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Abstract: Due to the presence of boulders and different morphologies, mountain rivers contain
various resistance sources. To correctly simulate river flow using 1-D hydrodynamic models, an
accurate estimation of the flow resistance is required. In this article, a comparison between the
physical roughness parameter (PRP) and effective roughness coefficient (ERC) is presented for three
of the most typical morphological configurations in mountain rivers: cascade, step-pool, and plane-
bed. The PRP and its variation were obtained through multiple measurements of field variables and
an uncertainty analysis, while the ERC range was derived with a GLUE procedure implemented in
HEC-RAS, a 1-D hydrodynamic model. In the GLUE experiments, two modes of the Representative
Friction Slope Method (RFSM) between two cross-sections were tested, including the variation in
the roughness parameter. The results revealed that the RFSM effect was limited to low flows in
cascade and step-pool. Moreover, when HEC-RAS selected the RSFM, only acceptable results were
presented for plane-bed. The difference between ERC and PRP depended on the flow magnitude
and the morphology, and as shown in this study, when the flow increased, the ERC and PRP ranges
approached each other and even overlapped in cascade and step-pool. This research aimed to
improve the roughness value selection process in a 1-D model given the importance of this parameter
in the predictability of the results. In addition, a comparison was presented between the results
obtained with the numerical model and the values calculated with the field measurements

Keywords: effective roughness coefficient; physical roughness parameter; HEC-RAS; mountain-
rivers; Representative Friction Slope Method; bed roughness

1. Introduction

Flow resistance in a river is given by the energy losses due to the interaction of
water with its flowing contour. In 1-D and 2-D models, based on Saint-Venant/shallow
water equations, the energy losses are expressed by an “effective roughness coefficient,”
a parameter that encompasses the different levels of energy dissipation [1]. Thus, the
parameter in question becomes an adjustment parameter for the correct prediction of results.
The 1-D hydrodynamic model remains a suitable option for the numerical simulation of
rivers, an approach that requires less computation and field data and that has been used
widely for many years in river engineering [2]. The inherent uncertainties present in the
application of a 1-D hydrodynamic model lead to discrepancies between the “effective
roughness coefficient” (ERC) and the “physical roughness parameter” (PRP) calculated
using field measurement data.

The sources of uncertainty in hydrodynamic models can be categorized into two main
groups: natural and epistemic [3]. Natural uncertainties deal with the natural variation in

Water 2021, 13, 3202. https://doi.org/10.3390/w13223202 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-6866-8937
https://orcid.org/0000-0002-8206-386X
https://orcid.org/0000-0001-5623-0487
https://orcid.org/0000-0002-9125-1221
https://doi.org/10.3390/w13223202
https://doi.org/10.3390/w13223202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13223202
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13223202?type=check_update&version=1


Water 2021, 13, 3202 2 of 21

a phenomenon [4], while epistemic uncertainties are related to the lack of knowledge of a
system. These uncertainties include: (a) model structure, due to simplifications performed
in the model to bring a natural phenomenon into a mathematical representation [5,6];
(b) solution procedure, how the equations are solved (energy equation, momentum and
mass balance equation); (c) topography, for the geometric description of the study area [2];
(d) input and output data [3]; and (e) model parameters such as the Manning roughness
coefficient. One of the methods to study model uncertainty, with increasing popularity, is
the Generalized Likelihood Uncertainty Estimation (GLUE), which considers the existence
of a set of parameters and model structures with a similar performance reproducing
validation data [6–9].

