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Abstract—Rainfall is vital in the biosphere and predicting it is essential under the possible adverse effects of climate change. Rainfall 

behavior is linked to the availability of fresh water and the development of almost all the activities necessary for human subsistence. 

Therefore, knowing their patterns under future scenarios could help decision-makers to plan water use policies. This study used the 

random forest algorithm to predict rainfall in Chanlud and El Labrado stations, located in the tropical Machángara high mountain 

basin in Ecuador. Data from the Ecuador project's third national communication (TNC) were used to train the prediction models. First, 

those models' performance was analyzed to know which climate model results of the TNC provide more information to learn observed 

rainfall patterns. Then, the rainfall signal was projected under the RCP 4.5 and 8.5 scenarios. Among the most important results 

obtained, it stands out that the assembly results of the TNC provided the best information to learn rainfall patterns in the present. The 

performance is the best from January to July, but from August to December it is lower. Rainfall projections under RCP 8.5 are, in 

general, lower than under RCP 4.5. No significant trends were found in the future. However, a very slight increase (decrease) of rainfall 

was observed for the driest (wettest) months in both stations, although slightly more accentuated in El Labrado.  
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I. INTRODUCTION

Rainfall prediction is essential to decide mitigation plans in 
a possible scenario of climate change. Since rainfall is one of 
the most significant freshwater sources, knowing its future 
availability is crucial to developing water use policies. 
Moreover, possible future changes in rainfall patterns could 
impact agriculture and the production of hydropower plants 
with negative economic results. These impacts could be a 
more tangible reality in countries with fragile irrigation 
systems whose energy production is based mainly on 
hydroelectric generation. If it is possible to anticipate such 
changes, decision-makers could develop plans that counteract 
adverse effects or propose policies of water use based on 
scientific evidence. 

Climate models are the most used tools to simulate future 
climate. They are mathematical models representing the 
general circulation of the planet and assemble different 

climate system components (e.g., atmosphere, cryosphere) to 
predict its behavior under different scenarios of greenhouse 
gases, e.g., RCP 4.5 and 8.5. Their spatial resolution varies 
from 1° to 3° (approx. 111 to 333 km), which has been 
sufficient to propose hypotheses about the change in climate 
dynamics on a global scale. 

Climate model results are presented at different time scales, 
e.g., daily or monthly. Different time scales may help to
understand different processes that act under different
phenomena. For example, weather systems act on a daily
scale or atmospheric blocking weekly [1]. Rainfall on a high
temporal resolution could help predict extremes (e.g., floods),
which often result in human deaths. On the other hand, the
prediction of rainfall in a lower temporal resolution, for
example, monthly, would be helpful to carry out plans to
control the catchment of water in dams. However, climate
model results do not represent rainfall variability, especially
the high spatiotemporal variability of high mountain zones.

1903



Prediction of rainfall is a complex task in high mountain 
zones, like the tropical Andean ones. In these regions, the high 
spatiotemporal variability is poorly represented by climate 
models, especially on a daily scale. Different efforts have 
been made for downscaling rainfall data and use these to 
perform predictions. Two main approaches have been used in 
downscaling, namely, dynamical and statistical downscaling 
[2]. These two approaches were used in the Third National 
Communications of Ecuador on Climate Change (TNC) [3] to 
produce a high spatial resolution of climate variables in the 
present, including rainfall. Additionally, the TNC generated 
high spatial-resolution climatic projections for 2011-2040, 
2041-2070, and 2071-2100 under two scenarios of 
greenhouse gases, the RCP 4.5 and 8.5. These data can be 
leveraged to predict rainfall based on machine-learning 
models that learn patterns between climatic variables in the 
present and simulate the future using the climatic projections 
of the TNC. 

