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Abstract. This paper is concerned with the approximation problem for semi-Markovian
jump systems (SMJSs) based on generalized time-limited Gramians. For a given SMJS
with partially known transition probabilities, the generalized time-limited Gramians are
defined and then solved by using time-interval input/output energy functions. The pro-
posed model reduction algorithm can solve the synchronization jump problem, and also
achieve the required reduced accuracy within the expected time-interval. Specially, the
reduced error of the proposed algorithm is lower compared with the balanced truncation
method, which has more theoretical value in time-interval control synthesis. Finally, a
numeral example including four subsystems is given to estimate the effectiveness of the
proposed results.
Keywords: Semi-Markovian jump systems (SMJSs), Time-limited Gramians, Partially
assess transition probabilities, Model reduction, Balanced truncation

1. Introduction. In the actual industrial process, especially for the intelligent trans-
portation, smart power grid and aerospace system, etc., it will often face the challenges
of complex environment, multi-task coordination, demand of high precision and high per-
formance. Stochastic switched system is a special class of hybrid systems, which can
effectively model the system mutation caused by such as environmental mutation, com-
ponent failure, and even human factors during the normal operation [1, 2]. Therefore,
the research has been widely concerned in the field of control. In recent years, a wealth
of research achievements have been made in stochastic switched systems, such as system
stabilization [3], filter design [4], fault diagnosis [5], output feedback control [6] and sliding
mode control [7, 8, 9]. However, most of these results focus on the analysis and synthesis
of Markov jump systems. There are still many difficulties that need to be solved, such as
asynchronous jump and inhomogeneous phenomena.

Semi-Markovian jump systems (SMJSs) have a wider practical application value, for
SMJSs relax the assumption that the sojourn time is memoryless [10, 11, 12, 13]. For an
SMJS whose sojourn time belongs to Weibull distribution, Shen et al. [14] proposed the
reliable mixed passive/H∞ filter design scheme under sensor failures. For an SMJS whose
sojourn time obeys phase type distribution, Wang and Zhu [15] proposed a stochastic sta-
bility conditions based on the multiple Lyapunov functions. And the results are extended

DOI: 10.24507/ijicic.17.02.511

511



512 H. ZHANG, H. LI, P. LAN AND L. I. MINCHALA

to the almost deterministic exponential stability analysis of the SMJS, whose sojourn time
is not subject to a particular form of probability distribution. It is not difficult to see that,
the probability distribution that sojourn time obeys is different and the analysis method
adopted is different, however, the general principle is to solve the multimodal problem of
stochastic jump systems and strong coupling problem of Lyapunov parameters.
In recent years, advanced techniques such as linear matrix inequality, cone complemen-

tarity linearization, convex linear optimization algorithm, projection theorem and matrix
equilibrium transformation, have been applied to solving the model reduction problem of
linear time-invariant systems. And effective model reduction methods have been obtained,
such as H2 model reduction method, aggregation method [16], Hankel norm optimization
[17], moment matching method [18, 19], balanced truncation method [20] and H∞ model
reduction method [21]. The balanced truncation method is simple and feasible for it can
maintain the main performance of the original system. It has been successfully applied to
solving the model reduction problem of stochastic jump systems, such as non-minimum
phase system, switched system [22] and Markov jump system [23], and the reduced-order
error is limited within the H2 norm. At present, most of the achievements are in the
infinite time domain, which means, the system approximates the original system in the
time period [0,+∞). However, in practical applications, for example, the problem of
finite time optimization control, the approximation problem often needs to be solved
within the finite time [t1, t2]. Redmann et al. [24, 25, 26] proposed the model reduction
method for linear time-invariant systems based on H2 optimization algorithm and bal-
anced truncation algorithm in finite time interval respectively, and verified the bound of
the reduced-order error in balanced truncation algorithm. Furthermore, the time-limited
model reduction algorithm based on balanced truncation is extended to continuous-time
large systems [27], discrete-time fractional-order systems [28] and positive-real systems
[29], respectively. And it is verified that the reduced-order system can achieve the re-
quired precision in the expected time range. However, the time-limited model reduction
problem for SMJSs with partially assess transition probabilities remains unsolved.
In view of this, this paper investigates the time-limited model reduction algorithm for a

special class of SMJSs with partially known transition probabilities based on generalized
Gramians within time-interval [t1, t2]. The main innovations are given as follows:

1) settle the model reduction problem for a special class of SMJSs with partially known
transition probabilities within the time-interval [t1, t2];

2) verify that the reduced-order model could jump with the original system synchronously;
3) maintain the main structure, main input/output performances of the original system,

and the reduced-order error has an upper bound.