GLUE is a Bayesian Monte Carlo method that recognizes the presence of errors in cali-
bration data, model structure, and boundary conditions, rejecting the concept of a unique
global optimum parameter set, instead accepting the existence of different parameter sets
that are similar in producing good fit model predictions [6,10]. In the literature, there
are some studies where a certain GLUE framework has been used to study the effective
roughness parameter. Pappenberger [5] performed a GLUE analysis in a 1-D unsteady
flow experiment for two rivers with different boundary conditions and evaluation data. In
that experiment, the roughness parameter and the weighting coefficient of the numerical
scheme were varied in the GLUE framework. The type of boundary condition, evaluation
data, geometry, and magnitude of the analyzed event influenced the combined likelihood
curve behavior. The variation in the weighting coefficient did not alter the output of the
model but influenced the number of valid runs. Bhola [11] performed a study in a 2-D
unsteady HEC-RAS model with water height as calibration data. The reach was divided
into five land uses, each with a certain range of roughness values. The uncertainty output
bound was reduced from 1.26 m to 0.34 m (90% confidence interval) by constraining the
objective function value for acceptable runs. Furthermore, there have been other investiga-
tions in which the GLUE framework was used to test different likelihood functions [12,13]
or different types of calibration data [7,14]. In those studies, a measured physical roughness
value was not mentioned or compared with the obtained effective roughness value, but the
distinction between both was emphasized [5].

In this study, a calibration process of the effective roughness coefficient (ERC) obtained
from the 1-D component of HEC-RAS using the GLUE methodology was performed and
compared with the physical roughness parameter (PRP) derived from field data. Within
the GLUE framework, the 1-D model was configured with two different approaches
based on the Representative Friction Slope Method (RFSM) between two cross-sections:
in Experiment 1, the RFSM was manually selected, and in Experiment 2, the RFSM was
automatically chosen. In this research, all the data were collected during inbank flow
conditions, implying that the ERC values correspond to the main channel roughness. The
ERC values were assessed against field measurements in three different morphologies
(step-pool, cascade, and plane-bed) and three different flow magnitudes (high, medium,
and low). The results revealed that the RFSM influence on model performance was limited
to the morphology and the magnitude of the flow, and that the effective and real physical
parameters differed.

2. Materials and Methods
2.1. Study Area

The Quinoas reach, tributary of the Paute river basin, located between the eastern
and western cordillera of the Andes in Ecuador, was selected for this study. The reach
understudy has a length of 1.5 km and contains different morphologies such as plane-beds,
cascades, and step-pools. The terrain level upstream of the reach (0 + 000) is 3664.4 m.a.s.l.
and that downstream of the study reach is (1 + 431.13) 3605.77 m.a.s.l., resulting in an
average bed slope of 4%. The following morphologies were selected in the 1.5 km river
reach: Step-pool 1, Plane-bed 1, and Cascade 3 (see Figure 1 for their location), named
herein in this article Step-pool, Plane-bed, and Cascade, respectively.
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Figure 1. Location of the 1.5 km river reach with indication of the different morphologies.

2.2. Field Data

Topographic information was gathered using a differential GPS and total station
survey with the objective of capturing critical details with adequate measurement precision
(see Figure 2). The measured cross-sections (XSs) were taken at certain locations such as
changes in bed slope or changes across XSs.

Three staff gauges were used for measuring the water levels in the Step-pool 1 and
Plane-bed 1 reaches (Figure 2a,c, respectively) and five staff gauges in the Cascade 3 reach
(Figure 2b). In addition, at every staff gauge, the wetted width (w) was measured, while the
discharge (Q) was estimated using the dilution-gauging method with salt as a tracer [15].
Figure 3 depicts the studied reaches and the used staff gauges.

The flow velocity (U) was determined using two conductance curves, located upstream
and downstream in each reach, using the Harmonic methodology [16] for defining the
travel time. The velocity was calculated as the ratio between the distance between staff
gauges and the mean travel time. The Friction Slope (SF) was approximated with the water
surface slope (Sw) [17], and the bed material distribution size was estimated using the
pebble counting approach [18] with a sample of 400 particles. The roughness coefficient
was initially determined with the Darcy–Weisbach equation (Equation (1)) with average
geometric values for the cross-section of the selected reach. Thereafter, the f coefficient was
transformed into Manning’s roughness parameter n using Equation (2).

f = (8 × g × Rh × Sf)/U2 (1)

PRP = n = [(f × Rh
1/3)/(8 × g)]0.5 (2)
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2.3. Numerical Scheme

The hydrodynamic model chosen in this research was the 1-D component of HEC-
RAS, developed by the Hydrologic Engineering Center (HEC) of the United States Army
Corps of Engineers. In this study, all simulations were performed assuming steady-state
conditions. The energy equation (Equation (3)) is solved between two adjacent XSs, while,
in the case of not obtaining an equilibrium, the numerical algorithm uses the critical depth
response given the specific condition. In cases of rapidly varying flow, HEC-RAS solves
the momentum equation.

z2 + y2 + α2 × U2
2/(2 × g) = z1 + y1 + α1 × U1

2/(2 × g) + he (3)

where z is the elevation of the main channel (m), y is the water depth (m), U is the
velocity (m s−1), g is the gravity acceleration (m s−2), and he is the energy head loss
(m) (Equation (3)). The subscript in XS, 2 and 1, refers to upstream and downstream,
respectively.

