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Abstract: Radar-based rainfall information has been widely used in hydrological and meteorological
applications, as it provides data with a high spatial and temporal resolution that improve rainfall
representation. However, the broad diversity of studies makes it difficult to gather a condensed
overview of the usefulness and limitations of radar technology and its application in particular
situations. In this paper, a comprehensive review through a categorization of radar-related topics
aims to provide a general picture of the current state of radar research. First, the importance and
impact of the high temporal resolution of weather radar is discussed, followed by the description
of quantitative precipitation estimation strategies. Afterwards, the use of radar data in rainfall
nowcasting as well as its role in preparation of initial conditions for numerical weather predictions
by assimilation is reviewed. Furthermore, the value of radar data in rainfall-runoff models with a
focus on flash flood forecasting is documented. Finally, based on this review, conclusions of the most
relevant challenges that need to be addressed and recommendations for further research are presented.
This review paper supports the exploitation of radar data in its full capacity by providing key insights
regarding the possibilities of including radar data in hydrological and meteorological applications.

Keywords: hydrological modelling; nowcasting; QPE; flash floods; weather radar

1. Introduction

Radar technology (an active instrument that operates in a microwave band) was
intensively developed for military use in the period before and during World War II. During
the war, radar operators noticed echoes on radar screens caused by weather phenomena.
After the war, scientists studied how to use radars for detecting precipitation. Since then,
weather radars have been used by national weather services and research institutions, since
they enable the detection of precipitating clouds, as well as their structure and development.
Considerable efforts have also been made to obtain more accurate quantitative precipitation
information that can be used in hydrological modelling and numerical weather prediction.

The use of radar-based rainfall data for hydrological modelling was motivated by
the need to accurately measure the spatial structure of precipitation fields and to exploit
the potential of radar-based rainfall data to generate short-term and very short-term (near
real-time) quantitative precipitation forecasts. One of the first uses of weather radar
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precipitation data in hydrological applications was as an input to rainfall-runoff models.
Therefore, effective derivation of precipitation from radar retrievals has been a subject of
interest from the beginning of radar meteorology and hydrology and still remains one of
the most important areas of research.

In terms of the estimation of quantitative precipitation, the well-known Marshall–
Palmer formula [1] for converting radar reflectivity into precipitation intensity is still often
used today. It is one of the most cited papers in the field of radar hydrology. The literature
on this topic is extensive, and various reviews exist, e.g., Wilk and Kessler [2], Wilson and
Brandes [3], Zawadzki [4], Joss and Waldvogel [5], and Krajewski and Smith [6].

Other areas of application of weather radar networks in operational hydrology include
storm hazard assessment and flood forecasting, warning, and management [7,8]. The
current interest in land surface hydrological processes has stimulated research into the
spatial and temporal variability of precipitation. A potential area for the application
of weather radar in this context is in the validation and verification of sub-grid rainfall
parameterizations for atmospheric mesoscale models and global circulation models [9].

Weather radar measurements are obviously connected with non-negligible and some-
times even large errors; hence, radar can be referred to as a semi-quantitative measurement
device [10]. The errors are due to measuring techniques and their extent depends on
weather conditions, in particular on precipitation processes and the size distribution of
precipitation particles. Nevertheless, radar provides very useful information, i.e., real-
time coverage at high spatiotemporal resolution, with data being available after a very
short time from being observed. Thus, the quality control procedures can be carried out
simultaneously for a proper quantitative precipitation estimation.

The main purpose of this review paper is to provide a concise description of the current
state of research in the field of the use of weather radars in meteorology and hydrology
with particular attention paid to its use for hydrological modelling and applications. Data
from meteorological radars are used both for the analysis of current precipitation, which
directly enters the hydrological models, and for the forecast of precipitation. Moreover,
prognostic precipitation is also an important input to hydrological models. Therefore, in
this review paper, we also discuss precipitation nowcasting and radar data assimilation into
numerical weather prediction (NWP) models, because short-term precipitation forecasts
by these models can be used to prepare inputs to hydrological models. This paper is
organized as follows: Section 2 shows the importance of the use of weather radar data
for hydrological applications with a particular regard to temporal and spatial resolutions
of the data, while Section 3 covers the topics that are related to quantitative precipitation
estimation (QPE) using not only weather radar data. Section 4 discusses the use of the
weather radar data to generate nowcasts (i.e., very short-term forecasts), while Section
5 describes the role of weather radars in numerical mesoscale meteorological models.
Section 6 presents weather radar-based precipitation in terms of its use in hydrological
rainfall-runoff models, mostly for flash flood forecasting, and finally Section 7 provides a
summary and draws conclusions.

2. The Importance of Rainfall Input for Hydrological Modelling
2.1. Spatial and Temporal Resolution of Weather Radar and Rain Gauge Data

Precipitation is the main input for the hydrological cycle and its quantitative modelling.
However, precipitation is extremely difficult to measure accurately due to its intermittent
nature, spatiotemporal variability, and sensitivity to environmental conditions [11]. These
characteristics become even more difficult to measure over the mountainous regions. Rain
gauges are the most used devices for in-situ point measurements of precipitation intensity
and duration if they measure these values by telemetry. What is very important from the
hydrological point of view is that rain gauges accumulate rainfall continuously over a
time period of interest. Nevertheless, rain gauges poorly estimate areal rainfall due to
their sparse distribution, particularly in regions that have high spatial variability, such as
mountain ranges.
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Weather radars are remote sensing equipment that are widely employed in the hy-
drological and meteorological communities for the estimation of areal precipitation at
high spatial and temporal resolution. The analysis of spatial and temporal characteris-
tics of a given storm event, especially its velocity and temporal changeability, as well as
catchment dimensions, indicates the minimum requirements in terms of temporal and
spatial resolutions of rainfall data for a given storm cell. Weather radars can almost in-
stantaneously provide precipitation estimates with high temporal resolution after they
have been transformed from radar reflectivity data. The highest temporal resolutions
achievable for short-range (local) radars, used especially in urban areas, are about 1-min
with a very simplified scanning strategy limited to the lowest angles of elevation. However,
the precipitation intensity derived from weather radar data in the case of employing a
standard scan strategy (usually with a temporal resolution of about 5-min) often neglects
the high variability of temporal precipitation, especially for short-duration rainfall events.

When compared to weather radars, which scan the atmosphere over a volume whose
projected area is roughly 1 km2 for a standard C-band radar, a rain gauge typically collects
rainfall at ground level over a circular area with a diameter of 20 cm. Hence, observation
scales differ dramatically between these two devices. As a consequence, direct comparison
of the outputs of a rain gauge and weather radar is problematic at least [12].

Many investigations have incorporated rain gauge data either in quality control of
weather radar data or in combination with radar precipitation estimates, resulting in high-
resolution merged products that have higher accuracy than rain gauge data or weather
radar data alone. However, constraints in the reliable estimation of “true rainfall” still
exist due to differences in spatial and temporal variability between rain gauges and radar
estimates [13].

2.2. Needs of Urban Hydrology in Terms of Resolution of Precipitation Data

The small size of urban catchments and the intended hydrological applications (espe-
cially in real time) require information about precipitation at small temporal and spatial
scales from 1 to 10 min and from 1 to a few km, respectively [14]. Typical national or
regional precipitation networks often perform rainfall monitoring at lower resolutions,
which results in an underestimation of precipitation in storms. Therefore, specific hydrom-
eteorological networks devoted to urban hydrology should be built. Many authors have
described and quantified the requirements of temporal and spatial resolutions of rainfall
data for their use in urban hydrology (including Berne et al. [15], Emmanuel et al. [16],
Ochoa-Rodriguez et al. [17], de Vos et al. [14], or Thorndahl et al. [18]).

Berne et al. [15] investigated in detail the temporal and spatial resolution of rain
measurements relevant for urban hydrology. A catchment can be seen as a system that
integrates a main input (rainfall) and produces a time series output (discharge). The
characteristic time associated with such a system defines its temporal dynamics and the
temporal scale determines the minimum time resolution needed for the input signal to
avoid smoothing of the system response:

∆t =
tl
f

(1)

where ∆t is the time resolution [min] and tl is the characteristic time of the system [min].
The factor f (Berne et al. [15] suggested f = 4 in their study) is an order of magnitude and
depends on a given catchment and expected accuracy.

The characteristic time of a catchment can be assessed using its response to a pulse
input of rainfall. Among the different approaches used to define the hydrological character-
istic time of a basin, the lag time (tl)—the time difference between the gravity center of the
mean rainfall over the catchment and the gravity center of the generated hydrograph—is
often selected.
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Based on data from a set of catchments, an empirical formula for the relationship
between the lag time tl (min) and a catchment area A (km2) can be estimated. According to
Berne et al. [15]:

tl = 3·A0.3 (2)

By studying the temporal and spatial structure of rainfall on a small scale in Mediter-
ranean climates (using a geostatistical method and investigating the impact of time averag-
ing), Berne et al. [15] proposed an empirical formula for the required temporal resolution,
∆t, estimated for urban hydrology:

∆t = 0.75·A0.3 (3)

and an empirical formula for the required spatial resolution, ∆x:

∆x = 1.5·
√

∆t (4)

Figure 1 schematically depicts the relationship between required temporal resolution
∆t and catchment area A.
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Figure 1. The relationship between required temporal resolution of precipitation data and catchment
area (based on Berne et al. [15] et de Vos [14]). The light blue rectangle represents the required
resolution for urban catchments, while the dark blue squares represent the most common resolutions
of standard measurement techniques: R—weather radar network; G—recording rain gauge network;
and C—manual rain gauge network. The blue arrows indicate the actual positions of the blue squares,
symbolizing the particular measurement techniques in relation to the diagram scale.

The accuracy of rainfall inputs is often a limitation in urban and mountain hydrology,
because the temporal and spatial resolutions of rainfall data required for urban applica-
tions exceed those needed for rural catchments. Despite the improvements in rainfall
measurement techniques and the development of urban rain gauge networks, it is still
very difficult to retrieve details on rainfall variability at the temporal and spatial scales
useful for urban hydrology, particularly for rain events of the convective type [16]. Urban
catchments are characterized by a high proportion of impervious surfaces, and this leads
to a large fraction of rainfall-producing direct runoff and a fast hydrological response. This
makes cities especially vulnerable to flooding.

Ochoa-Rodriguez et al. [17] evaluated the required spatial and temporal resolutions
of rainfall in a simple spatiotemporal scaling framework. A spatial resolution of 1 km,
typically used in weather radars, was found adequate for hydrodynamic model results,
although some extremes were missed. A temporal resolution of 5 min, which is currently
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available in most operational weather radar products, is sufficient. Nevertheless, the
accuracy of 5-min radar data can be improved with the use of an accumulation procedure
that assumes the constant velocity of the rainfall field and precipitation intensity to vary
linearly in time between two consecutive time steps.