The rest of this paper is organized as follows. The problem statement and preliminaries
are given in Section 2. The main results including the solving methods of time-limited
Gramians, model reduction algorithm on time-interval [t1, t2] for SMJSs and the corre-
sponding reduction error are presented in Section 3. In Section 4, a numerical example
including four subsystems is introduced to estimate the proposed results and Section 5
concludes this paper.

2. Problem Statement and Preliminaries. Consider the following continuous-time
stochastic systems with semi-Markov parameters over a probability space (f,F , Pr):

(Σ) :

{
ẋ(t) = A(ηt)x(t) +B(ηt)u(t),
y(t) = C(ηt)x(t) +D(ηt)u(t), x(0) = x0,

(1)

where x(t) ∈ Rn and y(t) ∈ Rp are the state vector and measured output vector, respec-
tivily; and u(t) ∈ Rm is the control input which belongs to L2[0,∞). Let {ηt, t ≥ 0} be a
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semi-Markov chain taking values in the state space N = {1, 2, . . . , N} and assuming that
the time-varying transition probabilities satisfies:

Pr(ηt+h = j|ηt = i) =

{
αij(h)h+ o(h), if i ̸= j,
1 + αij(h)h+ o(h), if i = j,

where h (h > 0) is called the sojourn time and o(h) is the little-o notation, satisfying

limh→0
o(h)
h

= 0; αij(h) is the sojourn-time-based transition probability rate from subsys-
tem i at time t to subsystem j at time t+h, and satisfies αij(h) ≥ 0 (i, j ∈ N , i ̸= j) and

αii(h) = −
∑N

j=1,j ̸=i αij(h). Motivated by [14], we assume transition probability rate is

bounded as αij ≤ αij(h) ≤ ᾱij with αij and ᾱij being constant scalars. Here, we assume
that

αij(h) = αij +∆αij, αij =
1

2
(ᾱij + αij), |∆αij| ≤ κij = 0.5(ᾱij − αij).

Furthermore, time-varying transition probabilities are partially unknown, and we define

N = N i
UK ∪N i

UC , N i
UK , {j : αij(h) is unknown}, N i

UC , {j : αij(h) is uncertain}. (2)

In order to obtain the expected research results, the following definitions and lemmas
for the above mathematical models are adopted here.

Assumption 2.1. The considered SMJS in (1) is assumed to be asymptotically stable
and minimal.

Definition 2.1. The considered SMJS in (1) with u(t) = 0 is said to be asymptotically
stable if

E
{∫ ∞

0

∥x(t)∥2dt|x0, η0

}
< ∞,

holds for any initial vector x0 ∈ Rn, η0 ∈ N .

Lemma 2.1. The SMJS in (1) is asymptotically stable, if there exists a set of matrices
Qi = QT

i > 0 satisfying

AT
i Qi +QiAi +

N∑
j=1

αij(h)Qj < 0, i ∈ N .

Or dually there exist matrices Pi = P T
i > 0 satisfying

AiPi + PiA
T
i +

N∑
j=1

αij(h)Pj < 0, i ∈ N .

The following lemma is used to deal with the time-varying transition probability rates
for the considered SMJS.

Lemma 2.2. For any given scalar ϵ and matrix Γ ∈ Rn×n, the following inequality holds

ϵ
(
Γ + ΓT

)
≤ ϵ2X + ΓX−1ΓT ,

for any positive definite symmetric matrix X ∈ Rn×n.

Definition 2.2. Consider the SMJS in (1), the time-limited Gramians within time-
interval [t1, t2] are defined as

Pi =

∫ t2

t1

eAiτBiB
T
i e

AT
i τdτ, Qi =

∫ t2

t1

eA
T
i τCT

i Cie
Aiτdτ,

satisfying
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Pi = P̂i(t1)− P̂i(t2), P̂i(t) = Pi − eAitPie
AT

i t,

Qi = Q̂i(t1)− Q̂i(t2), Q̂i(t) = Qi − eA
T
i tQie

Ait,

where Pi ,
∫∞
0

eAiτBiB
T
i e

AT
i τdτ and Qi ,

∫∞
0

eA
T
i τCT

i Cie
Aiτdτ (i ∈ N ).