The energy head loss (Equation (4)) comprises the loss due to roughness and contrac-
tion/expansion losses. Different methodologies are available to estimate the representative
friction slope between two cross-sections (RFSM): the average conveyance equation (Equa-
tion (5) ACE, the default methodology in HEC-RAS), the average friction slope equation
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(Equation (6) AFSE), the geometric mean friction slope equation (Equation (7) GMFSE),
and the harmonic friction slope equation (Equation (8) HMFSE).

he = L × RFSM + CC ×|α2 × U2
2/(2 × g) − α1 × U1

2/(2 × g)| (4)

where L is the reach length (m), RFSM is the friction slope between two XSs, and CC is a
contraction expansion coefficient. RFSM is calculated using Equation (5).

RFSM = [(Q1 + Q2)/(K1 + K2)]2 (5)

where Q is the flow rate (m3 s−1) and K is the conveyance (m3 s−1). RFSM can also be
calculated using Equations (6)–(8), respectively:

RFSM = (Sf1 + Sf2)/2 (6)

where Sf1 is the friction slope at the upstream XS and Sf2 is the friction slope at the
downstream XS.

RFSM = (Sf1 × Sf2)0.5 (7)

RFSM = (2 × Sf1 × Sf2)/(Sf1 + Sf2) (8)

As the velocity distribution of the water flow in a channel presents three-dimensional
characteristics, it is necessary to correct it with the coefficients α and β to maintain the
energy and momentum flux when the mean cross-section velocity is used [19]. α is obtained
with a flow-weighted average in the main channel and overbanks (Equation (9)). Given
that the experiments developed in the current research are inbank flow and the water
surface is considered as horizontal [5], α will be equal to one.

α = [At
2 × (Klob

3/Alob
3 + Kmc

3/Amc
3 + Krob

3/Arob
3)]/Kt

3 (9)

where Klob, Kmc, and Krob are the conveyance at the left overbank, main channel, and right
overbank (m3 s−1), respectively; Kt is the total conveyance (m3 s−1); Alob, Amc, and Arob
are the flow areas at the left overbank, main channel, and right overbank (m2), respectively;
and At is the total flow area (m2).

For each study reach, the effect of the geometric description was analyzed. The topo-
graphic information (Figure 3) was used as a base to include additional XSs interpolated at
equidistant distances (one meter, fifty centimeters, and twenty-five centimeters). At each
run, the errors and warnings were checked and documented. The final geometric model
for each reach was the one without any warning. This test used the physical roughness
as the effective roughness for each case. The validation data to verify the performance of
each model were the water levels in the staff gauges. These water levels were transformed
into water levels relative to the deepest cross-section point. The water depth resulting
from the model was transformed in the same way to be compared with the measurements.
Ultimately, the HEC-RAS model was run under a steady-state condition with a mixed
flow regime (i.e., subcritical and supercritical flow). The boundary conditions in the cross-
sections labeled as BC in Figure 2 were normal depth. The validation data consisted of
water levels taken from staff gauges labeled with a number in Figure 2.