Reduced temporal resolution has more impact on the hydrological modelling accuracy
than decreasing spatial resolution [12,19]. In the study by Yoon et al. [19], the root mean
square error and correlation coefficient increased as the accumulated time and radar bin size
increased, and the correlation coefficient was found to be much more sensitive to temporal
resolution than spatial resolution. An assessment of the impact of the temporal resolution
of rainfall data on rainfall-runoff modelling was performed by, among others, Ochoa-
Rodriguez et al. [17], who confirmed that the influence of temporal accumulation of radar
rainfall data is higher than that of spatial resolution, especially in small drainage areas.

3. High-Resolution Techniques for Precipitation Measurement and Estimation

The estimation of a precipitation field on the ground presents one of the most dif-
ficult tasks in meteorology and hydrology [20]. Information about a given precipitation
phenomenon can be derived from different types of measurement techniques, which are
briefly described in this section. Each measurement technique has advantages and disad-
vantages; thus, there is a tendency, in terms of the estimation of a precipitation field, to use
precipitation information derived from various measurement techniques.

For the estimation of precipitation—either precipitation intensity or accumulations—
data from the following measuring systems are used most often: a rain gauge network, a
weather radar network, and a meteorological satellite (a passive instrument that uses visible
and infrared channels). Other data sources, such as microwave links and crowdsourcing,
are also used, but rather sporadically. Table 1 presents the general characteristics of these
abovementioned three main techniques. All the data are associated with greater or lesser
difficulties and are also burdened with errors of diverse structures, usually very difficult to
diagnose and remove.

Table 1. Most frequent operational parameters of basic measurement techniques applied for the estimation of a precipita-
tion field.

Measurement Technique Spatial Resolution Temporal Resolution The Most Important Properties
for Combination

Recording rain gauge network Point measurements
interpolated spatially 1 min–1 h Measurements considered of relatively

high quality at gauge locations.

Weather radar network 0.5–2.0 km 5–15 min
Numerous measurement errors. Good
high-resolution reproduction of spatial

distribution of precipitation field.

Meteorological satellite
Meteosat or GOES (VIS and

IR channels)

About 4–6 km
(depending on latitude) 5–15 min

Low spatial resolution and
approximate measurements. Good

reproduction of location of clouds and
convective phenomena. High

data availability.

3.1. Rain Gauge Networks

Rain gauges measure point-wise precipitation with good accuracy, but their data
suffer from systematic and random errors. The magnitude of measurement errors depends
on many factors, including the weather conditions and physical processes, as well as the
gauge type [21,22]. The precipitation accumulation during a current time period may be
measured by manual or automatic rain gauges, such as a tipping bucket, weighing gauge,
or optical gauge. In practice, due to financial limitations, a high measurement resolution of
1–10 min, although technically possible, is generally less frequent.
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The data measured by rain gauges are affected by different kinds of errors. Therefore,
the data must be quality controlled at different levels of data processing and in real-time [23].
The commonly developed and implemented quality control (QC) procedures involve a
few checks: gross errors, range check, temporal consistency check, spatial consistency
check, and other source conformity checks (radar and satellite), as Otop et al. [24] and
Jurczyk et al. [25] have noted.

The point-wise character of rain gauge measurements and the sparseness of opera-
tional networks make rain gauge measurements inadequate for providing sufficient infor-
mation on the spatial distribution of precipitation. Therefore, rain gauge data are processed
in order to provide 2D precipitation fields, once a quality control has been performed.

There are two main types of methods concerning the spatial interpolation of meteo-
rological elements: deterministic and geostatistical. Deterministic interpolation methods
include, among others, inverse distance weighting (IDW) [26], Thiessen polygons [27],
and polynomial interpolation. In contrast, geostatistical interpolation methods implement
spatial statistical models and give a direct opportunity for the evaluation of the estimation
of errors [28,29]. The geostatistical interpolation methods are usually based on various
versions of a Kriging algorithm, e.g., Ordinary Kriging, Universal Kriging, or Block Kriging,
which employ a semi-variogram model, e.g., Gaussian, spherical, or exponential. The use-
fulness of the geostatistical methods depends on the nature of any analyzed meteorological
situations and on the density and distribution of the measurement gauges, as well as their
specific qualities.

3.2. Weather Radar Networks
3.2.1. Introduction

A weather radar transmits electromagnetic waves and measures the energy backscat-
tered by the hydrometeors in the atmosphere, i.e., the radar reflectivity. Ground-based
weather radars work mainly in three frequency bands: S, C, and X. Choice of the band for
a particular location is made on the basis of a trade-off between the measuring range of
reflectivity depending on the amount of signal attenuation and the cost of the radar. The
advantages and disadvantages of the three bands are the following:

• S-band (2.7–2.9 GHz) is well suited for detecting heavy rain at very long ranges (up
to 300 km), as it is least affected by attenuation. However, quantitative precipitation
estimation observations are reliable up to ranges of about 200 km, as a larger beam
width brings limitations. Data corrections are most robust and easiest to implement
for S-band weather radars; however, they are also the most expensive.

• C-band (5.6–5.65 GHz) represents a compromise between range and reliability of re-
flectivity measurements and cost. A C-band weather radar can provide rain detection
up to a range of 200 km, but it is less expensive than an S-band radar. Attenuation of
the received signal is significantly stronger than in case of an S-band radar. Thus, the
attenuation limits the QPE to ranges of about 100–150 km.

• X-band (9.3–9.5 GHz) weather radars are more sensitive to hydrometeors than S- or
C-band weather radars when measuring up to a range of 50 km. Attenuation of the
signal by rain is strongest in the case of X-band radars (compared to S- and C-band
radars) and strongly limits the QPE. Accurate QPE is usually possible up to ranges of
about 30 km. On the other hand, X-band weather radars are the least expensive.

The radar reflectivity (Z) can be converted to precipitation intensity (R). Various
empirical relationships, often called Z–R equations, are used in the conversion of Z into R.

R [mm ·h−1] =

10
Z [dBZ]

10

a

 1
b

(5)

where the a and b are constants that are experimentally determined, although they are
not really constant, since they are related to particle size distribution of hydrometeors in
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the atmosphere. Particle size distribution varies with the type and phase of precipitation
(solid or liquid), so different Z–R relationships are determined corresponding to different
precipitation types and drop size distributions. The Z–R relationship also depends on local
geographic conditions: location, altitude, and spatial exposition in particular [30].

High-quality QPE over a large area at high temporal and spatial resolution is important
for many hydrological and meteorological purposes. In addition to rain gauges that have
their own limitations, weather radars play an increasingly important role in QPE in the field
of urban hydrology (e.g., [18]) or hydrological modelling of flash floods in mountainous
areas. An advantage of weather radars is that they provide 3D observations at high
temporal resolution and also cover a large area [31].

3.2.2. Sources of Errors in Weather Radar Data

Radar observations provide very good spatial representation of precipitation but are
burdened with a wide spectrum of errors arising from different sources. The sources of er-
rors are characterized by specific properties and spatial and temporal structures. Therefore,
quality control aiming at the removal of detected errors and the quantitative characteriza-
tion of data uncertainty is a crucial task in radar data processing. A review of the different
sources of uncertainty can be found in numerous papers, such as Meischner [32], Michelson
et al. [33], Villarini and Krajewski [34], Ośródka et al. [35].

Errors in weather radar data can be divided into several groups. The first group
are hardware errors. These errors are related to the instability of electronics, antenna
accuracy, and quality of signal processing [36]. The second group is related to radar beam
geometry and scan strategy and includes effects related to increasing distance from the
radar site, such as beam broadening and a greater distance between consecutive bins, i.e.,
measurement points [35]. Regarding the increasing distance from the radar site, there is
an additional source of uncertainty, which is that with the increasing distance from the
radar site, the radar beam gets farther from the Earth’s surface because of the curvature
and topography of the planet [37,38].

The third group of errors in weather radar data is that the data contain echoes from
non-meteorological targets. This influences the QPE to the highest degree. The echoes
are mainly caused by (i) ground clutter (echoes from high objects close to the radar site,
including wind farms) [39–41]; (ii) electromagnetic interference with the sun or external
microwave emitters, which are usually visible in a radar image in the form of spikes
pointing towards the radar site [42]; (iii) speckles caused by measurement noise; and (iv)
biological objects, such as birds or insects [43].

Other groups of errors result from (i) beam blockage on terrain (i.e., mountains)
resulting in a decrease of radar signal [44,45]; (ii) attenuation of the signal by rain, especially
by heavy rain [46]; and (iii) anomalous propagation of the radar beam due to specific
atmospheric temperature gradient, which causes a part of the beam to be propagated along
a non-normal path—this generates return signals to the radar from distances further than
in normal conditions [41,47,48].

Each category of errors is corrected by a dedicated quality control technique, usu-
ally very specific to the site and the given radar manufacturer, and, as a consequence, is
characterized by individual quality indices. The total quality is qualitatively or quanti-
tatively computed by aggregation of all the indices into one total quality index (QI) by
using a multiplicative scheme [49]. Besides QI, flags describing particular detected errors
can be employed. In this case, fields of radar data quality are assigned to each radar
precipitation product.

It should be emphasized that the quality of the radar data is still reduced even when
the correction of the radar data has been performed and leads to an improvement in data.
This reduced quality of radar data is due to the fact that each correction of errors leaves
some uncertainty in the final data [34].

The quality control of raw three-dimensional (3D) data volumes of the radar reflectivity
is most often performed by dedicated systems, which are developed by particular national
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meteorological services, like RADVOL-QC [35], or by supranational institutions like the
EUMETNET OPERA program [50,51] or BALTRAD program [52].

3.2.3. Dual-Polarization Weather Radars

In dual-polarization (hereafter dual-pol) weather radars, the transmission and re-
ception of pulses of energy are both horizontally and vertically orientated (ZH and ZV,
respectively). As a consequence, information on horizontal and vertical dimensions of
meteorological targets, such as their shape and size, may be inferred from dual-pol radar
measurements. They also give the radar reflectivity and Doppler velocity, just like single
polarimetric radars.

Most frequently, the following dual-pol products are studied: differential reflectivity
(ZDR), specific differential phase shift (KDP), and sometimes correlation coefficient (ρHV).
Since the advent of dual-pol radar technology, many studies have been conducted to
determine the extent to which the dual-pol products add benefits to estimating R as
compared to Z alone [6].