This study predicts rainfall of a high mountain tropical 
Andean basin located in Ecuador on a sub-monthly scale. 
Specifically, the objectives are as follows: 

 to investigate which results from the climate models of 
the TNC content more information to learn rainfall 
patterns to boost the prediction of the prediction models, 

 to find out the performance of the prediction models in 
each month, and 

 to use the best performing models to predict rainfall 
under the RCP 4.5 and 8.5 scenarios, investigating 
trends and possible changes in seasonality. 

II. MATERIALS AND METHODS 

A. Study area 

The study area is the Machángara basin in southern Ecuador 
(Fig. 1), close to Cuenca, considered the third most important 
city in the country. The basin is essential for freshwater 
supply and industrial activities. The altitude of the basin 
varies from 2440 to 4420 m a.s.l. [4], [5]. This accentuated 
gradient is a characteristic of the Ecuadorian mountain range. 
Rainfall observations are available in two stations in the 
Machángara Alto and Chulco river sub-basins [6], namely, 
Chanlud and El Labrado stations. The seasonality of rainfall 
in the two stations is shown in Fig. 2a. April is the wettest 
month in the Chanlud and El Labrado stations, whereas 
August is the driest month. 

B. Climate models 

The TNC project selected climate models from the Coupled 
Model Intercomparison Project, phase 5 (CMIP5) [7], to 
perform downscaling. In this study, the results of the 
dynamical downscaling from the TNC project are used. 

 
Fig. 1 Location of the study area and the two stations where rainfall data is 
available, Chanlud and El Labrado. 

 

Fig. 2 a) Seasonality of rainfall observations in Chanlud and El Labrado 
stations and b) the relation between daily rainfall observations and 
simulations of the assembly model. 
  

1904



The dynamical downscaling was performed using the 
Weather Research and Forecasting model (WRF) version 
3.6.1 [8]. Table I shows the models on which the data used in 
the study are based; additionally, an ensemble of the models 
used in the TNC project and explained in Porras et al. [9]. 

TABLE I 
CLIMATE MODELS ON WHICH THE DATA USED IN THE STUDY ARE BASED. 

Model Center Country 
Assembly TNC Ecuador 
IPSL-CM5A-MR Institut Pierre-Simon 

Laplace 
France 

CSIRO-Mk3-6-0 CSIRO Atmospheric 
Research 

Australia 

GISS-E2-R NASA/Goddard 
Institute for Space 
Studies 

USA 

MIROC-ESM Japan Agency for 
Marine-Earth Science 
and Technology, 
Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), 
and National Institute 
for 
Environmental Studies 

Japan 

C. Data 

Available daily rainfall observations from the Chanlud and 
El Labrado stations span from 1981 to 2018 (38y). However, 
the historical results from the models of the TNC are available 
from 1981 to 2005 (25y). Therefore, the latter period was used 
to train and test the machine learning models to learn present 
patterns. For this, daily data of eight variables shown in Table 
II were used to predict rainfall observations. The data of 
variables shown in Table II has a resolution of 10 km. The 
same variables are used in the projections of rainfall. 

TABLE II 
CLIMATIC VARIABLES OF THE TNC MODELS USED AS PREDICTORS OF 

RAINFALL OBSERVATIONS IN THE PRESENT AND FOR THE PROJECTIONS. 

Variable Description Units 

hr Relative humidity at the 
surface 

% 

precip Total precipitation mm/day 

rad Surface downwelling 
shortwave radiation 

W/m2
 

tmax Maximum temperature Degree Celsius 
(°C) 

temp Average temperature °C 

tmin Minimum temperature °C 

u10m Eastward near-surface wind m/s 

v10m Northward near-surface 
wind 

m/s 

 
For rainfall prediction in Chanlud and El Labrado, the data 

of the TNC (models in Table I) for RCP 4.5 and 8.5 scenarios 
were used. The prediction is performed for the period 2021-
2070 (50y). Due to the complex dynamic processes 
controlling rainfall in the study area, climate models cannot 
satisfactorily reproduce daily rainfall [10], [11]. To evidence 
this fact in the TNC data, Fig. 2b shows the relation between 
observed rainfall and the assembly model's total precipitation 

(precip in Table II). Neither in Chanlud nor El Labrado, the 
results of the assembly model can assimilate rainfall on a high 
temporal resolution. 