2.4. The GLUE Methodology

Two GLUE experiments with variable roughness values were performed for three
different flows at each reach. Experiment 1 consisted of 5000 runs for each RFSM: ACE
(Equation (5)), AFSE (Equation (6)), GMFSE (Equation (7)), and HMFSE (Equation (8)),
while in Experiment 2, HEC-RAS internally selected the RFSM (8000 runs) based on
profile type and flow regime. The GLUE process was implemented using the HEC-RAS
Controller in Visual Basic Excel ® (Microsoft Corporation, Redmond, WA, USA) [20]. The
range of roughness coefficients (Manning values) was selected to cover all the possible
variations [12] and considering a uniform distribution [5]. The range 0.03–0.5 was imposed
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using as a criterion for the minimum value recommended in Brunner [21] for mountain
streams and for the maximum value measured in the field campaigns. However, the
step-pool roughness range needed to be extended up to 0.7 for low flows as the previous
roughness range was not wide enough to capture a peak in the likelihood curve. In
Experiment 1, each RFSM was identified with a number (1: Equation (5), 2: Equation (6),
3: Equation (7), 4: Equation (8)) and was selected considering a uniform distribution.

There is no universal likelihood function for GLUE experiments [6]; indeed, Jung and
Merwade [13] found that different likelihood functions produced different uncertainty
bounds (5–95%) that did not produce important changes in the overall uncertainty quan-
tification of an inundation map. In this research, the likelihood function included the sum
of root-mean-square error (RMSE), mean average error (MAE), and the standard deviation
of residuals (SDR). These metrics were normalized by applying Equation (10). RMSE and
MAE represent the residuals’ mean having different weights in the average procedure,
while SDR is a dispersion of the residuals measure. The likelihood value is one when the
measurements exactly coincide with the modeling result.

Likelihood = 1 − RMSE/Om − MAE/Om − MSDR/Om (10)

where Om is the observations’ mean.

2.5. Uncertainty Measurement Analysis PRP

The uncertainty of direct measurements such as wet width (w) and water level (η) were
determined by repeating measurements. Resolution and random errors were combined in
the measurements (Equation (11)).

Relative Uncertainty (%) = δX/ δXO (11)

where δX is the absolute uncertainty of X and XO is the central value of the variable.
The uncertainty of indirect measurements (W in Equation (12)), which was estimated

based on direct measurements of X, Y, and Z, is given by Equation (12) [22]. The result of
Equation (12) was used to obtain the range of variations in W with Equation (13).

δW = | ∂Q/∂X |O δX+| ∂Q/∂Y |O δY +| ∂Q/∂Z |O δZ (12)

W = WO +/− δW (13)

where δW is the absolute uncertainty of W, WO is the central value of the variable, and W
is the range of possible values of this variable.

3. Results
3.1. Likelihood Curves

The results of the first GLUE experiment in which the roughness coefficient in the
three morphologies was varied according to each RFSM method are presented in Figure 4.

For practical purposes, only the points with a probability threshold greater than 0.25 are
shown as lower values are considered as nonbehavioral by not providing relevant information.

Figure 4 reveals that the resulting likelihood curves are concave downward with
one or two peaks depending on the flow magnitude and morphology. Cascade has two
slightly different likelihood peaks for low flow, but for mid and high flows, there is only
one performance peak. Plane-bed has two performance peaks for all flow magnitudes.
Step-pool at low flow has two peaks, while at high flow, there is one peak in a concave
downward curve in the left and one maximum in a linear pattern in the right. For mid
flow, there is a single likelihood peak.
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Figure 4a presents the formation of two likelihood curves; the higher performance
curve has points from AFSE exclusively, while the lower performance curve is composed of
points from all RFSMs. Figure 4d–f show the formation of two likelihood curves composed
from all RFSM points. In the cases under study, the one in Figure 4g presents the formation
of two likelihood curves, where it can be observed that the one with the best performance
is composed only of the GMFSE points. Special attention should be given to the likelihood
curves in Figure 4i, where the formation of a curve without concavity can be observed on
the right side of the figure. Those results are further discussed in the Discussion section
in the subsection Likelihood Curves. Cascade peaks have the lowest performance values
(~0.6) in all cases under analysis (Figure 4a–c). Plane-bed has peak performance values
greater than 0.89 (Figure 4d–f), while step-pool peak performance values decrease with
flow magnitude, ranging from 0.91 to 0.61 (Figure 4 g–i).

The results of the second GLUE experiment (8000 runs) in which HEC-RAS selects
RFSM are depicted in Figure 5. Step-pool and cascade show a linear horizontal likelihood
trend (constant) with low-performance values. Plane-bed likelihood curves are presented in
Figure 5d–f. The shapes of the curves present concavity downward with peak performance
values greater than 0.89.