Figure 1. The basic framework of model reduction for SMJSs

As shown in Figure 1, this paper aims to find a lower-order system with the same
structure: (

Σ̂
)
:

{
˙̂x(t) = Â(ηt)x̂(t) + B̂(ηt)u(t),

ŷ(t) = Ĉ(ηt)x̂(t) + D̂(ηt)u(t),
(3)

where x̂(t) ∈ Rk with 1 ≤ k < n. Matrices Â(ηt), B̂(ηt), Ĉ(ηt) and D̂(ηt), to be determined
later, can jump synchronously with the original system. In order to evaluate the precision
of the proposed time-limited model reduction algorithm, the following error system is
employed:

(Σe) :

{
ẋe(t) = Ae(ηt)xe(t) +Be(ηt)u(t),
e(t) = Ce(ηt)xe(t) +De(ηt)u(t),

(4)

where xe(t) , [xT (t) x̂T (t)]T , e(t) , y(t)− ŷ(t), and

Ae(ηt) ,
[
A(ηt) 0

0 Â(ηt)

]
, Be(ηt) ,

[
B(ηt)

B̂(ηt)

]
,

Ce(ηt) , [ C(ηt) −Ĉ(ηt) ], De(ηt) , D(ηt)− D̂(ηt).

Definition 2.3. Given a given scalar γ > 0, the error system in (4) is asymptotically
stable and has an H∞ performance index γ in time-interval [t1, t2] if the system is stable
and the following inequality holds under zero initial condition (i.e., x(t) = 0, t ≤ 0)

E
{∫ t2

t1

∥e(t)∥2dt
}

< γ2

∫ t2

t1

∥u(t)∥2dt,

for all non-zero u(t) ∈ L2[0,∞).

3. Main Results.

3.1. The time-limited Gramians for SMJSs. A newly balanced order reduction al-
gorithm based on time-limited Gramians is proposed in this paper, which aims to solve
the model order reduction problem of SMJSs. Firstly, the time-limited Gramians solution
algorithm is given in the form of theorems.
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Theorem 3.1. Consider the continuous-time SMJS in (1), the time-limited controllability
Gramians Pi in time-interval [t1, t2] can be obtained, if exist matrices Wi and Xij (i, j ∈
N ) satisfying:AiPi + PiA

T
i + XPi

+
N∑

j∈NUC

αij(Pj −Wi) +
N∑

j∈NUC ,j ̸=i

κ2
ij

4
Xij ZPi

∗ −ΛPi

 < 0, j ∈ NUC (5)

Pj −Wi < 0, j ∈ NUK , i ̸= j, (6)

Pj −Wi > 0, j ∈ NUK , i = j, (7)

where 
XPi

, eAit1BiB
T
i e

AT
i t1 − eAit2BiB

T
i e

AT
i t2 ,

ZPi
, [Pi − P1 · · · Pi − Pi−1 Pi − Pi+1 · · · Pi − PN ],

ΛPi
, diag{Xi1, . . . , Xi(i−1), Xi(i+1), . . . , XiN},

then the SMJS is stochastically stable, and the energy required to drive the states from
x(t1, xt1 , u, ηt1) = xt1 to x(t2, xt2 , u, ηt2) = xt2 is bounded:

E
{∫ t2

t1

xT
t P−1

i xtdt

}
< inf

u∈L2[t1,t2]

∫ t2

t1

∥u(t)∥2dt, (8)

for all non-zero u(t) ∈ L2[t1, t2].

Proof: Firstly, the SMJS in (1) is asymptotically stable using Lemma 2.1 and (5)-
(7). Suppose that the state of the SMJS is driven from x(t1) to x(t2) with the following
external input u(t) : [t1, t2] → Rm:

u(t) , BT
i e

AT
i tP−1

i xt,

then the energy that needs to be input is∫ t2

t1

∥u(t)∥2dt =
∫ t2

t1

xT
t P−1

i eAitBiB
T
i e

AT
i tP−1

i xtdt =

∫ t2

t1

xT
t P−1

i xtdt,

therefore, (8) is proved.
Furthermore, the following parameter-based Lyapunov function is considered:

V (x, t, ηt) = xT (t)P−1(ηt)x(t),

and P is positive definite symmetric matrix. From (8), we can obtain that

LV (x, t, i)− uT (t)u(t) = 2ẋT (t)P−1
i x(t) + xT (t)

N∑
j=1

[
αij(h)P−1

j

]
x(t)− uT (t)u(t),

where ξ(t) , [x(t)T u(t)T ]T . Multiplying matrix Pi on both sides of above, we can
obtain that

AiPi + PiA
T
i +

N∑
j=1

αij(h)Pj

=

∫ t2

t1

(
Aie

AiτBiB
T
i e

AT
i τ + eAiτBiB

T
i e

AT
i τAT

i

)
dτ +

N∑
j=1

αij(h)Pj

=

∫ t2

t1

d
(
eAiτBiB

T
i e

AT
i τ
)
= −XPi

. (9)
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In addition, the transition probabilities considered in this paper are partially known
and satisfy that

∑N
j=1 αij(h) = 0. Then (9) can be obtained that

AiPi + PiA
T
i + XPi

+
N∑
j=1

αij(h)Pj −
N∑
j=1

αij(h)Wi

= AiPi + PiA
T
i + XPi

+
N∑

j∈NUC

αij(h)(Pj −Wi) +
N∑

j∈NUK

αij(h)(Pj −Wi),

where the transition probability αij(h) depends on the sojourn time h, which means that
the above equation contains infinite number of equations. To solve thus kind of problem,
we assume that the time-varying transition probability αij(h) satisfies that

αij(h) = αij +∆αij, αij =
1

2
(ᾱij + αij), |αij| ≤ κij =

1

2
(ᾱij − αij).

Using Lemma 2.2, we have

AiPi + PiA
T
i + XPi

+
N∑

j∈NUC

αij(h)(Pj −Wi)

+
N∑

j∈NUC ,j ̸=i

[
1

2
∆αij(Pj −Pi) +

1

2
∆αij(Pj − Pi)

]

≤ AiPi + PiA
T
i + XPi

+
N∑

j∈NUC

αij(h)(Pj −Wj)

+
N∑

j∈NUC ,j ̸=i

[
κ2
ij

4
Xij + (Pj − Pi)X

−1
ij (Pj − Pi)

]
.

Applying Schur complement lemma, the above inequality is equivalent to (5)-(7). Thus
the proof is completed. �
Theorem 3.2. Consider the continuous-time SMJS in (1), the time-limited observability
Gramians Qi in time interval T = [t1, t2] can be obtained, if there exist matrices Vi and
Yij (i, j ∈ N ) satisfying:AT

i Qi +QiAi + XQi
+

N∑
j∈NUC

αij(Qj − Vi) +
N∑

j∈NUC ,j ̸=i

κ2
ij

4
Yij ZQi

∗ −ΛQi

 < 0, j ∈ NUC (10)

Qj − Vi < 0, j ∈ NUK , i ̸= j, (11)

Qj − Vi > 0, j ∈ NUK , i = j, (12)

where 
XQi

, eA
T
i t1CT

i Cie
Ait1 − eA

T
i t2CT

i Cie
Ait2 ,

ZQi
, [Qi −Q1 · · · Qi −Qi−1 Qi −Qi+1 · · · Qi −QN ],

ΛQi
, diag{Yi1, . . . , Yi(i−1), Yi(i+1), . . . , YiN},

then the SMJS is stochastically stable, and the average energy of the output is bounded
(u(t) = 0):

E
{∫ t2

t1

∥y(t, xt1 , 0, i)∥2dt
}

< E
{
xT
t1
Qixt1

}
. (13)
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Proof: Theorem 3.1 and Theorem 3.2 are dual, because the space is limited, the process
of proof is omitted. �

It is worth to mention that, there are N controllability and observability time-limited
Gramians Pi and Qi for the considered SMJS in (1) obtained by Theorems 3.1 and 3.2.
The next step of the proposed model reduction is to solve the balanced transition matrix
Te, satisfying

TePiT
T
e = T−T

e QiT
−1
e = Σ.

What should be mentioned is that the above equation is complex and costly. In order
to solve thus problem, the optimized results Pg and Qg are introduced by solving the
following minimum optimization problem:

min trace(PiQj)
s.t. (5)-(7) and (10)-(12) for all (i, j ∈ N )

(14)

and we define Pg and Qg as the generalized controllability and observability time-limited
Gramians.