The ZDR allows for the discrimination of hydrometeor types. When the hydrometeor
is a sphere, it is assumed that it is either a hail stone or a small rain drop. When the hy-
drometeor is vertically orientated, it is typically an ice crystal, while when the hydrometeor
is orientated horizontally, it indicates a medium to large rain drop. The ρHV helps in the
identification of the type of hydrometeor, and it suggests how similar hydrometeors are to
each other (the hydrometeor type and its horizontal and vertical drop size distribution).
For example, a ρHV value close to 1 indicates a uniform drop size and shape distributions.
Thus, ρHV is useful for determining locations where different types of precipitation occur.
The KDP, which reduces the effect of radar signal attenuation in rainfall, indicates where
the heaviest rainfall is likely occurring. Thereby, the KDP can help in predicting locations in
storms where high precipitation intensities are expected to occur [53].

In addition, dual-pol radars offer other products as well, and their combinations can be
used to determine precipitation intensities [53]. These combined products are less affected
by attenuation and errors due to varying drop size distribution and, as a consequence,
might lead to more accurate values of precipitation intensity.

Various precipitation estimators, most often in the form of R(ZH), R(ZH, ZDR), R(KDP),
and R(KDP, ZDR), are proposed for dual-pol C-band and S-band weather radars [54–56].
Algorithms used for radar rainfall estimation are based on different combinations of the
above-listed products. The comparison of QPE derived from dual-pol radar data with rain
gauge accumulations by Montopoli et al. [54] indicates that a combined algorithm that
merges different dual-pol parameters through a weight factor performs better in most cases
than if a single radar product is used.

3.2.4. Radar-Based Precipitation Estimates

The quality-controlled 3D scan volumes measured by a weather radar are transformed
by radar software into a set of specific two-dimensional (2D) products. For precipitation
estimation, two products are mostly generated: precipitation intensity and precipitation
accumulation. The surface precipitation intensity product is often derived as a cut-off at
a constant height above ground level. Precipitation accumulation product is generated
from two consecutive precipitation intensity products employing a spatial and temporal
interpolation in order to avoid effects that are related to data sampling.

As mentioned above, radar measurements give very good spatial representation of
precipitation but suffer from several sources of errors. In order to improve accuracy, the
radar data are adjusted to rain gauge observations, which are assumed to provide more
accurate point values [57,58]. The adjustment to rain gauge observations is used to reduce
the systematic errors, such as differences in calibration, and, as a consequence, the under-
or overestimation. The bias adjustment factor is calculated from a comparison of total
amounts of collocated radar and rain gauge precipitation values as a mean value for a
given radar and for a given time step. The adjustment factor is usually determined from
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a comparison of a time sequence of radar estimates with corresponding rain gauge data,
which are considered correct in the long term [59], in the order of a few hours at least.

The actual spatial variability of this adjustment factor results mainly from the increase
in the height of the measurement with the distance from the radar site. Thus, this spatial
variability can be taken into account by using the dependence of this factor on the distance
from the radar site [57]. There are also more complex equations for the adjustment, which
take into account more factors that affect the relationship between radar and rain gauge
measurements [60]. The spatial adjustment factor retrieved by interpolation of gauge data
to radar data is determined for each pixel of the precipitation field, and a ratio may be
introduced in order to handle non-uniform bias within the radar composite domain.

3.2.5. Machine Learning for Radar-Based Precipitation Estimates

Rain gauge observations are frequently considered to be ground truth data; however,
their reliability and spatial representation are limited. Gauge adjustment mostly depends
on the rain gauge network distribution and real-time availability, which may be scarce and
irregular, especially in complex terrain.

The use of machine learning techniques for quantitative precipitation estimation can
be an alternative due to its simplicity. This approach aims at reducing the complexity of
transforming reflectivity into rainfall, which usually accounts for several corrections and
the upscaling of reflectivity before the application of a Z–R equation. In contrast, machine
learning-based QPE aims at mapping reflectivity into the precipitation intensity directly,
i.e., without the intermediate steps. Several studies have used Artificial Neural Networks
and decision tree-based techniques, such as Random Forests. Even though the techniques
have some intrinsic disadvantages, e.g., the fact that neural networks are hard to tune, the
results obtained using such methods are reported as promising [61,62].

3.2.6. Weather Radar Composites

Weather radar networks offer the possibility to cover a larger domain than a single
instrument. In addition, networks allow for the improving of data quality of individual
weather radars. As a result, it is possible to generate composites from the individual
radar imagery. Generally, radar composites are known for better quality of data in the
areas where radar scans overlap. Commonly, the compositing problem is understood as a
question: how to merge the data from individual radars exploring the same area in order
to preserve all reliable measurement information but removing or at least minimizing the
influence of lower quality information?

The method, which is commonly used for producing radar composites in operational
systems, attributes a maximum value to the pixel in the overlapping area. This compositing
algorithm is usually applied due to its simplicity and ability to mitigate typical radar errors
such as attenuation by heavy rain and beam blockage by terrain. However, the resulting
composite product is not quality proofed and is usually overestimated [63,64]. It also
propagates non-meteorological echoes from individual radars.

Thus, it is more appropriate to obtain the radar composite (i.e., precipitation field) by
skilled merging of radar information characterized by spatially distributed uncertainties
coming from individual radars. A skilled merging uses a criterion of highest quality or
weighted average quality for selecting data from individual radars. Different quality factors
can be applied for this purpose. Among these, the distance from the radar site or the height
of the radar beam over the ground are widely used [64]. The general formula on the
precipitation intensity (R) is expressed as:

R =
∑n

i=1 wi·Ri

∑n
i=1 wi

(6)

where Ri is the single radar reflectivity, wi is the weight of the i–th radar, i is the radar
number, and n is the number of radars covering a given pixel.
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The weights wi can be determined from a set of the abovementioned quality factors or
by employing a single but more general quality metric (i.e., the quality index, QI).

Figure 2 shows an example of the results of three radar data compositing methods,
using the following criteria for merging: (i) the maximum value, (ii) the nearest radar value
(minimum distance to the radar), and (iii) the value of the quality index. The maximum
value method visually suggests a significant overestimation, while the nearest radar method
shows clear boundaries between the individual radars. The QI-based method seems the
most correct. The same conclusion can be derived from Figure 3, which compares values
of RMSE using the three compositing methods. In Figure 3, the RMSE for the maximum
value method shows a very large overestimation.
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Figure 3. Comparison of daily accumulation of radar composites of POLRAD radar network with
rain gauge accumulations in August 2017 in terms of RMSE using: 1—the maximum value, 2—the
value from the nearest radar, and 3—the quality index QI (based on Jurczyk et al. [64]).

Usually, radar composite maps are created for networks of particular national meteo-
rological services or at a trans-national scale. The two largest radar networks that generate
radar composites are the American NEXRAD (Next Generation Weather Radar) and the
European OPERA (Operational Program for Exchange of Weather Radar Information). The
OPERA produces, inter alia, instantaneous surface precipitation intensities and hourly
precipitation accumulations [50] based on data from more than 230 weather radars.
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3.3. Multi-Source Precipitation Estimation

Rain gauges supply accurate direct measurements at discrete points (i.e., point-wise)
only; thus, the reproduction of their spatial distribution is limited by the density of the
gauge network and errors associated with interpolation methods, which, in the case of
a sparse gauge network, are hardly possible to perform. On the other hand, weather
radar data provide us with trustworthy information about the spatial variability of rainfall
with high spatial and temporal resolutions, though they are burdened with numerous
errors of different structures that are too high to be neglected. The accuracy of satellite
rainfall estimates remains questionable and the subject of ongoing worldwide research (see,
e.g., Ebert et al. [65]). Nevertheless, satellites provide valuable information on the spatial
distribution of rainfall, particularly for areas out of the weather radar range.

None of these precipitation estimating techniques seem to provide accurate precipita-
tion estimation; however, they are largely complementary. Therefore, the idea of combining
precipitation data from diverse sources emerged naturally in order to improve the accuracy
of rainfall estimation. For instance, radar data have been combined with rain gauge data
since the beginning of the operational use of weather radars in 1970s. Since that time, nu-
merous merging methods have been developed to address the advantages and limitations
of individual measurement techniques.

Several researchers have employed various deterministic methods for data merging
based on gauge adjustment of radar observations by means of the computation of a
constant multiplicative calibration factor, i.e., gauge-to-radar ratio, also known as a mean
field bias (MFB). In range-dependent adjustment (RDA), it is assumed that the gauge-
to-radar ratio is a function of the distance from the radar site. The RDA handles range
related problems, such as the increasing height of the measurements, the beam broadening,
and the attenuation effects. The static local bias correction aims at correcting visibility
effects. It does not detect low precipitation accumulations at greater distances from the
radar site. The static local bias is calculated from long-term data sets (e.g., one year) using a
climatological gauge network [60]. A review of the methods based on gauge-to-radar ratio
and their operational implementations in Europe can be found in the COST 717 report [57].

More sophisticated versions of the abovementioned techniques have also been in-
vestigated, e.g., the update of mean field bias between gauge and radar data in real time
by Kalman filtering [66]. The more advanced statistical techniques developed for multi-
source precipitation estimation can be classified according to Velasco-Forero et al. [67] and
Sideris et al. [29] as follows:

• statistical approaches based on multivariate analysis [68–70];
• radar–rain gauge probability distribution analysis based on the optimization of the

Z–R relationship using different matching techniques [71–73];
• geostatistical estimators, e.g., co-Kriging or Kriging with external drift [67,72,74–77];
• Bayesian methods (i.e., conditional merging) [78,79] including Kalman filtering [66,80–82].

These geostatistical and conditional methods generally consider a gauge as the pri-
mary source of data and radar as the secondary source of data.

Figure 4 shows a general example of combining gauge, radar, and satellite precipitation
data obtained by a quality based conditional merging [25]. Spatially interpolated data from
a relatively sparse rain gauge network differ quite significantly from radar estimates of
the precipitation field, which are more heterogeneous. The satellite estimate is generally
similar to the radar estimate, although it greatly varies in values and exact location of
precipitation. The combined field of gauge, radar, and satellite precipitation data reflects
the contribution of all the inputs, though the spatial distribution of precipitation is most
similar to that of radar alone.
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Figure 4. Precipitation fields (10-min. accumulations) in Poland, 22 May 2019, 14:20 UTC, RainGRS multi-source QPE
model [25]. In the upper row from left to the right—results provided by (a) rain gauges, (b) weather radars, and (c) Meteosat
satellite; at the bottom (d) combined precipitation field as a result of conditional merging (based on Jurczyk et al. [25]).

Numerous applications of these approaches have appeared in the literature, especially
in hydrological modelling studies [79,83], climatological studies [84], and others. Most of
these studies have provided valuable contributions to merging techniques. However, the
usefulness of some methods for operational applications may be questionable, as they are
very time-consuming.

Satellite precipitation estimates that are derived from visible and infrared channels
from geostationary satellites or from microwave passive and active sensors (i.e., radars)
onboard low near-polar satellites are merged with rain gauge observations less often.
Chappell et al. [85] evaluated and selected geostatistical methods to merge satellite and
gauge precipitation data analogous to those used for merging rain gauge and radar data.