3.2. Field Mesurements Uncertainty

Uncertainties in the direct measurement used to estimate the resistance parameter are
the wetted width, water level, velocity, and flow. The wetted width uncertainty is less than
0.14% of the standard uncertainty, while water level (η) has a 1.5% of standard uncertainty;
these values are comparable to those found by Lee and Ferguson [23]. The uncertainties
for velocity and flow measurement were taken from Lee and Ferguson [23] as 5% as tracers
were used for the flow and the centroid method for the velocity calculation. The indirect
measurement uncertainties are 10% for the water depth, comparable with the 12% obtained
by Lee and Ferguson [23], 10% for the hydraulic radius, 17% for the energy slope, and
19% for (8/f)1/2. The former value is comparable with 17% for (1/f)1/2 found by Lee and
Ferguson [23]. Based on the above information, the Manning roughness parameter (n)
uncertainty was estimated at 22% of the standard deviation.

3.3. Effective and Measured Roughness Values

The value ranges of the effective roughness coefficient (ERC)—calibrated—and phys-
ical roughness parameter (PRP)—measured—for different flow rates in Experiment 1
(changing roughness and RFSM at the same time) are shown in Table 1 and Figure 6. The
range of ERC values was obtained from the analysis of the maximum likelihood curves
(Figure 4), while the range of PRP values was the result of the indirect n measurement
and the uncertainty analysis. Table 1 compares the PRP, velocity, and Froude numbers
measured in this study with those in the literature [24,25].

The comparison in Table 1 shows that the values of the data calculated in the present
study are among the measured ranges presented in the literature. An important aspect to
emphasize is that the Froude number presents a value lower than that in all the sections
studied despite the steep slopes. Jarret [26] stated that extreme turbulence, energy loss
produced by the channel, cross-sectional variations, and interactions of the water with the
boulders increase the resistance to flow. Jarret [26] noted localized areas of supercritical
flow, for example, in areas where the flow passes over large clasts. In Figure 3, the same
pattern can be noticed, in which, in certain areas, supercritical flow is presented.
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Table 1. Range of values for measured and calibrated n value for Experiment 1.

Effective Roughness Coefficient (ERC) Physical Roughness Parameter (PRP)

Site Flow
(m3 s−1)

GLUE
Range Likelihood Best RFSM Value

Measured

Measurement
Uncertainty
Range (PRP)

PRP Range
Found in
Literature

[24,25]

Measured
Velocity
(m s−1)

Measured
Depth (m)

Measured
Froude

Number

Range of
Velocity in
Literature

(m/s) [24,25]

Range of
Froude Number

in Literature
[24,25]

0.065 0.286–0.295 0.58 Equation (5) 0.433 0.338–0.528
0.16–0.44

0.168 0.146 0.141
0.12–0.86 0.15–0.51Cascade 0.485 0.173–0.192 0.6 All 0.223 0.174–0.272 0.496 0.282 0.298

0.708 0.143–0.180 0.59 All 0.199 0.155–0.243 0.606 0.337 0.333

0.063 0.241–0.333 0.89 All 0.161 0.126–0.196
0.027–0.189

0.184 0.109 0.179
0.177–3.72 0.15–1.17Plane-bed 0.513 0.108–0.115 0.96 All 0.0594 0.046–0.073 0.699 0.212 0.485

0.918 0.076–0.081 0.92 All 0.043 0.034–0.053 0.916 0.277 0.556

0.035 0.555–0.609 0.91 Equation (6) 0.414 0.323–0.505
0.12–0.96

0.125 0.117 0.117
0.12–1.61 0.13–0.92Step-pool 0.443 0.105–0.124 0.72 All 0.193 0.151–0.235 0.464 0.287 0.277

0.878 0.092–0.121 0.61 All 0.134 0.105–0.163 0.733 0.330 0.407
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The difference between the ranges of ERC and PRP decreases with the magnitude
of flow (seen from a quantitative and qualitative point of view according to Table 1 and
Figure 6, respectively). The range values in ERC and PRP overlap for medium and high
flows in cascade, while in plane-bed, the range values do not. In step-pool, the range
values in ERC and PRP intersect only at high flow rates. Table 2 illustrates the results of
Experiment 2 where the RFSM values are selected by HEC-RAS. Cascade and step-pool
GLUE experiments did not provide a valid response, as for all roughness values tested,
there is equifinality with a low likelihood (below the threshold value).