In early attempts to model rainfall on a daily scale, the 
results were quite poor because of the low ability of climate 
models to simulate observations. Even the assembly model's 
precipitation variable (which is expected to be similar to the 
observations) presents a correlation lower than 0.13 in both 
stations (Fig. 2b). Therefore, an aggregation of the data was 
carried out. In this way, a balance between the performance 
of the prediction models and a low temporal resolution was 
satisfied. 

Rainfall observations and data of variables in Table II. 
were aggregated, averaging values of 15 days to represent the 
intermediate day. Specifically, for a daily time series X = {X1, 
X2, …, Xn} of n data, the aggregation results in another daily 
time series Y = {Y1, Y2, …, Yn} where 

�� = 1� + 7 � 	

���

 if 1 ⩽ � < 8
�� = 115 � 	


���
��� if 8 ⩽ � ⩽ � − 7

�� = 1� − � + 8 � 	

�

��� if � − 7 < � ⩽ �
 (1) 

D. Random Forest 

The random forest (RF) algorithm [12] is a perturb-and-
combine technique based on an assembly of decision trees [13] 
to boost a prediction. Decision trees commonly have high 
variance and tend to present overfitting. In the RF algorithm, 
each decision tree is formed with a subset of input variables 
at each node to decrease the variance. Moreover, each tree is 
built using a randomly selected sample of the training subset. 

RF has become popular in climate and meteorology due to 
its efficiency when tackling big datasets and of high 
dimensionality [14]–[16]. Moreover, the algorithm allows for 
estimating the importance of the different input variables [17]. 
Different hyperparameters can be optimized when training a 
model based on RF [18], [19]. Three of the most important 
ones are the number of trees tested in the forest, the maximum 
depth of the trees, and the number of features to consider 
when splitting the data. 

E. Settings and Workflow 

In order to generate the instances for training the prediction 
models and posterior prediction, the time series of the eight 
variables in Table II are extracted from the nearest pixel to the 
location of the stations. Moreover, four different time series 
are extracted to provide information on nearby locations (for 
each variable). These locations correspond to 11 pixels north, 
11 pixels south, 11 pixels east, and 11 pixels west, 
representing approximately a radius of 100 km or one degree 
around the Chanlud and El Labrado stations. In this way, five-
time series are extracted from the results of climate models 
for each station. 

In order to leverage past and posterior information in the 
prediction of rainfall, lagged information of the predictor 
variables (the five-time series) was also added to form the 
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instances used in RF. Lags of 15 and -15 days were used, 
resulting in instances containing (aggregated) information 
from 22 days before to 22 days after the day of the rainfall 
value due to the data aggregation explained earlier. Finally, 
each instance is formed of 120 predictor values (five-time 
series for each of the eight variables of Table II × the lagged 
values) and the rainfall value as the target value. 

An RF-based model was trained for each month. To train a 
model for a specific month, the information for that month 
was used together with that of the previous and subsequent 
month. This decision was made in order to help the algorithm 
learn the season-specific relationships between the predictors 
and rainfall. This prevents the information from another 
station from becoming noise since this information could 
correspond to relationships that are tied to seasonality. Since 
five climate models (Table I) were used, the total number of 
prediction models was 60. 

When training the RF-based prediction models for each 
month, the information taken into account is divided to use 
80% of the data for training the models and 20% for testing 
the performance of the trained models on fresh data. The 
following values were used in a random grid search 5-folds 
cross-validation fashion [20] to optimize the hyperparameters 
of the models: 

 Number of trees in the forest: 90, 128, 181, 256, 362, 
512, 724, 1024, and 1448. 