The multi-source combination of gauge, radar, and satellite precipitation fields has also
been proposed using, inter alia, the Bayesian approach [86], statistical objective analysis [69],
and quality-based conditional merging [25]. These techniques are analogous to those
applied to radar–rain gauge merging.

A comparison of results obtained using several different merging techniques can
be found in, e.g., Goudenhoofdt and Delobbe [60] and McKee [83]. Figure 5 presents a
comparison of radar–gauge combinations using the most commonly employed techniques.
The results point out that simple methods like mean field bias correction can significantly
reduce errors in the radar estimation. Nevertheless, there is a clear benefit in more sophis-
ticated methods, the conditional merging (method 7) and Kriging with an external drift
(method 8) being most effective.
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Figure 5. Mean bias (a) and root mean square error RMSE (b) of different radar–gauge merging methods based on four-year
verification (2005–2008) in the gauge locations with gauge data as reference (adapted from Goudenhoofdt and Delobbe [60]).
The investigated precipitation estimates are 1—radar-based precipitation, 2—radar-based precipitation after mean field
bias correction, 3—radar-based precipitation after range-dependent adjustment, 4—radar-based precipitation after static
local bias correction and range dependent adjustment, 5—radar-based precipitation after Brandes’s [87] spatial adjustment,
6—rain gauge data interpolated using ordinary Kriging, 7—radar–gauge combination using Sinclair’s and Pegram’s
technique [78], and 8—radar–gauge combination using Kriging with an external drift.

Analyzing the impact of the season on the effectiveness of combining different precip-
itation observations, Figure 6 shows that in winter, when widespread stratiform precipita-
tion prevails, the spatial interpolation of a rain gauge network performs similarly to the
multi-source data merging methods. However, in summer, when convective (and rather
local) events occur, the added value of radar observations is evident [25,60]. It is worth
noting that the merged product is only slightly better than the radar precipitation unbiased
product using rain gauge data. Thus, a trade-off between computational time and accuracy
improvement needs to be considered in real-time applications.
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Figure 6. Monthly values of root relative squared error (RRSE) for precipitation fields using gauge data in the gauge locations
as reference, obtained by: 1—interpolation of rain gauge data, 2—raw radar data, 3—unbiased radar data, 4—satellite data,
and 5—conditional merging. The values are obtained for winter (December 2018; a) and summer (July 2019; b), based on
Jurczyk et al. [25].
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4. Techniques for High-Resolution Nowcasting

Heavy convective storms and torrential rains often cause flash floods, which can
lead to significant economic damages and, in some cases, to losses of human life. Heavy
rains evolve very quickly and affect limited areas; thus, they are very difficult to predict.
Although general predictions determine well the suitable atmospheric conditions for
severe storms, i.e., they are generally successful, we are currently not able to predict with a
sufficient accuracy their precise location and time of occurrence and the specific (various)
manifestations of individual storms (e.g., heavy rain, downburst, lightning) in order to
substantially reduce consequential damages and/or losses. The main reason is that as the
storms develop rapidly, they are identified by weather radars only a few tens of minutes
before they manifest dangerously. In case of satellite data, spots of convection are identified
a little earlier; however, it remains difficult to determine whether the convection will result
in storm with dangerous impact or not.

Precipitation nowcasting employs four basic groups of methods. First group consists
of extrapolation methods, which are based on current state of the atmosphere. The core
of these extrapolation methods is the calculation of a motion vector and its extrapolation
along Lagrangian trajectories. The extrapolation methods do not make use of forecasts
provided by numerical weather prediction (NWP) models; instead, they do make use of
radar data only. The second group of methods for precipitation nowcasting, called blending
methods, combines extrapolation methods with forecasts by NWP models. The third group
of methods for precipitation nowcasting comprises tools of artificial intelligence, such as
neural networks. In contrast to the extrapolation methods, artificial intelligence-based
models do not explicitly apply extrapolation along Lagrangian trajectories. The fourth
group of methods for precipitation nowcasting forecasting is based on the application of
conceptual models to simulate evolution.

Currently, there are a number of nowcasting systems that predict precipitation and
other dangerous weather events and that are used operationally by meteorological services.
In the following text, we focus on the description of basic principles of the nowcasting
methods, which have been used, instead of on the description of nowcasting systems.
Information about some of the nowcasting systems as well as their comparison can be
found at web pages of individual national weather services. A detailed comparison of
some of the systems has been done on the occasion of the Olympic games in Sydney [88]
and Beijing [89].

4.1. Extrapolation Methods

Extrapolation methods represent the most widely used methods of precipitation now-
casting. A very frequently applied technique of extrapolation consists in the extrapolation
of current radar-derived precipitation along Lagrangian trajectories. In this case, the
basic data comprise radar reflectivities. Other sources of data describing precipitation
processes in the atmosphere, such as satellite data or information on electric discharges
in the atmosphere, can be used in extrapolation as well. Nevertheless, their use is not
very frequent.

The main advantage of extrapolation methods is their low computational costs and
fast calculation of forecasts. Another advantage is that they use currently measured
data; therefore, the forecast is accurate for very short lead times, i.e., in the order of tens
of minutes.

The main disadvantage of extrapolation methods lies in the fact that they do not
model future development using physical properties of the atmosphere; instead, they are
limited to a simple extrapolation of the current state with further development modelled
using statistical models, if any.

In the following text, we describe how the motion field needed for extrapolation is
obtained from the sequence of radar reflectivity measurements. After that, we characterize
deterministic, probabilistic, and ensemble predictions of precipitation based on weather
radar data.
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4.1.1. Motion Field

Diverse extrapolation methods have been developed differing in the calculation of
the motion field and employed Lagrangian trajectories. The motion field is derived from
the evolution of areal echoes of radar reflectivity measurements. At present, the most
frequently used technique to derive motion fields is an optical flow method (OFM), which
can be implemented using diverse algorithms [90–93]). The OFM method describes the
flow using the advection equation only. It assumes that the analyzed radar images from
different times change the values in the pixels by advection. Under this condition, optimal
motion field between individual images is found.

Another technique deriving motion fields is the TREC (Tracking Radar Echo by
Correlation) technique [94] or the COTREC (the Continuity of TREC) technique [95]. The
difference between TREC and COTREC methods is that the later smooths the motion field,
requiring that the continuity equation for horizontal wind components is met.

Both TREC and COTREC techniques solve the same problem as OFM, but by shifting
the first radar image into different directions by varying distance and by comparing the
match of the shifted image with the second one. The comparison is usually performed
using correlations. The offset that shows the best match is selected as the motion vector.

For OFM, TREC, and COTREC, the motion vectors are determined locally in subareas.
To increase the efficiency of both algorithms, it is necessary to have a good estimate of
the motion field. In general, the OFM is being used more frequently for precipitation
nowcasting than COTREC or TREC.

Once the motion field is known, Lagrangian trajectories can be calculated. Usually,
the backward-in-time semi-Lagrangian method is applied for the calculation of trajectories,
because it is quite robust with reasonable numerical diffusion and is easy to apply [91].
The practical advantage of the backward-in-time semi-Lagrangian method of calculation is
evident when we aim at extrapolating precipitation to given grid points and given time.
On the other hand, when we aim at forecasting the movement of individual storms, then
forward-in-time technique is preferable.

Most extrapolation methods use a regular network of grid points, for which the motion
field and precipitation forecasts are calculated. However, there are nowcasting methods,
which monitor the development of individual storms using Storm Cell Identification and
Tracking (SCIT) algorithms [96] or Thunderstorm Identification Tracking Analysis and
Nowcasting (TITAN) [97]).

4.1.2. Quantitative Precipitation Forecast

The aim of quantitative precipitation forecasting is to predict the intensity of precipita-
tion for a given place at a given time or to predict the sum of accumulated precipitation
for a certain time interval for a given place or an area. Note that in this section, we con-
sider deterministic forecasts only. Probabilistic and ensemble forecasts, which are more
general, can also be used to get quantitative precipitation forecasts, and will be discussed
in another subsection.

Extrapolation methods, discussed above, calculate the prediction for a given place
and a given time by transferring the existing precipitation field along Lagrangian trajecto-
ries. Frequently, these methods assume that precipitation does not change over the time
along the trajectories e.g., [91,98–104]. This assumption is acceptable in case of stratiform
precipitation for forecasts with lead times of several hours; however, in case of convective
precipitation, the precipitation can change (even significantly) along the trajectories. For
example, Mejsnar et al. [105] showed that depending on the specific state of the atmosphere,
the extrapolation should be applied for predictions of the order of minutes up to several
tens of minutes only. Nevertheless, this prediction technique is often used for higher lead
times, as it still provides useful information to forecasters in weather services.

The fact that simple extrapolation forecasts are inevitably inaccurate is taken into
account by several prediction methods. These prediction methods assume that they cannot
predict small scale features in precipitation fields such as storms affecting small areas
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and persisting for very short time. Therefore, these methods filter out gradually small
scale features in time from the forecast, and they employ various stochastic models for
this [106,107]. The Seed’s approach [107] is called the Spectral Prognosis (S-PROG) model
and uses Fourier filters to decompose rainfall fields into spectral scale components, and
it forecasts each component independently. This approach is used in other methods as
well [108].

The procedures filtering out the small-scale features of precipitation usually leads to a
more accurate prediction if the prediction is verified using mean square error. Moreover, the
actual improvement in the forecasts is also debatable, as it minimizes misplaced predictions
for longer lead times by limiting the occurrence of precipitation to large objects only. Here,
we would like to note that generally it is not possible to quantitatively describe the range
of large objects or small features, since their dimensions may differ for different types of
meteorological situations and depend on the resolution and quality of radar data.

4.1.3. Probabilistic and Ensemble Forecasts

There is a close relation between ensemble and probabilistic forecasts. A probabilistic
forecast can be obtained from the ensemble prediction; however, the ensemble forecast is more
general and can be used to evaluate possible economic losses related to inaccurate forecasts.

Probabilistic forecasts give a probability that an arbitrary threshold (e.g., precipita-
tion threshold) is exceeded. The most straightforward technique providing probabilistic
forecasts considers the forecasted values in the neighbourhood of a point of interest as
possible forecasts. Then, using this dataset, the probabilistic forecast is calculated [106,109].
Another straightforward probabilistic technique was developed by Kitzmiller [110]. His
technique is based on the application of regression models to extrapolated radar reflectivity
data and selected NWP model variables [101,110]. Regression models are applied to de-
scribe relationships between yes/no predictand, i.e., the observed amount of precipitation
that exceeded or did not exceed a threshold. In addition, the regression models consider
predictors that are calculated either from forecasted (e.g., by NWP model) or observed
meteorological variables. The most important and most used predictor is the precipitation
derived from the latest radar measurement. A similar technique was applied by Pop
et al. [111], who used two predictors and performed the Ensemble Tree Method to get the
probability forecast of exceeding precipitation thresholds. Figure 7 depicts an example of a
probabilistic forecast using an Ensemble Tree Model, as by Pop et al. [111], and a Linear
Regression Model similar to that used by Kitzmiller [110] for a convective and a stratiform
event that occurred in July 2012 in Czechia. The observed radar-derived precipitation field
is hatched.