Table 2. Range of values for calibrated n value for Experiment 2.

Site Flow (m3 s−1) GLUE Range (ERC) Likelihood

0.065 Equifinality for all the roughness range −0.422
Cascade 0.485 Equifinality for all the roughness range 0.0095

0.708 Equifinality for all the roughness range 0.0702

0.063 0.241–0.267 0.89
Plane-bed 0.513 0.108–0.113 0.96

0.918 0.076–0.081 0.92

0.035 Equifinality for all the roughness range −0.567
Step-pool 0.443 Equifinality for all the roughness range −0.0345

0.878 Equifinality for all the roughness range 0.026

The low flow ERC range for plane-bed, listed in Table 1, is higher than the interval
stated on Table 2. The values of both experiments coincide in the lower limit while they
differ in the upper limit, in which the value of experiment 1 is higher. The values for the
remaining flow magnitudes are the same for both experiments. Given that the results
of cascade and step-pool in Table 2 cannot be used, and the results of plane-bed differ
between both experiments only at low flows without improving the peak likelihood, the
comparison of ERC and PRP is based on the information in Table 1 in Section 4: Discussion.

Figures 7–9 depict the field-measured water depths, as well as the water surface profile
obtained with ERC and PRP (Refer to Table 1). Cascade water depth profiles show that
the field data at 24.93 m can be predicted by neither of the parameters, resulting in a low
likelihood value obtained for this morphology. Nevertheless, the use of ERC in the model
results in a better prediction of points at 18.91 and 24.93 m at low flow. Moreover, for mid
and high flow, the intersection of ERC and PRP values makes sense as there is no marked
difference between both water surface profiles. Figure 8 shows a notable difference in the
water surface profile between both roughness parameters in plane-bed.

ERC considerably increases the predictive capacity of the model, which means that it
does not cross with PRP. Besides, all the field measurements are closely predicted when
using ERC, resulting in the high likelihood values previously mentioned. Figure 9 illustrates
that the use of ERC in step-pool improves the model predictability at low and mid flow, but
at high flow, both parameters produce a similar water surface profile. This aspect justifies
the intersection of ERC and PRP only at high flows. The descending likelihood value in
step-pool is because of the descending prediction capacity to predict the field measurement
at 4.2 m.
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4. Discussion
4.1. Likelihood Curves

Figure 4 shows that plane-bed for all flows (Figure 4d–f) and step-pool for high flows
(Figure 4i) have two likelihood curves. The right-sided likelihood curve in plane-bed is
formed when, in the solution, the HEC-RAS numerical model presents the critical depths
as a response. This response occurs when, in the iterative process of solving the energy
equation, a solution is not found under a specified tolerance given a maximum number of
iterations. Note that a critical depth response is not expected in this morphology. Likewise,
the curve on the right side in step-pool is formed by the critical depths as responses from
the numerical model. The shape of this likelihood curve does not allow a maximum value
to be obtained, and it is ignored for analysis.

4.2. Likelihood Peak Values

In the 1-D numerical approach, horizontal water levels in the XS are assumed [21];
however, this assumption deviates from reality at certain morphologies in the headwater
of mountain rivers.

The bed of cascade has randomly distributed large clasts consisting of alluvial boulders
and cobbles [27]. The water interaction with boulders or cobbles produces both a jet flow
and a wake flow around the particles, forming eddy currents behind obstacles, whereas the
flow above the described particles produces a tumbling flow [26,27]. The physical process
described contrasts with the measured water level at a single point near the bank, resulting
in low performance in the outputs of the numerical model, and thus in low peak likelihood
values for all flow magnitudes (~0.6 according to Table 1).

Plane-bed flow is closer to the 1-D numerical model assumptions as there are no
bedforms, there is no tumbling flow, and the bed material is smaller [27], leading to the
representative water level measurement of the XS and the high peak likelihood values
(~0.9 according to Table 1).