3.2. Model reduction algorithm on time-interval [t1, t2]. This paper uses the char-
acteristic that, “equivalent transformation can only change the parameter matrices of the
system, cannot change the input/output performance of the original system”. In the
time-interval [t1, t2], the original system is transformed into a balanced form according
to the controllability and observability, that is, the state with weaker controllability is
also weak observability [30]. If the states with weaker controllability and observability are
truncated, the lower-order system will be obtained. The specific model reduction process
is shown in Table 1.

3.3. Reduction error. Next we will discuss that, there exists an upper bound of the
reduced-order error between the original system and the reduced system.

Theorem 3.3. For a given stable and minimal SMJS in (1), if the generalized Gramians
in time-interval [t1, t2] satisfied that

Pg = Qg = Σ = diag {Σk,Σl} ,

where Σl = diag {σk+1Il1 , σk+2Il2 , . . . , σnIls}, σk+1 ≥ σk+2 ≥ · · · ≥ σn > 0 and l1 + l2 +
· · ·+ls = n−k, then the lower-order system when truncating the last n−k states preserves
the stability, and the error between the original SMJS and the obtained lower-order one
is bounded within the following H∞ norm∥∥∥Gi − Ĝi

∥∥∥
∞

≤ 2
n∑

j=k+1

σj. (18)

Proof: First, let Ĝlsi be the realisation of a new reduced-order when truncating the
last ls-th states. The inequality in (18) will be∥∥∥Gi − Ĝlsi

∥∥∥
∞

≤ 2σn. (19)

According to Definition 2.3, the main purpose is to prove the above error system is
asymptotically stable and has an H∞ performance index 2σn on time interval [t1, t2], that
is, to find a proper quadratic storage function V (·) ≥ 0 satisfying

E
{∫ t2

t1

∥e(t)∥2dt
}
+ E

{∫ t2

t1

LV (t)dt+ V [t1]− V [t2]

}
≤ 4σ2

n

∫ t2

t1

∥u(t)∥2dt. (20)
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Table 1. Model reduction algorithm within time interval [t1, t2] for SMJSs

Input: State matrices of a stable and minimal SMJS in (1): {Ai, Bi, Ci, Di}.
Output: The reduced-order state matrices:

{
Âi, B̂i, Ĉi, D̂i

}
.

1. Define an initial condition for the required state matrices
{
Â0i, B̂0i, Ĉ0i, D̂0i

}
.

2. while not converged do
(1) Compute the time-limited Gramians using (5)-(7) and (10)-(12) in Theorems 3.1

and 3.2, respectively.
(2) Use the following optimization algorithm

min trace(PiQj)
s.t. (5)-(7) and (10)-(12) for all (i, j ∈ N )

to solve the generalized time-limited Gramians Pg and Qg within time-interval
[t1, t2].

(3) Find the balanced transition matrix Te, which can convert the original system
to a balanced form by using the equivalent transformation, satisfying

TePgT
T
e = T−T

e QgT
−1
e = Σ = diag{σ1I1, σ2I2, . . . , σnIn}, (15)

where σ1 ≥ σ2 ≥ · · · ≥ σn > 0 are the Hankel singular values of the SMJS in (1).
It is worth mentioning that, it is hard to solve the balanced transition matrix Te

by using (15) directly and the following algorithm is introduced:
� Use the Cholesky factorization to decompose the matrix Pg in time-interval

[t1, t2]: Pg = RTR;
� Use the diagonalization to the positive definite symmetric matrix RQgR

T :
RQgR

T = UΣ2UT , UTU = I;
� The balanced transition matrix Te can be obtained: Te = Σ−1/2UTR.

(4) The original high-order system is transformed into the following balanced form
using the balanced transition matrix Te obtained above:

G̃i =

[
Ãi B̃i

C̃i D̃i

]
=

[
TeAiT

−1
e TeBi

CiT
−1
e Di

]
=

 Ã11i Ã12i B̃1i

Ã21i Ã22i B̃2i

C̃1i C̃2i D̃i

 , i ∈ N (16)

Now the new state vector is decomposed to

x̃(t) =
[
x̃T
1 (t) x̃T

2 (t)
]T

,

where x̃1(t) ∈ Rk is the state that should be retained, and x̃2(t) ∈ Rn−k is the
state that should be truncated.