 Maximum depth of the tree: 20, 35, 50, 65, 80, 95, 110, 
and until all leaves are pure or until all leaves contain 
<2 samples. 

 The number of features to consider when looking for 
the best split: the square root of the number of input 
variables, the log2 of the number of input variables, 
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80, 90%, and 
100% of the number of input variables. 

After testing the performance of the 60 trained models, the 
climate model whose data shows the best RF-based prediction 
is used to predict the rainfall in Chanlud and El Labrado under 
the two RCP scenarios. 

F. Performance metrics 

Given the daily rainfall time series Y = {Y1, Y2, …, Yn} 
and the predicted time series Ŷ = {Ŷ1, Ŷ2, …, Ŷn}, four 
performance metrics, independent of the data scale, were 
calculated (first four one listed below). Moreover, two of the 
most commonly used metrics (dependent on data scale) were 
also calculated to compare with other future studies. 

1) Nash-Sutcliffe Efficiency: The Nash-Sutcliffe 
Efficiency coefficient (NSE) [21] is commonly used to assess 
the performance of hydrological models but also in assessing 
predictive rainfall models [22]. It is defined as follows:  

��� = 1 − ∑ ��
 − ��
� �∑ �
� − !"#�$�% (2)

where mean (Y) is the mean of the time series Y. 
The value range of NSE goes from −∞ to 1. NSE = 1 means 

a perfect match, NSE = 0 indicates that the mean of the 
observations is as good as the prediction, and NSE < 0 
indicates a model performing worse than using the mean of 
the observations. 

2) Kling-Gupta Efficiency: Kling-Gupta Efficiency 
(KGE) [21] is commonly used in the context of hydrological 
modeling. It is a decomposition of NSE and is based on 
analyzing the relative importance of variability, linear 
correlation, and the bias ratio between Y and Ŷ. It is defined 
as &'� = 1 − ($) − 1% + $* − 1% + $+ − 1%  (3)

where r is the Pearson's correlation coefficient 

* = ,�-����,�-$�% (4)

and 

+ = ∑ ��
�∑ �
�  (5)

The KGE ranges from -∞ to 1. The closer to 1, the more 
accurate the model is. 

3) Percent Bias: The percent bias (PBIAS) measures how 
much the mean trend of the simulated values is higher or 
lower than the observed ones. It is defined as 

./01� = 100 × ∑ ��
 − ��
�� ∑ �
�  (6)

The range of |PBIAS| goes from 0 to ∞. The optimal value is 
zero, while positive (negative) values indicate a tendency to 
overestimate (underestimate) the simulated values. 

4) Mean Absolute Relative Error: The Mean Absolute 
Relative Error (MARE) measures how much error exists 
relative to the observed data. The error is computed in 
absolute terms as defined next 

415� = ∑ ��
 − ��
�� ∑ �
�  (7)

The values of MARE ranges from 0 to ∞ being 0, the 
optimum measure. 

5) Root Mean Square Error: The Root Mean Square 
Error (RMSE) is the square root of the quadratic mean of the 
differences between simulated and observed values, defined 
as 

54�� = 61� ���
 − ��
� �
  (8)

The RMSE range goes from 0 to ∞ being 0 the optimum 
value. 

6) Mean Absolute Error: The Mean Absolute Error 
(MAE) measures the absolute errors between the simulated 
and observed values. It is defined as 

41� = 1� ���
 − ��
��
  (9)

The MAE range goes from 0 to ∞ being 0 the optimum value. 

7) Model Comparison Metric: For values NSE > 0, KGE > 
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0, |PBIAS| ˂ 100, and MARE ˂ 1, the model comparison 
metric (MCM) was defined combining NSE, KGE, PBIAS, 
and MARE as follows: 
 

474 = ��� × &'� × 81 − ./01�100 9 $1 − 415�% (10)

 

This metric helps in the intercomparison of models in 
general terms. The optimum value of MCM is 1, and the 
worse is 0. 