A probabilistic prediction can be also obtained from an ensemble prediction. The
general idea of an ensemble prediction, which also applies extrapolation methods, is to take
into account the uncertainty intrinsic to deterministic prediction. The core of an ensemble’s
prediction lies in the way the ensemble is generated. The generation of ensembles concen-
trates on quantities/characteristics that are burdened by greatest uncertainty. By modelling
this uncertainty, it is then determined how it affects the overall prediction. Regarding
the extrapolation, the basic uncertainty consists in the evolution of precipitation along
the Lagrangian trajectories, which is not considered in the extrapolation. Therefore, the
extrapolation methods are usually complemented by stochastic models, which model the
development of precipitation along the Lagrangian trajectories.
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Figure 7. (adapted from Pop et al. [111]). Probabilistic forecast of exceeding a precipitation threshold tr = 0.1 mm for a
convective event on 28 July 2012 (first two rows) and a stratiform event on 17 July 2012 (third and fourth row) for a lead time
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forecasts represent results of an Ensemble Tree Model (first and third row) and a Linear Regression Model (second and
fourth row). Note that the grey hatched area corresponds to observed precipitation field, derived from a C-band weather
radar data.

Bowler et al. [112] proposed a stochastic precipitation nowcasting system (Short-Term
Ensemble Prediction System; STEPS), which blended a spatially and temporally correlated
cascade of noise fields with the radar extrapolation and NWP cascades. A similar approach
was also applied by Atencia and Zawadzki [113], who developed a technique based on
stochastic perturbation of a Lagrangian extrapolation of the last observed rainfall field using
autoregressive models. They specifically designed the technique to reproduce the spatial
and temporal structure of precipitation fields. In their work, Atencia and Zawadzki [113]
found that the stochastic perturbations are able to reproduce the spatial structure of a
precipitation field.

Berenguer et al. [114] developed an ensemble nowcasting technique called SBMcast
by Lagrangian extrapolation. The core of the technique is to apply a String of Beads
model [115] to generate ensemble members of precipitation forecasts. The utilized SBM-
cast model preserves the space and time structure of precipitation fields, thus making
it compatible with observations. The results of Berenguer et al. [114] showed that the
technique reasonably reproduces the evolution of rainfall fields, though the errors were
underestimated. A possible reason for the underestimation of the errors was that the
uncertainty errors related to motion field were neglected.

Another approach for precipitation nowcasting is the analogue-based approach, which
finds similar states to the current state in a historical dataset. The main difficulty of this
approach is, however, in finding the analogues. The ensemble is then created using several
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closest states to the historical data. For instance, Panziera et al. [116] developed a heuristic
analogue technique called Nowcasting of Orographic Rainfall by means of Analogues
(NORA) for a very short-term forecasting of orographic precipitation. In NORA, they
used specific predictors that were selected as having strong relation with orographic
precipitation and were characterizing the mesoscale conditions. The predictors were
derived from radar images, and they were used to find the analogues. Foresti et al. [103]
further improved this technique by using principal component analysis (PCA) to rainfall
fields to find the analogues.

Atencia and Zawadzki [117] applied another approach to find analogues. They looked
for similarities in temporal storm evolutions and synoptic patterns, and they concluded that
the analogue-based probabilistic forecast has a better forecasting skill than the stochastic
Lagrangian ensemble approach. Recently, also Pulkkinen et al. [118] published a method
called Pysteps, which is an open-source Python library for probabilistic precipitation
nowcasting and includes several above described techniques.

Sokol et al. [119] applied a completely different approach for an ensemble forecast.
They used a two-step procedure for probabilistic forecasts of instantaneous precipitation.
The basic idea of the method was first to model the uncertainty in the calculation of the
trajectory using an ensemble, which is generated using historical data and the well-known
LU (lower-upper) algorithm [120]) to derive the covariance structure of advection errors.
In the second step, the error caused by neglecting the growth and decay of precipitation
was estimated by applying the calibration with the aid of the decomposition of Brier Score
and historical data.

4.2. Blending Methods

The idea of blending methods is to make optimal use of the advantages of the extrapo-
lation method for forecasting and the prediction by NWP models. The (final) forecast is
obtained by combination/weighting of the two forecasts, i.e., forecast by extrapolation and
forecast by NWP model. Weights for the extrapolation forecasts are high for short lead
times and decrease for higher lead times because of the inability of extrapolation methods
to predict rainfall growth and decay. On the contrary, weights for NWP model forecasts
increase with the increase of lead times. The weighting of forecasts is not trivial and is
usually derived using historical data [121]). A well-known forecasting tool to the nowcast-
ing of heavy precipitation is represented by the model NIMROD (Golding, 1998), which
utilizes both the extrapolation of an existing precipitating field, which is derived from
satellite and radar data, and precipitation forecasts of a NWP model. Another example
of nowcasting system which includes precipitation nowcasting is Integrated Nowcasting
Through Comprehensive Analysis INCA [100] (http://www.inca-ce.eu/CE-Portal/).

It is interesting that various lead times (LT) can be found in literature for the case
when a NWP model provided better forecasts of precipitation than the extrapolation tech-
nique [122]. For instance, Lin et al. [123] and Golding [124] found LT = 6 h, Haiden et al. [100]
obtained LT between 2 and 3 h, and Bližňák et al. [104] found LT between 1 and 2 h. It
is important to note that one should consider the real availability of the NWP forecasts
when using blending methods and that the differences in calculated LT might be related to
different characteristics of given study regions.

4.3. Artificial Intelligence-Based Methods

Recently, a new nowcasting approach based on machine learning (ML) techniques
has been also adopted, which highly differs from the above-mentioned standard methods.
ML-based models can map certain inputs into a target variable (e.g., rainfall) without using
physical equations that govern their relations and, to a large extent, also neglect the explicit
statistical description of the problem.

Thus, ML-based models rely primarily on the data and their self-learning ability
to construct the rules that allow converting the inputs into the expected output. ML-
algorithms are used for this self-learning process by analyzing a large amount of historical

http://www.inca-ce.eu/CE-Portal/
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data. Since most of ML-based models lack physical meaning, they are known as the
so-called black box models.

In order to perform radar rainfall nowcasting, basically, the historical data of precipi-
tation are used from in-situ observations and radar derivatives. Most of ML-based models
have been implemented for predicting future rainfall images by using a video sequence as
input for the model, which includes an internal representation of image evolution. This is,
in fact, the core of standard extrapolating techniques, and thus it seems to be a promising
approach and efficient way of nowcasting. However, it should be noted that building the
inputs for the model requires to some extent implicit description of dynamic properties of
the system.

One of applied techniques is the support vector machine (SVM). The SVM is a machine
learning method based on statistical learning theory, which can solve non-linear and high
dimensional classification problems with small sampling. For example, Mai et al. [125]
used SVM as a classifier for categorical forecast of precipitation (yes/no). Other examples
of the use of SVM for precipitation forecasting can be found in [126–128]. Besides SVM,
other methods are also used for precipitation nowcasting, such as deep neural networks,
convolutional neural networks, long short-term memory networks, etc. [129–131].

4.4. Conceptual Models

Conceptual models that describe the development of precipitation can be used for
precipitation nowcasting as well. A well-known example of this approach is the auto-
mated nowcasting system of convective precipitation GANDOLF [132], which endeavors
to simulate storm development. GANDOLF contains a conceptual model of the life cycle
of convective clouds. With the help of satellite and radar data, and a variety of forecast
products from a NWP model, GANDOLF identifies convective cells and predicts their pos-
sible development. Other examples of the application of conceptual models can be found
in Roberts et al. [133] and Liu et al. [134], and it has been used in AutoNowCaster [135,136]
(https://www.weather.gov/mdl/AutoNowCaster).

5. Using Radar Data in NWP Modeling: Radar Data Assimilation

The quality of prediction of precipitation by a NWP strongly depends on initial
conditions (i.e., state of the atmosphere), which fundamentally influence the develop-
ment of precipitation. In case of convective precipitation, the impact of initial conditions
on forecast quality is even more significant due to high spatial and temporal variabil-
ity of convective precipitation, as e.g., Ducrocq et al. [137] and Zhang et al. [138] have
demonstrated. The aim of data assimilation into the NWP model is to determine the
best possible initial conditions using observations and short range weather forecasts
(https://www.ecmwf.int/en/research/data-assimilation). Data assimilation requires (i)
a selection of data to be assimilated into a NWP model and (ii) a mathematical method of
assimilation, which will create optimal initial conditions for the NWP model.

Data assimilation is a relatively complicated mathematical problem, and its thorough
description would be too extensive for this paper and beyond the scope of it as well.
Therefore, in this study, we deal with the mathematical part of the data assimilation
marginally, and we focus more on ways the radar data can be used for data assimilation in
order to refine the initial conditions for convection permitting NWP models.

Weather radars provide us with data, which contain important information about the
ongoing state of the atmosphere as well as the development of convective cells. Research
and its performed applications of over the last 30 years have convincingly shown that the
radar data are very important for NWP models and their assimilation leads to substantial
improvements in forecasting of convective events [139].

Weather radars usually give two kinds of information: (i) radar reflectivity and (ii)
Doppler radial velocity. Assimilation of both kinds of radar data will be described in the
two following sections.

https://www.weather.gov/mdl/AutoNowCaster
https://www.ecmwf.int/en/research/data-assimilation
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5.1. Methods of Assimilation of Radar Reflectivity Data into a NWP

Radar reflectivity data do not belong to basic model quantities of NWP models. There-
fore, the immediately measured radar reflectivity data cannot be used in the assimilation
directly. However, the radar reflectivity data can be derived from basic model quanti-
ties. Currently, there are three basic methods assimilating radar reflectivity data into
NWP models.

5.1.1. Latent Heat Nudging (LHN)

Latent heat nudging (LHN) is a technique assimilating precipitation data into NWP
models. This technique uses radar data, possibly in conjunction with other data related to
precipitation, to estimate the observed precipitation. In locations where precipitation is
observed, the NWP model temperature is artificially increased in the vertical profile. This
approach stems from the knowledge that the majority of water vapor, which condenses
in clouds, is precipitated out [140]. Therefore, the vertically integrated latent heating rate
must be approximately proportional to the net precipitation rate due to the condensation
in cloud.