(5) The reduced-order model is

Ĝi(t) =

[
Âi B̂i

Ĉi D̂i

]
=

[
Â11i B̂1i

Ĉ1i D̂i

]
. (17)

3. end while

Before starting, let Els , diag{0, Ils} and the corresponding state-space realisation of the
new reduced-order model be{

˙̂xls(t) = (In − Els)[Aix̂ls(t) +Biu(t)],
ŷls(t) = Cix̂ls(t) +Diu(t),

(21)

where x̂(t) ∈ Rn−ls and x̂ls(t) = [x̂T (t) 0]T . Now we define that ϵls(t) = x(t) − x̂ls(t),
hls(t) = x(t)+ x̂ls(t) and µls(t) = Aix̂ls +Biu(t), and the state-space of the corresponding
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error system between the original SMJS and the reduced-order one is denoted as ḣls(t) = Aihls(t) + 2Biu(t)− Elsµls(t),
ϵ̇ls(t) = Aiϵls(t) + Elsµls(t),
els(t) = Ciϵls(t).

(22)

The corresponding inequality in (20) can be expressed as,

E
{∫ t2

t1

{
∥els(t)∥2 + LV [x(t), x̂ls(t)]

}
dt+ V [x, x̂ls , t1]− V [x, x̂ls , t2]

}
< 4σ2

n

∫ t2

t1

∥u(t)∥2dt. (23)

If we choose the storage function V (ϖs, δs, t, ηt = i) as:

V [x(t), x̂ls(t)] = σ2
n[x(t) + x̂ls(t)]

TPi[x(t) + x̂ls(t)] + [x(t)− x̂ls(t)]
TQi[x(t)− x̂ls(t)]

= σ2
nh

T
ls(t)Pihls(t) + ϵTls(t)Qiϵls(t), (24)

where Pi = P T
i > 0, Qi = QT

i > 0. The infinitesimal operator L is considered to be the
derivative of the storage function V [x(t), x̂ls(t)] along the trajectory of the semi-Markov
chain, then we can obtain that

E
{∫ t2

ti

LV [x(t), x̂ls(t)]dt+ V [x, x̂ls , t1]− V [x, x̂ls , t2]

}
= E

{∫ t2

ti

[
2σ2

nḣ
T
ls(t)Pihls(t) + 2ϵ̇Tls(t)Qiϵls(t) + σ2

nh
T
ls(t)

(
N∑
j=1

αij(h)Pj

)
hls(t)

+ ϵTls(t)

(
N∑
j=1

αij(h)Qj

)
ϵls(t)

]
dt+ σ2

n

[
hT
ls(t1)Pihls(t1)− hT

ls(t2)Pihls(t2)
]

+ ϵTls(t1)Qiϵls(t1)− ϵTls(t2)Qiϵls(t2)

}

= E

{∫ t2

ti

{
2σ2

n [Aihls(t) + 2Biu(t)− Elsµls(t)]
T Pihls(t)

+σ2
nh

T
ls(t)

(
N∑
j=1

αij(h)Pj

)
hls(t) + 2[Aiϵls(t) + Elsµls(t)]

TQiϵls(t)

+ ϵTls(t)

(
N∑
j=1

αij(h)Qj

)
ϵls(t)

}
dt+ σ2

n

[
hT
ls(t1)Pihls(t1)− hT

ls(t2)Pihls(t2)
]

+ ϵTls(t1)Qiϵls(t1)− ϵTls(t2)Qiϵls(t2)

}

= E

{∫ t2

ti

{
2σ2

n[Aihls(t) + 2Biu(t)]
TPihls(t) + σ2

nh
T
ls(t)

(
N∑
j=1

αij(h)Pj

)
hls(t)

+ 2ϵTls(t)A
T
i Qiϵls(t) + ϵTls(t)

(
N∑
j=1

αij(h)Qj

)
ϵls(t)
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+2µT
ls(t)Els

[
Qiϵls(t)− σ2

nPihls(t)
]}

dt+ σ2
n

[
hT
ls(t1)Pihls(t1)− hT

ls(t2)Pihls(t2)
]

+ ϵTls(t1)Qiϵls(t1)− ϵTls(t2)Qiϵls(t2)

}

≤ 4σ2
n

∫ t2

ti

∥u(t)∥2dt− E
{∫ t2

ti

ϵTls(t)C
T
i Ciϵls(t)dt

}
+E

{∫ t2

ti

2µT
ls(t)Els [ϵls(t)− hls(t)]dt

}
,

where 2µT
ls
(t)Els [ϵls(t)− hls(t)] = 0, that is

E
{∫ t2

ti

LV [x(t), x̂ls(t)]dt+ V [t1]− V [t2]

}
< 4σ2

n

∫ t2

ti

∥u(t)∥2dt− E
{∫ t2

ti

∥els(t)∥2dt
}
.