III. RESULTS AND DISCUSSION 

The complete list of results is shown in the appendix. In 
this section, only the MCM is used to compare the 
performance of the RF-based prediction models. Once the 
climate model whose results give the best predictive 
information is chosen, those results are used to present rainfall 
predictions in the future. 

Fig. 3 shows the performance (MCM metric) of the 
prediction models throughout the 12 months for Chanlud  (Fig. 
3a) and El Labrado (Fig. 3b). Fig. 3 also allows comparing the 
performance of the prediction models using the results of the 
five climate models of the TNC (Table I). In general terms, 
the performance reached for Chanlud surpasses that of El 
Labrado except for the RF-based models that use the MIROC-
ESM results in August (Fig. 3b). 

 

 

Fig. 3 Performance of the RF-based models to predict rainfall each month in 
a) Chanlud and b) El Labrado. The MCM metric values are shown with 
different lines for the different model results used.  

 

In both stations, the RF-based prediction models perform 
better using the results of the assembly model from the TNC. 
Using those results, the performance of the prediction models 
is notably better than the model IPSL-CM5A-MR, whose 
results present the next best performance when using RF. 
These results show that the assembly of results must be the 
first option when choosing a single climate model for learning 
patterns between the predictor variables (Table II) and the 
rainfall observations in the Machángara basin. 

A remarkable feature that can be noticed in both Chanlud 
and El Labrado is the low performance of the RF-based 
models in April, the wettest month of the year (see Fig. 2b). 
This evidences that information of the predictors is not 
enough to learn rainfall patterns when rainfall values are the 
highest. 

On the other hand, the best performance in the prediction 
is reached in May in both Chanlud and El Labrado. In general, 
the prediction models based on all the climate models present 
the same behavior. May is the month when the most 
pronounced wettest season begins to decline. 

When analyzing the results corresponding to all the climate 
models except the assembly, the decrease of performance in 
August is notorious. This behavior is more pronounced for the 
El Labrado than Chanlud; for example, it is evident in the 
results based on MIROC-ESM data in Fig. 3b. August is the 
driest month (see Fig. 2b). However, it is not possible to 
present a general conclusion about the relationship between 
performance and the rainfall amount. In some cases, worse 
results are shown in October when the second less 
pronounced wet season appears. 

Fig. 4 shows the prediction of rainfall under the RCP 4.5 and 
8.5 scenarios for Chanlud (Fig. 4a) and El Labrado (Fig. 4b). 
Moreover, the figure shows the linear trends for the whole 
time series and the wettest and driest months. For both 
Chanlud and El Labrado, rainfall projections in the wettest 
season under the RCP 8.5 scenario are under the values 
projected under the RCP 4.5 scenario. This is verified from 
the trend lines of the wettest month. Likewise, the annual 
trend lines show that, in general, under RCP 8.5, a decrease in 
the amount of rainfall water is projected compared to the 
projection under the RCP 4.5 scenario. Regarding the months 
with the lowest rainfall, approximately the same rainfall is 
projected under both RCP scenarios. 

The annual trends in Fig. 4 do not show a wide variation in 
the rainfall amount as the century progresses. However, the 
wettest months (RCP 4.5 and 8.5) trend shows a slight 
decrease in rainfall towards 2070, although it cannot be 
considered significant. This decrease is only slightly more 
pronounced for El Labrado. In the same way, there exists a 
very slight progressive increase (not significant) in the rainfall 
amounts of the driest months. The trend on the driest months 
has a slightly more pronounced slope in the projections under 
the RCP 8.5 scenario. 
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Fig. 4 Prediction of rainfall based on the assembly model data from 2021 to 2070 under the RCP 4.5 and 8.5 scenarios for a) Chanlud and b) El Labrado. The 
straight lines correspond to linear trends of the annual prediction, the prediction of the wettest months (months of April), and the prediction of the driest months 
(months of August). 