However, this principle does not allow for any quantitative description of the temper-
ature increase. In practice, it is possible to use the heating-profile lookup table, depending
on the intensity of observed precipitation. The heating-profile lookup table can correspond
to idealized temperature profiles, or they can be obtained from, e.g., statistically processed
historical data of an NWP model. These temperature profiles are available at every grid
point; however, they may not be appropriate for all the NWP models, because the change in
a given temperature profile definitely depends on applied cloud microphysics in the model.

Therefore, LHN techniques nowadays employ latent heating profiles from the run of
the applied NWP model, if it is available, and scale them using NWP model precipitation
rate and the observed precipitation rate in the particular area. This is the general principle
of LHN; however, in specific implementations, empirical parameters and procedures are
used. Thus, individual implementations of LHN differ [141,142].

The accuracy of the forecast of convective storms and the associated precipitation
significantly depend on the kind of convection and the specific situation. Therefore, the
lead time for which the assimilation of radar reflectivity data has a positive effect on
weather prediction significantly vary for individual cases and resolution of the model. In
general, it can be stated that the LHN positively influences the forecast for lead times of
about 6 h. For instance, Jones and Macpherson [143] showed that their scheme provided
a worthwhile increase in the skill of forecasting precipitation distribution in the first six
to nine hours of the forecast. Similar results were obtained by Stephan et al. [142], who
applied a revised LHN scheme in the COSMO NWP model. They showed that the model is
able to simulate precipitation patterns in good agreement with radar observations during
the assimilation and the first hours of the forecast, and they also proved a positive impact
of assimilation using LHN on screen-level parameters and on the long-term climatology of
the model.

5.1.2. Water Vapor Correction Method

A water vapor correction (WVC) method is very similar to the LHN method and to
inverse modelling methods described below, but it uses a nudging technique instead of
variational methods. WVC consists in adding or removing water vapor into or from the
model’s water vapor mixing ratio in a vertical profile. Supersaturation or subsaturation,
which can follow corrections of water vapor, results in the release or absorption of heat,
which invokes changes in the model temperature. The amount of added or removed
water vapor, which is performed in a vertical profile, is based on the difference between
forecasted precipitation and observed precipitation. However, quantitative expression of
WVC stems from experiments.

WVC technique was applied by Falkovich et al. [144] for the first time. Sokol and
Rezacova [145] modified the WVC technique and adapted it for precipitation nowcasting
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using a high resolution NWP model. Later, the WVC technique was even used for hail fore-
cast [119] and was also combined with extrapolation nowcasting of radar reflectivity [146].
The results indicated that the WVC technique can improve precipitation nowcasting of
severe convective storms for lead times of 2 to 3 h.

5.1.3. Inverse Modelling Technique

The inverse modelling technique consists of using the actual result of some measure-
ments to infer the values of the parameters that characterize the system. This procedure
uses the so-called forward operator (FO), which calculates the measured quantity using
the model variables.

Several mathematical techniques are currently used to find optimal to suboptimal
initial conditions in case of radar data: (i) three dimensional variational assimilation
(3DVar) [147], (ii) four dimensional variational assimilation (4DVar) [148,149], (iii) Ensemble
Kalman Filter (EnKF) [150], and (iv) hybrid ensemble–variational method (EnVar) [151].
Both 3DVar and 4Dvar are variational methods. 4DVar considers time and performs
optimization within time intervals, while 3DVar performs optimization at a given time
only. Moreover, 4DVar needs integrations of an adjoin model to make the optimization,
which is time consuming; therefore, EnKF has been employed. Recently, EnVar has been
developed, combining the best aspects of both the stand-alone ensemble-based method
and standalone variational method. The main advantage of EnVar as compared to 4DVar
is that EnVar does not use any adjoin model, which makes its implementation easier and
significantly speeds up its performance.

The reason for using 4Dvar, EnKF, or EnVar instead of 3Dvar is that 3Dvar uses a
static structure of the covariance error matrix, which is not realistic and negatively affects
the quality of initial conditions and subsequent predictions of the NWP model [152–154].
Numerous studies have shown that the flow-dependent background error covariances,
which are calculated and employed in 4Dvar, EnKF, and EnVar, provide better forecasts.

3Dvar was used for assimilation of radar reflectivity by Gao and Stensrud [155]
and Gao and Min [153]. Recently, 4Dvar and EnKF are used more often. For instance,
EnKF was used by Dowel et al. [156], Snook et al. [157], Yussouf and Stensrud [158],
and Johnson et al. [152], while 4Dvar was used recently by Sun and Crook [159] and
Caya et al. [160]. It should be mentioned that inverse modelling technique is frequently
used for assimilating both the radar reflectivity and the Doppler radial velocities.

The relationship between the standard model quantities and radar reflectivity is not
trivial. Therefore, different operators have been derived, which differ in their complexity
and depend on considered processes and assumed simplifications. As a rule, attenuation
of radar reflectivity is neglected in the operators, which is reasonable for data assimilated
from a C-band or a S-band weather radars. However, in the case of data measured by
X-band radars, the attenuation must be taken into account, either during measurement
processing or in the FO. The former case was studied by Snook et al. [157] who applied a
correction of the signal attenuation based on polarimetric differential phase [161].

Creating an FO can be avoided by converting the measured radar reflectivity data into
“pseudo-observations” such as relative humidity or mixing ratio of hydrometeors, which
are then assimilated into the model using one of the above described methods. Cloud water
and ice are the hydrometeors that are often neglected in the assimilation, since they are
considered to contribute only very little to the overall radar reflectivity [158]. The technique
utilizing pseudo-observations is frequently used because of its simplicity (e.g., [158]). On
the other hand, pseudo-observations can cause problems due to the strongly non-linear
relationship between radar reflectivity and mixing ratio of different hydrometeors. This
nonlinearity can, under certain conditions, disrupt the convergence of the variational
method and, as a consequence, lead to a wrong determination of initial conditions for the
NWP model [162]. Therefore, Wang and Wang [162] and later Duda et al. [163] suggested
and applied a technique where the radar reflectivity was introduced as a state variable
within the assimilation.
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The “pseudo-observations” approach is very similar to WVC described in Section 5.1.2;
however, here the applied variational methods are more sophisticated and more accurate
than the simple nudging applied in case of WVC.

It should be also noted that there are many publications describing experiments and
drawing conclusions using pseudo-observations, including those referenced here, while
publications assimilating observed data directly are less frequent [152,162].

5.2. Assimilation of Doppler Radial Velocity into a NWP

Assimilation of Doppler radial velocity is at least formally simpler than the assimila-
tion of radar reflectivity data. The reason is that the components of air velocity are NWP
model quantities and therefore, the derivation of a FO is simple. Thus, it is possible to
apply the assimilation methods given in Section 5.1.3 on Doppler radial velocity data.

When formulating the FO, it is only necessary to consider the terminal velocity of
hydrometeors, which affects the vertical component of measured velocity. Further, it is
necessary to pay attention to the dealiasing of measured Doppler radial velocity. The
measured Doppler radial velocity must be within an interval [−vmax, vmax], where vmax
is the Nyquist velocity. Real radial velocities exceeding the interval [−vmax, vmax] are
aliased. Thus, the dealiasing aims at determining actual (i.e., corrected) radial velocity.
There are a number of methods solving the aliasing in the data, but most of them are
based on comparison of measured radial velocities with velocities calculated from the field
obtained by a NWP model prediction [164–166].

In the assimilation of radial velocity data, one can apply similar methods as those
described in Section 5.1.3 for radar reflectivity data. Previously, 3Dvar and 4Dvar methods
were used in the radial velocity assimilation [152,154,155,159,160,167,168]. Recently, EnKF
and/or EnVar methods have prevailed [152,157,160,162,163,169–171].

Comparison of the results provided by individual methods does not give completely
clear results. However, there is a consensus that the 3Dvar method gives the worst results.
As for the radar reflectivity data, flow dependent background error covariance model is
considered to provide better initial conditions and better forecasts when the radial velocity
is assimilated [152,154,159,168]. Interesting results were shown by a recent paper [172] that
studied assimilation using radar radial wind and reflectivity data in an idealized setup
of the COSMO-KENDA system. The study showed that radial wind is more important
to reconstruct dynamical structure of supercells, but if only radial winds are assimilated,
a considerable amount of spurious convective cells is predicted. Thus, Zeng et al. [172]
concluded that both the radial winds and the radar reflectivity are important for data
assimilation, as they complement each other.

Comparison with other methods of data assimilation is usually case-based in liter-
ature. Thus, it is difficult to draw general conclusions. Further, diverse modifications
and interconnections of various methods are used in addition to the basic assimilation
approaches. While evaluating the assimilation methods, it is also necessary to consider the
time complexity of individual methods, which is important from the operational point of
view. We are therefore convinced that at present, it cannot be clearly stated which of the
assimilation methods is the best or most appropriate.

6. Using Radar Rainfall Data in Flash Flood Modeling

The benefits of using rainfall radar data in hydrological applications were not reached
effortlessly as one could have expected when this new spatially distributed data source
became available [173]. Berne and Krajewski [174] discussed several aspects of the chal-
lenges of using weather radar in hydrological modelling while arguing that the evidence
pointed to contradicting results regarding the improvements achieved by using radar-based
rainfall data on rainfall-runoff distributed models. Whereas many studies reported an
added value of the high resolution of radar rainfall data on hydrological applications,
some others did not find a significant improvement. Currently, many more investigations
have come to light and an updated overview of the use of radar rainfall on hydrology can
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be provided. Hereafter, the major radar-related topics on rainfall-runoff modelling and
streamflow forecasting will be covered to highlight the main approaches and concerns
that have been tackled in relation to the use of radar rainfall estimates. This section does
not entail an intensive documentation of all studies in the field of radar hydrology, but
rather a comprehensive review of the main topics that are discussed in the literature while
providing some relevant examples. Therefore, it aims to provide a general outline of current
investigations and challenges when dealing with radar data for hydrological applications
with a focus on rainfall-runoff modelling, particularly flash-flood forecasting.

6.1. Flash Flood Modelling Approaches Using Radar Data

There are three different approaches for rainfall-runoff modelling, including flood
forecasting, that have explored the usefulness of radar rainfall estimates. Those are process-
based, machine learning-based, and data-based mechanistic models.

Process-based models can represent the hydrological processes with different degrees
of detail, from small detail in lumped models (e.g., reservoir or tank models) to highly
detailed, physically based, distributed models. When radar data became available, lumped
models were preferred due to the low computational cost [175]. However, semi-distributed
and distributed models have become more attractive due to the enormous increase in
high computer power. Additionally, it is clear that the distributed nature of radar rainfall
can be better exploited with a distributed model [176]. Nevertheless, distributed models
are complex and have a large number of parameters that need to be calibrated in each
model cell, which produces a large uncertainty in modelling estimates (i.e., the equifinality
problem). Since all hydrological processes are represented in detail, distributed models
demand large amounts of distributed data sets: vegetation, topography, soils, land use,
and geology, to name a few. These data are seldom available at the scale of interest, which
limits the applicability of these models.