Step-pool presents a staircase shape (where risers are steps and pools are treads) with
a tumbling flow pattern [28]. Water levels are measured in pools. At low flow, the effect of
water plunging into pools does not produce a significant free-surface variation, while, as
the flow increases, there is an appreciable free-surface variation. This causes the horizontal
water level assumption to be invalid. This is the explanation behind the decline in the
likelihood peak starting with a value of 0.9 at low flow and decreasing to 0.6 for high flow.

4.3. Friction Slope Methodology

Two studies were found in the literature investigating the influence of RFSM on the
model performance when the energy equation is used. Laurenson [29] tested different
RFSM performances using analytical data. The validation data consisted of water levels
from a cubic equation. According to this analysis, AFSE is the best and safest methodology
to predict water levels. Artichowicz and Mikos-Studnicka [30] tested four theoretical cases
in a prismatic channel (three tranquil flows and one rapid flow) using the solution of the
differential energy equation as validation data. In this study, the analyzed RFSM included
all the methodologies available in HEC-RAS and some additional methods available in
the literature. AFSE was the best methodology for tranquil flow; on the other hand,
HMFSE was the best methodology for rapid flow. There are important differences between
previous studies and the current study. First, the selection of the RFSM methodology
does not influence most of the GLUE results except for cascades and step-pools at low
flows (see Table 1). The cascade reach in this research could be considered similar to the
rapid flow case in Artichowicz and Mikos-Studnicka [30]. However, in our study, the
best RFSM for cascade at low flow was AFSE (Equation (6)), unlike the HMFSE (Equation
(8)) obtained by Artichowicz and Mikos-Studnicka [30]. A possible explanation for this
difference might be that the Artichowicz and Mikos-Studnicka [30] test is performed in a
prismatic flume without bed material, while cascade has boulders and cobbles interacting
with the flow. Furthermore, the cascade results agree with Laurenson [29] who advised
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AFSE. A case similar to step-pool could not be found in the literature. The best-performing
RFSM for low flow was GMFSE (Equation (7)). The authors believe that GMFSE is superior
due to its resilience to outliers [31]; in this morphology, it is important that tumbling
flow produces abrupt changes in the friction slope. In addition, neither Artichowicz and
Mikos-Studnicka [30] nor Laurenson [29] had, in their study, big particles in the riverbed
as in our case.

HEC-RAS chose RFSM (Experiment 2) based on both the profile type when it is
subcritical or supercritical and the magnitude of the friction slope of the previous XS [21].
However, it seems that high slopes, large-scale roughness elements, slope breaks, or
tumbling flow produce the same water levels for any roughness when this option is chosen,
thus losing physical realism. Nevertheless, the use of this option in the plane-bed produced
the same results as using any other of the four available methodologies. This could mean
that the automatic selection of RFSM could be conditioned to lowland rivers.

4.4. Effective Roughness Coefficient (ERC) and Physical Roughness Parameter (PRP)

Several GLUE studies on cascade, plane-bed, and step-pool were not found, as indi-
cated by the relatively low number of references in the Introduction section; therefore, it
is not possible to compare the likelihood curves with other references. Moreover, none of
the studies found in the literature made a comparison between effective and measured
roughness values.

ERC contains the same energy dissipation process as PRP [11,32], but 3-D effects and
geometry errors are not represented in the used 1-D model. Furthermore, in this study,
the effect of inaccuracies in geometry is minimal due to the high precision of the used
measuring equipment (total station and differential GPS), and the consideration of strategic
points (slope changes, before and after steps) was considered in the studied reaches to
obtain data.

The parameter α in the energy equation (Equation (3)) must be considered when
comparing ERC and PRP. A assumes a value equal to 1 because there is inbank flow only
(see Equation (9)), so there is no correction, due to the three-dimensional characteristic of
the flow.

