 

its ( 007, 329 and 331 ) with the higher pharmacophore fit score 

ere subjected to molecular docking and MD simulations analy- 

is followed by the ADMET study to confirm their pharmacokinetic 

rofiles. 

.5. Molecular docking of selected hits 

Molecular docking analyses have been widely employed in 

edicinal chemistry research [ 22 , 23 ]. In the current work, molecu- 
3 
ar docking was employed to analyze the interactions and the con- 

ormational patterns of the selected hits within the active site of 

he M 

pro of the SARS-CoV-2. The crystallographic protein of the 

 

pro was downloaded from the Protein Data Bank with the PDB 

ode 6Y2F [ 16 , 24 ]. It is a monoclinic form of the complex resulting

rom the reaction between SARS-CoV-2 M 

pro and the α-ketoamide 

nhibitor ( 13b ). For the protein preparation, the co-crystallized lig- 

nd and the water molecules were removed and the hydrogens 

ere added using Autodock Tools [25] . The selected hits were pre- 

ared and saved in pdbqt format using the same software. In the 

ocking investigations, a box of 20 × 20 × 20 and a grid space of 

.375 Å were fixed. The center of the ligands was set using the fol- 

owing coordinates x = 10.88 Å, y = −0.25 Å and z = 20.75 Å. The

ode number was fixed at 8. All the docking runs were performed 

y the Autodock Vina program [26] . 

.6. Molecular dynamics simulations 

Molecular dynamics (MD) simulation is an important approach 

n understanding the fundamental basis of the biological macro- 

olecule structures, which can provide critical insights on their 

unction and dynamics. Therefore, AMBER18 software package 

27] was utilized to perform 160 ns of MD simulations. Five sys- 

ems were simulated: complex 007 ( compound 007 in complex 

ith M 

pro ), complex 329 ( compound 329 in complex with M 

pro ), 
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omplex 331 ( compound 331 in complex with M 

pro ), complex 13b 

the reference compound 13b in complex with M 

pro ), and APO (the 

nbound form of M 

pro ). Prior to the MD simulations, the best- 

ocked pose for each ligand was parameterized using Antecham- 

er [28] . The TLeap module was used to ensemble the system, 

mplementing the FF99SB force field to parameterize the protein. 

he general AMBER force field (GAFF) was employed to determine 

he partial charges of atoms in the ligand. Neutralizing counteri- 

ns and missing hydrogens were included [ 29 , 30 ]. All the systems

ere placed inside a TIP3P water box of a distance of 10 Å [31] .

he partial Mesh Ewald (PME) [32] method was used to account 

or the long-range electrostatic forces using a cutoff of 12 Å, and 

he SHAKE algorithm [33] was used to constrain all the hydrogen 

tom bonds. The studied systems were then minimized using dou- 

le phase method. First, 2500 steps of steepest descent minimiza- 

ion were applied with restraint conditions of 500 kcal.mol −1 . ̊A 

−2 , 

onsidering the solute molecule. This was followed by a conjugate 

radient minimization process in the absence of all restraints; thus, 

he overall system was relaxed. The systems were progressively 

eated at a constant volume and at a constant pressure from 0 

o 300 K using a harmonic restraint of 10 kcal.mol −1 . ̊A 

−2 . In order

o equilibrate the system, weak restraints were performed during 

0 0 0 ps at a temperature of 300 K. Also, the Berendsen barostat

as used to maintain the system pressure at 1 bar [34] . Total of

60 ns of MD simulations were performed on all the systems. The 

esulting coordinates and trajectories were analyzed using the inte- 

rated CPPTRAJ and PTRAJ modules of AMBER18 [35] . The attained 

ata were plotted using Origin software [36] . 