Thus relation (20) is satisfied and the first step of the proof is finished.
Similarly, truncating the last ls−1 states satisfies∥∥∥Ĝlsi − Ĝls−1i

∥∥∥
∞

≤ 2σn−1,

analogy in order,

· · · ,
∥∥∥Ĝls−ji − Ĝls−j−1i

∥∥∥
∞

≤ 2σn−j−1, · · · ,
∥∥∥Ĝl2i − Ĝl1i

∥∥∥
∞

≤ 2σk+1.

In conclusion,∥∥∥Gi − Ĝi

∥∥∥
∞

≤
∥∥∥Gi − Ĝlsi

∥∥∥
∞
+ · · ·+

∥∥∥Ĝls−ji − Ĝls−j−1i

∥∥∥
∞
+ · · ·+

∥∥∥Ĝl2i − Ĝl1i

∥∥∥
∞

= 2σn + 2σn−1 + · · ·+ 2σn−j−1 + · · ·+ 2σk+1 = 2
n∑

j=k+1

σj,

where Ĝ1 = Ĝ. Thus the proof is completed. �

4. Numerical Example. Consider an SMJS that has four subsystems with the following
state matrix parameters:

A1=


−3.0 0.5 0.6 0.2
0.0 −2.5 0.1 0.3
0.4 0.0 −3.4 0.3
0.5 −0.3 0.2 −1.8

 , A2 =


−2.1 0.2 0.0 0.2
0.4 −3.8 0.1 0.6
0.1 0.0 −2.0 0.4
0.3 −0.2 0.0 −1.5

 , B1 =


5
0
−1
3

 , B2 =


3
−1
2
4



A3=


−4.0 0.5 −0.6 0.2
0.0 −2.5 0.1 0.3
0.4 0.0 −3.4 0.3
0.5 −0.3 0.2 −1.8

 , A4 =


−2.1 0.2 0.0 0.2
0.4 −2.8 0.1 0.6
0.1 0.0 −2.0 0.4
0.3 −0.2 0.0 −1.5

 , B3 =


2
0
1
3

 , B4 =


5
1
0
3

 ,

C1=[ 1.0 0.1 0.2 −0.3 ], C2 = [ 3.0 0.0 0.2 −0.3 ], C3 = [ 1.0 −0.1 0.2 0.3 ],

C4=[ 2.0 0.1 −1.2 −0.3 ], D1 = 4.5, D2 = 1.2, D3 = 3.3, D4 = 2.5.

The switching process between model is assumed to obey the semi-Markov process, and
the transition probability matrix αij(h) meets
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αij(h) =


(−1.4,−1.2) (0.1, 0.3) ? ?

? ? (0.2, 0.4) (0.2, 0.4)
(0.5, 0.7) ? (−1.6,−1.4) ?
(0.3, 0.5) ? ? ?

 .

Lemma 2.1 shows that the original system is asymptotically stable. This paper aims
to solve the model reduction problem in the time-interval [0, 4]. Numerous simulation
experiments have been conducted using MATLAB and the lower-order model is obtained.

The third-order model:

Â1 =

−2.412 −0.024 −0.19
0.120 −3.872 0.439
0.186 0.148 −4.64

 , Â2 =

−2.028 −0.199 −0.016
0.351 −3.442 −0.400
−0.127 −0.386 −3.621

 , B̂1 =

−4.354
−1.162
−0.953

 ,

Â3 =

−2.705 −0.634 0.248
−0.338 −4.826 1.123
0.185 0.146 −4.64

 , Â4 =

−2.018 −0.181 0.006
0.489 −3.208 −0.121
0.028 −0.125 −3.309

 , B̂2 =

−5.171
−1.009
−1.118

 ,

B̂3 = [−3.648 −0.391 0.513 ]T , B̂4 = [−4.736 −2.716 −1.742 ]T , D̂1 = 4.888,

Ĉ1 = [−0.069 −0.96 0.062 ], Ĉ2 = [−0.48 −2.569 −0.661 ], D̂2 = 1.934,

Ĉ3 = [−0.517 −0.495 0.042 ], Ĉ4 = [ 0.20 −1.175 −1.48 ], D̂3 = 3.406, D̂4 = 3.630.