Another source of uncertainty comes from the selection of the initial conditions, mainly
the soil moisture conditions (SMC). To account for correct SMC, the model needs to include
a detailed soil map, the soils’ hydrological properties, and also distributed soil depths. Since
soils and their properties are highly variable in mountain catchments, and very difficult
and expensive to collect, the application of distributed models in mountain environments
faces a big challenge. The problem of SMC initialization in the model is more complex
for flash flood forecasting than for general rainfall-runoff modelling (as for hydrological
design or post-event analyses), as the model needs to have good initial conditions for
obtaining good results. Thus, each time the forecast is initialized (every few hours), the
forecasting system has to update its SMC, which can be highly demanding and subject to
uncertainty [177], although soil moisture assimilation strategies have proved successful in
distributed models [178]. Using distributed models remains challenging, although they
can benefit more from radar data. On the other hand, lumped models are used when there
is scarce spatially-distributed data and/or computer power is limited. In this case, radar
rainfall is aggregated at the basin scale (e.g., area-weighted mean of the overlaying radar
grid cells), losing the details of the rainfall fields. This can be slightly avoided when applied
in small catchments. Therefore, semi-distributed models are considered as a compromise
between lumped and distributed models, where it is still possible to capture some details
of the spatial variability while maintaining accessible data requirements. Here, the basin is
divided into subbasins, and in each of them a lumped model is used [179]. While there
are difficulties in the application of distributed models, there are modelling objectives that
can only be answered with them: hydrological impact of land use changes or discharge
forecasting in rapidly evolving catchments [180].

With the advent of artificial intelligence, the use of models based on machine learn-
ing (ML) models for rainfall-runoff mapping and discharge forecasting has dramatically
increased. These models are known for their outstanding performance, but also for their
complex training process and for being considered as black box models. Thus, model
parameters lack physical interpretation regarding the runoff processes. A comprehensive
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review of several ML algorithms used for flood forecasting using radar rainfall data is
provided by Mosavi et al. [181]. Besides the use of support vector machines, the authors
highlighted the use of a variety of Artificial Neural Networks (ANN) derived models, such
as neuro-fuzzy, adaptive neuro-fuzzy inference systems (ANFIS), wavelet neural networks
(WNN), and multilayer perceptron (MLP), as the more frequent models in the literature.
More sophisticated ML-based models such as genetic programming [182] have also been
explored with satisfactory results. Nonetheless, other ML-based models as those based on
decision trees (DT) are less complex algorithms that have just recently been explored by
using radar rainfall [183]. Even though many ML algorithms serve as black box models,
deep learning (DL) approaches have been demonstrated that are able to provide some
insights about the relations of the inputs that fed the model towards the discharge. It
should be of great advantage and interest to extract some knowledge of the rainfall-runoff
process by using these techniques as a reverse engineering strategy. Kratzert et al. [184]
performed a study using Long Short Term Memory (LSTM) ANN over 241 catchments
and showed the ability of this DL approach to learn long-term dependencies between the
inputs and the output of the model (e.g., those related to modelling storage effects) along
with the possibility to transfer process understanding from the regional to the local scale.
Recently, Xiang and Demir [185] proposed the use of DL for extending the forecast horizon
until five days on an hourly basis with promising results. Because there is a very recent
interest on the application of DL for discharge forecasting, it has been tested by using only
spatially distributed rainfall derived from dense rain gauges. Therefore, the benefits of
applying DL on radar rainfall for streamflow forecasting remain unknown.

Finally, data base mechanistic (DBM) models are another type of hydrological model
that combines a statistical definition of the rainfall-runoff model with a supervised opti-
mization of its parameters that ensures that the model parameters have a physical meaning.
DBM models have been less explored for rainfall-runoff modelling, but have also proven
to be efficient when using radar rainfall forecasts in small mountain catchments [186]. In
DBM models, radar data is aggregated as in a lumped model; thus, the distributed rainfall
fields are lost. On the whole, there is a major need for research on developing smart model
structures that are able to properly incorporate, as far as possible, the distributed nature of
radar rainfall data. Thus, taking advantage of radar data comes from a combined strategy
as a result of expert knowledge and the individual strengths of a hydrological model.

6.2. Uncertainty in Radar Estimates for Hydrological Modeling

Although radar-based precipitations estimates are known to provide significant spa-
tially distributed rainfall information, they are still subject to errors, which can notoriously
reduce hydrological model performances [187]. Radar rainfall estimation is a necessary
step for the use of spatially distributed rainfall on physically-based hydrological models.
Thus, as weather radar provides an indirect measurement of rainfall (i.e., reflectivity), the
transformation from reflectivity to rainfall implies many processes that add uncertainty to
the estimations. Despite the nature of ML-based models that would allow the mapping of
any input (independently of its physical meaning or interpretation) to an output, the vast
majority of studies that applied ML-based models for streamflow modelling or forecasting
also performed a radar rainfall retrieval process as a previous step to the modelling itself
in order to guarantee a proper quantitative representation of rainfall [183].

Quantification of uncertainty of radar estimates is of main importance, particularly
when using physically-based models. It is because the quantitative estimation of the radar
rainfall retrievals strongly influences model results. Studies with physically-based models
have focused on two main sources of uncertainty: uncertainty in rainfall input [188–190]
originated from the systematic errors produced in the process of Z–R transformation, and
uncertainty in model parameters [191,192]. Investigations on radar hydrology are more
frequently focused on rainfall input uncertainty.

In a trade-off between the added error of the radar rainfall derivation chain and the
improvement on the radar rainfall estimates, the bias adjustment by means of rain gauge
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networks has been extensively accepted for applications on radar hydrology, while efforts
have been made to reduce the negative effects of relative calibration on radar composites,
as in Seo et al. [193]. For instance, uncertainty in radar rainfall estimates was evaluated by
Seo et al. [188] using different radar rainfall products that differ on the data composition
(i.e., only radar-based product vs. rain gauge bias-adjusted radar product). The study
demonstrated the need for bias-adjusted radar estimates related to the Iowa Flood Studies
(IFloodS) experiment. Nonetheless, according to Paz et al. [194], the heterogeneous dis-
tributions of rain gauge networks for radar bias adjustment strongly affect the quality of
adjusted rainfall fields because of the fractality of the rain gauge network.

One strategy for evaluating the uncertainty of rainfall estimates is to use ensemble
models. Here, some changes in the configuration of the model (input source, model
parameters, or both) are carried out, and the corresponding model evaluation is performed,
as in Pomeón et al. [192]. A radar rainfall ensemble is the result of the application of an error
model, which may account for observed errors (i.e., as compared with rain gauges), spatial
and temporal dependences, and their marginal distribution, that reflects several possible
realizations on the rainfall field [189,190]. Thus, through the application of a hydrological
model by using different radar rainfall ensembles, it is possible to evaluate the radar input
uncertainty. Error models range from simple schemes that add a fixed Gaussian random
error and evaluate the radar rainfall ensembles on different hydrological models [195] to
more refined but also complex error models that include geostatistical approaches for the
generation of synthetic error fields [189] and non-Gaussian distributions [190].

Another approach that has been explored for quantifying the precipitation data un-
certainty when using spatial distributed rainfall is a Bayesian analysis that accounts for
influence of the length of the rainfall time series. For instance, Sikorska and Seibert [196]
evaluated different rainfall data sources: only gauge station, interpolated gauge station,
and radar-based precipitation in an alpine catchment by using different time series lengths
for the model calibration process. The authors found the radar-based precipitation was
more informative for the model, which derived in the higher accuracy. Thus, the evaluation
of ensemble models towards several realizations of probability distributions allow uncer-
tainty bands to be obtained, which exhibits the robustness of the model under induced
errors on the input radar data. Therefore, this is a powerful tool not only for researchers,
but also mainly for decision-makers using flood forecasting, which needs to be transferred
to early-warning operational systems.

Even though the measurement error of weather radar retrievals cannot be avoided,
the systematic error that comes from the Z–R transformation could be disregarded when
using raw reflectivity records as inputs for ML-based models. Very recently, Orellana-
Alvear et al. [183] demonstrated the suitability of using the native radar variable (reflec-
tivity) as input for a random forest model for discharge forecasting. Performance of the
model was comparable with the use of radar rainfall estimates, and therefore the authors
concluded that differences should be overlooked. It opened a new alternative for per-
forming discharge forecasting by using native radar data, which is extremely beneficial in
regions with sparse and uneven distributed rain gauge networks, that would reduce the
uncertainty of systematic errors.

6.3. Radar Spatial Resolution and Catchment Scale

The added value of a finer spatial resolution of radar imagery for hydrological models
is usually taken for granted. Thus, many studies have been conducted with the ob-
jective to identify the best radar spatial resolution for hydrological applications (e.g.,
Shakti et al. [197]). Results suggested that higher rainfall resolutions are relevant at smaller
catchment scales and mainly when rainfall events of high variability occur. For instance,
Thorndahl et al. [18], in their review, identified a reduced need of high resolution radar
rainfall for bigger urban catchments. As illustration, a comparison of the use of C-band
and X-band radar data as rainfall inputs for rainfall-runoff models was performed by
Paz et al. [198] in an urbanized catchment (3 km2) close to Paris. Results pointed to a
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better representation of X-band radar rainfall with a spatial resolution of 250 × 250 m2 at
3.41 min frequency in contrast to the 1 × 1 km2 spatial resolution of the C-band radar data
at 5 min frequency. Evaluation on a small (64 km2) mountainous catchment in the Italian
Alps confirmed the benefits on X-band spatial resolution data for peak simulation [199]. A
review paper of the effects of spatial and temporal variability on hydrological response
in urban areas was performed by Cristiano et al. [200]. The authors concluded from the
literature that physically-based models have become more specialized, and high-resolution
spatial rainfall data is of utmost need to take advantage of the models.

Furthermore, Cristiano et al. [201] introduced dimensionless scaling factors that reflect
the interactions between rainfall, its input resolution, and catchment on the hydrological
response in urban areas. The novelty of these scaling factors is that they allow the identifi-
cation of the needed rainfall resolution in order to reach a given level of accuracy in model
performance. Most studies (e.g., Anagnostou et al. [199]; Paz et al. [198]) in the literature
have performed an evaluation of the impact of the radar rainfall resolution (i.e., spatial
and temporal) in the hydrological response over a specific catchment, which impedes the
generalization of their results. In this context, it is still difficult to assess if the findings in
these studies respond to the size of the catchment, the variability of the rainfall event in
time and space, the particularities of the terrain, etc. Nonetheless, those that have been
able to reproduce their analysis on a wider scope have concluded that sensitivity of the hy-
drological models to different rainfall resolutions decreased when the size of the catchment
increased. For instance, Ochoa-Rodriguez et al. [17] performed an analysis of the impact of
different rainfall spatial (100–3000 m) and temporal (1–10 min) resolutions at seven urban
catchments that differ on the geomorphological characteristics of their locations by using
X-band polarimetric radar data. The authors found that a temporal resolution lower than
5 min is needed for performing an adequate hydrological modelling, whereas a spatial
resolution of 3 km (cartesian grid size) does not properly work for urban catchments.