.7. Calculations of the binding free energy 

The binding interactions of the compounds 13b, 007, 329 

nd 331 with the M 

pro were estimated through the calcula- 

ion of binding free energies using the method of Molecular 

echanics/Poisson–Boltzmann Surface Area (MM/PBSA) [37] . The 

inding free energy is mathematically represented as follows: 

G bind = G complex − G receptor − G ligand 

G bind = �E gas + �G sol − T�S 

E gas = �E int + �E vdw 

+ �E ele 

G sol = �G PB + �G SA 

G SA = γ SASA + β

here �S and T denote the total entropy of the solute and the 

emperature, respectively. However, �E gas, �E int, �E ele and �E vdw 

esignate gas-phase energy, internal energy, electrostatic and van 

er Waals interactions, respectively. �G sol is the solvation free 

nergy which can be separated into polar solvation free energy 

 �G pb ) and non-polar solvation free energy ( �G SA ). The solvent 

ccessible surface area (SASA) was used to compute the �G SA ; 

here γ and β are empirical constants for 0.00542 kcal.mol −1 . ̊A 

−2 

nd 0.92 kcal.mol −1 . ̊A 

−2 , respectively. Per-residue decomposition 

nalysis was employed to calculate the affinity and to assess the 

tability of the studied compounds through the estimation of the 

ifferent ener gy contributions of im portant residues at the active 

ite. 

.8. Pharmacokinetic and toxicity predictions 

The ADMET (i.e., Absorption (A), Distribution (D), Metabolism 

M), Excretion (E), and Toxicity) predictions of the selected hit 
4 
ompounds were explored through the AdmetSAR and the Osiris 

roperty explorer servers to evaluate their drug likeness proper- 

ies [38] . These properties explain the disposition of drugs inside 

n organism and consequently, impacts their pharmacological ac- 

ivity. 

. Results and discussion 

.1. QSAR modeling 

In the present work, a GA-MLR model was developed using 21 

-ketoamide derivatives reported as SARS-CoV inhibitors with a 

efined endpoint (IC 50 ). The best-established model from the four 

elected molecular descriptors with its statistical parameters are 

hown below: 

IC50 = − 17 . 0891 + 16 . 1547 ∗ ( GATS8i ) + 0 . 6723 ∗ ( NRS ) 
+ 36 . 4881 ∗ ( G2p ) − − 0 . 428 ∗ ( H8s ) 

tr = 14 , R t r 
2 = 0 . 91 , RMS E tr = 0 . 19 , Q 

2 
LOO 

= 0 . 78 , Q 

2 
F 3 = 0 . 75 R 

2 
test = 0 . 85 , 

A E test = 0 . 26 , Q 

2 
F 1 = 0 . 82 , Q 

2 
F 2 = 0 . 81 , Q 

2 
F 3 = 0 . 80 , C C C test 

= 0 . 92 , S = 0 . 24 , and F = 26 . 75 . 

(1) 

n this equation, N tr is the number of training samples, C C C is 

he concordance correlation coefficient [39] . Q 

2 
F 1 

, Q 

2 
F 2 

and Q 

2 
F 3 

are 

xternal validation criteria [40] , S is the standard deviation, F is 

ischer-ratio between the variances of calculated and observed ac- 

ivities 

All these statistical metrics that have been calculated for the es- 

ablished model are associated with fitting (i.e. R 2 tr and RMS E tr ), in- 

ernal (i.e. Q 

2 
loo 

and Q 

2 
lmo 

) and external validation (i.e. R 2 test , MA E test ,

 

2 
F 1 

, Q 

2 
F 2 

, Q 

2 
F 3 

, and C C C test ) indicate the statistical reliability of the

SAR model. Indeed, these obtained parameters fulfill the recom- 

ended thresholds values and ensure the predictive power and 

tability of the derived GA-MLR model ( Fig. 3 a). In addition, for a 

etter validation of the built model, the AD assured by the lever- 

ge method and plotted as the Williams plot ( Fig. 3 b), is used to

ssess the space of the AD of the created model. The warning line 

or the X outlier (h 

∗) is 1. The dashed lines show the cutoff value

f ±3 standard deviation (s.d.). From the Williams plot, all com- 

ounds are within the scope of the AD. 