The second-order model:

Â1 =

[
−2.42 −0.030
0.138 −3.858

]
, Â2 =

[
−2.028 −0.197
0.365 −3.400

]
, B̂1 =

[
−4.315
−1.252

]
, B̂2 =

[
−5.175
−1.132

]
,

Â3 =

[
−2.695 −0.627
−0.293 −4.790

]
, Â4 =

[
−2.018 −0.181
0.488 −3.203

]
, B̂3 =

[
−3.621
−0.267

]
, B̂4 =

[
−4.740
−2.653

]
,

Ĉ1 = [−0.067 −0.958 ], Ĉ2 = [−0.457 −2.498 ], D̂1 = 4.875, D̂2 = 1.738,

Ĉ3 = [−0.515 −0.494 ], Ĉ4 = [ 0.188 −1.119 ], D̂3 = 3.411, D̂4 = 4.409.

The first-order model:

Â1 = −2.421, Â2 = −2.049, Â3 = −2.657, Â4 = −2.045, B̂1 = −4.305, B̂2 = −5.110,

B̂3 = −3.586, B̂4 = −4.590, Ĉ1 = −0.101, Ĉ2 = −0.725, Ĉ3 = −0.485, Ĉ4 = 0.017,

D̂1 = 5.186, D̂2 = 2.570, D̂3 = 3.439, D̂4 = 5.336.

In order to estimate the performance of the proposed time-limited model reduction,
we choose the outside input vector as u(t) = e−t sin(t), t ≥ 0. Numerous simulation
experiments have been conducted and the results are shown in Figures 2 and 3 as below.
Figure 2 described the output response of the original system (fourth order) and the
reduced order model (third order, second order, and first order), which are under the
same external control input. It is easy to see that the lower-order model can jump
synchronously, and can approximate the original system within small error. Figure 3
depicted the reduced-order error in three cases (third order, second order, and first order).
It can be seen that there exists an upper bound of the reduced-order error. The dimension
of the reduced-order is lower, and the reduced-order error is greater.

To further verify the performance of the time-limited order reduction model proposed
in this paper, a comparative experiment has been conducted with the balanced truncation
method, and the corresponding experimental results are shown in Figures 4 and 5. Figure
4 described the output response of the original system (order 4), the reduced model based
on time-limited Gramians (TL-GMR) (order 3), and the reduced model based on balanced
truncation model reduction (BT MR) (order 3). It can be seen that, these two model
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Figure 2. Output y(t) of the original system and reduced-order models
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Figure 3. Reduced-order error (3rd, 2nd, 1st)

reduction methods both can approximate the SMJS, and can maintain the main structure
and stability of the original system. Figure 5 described the reducted-order errors of these
two methods. It can be seen that the time-limited model reduction method in the finite
time interval [0, 4] has a small error, by taking comparison experiment of these two kinds
of model reduction methods. And the main structure and stability of the original system
can be maintained.
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Figure 4. Comparison of output y(t) between TL-G MR and BT MR
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Figure 5. Comparison of the reduced-order error

5. Conclusions. This paper investigated the time-limited model reduction algorithm
for a special class of continuous-time SMJS, in which the sojourn time is subject to
the Weibull distribution. It is worth mentioning that, the transition probability matrix
considered in this paper, which contains completely unknown and uncertain types at
the same time. Specially, Lemma 2.2 was introduced to deal with the known transition
probabilities. By defining the new time-interval Gramians, the solution method based
on parameter-based Lyapunov equation was obtained. Then, the detailed description of
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the time-limited model reduction algorithm for SMJSs was proposed in Table 1. Finally,
a simulation experiment was given to show the theoretical value of the proposed model
reduction method, especially compared with balanced truncation method. Furthermore,
the time-limited model reduction method proposed in this paper will be adopted to handle
with the time-limited reduced-order filtering for continuous-time SMJS with hybrid cyber-
attacks in the future work.
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