4.4.1. Low Flow

For low flow rates in plane-bed and steep-pool morphologies, the range of ERC values
is above the range of PRP values (Figure 6b,c, respectively), contrary to what is presented
in cascade (Figure 6a). Through linear interpolation of the data in Table 3, it was found
that, on average, 40% of the bed material in all morphologies under study protrudes above
the water level at low flow flows, having an important influence on resistance. In cascade,
the water level shows an alteration due to the interaction of the water with the large
clasts [17]. A lower value of ERC with respect to PRP could mean that the numerical model
requires the increase in velocity to account for the jetting flow effect around boulders and
cobbles [27]. Plane-bed and step-pool depict a similar pattern when comparing ERC with
PRP. The water surface variation is significantly lower in plane-bed than cascade because
there are fewer boulders and cobbles (see Table 3), and the flow velocity is lower, so the
resistance is smaller. At step-pool, there is flow division at steps, so water plunges into the
pool at multiple points, reducing the water surface variation. The higher ERC relative to
PRP in plane-bed and step-pool may be due to the need of the model for a lower velocity.

4.4.2. Mid to High Flow

According to Figure 6, the different pattern between ERC and PRP was preserved
except for step-pool having the same pattern as cascade rather than the previous plane-bed
pattern. In step-pool, as the flow increases, both ranges approach each other and overlap for
the highest flow tested. The changing difference between ERC and PRP in step-pool may be
attributed to a higher water surface deformation during tumbling flow. A higher flow leads
to less flow division at steps, so there is a concentrated amount of water plunging into the
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pool. In cascade (Figure 6a), the bounds of ERC and PRP intersect for mid and high flow,
but in plane-bed (Figure 6b), both ranges do not overlap. The possible reason could be the
presence of vegetation near the main channel in plane-bed as can be observed in Figure 3c.
At mid and high flows, the leaves of the vegetation interact with water, increasing flow
resistance. This phenomenon cannot be represented in the model, so ERC may need to be
modified to account for it.

Table 3. Bed material quartiles and mean depth for each morphology and flow magnitudes.

Site Flow (m3 s−1) dmean (m) 1 D50 (m) 2 D75 (m) 2 D84 (m) 2 D95 (m) 2

0.065 0.145
0.0959 0.2526 0.3465 0.6529Cascade 0.485 0.282

0.708 0.336

0.063 0.108
0.0795 0.1458 0.2185 0.3285Plane-bed 0.513 0.211

0.918 0.277

0.035 0.11
0.092 0.1721 0.2512 0.4695Step-pool 0.443 0.29

0.878 0.329
1 dmean is a representative water level in the reach considering the XS as rectangular. It is calculated with average geometric values for all
the XS having a staff gauge and the continuity equation; 2 DXX is the xxth percentile of grain size distribution.

5. Conclusions

The difference between the effective (ERC) and physical (PRP) roughness values of
three typical morphologies found in mountain rivers (cascade, plane-bed, and step-pool)
was analyzed. River flow, mean velocity, topographic data, water levels, and wetted width
were monitored, and the measured roughness was estimated based on the average of
the cross-sectional data. An effective value of the roughness parameter was derived in
two GLUE experiments using the HEC-RAS controller to automate the simulations. The
comparison between effective and physical roughness was limited to three flow magni-
tudes: low, mid, and high, because of the computational power required for the GLUE
experiments and the available field data. The likelihood function was a combination of
two measures of the mean residual and one measure of the standard deviation of residuals.

The research yielded two important findings. First, the RFSM influence (Experiment 1)
on hydrodynamic models was limited to low flows. The results of the step-pool model
were the most affected when different methodologies were used, and as a result, four
different likelihood curves were found. When HEC-RAS selected the RFSM (Experiment 2)
only for plane-bed, acceptable results were found. In cascade and step-pool, equifinal
values were obtained for all roughness values, losing physical significance. Second, the
highest difference between ERC and PRP was at low flows. As the flow increased, the
difference between ERC and PRP ranges decreased and, in some cases, even overlapped.
Cascade and plane-bed had opposing patterns when ERC was compared with PRP bounds,
while step-pool ERC and PRP patterns depended on the flow magnitude. ERC is a key
element in a hydrodynamic model, so a careful selection of the ERC value must be pursued
considering morphologies and flow data. Future research could include a wider range
of flow magnitudes to compare the different tendencies between effective and physical
roughness values.
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