.2. Ligand-based pharmacophore modeling 

Ligand-based pharmacophore models were built from 21 α- 

etoamide inhibitors. Molecular features involving hydrophobic in- 

eractions, HBA, and HBD were selected while generating the phar- 

acophore models. The best pharmacophore model was employed 

o select the best hits from the top 150 compounds. These hits 

ere further subjected to molecular docking analysis to confirm 

heir ability to be used as SARS-CoV-2 inhibitors. Table 1 shows the 

hemical structure of the three selected hits that match the differ- 

nt pharmacophore features illustrated in the Fig. 2 , their predicted 

IC 50 using the GA-MLR model equation ( Eq. (1) ), their pharma- 

ophore fit scores along with their binding affinity scores with the 

 

pro active site. 

.3. Molecular docking analysis 

The docking result and binding affinity estimation of the se- 

ected hit compounds and the reference re-docked inhibitor ( 13b ) 

re shown in the Table 1 . The interaction details with the ac- 

ive pocket amino-acids of SARS-CoV-2 M 

pro are shown in Fig. 4 . 

he detailed amino acid residues are represented in Table S3 

nd the Figure S2 illustrates different hydrophobic and aromatic 
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Fig. 3. a | Plot of experimental vs. predicted pIC50 values; b | Williams plot. 

Table 1 

Three hit compounds that well passed the filtration procedure. 

Hit ID Chemical structure pIC 50 (Predicted) Pharmacophore Fit score Binding affinity (Kcal.mol −1 ) 

007 6.0712 83.11 −7.9 

329 6.2861 84.35 −7.2 

331 6.4055 84.35 −8.2 

13b – – −7.7 

b

m

1

3

c

t

s

t

a

c

[

d

inding modes of 13b, 007, 329 and 331 ligands. The maxi- 

um range of energy differences between the studied ligands was 

 kcal.mol −1 . It was found that the binding affinity score of the hit 

29 ( −7.2 kcal.mol −1 ) was higher in comparison to the reference 

ompound 13b ( −7.7 kcal.mol −1 ). Unlike the hit compound 329 , 

he other two hits ( 007 and 331 ) showed lower binding affinity 
5 
core ( −7.9 and −8.2 kcal.mol −1 ) towards the M 

pro active site than 

hat of the reference ligand ( 13b ). The interaction of the amino 

cid residues of the M 

pro target with these three compounds were 

arefully analyzed using the discovery studio visualizer program 

41] . It was evinced that all compounds efficiently interacted with 

ifferent residues of domain I and II of the M 

pro . The compound 
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Fig. 4. Interactions with key residues as exhibited by the hit compounds (007, 329 and 331) and the reference ligand 13b with the Mpro active site. 
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3b was stabilized by five hydrogen bonds and three hydrophobic 

onds while interacting with the active site of the receptor protein, 

n which it forms two hydrogen bonds with the catalytic residue 

YS145 and one hydrophobic interaction with the HIS41. The in- 

eraction with the compound 007 was found to be stabilized by 

orming two hydrogen bonds, one pi-sulfur interaction, and four 

ydrophobic interactions where one of them was seen with the 

atalytic residue HIS41. The compound 329 formed six hydrogen 

onding interactions in which one hydrogen bonding interaction 

as seen with the catalytic residue CYS145, along with three hy- 

rophobic interactions where two of them interact with HIS41 and 

YS145 catalytic dyad. Besides, the compound 331 gets stabilized 

y six hydrogen binding interactions where two of them interact 

ith the catalytic residues CYS145 and HIS41, and two out of three 

ydrophobic interactions were seen to be formed with the catalytic 

esidues CYS145 and HIS41. Altogether, the analysis of non-covalent 

nteractions between the selected three hit compounds and the 

 

pro shows that the selected compounds interact either with the 

wo key catalytic residues, or with at least one of them (i.e. CYS145 

r HIS41), and can thus serve as key protease inhibitors (Table S3). 