Another relevant study that provided streamflow simulation evaluation by using a
quite diverse dataset of 3620 flood events that occurred over 181 catchments of a variety
of sizes and climate conditions was carried out by Lobligeois et al. [202]. Rather than
focusing on the evaluation of a combination of spatial and temporal resolutions or radar
data, this study used radar-based data with a fixed 1 km, 1-h resolution over a 10-year
period in France as input for a lumped and a distributed model. Results were analyzed
by considering catchment location and types of rainfall events (i.e., spatial variability of
rainfall). The authors found that both models, lumped and distributed, performed similarly
on the catchments in western France that are under oceanic climate conditions and thus
exhibit fairly uniform precipitation fields. In contrast, the spatially distributed rainfall
data was greatly beneficial to the model accuracy in southern France, where mountain
catchments with highly variable precipitation in space are located. Interestingly, in certain
regions, distributed models can outperform simpler models in certain periods of the
year (e.g., when rainfall fields are complex), while in other periods they do not; thus,
Loritz et. al. [176] propose the development of adaptive models as a way to exploit the
information of distributed rainfall while reducing the computational costs of modelling.

All in all, studies suggest that the combination of catchment biophysical characteristics
(e.g., land use, topography, soils), rainfall types (orographic, convective, stratiform), rainfall
variability in time and space, and modelling objectives (flash flood forecasting, hydrologic
design) determine the required radar spatio-temporal resolution and model complexity.

6.4. Usefulness of Blending Data and Ancillary Data

With the aim of improving the accuracy of rainfall-runoff modelling and discharge
forecasting, ancillary data that relates to the physical runoff processes are usually included.
Regularly, semi-distributed and distributed models already need additional geomorpho-
logical variables for an adequate model calibration. Nonetheless, additional information
that comes from rainfall forecasts, NWP, and more sophisticated blending techniques
of rainfall data have proven to enhance the performance of rainfall-runoff models and
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discharge forecasting by allowing the extension of the forecast horizon while using dif-
ferent modelling strategies. Ochoa-Rodriguez et al. [203] provided an in-depth review of
radar–rain gauge merging techniques by proposing an application-oriented categorization.
This classification accounted for radar bias adjustment methods, geostatistical methods
such as kriging techniques, and finally integration methods where neither radar nor rain
gauge data are considered as a primary data source, but a combination of both that extracts
the best information from each instrument is produced as a final result. From those, mean
field bias adjustment, kriging with external drift, and Bayesian merging were found the
most relevant techniques. These methods were reviewed by considering their use in urban
hydrology applications, and therefore they are a good starting point for evaluating their
effectiveness on rainfall-runoff modelling. Likewise, McKee and Binns [204] performed
a similar review but with a focus on near real-time application of gauge radar merging
methods in operational systems. Moreover, the inclusion of satellite-based soil moisture
estimations [177] or a related representation (e.g., a proxy based on rainfall accumulation)
in addition to the radar-based rainfall information, has satisfactorily improved runoff
modelling and discharge forecasting with distributed models [205].

Besides the blending of radar–rain gauge data, the inclusion of short-term radar
rainfall forecasts is an important strategy that has improved streamflow forecasting. For
instance, Heuvelink et al. [206] demonstrated that the use of radar rainfall nowcasting
improves the hydrological response, but also comes with the highest uncertainty in smaller
catchments. It was an expected result, since rainfall forecasts were found to diminish its
accuracy with increasing lead time. This effect also responded to other studies previously
mentioned where smaller catchments are usually associated with higher spatial variability
of rainfall. Heuvelink et al. [206] found that the best scenario of discharge forecasting
showed a gain of almost three hours more in advance than without rainfall nowcasting.

Finally, the use of Numerical Weather Predictions (NWP) as inputs for rainfall-runoff
modelling has gained much attention on the last years. Radar rainfall data can be used
for assimilation, thus forcing the generation of NWP, which would enhance its accuracy.
As NWP provide longer-term rainfall forecast, its use as input for discharge forecasting
has allowed not only the improvement the model performance, but also the increase
of the lead time forecasts. More sophisticated techniques may involve blending data
dynamically with changing weight functions. For instance, the combination of NWP
and radar-based predictions with corrections for orographic rainfall whose weights are
computed according to their expected skills can be found in Yu et al. [207]. A relevant
illustration of three operational early warning systems for flash flood forecasting in Europe
that showed the advantage of using a combination of different data sources is documented
in Alfieri et al. [208].

6.5. Post-Event Flash Flood Analyses

Radar data has been extensively used in studies of flash flood processes understand-
ing. Since heavy rainfall events—particularly in mountain areas—cannot be captured
by conventional rain gauge networks, radar data opened a whole new dimension to the
study of flash floods. Post-event analyses (e.g., Bouilloud et al. [209]; Marchi et al. [210])
or forensic hydrological (e.g., Bronstert et al. [211]; Borga et al. [212]) are studies that
reconstruct (flash) floods in an attempt to understand the triggering mechanisms and the
development of these extreme events; this new knowledge is then later used for developing
forecasting models. Under this scheme, forecast models can be improved or developed
further as to effectively simulate the flash flood processes given the detailed precipitation
input, but hydrological models can also serve as test beds to identify adjustments to radar
rainfall data (Borga et al. [213]; Seo et al. [193]). As an example, Javelle et al. [214] analyzed
the forecasting performance of a distributed model for different lead times in absence of
quantitative precipitation forecasting. Radar data was able to improve simulations for
short lead times; main limitations were attributed to both rainfall underestimation and the
modelling uncertainty.
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In summary, studying the combination of meteorological aspects, rainfall fields,
hydrological processes, hydrological modelling, and human activities (e.g., land use
change in floodplains) allows for an in-depth comprehension of flood events [211]. This
knowledge—together with social and infrastructure data—is crucial for flash flood risk
management [215]. Here, radar data has been key to understanding the impact of spatial
distribution of rainfall and its evolution along the event.

7. Conclusions

Weather radar measurements have enormous potential in hydrological applications,
though they are still not fully utilized. The main direction of current research is the effective
use of their high temporal and spatial resolution—it is assumed that the desired resolution
for small catchments, in particular the urbanized ones, should be up to 1 km (cartesian grid
size) and up to 5 min in space and time, respectively, and weather radar is the only device
that can provide such a high resolution.

However, the biggest limitation of the use of weather radar data for hydrological
applications is in their quality. More and more effective quality control algorithms are being
developed thanks to more advanced image processing techniques related to increasing
computing possibilities, including those based on machine learning. At the same time,
however, there are new challenges, such as those resulting from the increasing presence
of RLAN signals particularly disrupting weather radars operating in the most popular
C-band and those resulting from the negative impact of wind farms on radar measurements.
The radar errors are hard to diagnose and thus hard to remove completely. Thereby, data
from other measuring systems, rain gauge networks in particular, are used to improve
the radar-based quantitative precipitation estimation through either its adjustment or the
multi-source combination.

New perspectives appear with the increasingly better availability of weather radar
data from on board meteorological satellites in low Earth orbits, since such radars have
a completely different error structure than the common ground-based weather radars.
Moreover, crowdsourcing measurements become more and more popular, especially those
from private meteorological stations, as the data from private meteorological stations can
be a valuable supplement to national rain gauge networks and can be used for adjustment
of weather radar data or generation of multi-source estimates.

Methods for precipitation nowcasting for early warning against dangerous precipita-
tion are commonly used by meteorological services. These methods use current data and
process it using statistical methods and/or artificial intelligence methods, thus avoiding the
high time consumption of complex mathematical models used for medium-term weather
forecasts. The nowcasting models are computationally undemanding and do not require
large data sets. They usually give reasonable predictions for lead times up to 2 h with a
high frequency of calculations (e.g., every 10 min). The basic limitation of the nowcast-
ing methods is their limited accuracy for longer lead times, i.e., after a certain time, the
nowcasting methods can no longer compete with standard NWP models. The accuracy
of nowcasts depends strongly on the type of meteorological situation. For instance, in the
case of severe convection, nowcasting can give a reasonable forecast for 10 to 20 min only.

Various nowcasting procedures can be used, which differ in the kind of prediction:
(i) quantitative, (ii) categorical, (iii) probabilistic, and (iv) ensemble. Each kind of prediction
has its own advantages and disadvantages, but there is a clear tendency of considering
the uncertainty of methods in the development of methods, which leads to a preference
of ensemble or probabilistic prediction. Nevertheless, every user of a nowcasting method
should be aware that the parameters are determined subjectively, i.e., they are not of general
validity. Therefore, each nowcasting model should be tuned specifically for the area of
interest, and its properties should be considered if the model outputs are further used, e.g.,
in hydrological applications. All in all, despite fundamental shortcomings, the nowcasting
models are currently irreplaceable.
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Assimilation of data into NWP models is an important way to refine forecasts. Radar
data are very important for the forecast, as they contain detailed and spatially dense
information on hydrometeors in the atmosphere. It is obvious that both types of radar data,
i.e., radar reflectivity and Doppler radial velocity, are important for prediction of cloud
development and precipitation; however, it is not entirely clear whether the Doppler radial
velocity or the radar reflectivity is more important for assimilation. Recent studies have
suggested that assimilation of a particular type of data refines the prediction of only certain
processes. Therefore, it can be recommended to assimilate both types of radar data, which
appears to have complementary effect.

Several assimilation methods for radar data assimilation differ for radar reflectivity
and Doppler radial velocity. The difference is mainly due to the fact that the Doppler
radial velocity is a model quantity, while the reflectivity is a derived variable from model
quantities. The general tendency in data assimilation is the use of sophisticated methods,
which include features of the 4D variation method, but also the use of simplifications that
allow fast enough assimilation of the data. In parallel to these methods, techniques based
on the application of an ensemble Kalman filter are used and developed. Nevertheless,
applications of the nudging technique in conjunction with the assimilation of radar reflec-
tivity, such as latent heat nudging, have still occasionally appeared in literature, since they
are very efficient in terms of computational demands.

The use of radar rainfall data for flash flood modelling needs to be further exploited
by strategies that combine expert knowledge and the specific advantages and strengths
of different hydrological models. This would allow the development of smart model
structures that leverage the spatially distributed nature of radar data. Nonetheless, radar
imagery has proven to be already a key component to improve the understanding of flash
flood events and their development when used as reverse engineering. This knowledge is of
utmost importance for risk management related to the reduction of social and infrastructure
impacts of flash flood events.
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