.4. Molecular dynamics simulations 

.4.1. Conformational stability of the M 

pro 

The structural 3D stability of proteins could be estimated by 

easuring the overall atom deviations at the protein backbone. 
6 
he Root-Mean-Square Deviation (RMSD) of the C- α atoms is a 

ood parameter to estimate these variations. Great RMSD values 

an be an indicator of the expanded atom deviations at the pro- 

ein backbone, also reduced RMSD values depict moderate varia- 

ions in backbone atoms. This can support the mapping of the pro- 

ein dynamics and the equilibrium of the different structures. In 

his regard, throughout the MD simulations, the deviations of the 

mino-acids were investigated via RMSD calculations. The results 

ere plotted as a function of the simulations time in Fig. 5 . As can

e seen in the plots, all the complexes tend to converge around 

0 ns and continue up to the end of the simulations showing de- 

iations that differed across the simulations time. The binding of 

he compounds 007, 329 and 331 to the M 

pro was characterized by 

 decrease in deviation among the backbone atoms relating to the 

nbound conformation that displayed higher variations. The overall 

verage values of RMSD of complex 007 , complex 329 , complex 331 

nd M 

pro APO form are 1.88 Å, 1.95 Å, 1.94 Å and 2.08 Å, with

aximum recorded values of 2.91 Å, 3.14 Å, 2.94 Å and 3.64 Å, 

espectively. In opposition to the impact of reduced RMSD upon 

inding of the previous compounds, the reference compound 13b 

xhibited greater RMSD values with overall average value of 2.42 Å 

hich is slightly higher than that disclosed by other systems. Al- 

hough molecular binding to M 

pro in general stabilizes the com- 

lexes with values that fall behind 3.5 Å and overall RMSD aver- 

ge values lower than 2.5 Å, a diverse impact on the stability of 

 

pro upon the binding of the compounds 007, 329 and 331 was 
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Fig. 5. C- α backbone RMSD graphs of the three hits as well as the reference compound 13b in complex with M 

pro when compared to the unbound M 

pro . 
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Table 2 

Contribution of different elements to the secondary structure of the M 

pro en- 

zyme (in%). 

Percentage of Protein Secondary Structure% 

α helix β strand 3 10 helix Beta Turn Bend 

M 

pro APO form 28.36 37.17 4.38 19.38 10.72 

Complex13b 28.32 37.57 3.85 20.13 10.12 

Complex007 28.64 37.37 4.78 18.64 10.57 

Complex329 28.36 37.47 4.41 19.21 10.55 

Complex331 29.37 37.46 3.33 20.20 9.63 

o

S

t

a

3

r

p

i

t

h

e

t

c

A

a

I

(

t

c

h

bserved as compared to the binding of 13b which could be at- 

ributed to the stronger interaction of the predicted compounds in 

he active site of M 

pro . 

.4.2. Structural fluctuations of the M 

pro 

The root mean square fluctuation (RMSF) is a valuable indica- 

or of the structural behavior of the protein. The values depicted 

rom RMSF elucidate the fluctuation of each amino acid residue as 

hey interact with the ligand throughout the trajectory, which of- 

ers better insights into protein features. The RMSF values of each 

f the four complexes were compared to the RMSF of the unbound 

ystem ( Fig. 6 ). Based on the RMSF results, it was evident that the

omplexes 007, 13b and 329 exhibited less fluctuation than the 

nbound system especially in the catalytic region (residues 25–49, 

18, 140–192) elucidating the attenuation of structural fluctuation 

n the presence of these ligands. The complex 331 displayed the 

reatest similarity to the unbound system in terms of structural 

hanges. It was observed that the fluctuations occur with similar 

esidues, particularly in the catalytic region 140–192. Nevertheless, 

ubtle differences were mainly observed outside this region. In the 

ight of these observations, assessment of the secondary structure 

as performed. 

.4.3. Secondary structure analysis 

As seen in Table 2 , secondary structure analysis predicts a good 

mount of β strand (around 37% in all systems). The predicted per- 

entage value of α helix was around 28% in all complexes except 

or the complex 331 which showed slightly higher percentage of 

helix with value of 29.37%. However, other elements displayed 

odest contribution to the secondary structure. The detailed infor- 

ation is shown in Table 2 . The results revealed that β strand and 

helix dominated among secondary structure components. How- 

ver, no significant change was seen in the secondary structure of 

he M 

pro upon binding of the compounds. The secondary structure 

nalysis described herein provides useful conformational insights 
7 
n M 

pro which might prompt to the design/discovery of selective 

ARS-CoV-2 M 

pro inhibitors. We assume that the application of ra- 

ional approaches may contribute to the development of effective 

nd safe antiviral agents against M 

pro enzyme. 

.4.4. Binding free energy profiles of the selected hits 

The ligand-binding thermodynamic energy is a significant pa- 

ameter that contributes to the total binding free energy of the 

rotein-ligand complex, surmounting the stabilizing forces of an 

nhibitor in the active site. Hence, the stability of the system 

hroughout the simulation. To determine the basis for possible in- 

ibition against the M 

pro target, we computed the binding free en- 

rgy and per-residue decomposition of each hit molecule at the ac- 

ive site. Table 3 sums up the binding free energy of the complexes, 

onsidering Van der Waals, solvation, and electrostatic energies. 

lso, the individual energy contributions of catalytic site residues 

re presented in the per-residue decomposition analyses in Fig. 7 . 

n the light of these findings, the binding energies of complex 329 

 −38.60 kcal.mol −1 ) and complex 331 ( −47.16 kcal.mol −1 ) exhibited 

he most favorable binding when compared with complex 13b and 

omplex 007 ( −35.01 and −31.51 kcal.mol −1 , respectively). 

The binding energy observed in complex 331 was associated to 

igher van der Waals and electrostatic energy between the amino 
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Fig. 6. The RMSF plots of the three hits as well as the reference compound 13b in complex with the M 

pro in comparison with the unbound system. 

Table 3 

MMPBSA-based binding free energy profiles of the reference compound 13b and compounds 007, 329 and 

331 at the binding pocket of the M 

pro . The total binding free energies are highlighted in bold to distinguish 

them from the elements of the overall values. 

Energy Components (kcal.mol −1 ) 

Complex � E vdW 

�E elec �G gas �G solv �G bind 

Complex13b −49.66 ± 6.18 −22.09 ± 8.83 −71.75 ± 13.1 36.74 ± 6.91 −35.01 ± 7.22 

Complex007 −43.07 ± 8.00 −17.86 ± 9.35 −60.93 ± 15.7 29.42 ± 9.09 −31.51 ± 7.51 

Complex329 −51.50 ± 5.67 −17.21 ± 6.98 −68.72 ± 9.77 30.11 ± 5.51 −38.60 ± 6.71 

Complex331 −57.47 ± 6.69 −35.04 ±12.22 −92.51 ±12.56 45.34 ± 8.06 −47.16 ± 6.26 

a

p

p

t

a

n

t

o

n

s

i

3

s

e

cid residues ASN140, GLY141, SER142 and CYS143 and the com- 

ound 331 . However, the optimal binding energy noticed in com- 

lex 329 was due to increased electrostatic and van der Waals in- 

eractions between the residues HIS41, ASN49, MET163, GLN187 

nd the compound. Residues THR167 and GLY168 contributed mi- 

or interactions in all four complexes; this may have been at- 

ributed to the position of the amino-acids at the shallow region 

f the binding site. Although the assessed binding free energies are 

ot absolute values compared to the experimental ones, they are 
o

8 
till reliable considering the residue interactions within the bind- 

ng site area. 

.5. Pharmacokinetic and toxicity predictions 

To be an auspicious drug candidate against biological target, 

everal pharmacokinetic propriety studies must be prioritized at 

arly drug discovery phases (before the clinical trial stage). Not 

nly would this increase the overall quality of drug candidates, but 
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Fig. 7. Per-residue decomposition analyses demonstrating the role of individual energy contributions of catalytic site residues to the stability and binding of the molecules 

13b (A), 007 (B), 329 (C) and 331 (D). 

Table 4 

Toxicological properties of the selected compounds and 

the 13b inhibitor assessed through AdmetSAR and Osiris 

property explorer. 

Toxicological properties 007 329 331 13b 

Mutagenic N N N N 

Tumorigenic N N N N 

Irritant N N N N 

Reproductive effect N N N N 

N = No risk. 

Table 5 

Pharmacokinetic and ADME properties of the selected compounds and the 

13b inhibitor assessed through the AdmetSAR and the Osiris property ex- 

plorer. 

Pharmacokinetic properties 007 329 331 13b 

Molecular weight (g.mol −1 ) 544.65 541.69 527.66 579.65 

cLog P 2.35 0.41 0.22 1.1 

Solubility −5.32 −4.47 −4.41 −4.84 

TPSA ( ̊A 2 ) 133.47 150.7 150.7 163.01 

HBA 9 10 10 12 

HBD 4 4 4 4 

BBB 0.96 0.96 0.96 0.93 

HIA 0.96 0.93 0.93 0.94 

a

d

t

c

p

t

c

o

c

t

4

c

t

t
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t

h

h
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n
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c

i

h
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d

t

o

h

t

c

lso their success probability, in order to shorten the phase of drug 

iscovery. 

The generated result of the selected hits from the ADMET fil- 

ering analyses are represented in Tables 4 and 5 . The selected hit 

ompounds have no risks of mutagenic, tumorigenic, irritant, or re- 

roductive effect profiles. All three compounds have better pene- 

a

9 
ration score through the blood-brain barrier (BBB) than the 13b 

ompound. While the absorption from the intestinal tract upon 

ral administration test turns out to be slightly better for the 007 

ompound. 

TPSA: total polar surface area; HIA: human intestinal absorp- 

ion. 

. Conclusion 

The main protease (M 

pro ) has been an appealing target for dis- 

overing new SARS-CoV-2 replication inhibitors, as it is an impor- 

ant protein in post-transitional processing of replicase polypro- 

eins. This study attempts to identify novel potent α-ketoamide 

ased inhibitors targeting the M 

pro of SARS-CoV-2. To accomplish 

his goal, QSAR and pharmacophore models were developed from 

he structural features of a series of α-ketoamide derivatives that 

ad shown an inhibition effect against the M 

pro of SARS-CoV. Three 

its were retrieved by utilizing a constructed GA-MLR model and 

y applying a pharmacophore fit model. Moreover, Molecular dy- 

amic simulations were used as a computational validation of the 

ompounds. Overall, the three evaluated hits displayed important 

onformational and structural stability as well as promising bind- 

ng profiles. In addition, it has been shown that the suggested 

it molecules are nontoxic and have acceptable pharmacological 

roperties. The outcomes of this study clearly show that the three 

creened compounds may lead to potent anti-SARS-CoV-2 M 

pro 

rug molecules where the binding details and the nature of ac- 

ivity were considered to be sufficient for blocking the active site 

f the M 

pro . The ensemble of computational methods implemented 

erein allowed for the discovery of new drug candidates with po- 

ential inhibitory activity against the SARS-CoV-2 M 

pro . These hit 

ompounds can be further biologically evaluated for their potency 

nd physiological toxicity. 
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