 
To analyze possible changes in the seasonality of rainfall 

under the two future scenarios, Fig. 5 shows the differences 
between the seasonality of the observations (present) and 
RCP 4.5 and 8.5. In general, rainfall increases during most of 
the year in both Chanlud (Fig. 5a) and El Labrado (Fig. 5b) 
stations. The exceptions are February, October, and 
November, when a decrease is projected in both stations. 
February is the month when the wettest season starts, and 
October and November are the months when the second peak 
of rainfall is present. 

 

Fig. 5 Seasonality of rainfall observations and predictions under the RCP 4.5 
and 8.5 scenarios for a) Chanlud and b) El Labrado. The seasonality of 
observations is calculated after the aggregation process, explained in section 
2.3. 

The most accentuated change of the rainfall pattern is 
shown for Chanlud (Fig. 5a). After the wettest season (Mar-
May) peak, a very high increase in rainfall is projected during 
June and July, especially under the RCP 4.5 scenario. This is 
particularly interesting because July is one of the two months 
with the highest performance (Fig. 3a). This fact implies a 
certain level of confidence in the projection. 

In El Labrado, an accentuated increase in June and July as in 
Chalud is not shown (Fig. 5b), but the same pattern of increase 
from March to September and decrease from October to 
December is present. However, it is necessary to consider that 
the RF-based models had worse performance during October-
December (Fig. 3). 

IV. CONCLUSION 

Rainfall is essential in many anthropogenic activities and 
is vital in the water cycle. Projecting rainfall is important for 
anticipating mitigation measures under possible negative 
scenarios and leveraging water based on scientific evidence. 
In this study, the random forest algorithm was used to predict 
rainfall in two stations located in the Machángara basin. 
Complex meteorological processes condition rainfall in this 
tropical Andean basin. 

The performance of RF-based models determines that the 
assembly model of the TCN contains more information to 
learn patterns of rainfall behavior than the four other models 
analyzed. The assembly model shows the best performance 
from January to July, then the performance declines. In 
Chanlud and El Labrado, May is the month with the best 
prediction, just after the wettest month when the performance 
decreases. 

The prediction of rainfall under RCP 4.5 and 8.5 scenarios, 
using the data of the assembly model, is presented. A slightly 
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progressive decrease of rainfall in the wettest months is 
projected, although not significant, more accentuated for the 
El Labrado station. Likewise, a slight increase of rainfall is 
projected for the driest months, a little more accentuated (and 
not significant) under the RCP 8.5 scenario. When comparing 
the seasonality of predicted rainfall and observations, there is 
a systematic increase of rainfall during January and March-
September in Chanlud and El Labrado. However, in Chanlud 
there is a considerable increase in June and July under the 
RCP 4.5 scenario, contrary to the El Labrado. On the other 
hand, February, October, and November show a rainfall 
decrease. The results presented here could be leveraged to 
choose a climatic model from the TCN to study climate in 
Ecuador. The results show that the methodology used in the 
TCN to deploy the assembly model boosts the information of 
individual models to learn rainfall patterns. 
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APPENDIX 

 

TABLE III 
PERFORMANCE OF THE RF-BASED MODELS TO PREDICT RAINFALL EACH MONTH IN CHANLUD BASED ON THE CLIMATE MODELS DATA OF THE TNC. THE METRIC 

VALUES IN BOLD CORRESPOND TO THE MODEL WHOSE DATA ALLOWED RF TO OBTAIN THE HIGHEST PERFORMANCE EACH MONTH (ONE VALUE IN BOLD FOR EACH 

MONTH). THE SHADED VALUES CORRESPOND TO THE MONTH IN WHICH RF OBTAINED THE BEST PERFORMANCE BASED ON THE RESULTS OF EACH CLIMATE 
MODEL (ONE SHADED VALUE FOR EACH CLIMATE MODEL). 

   Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

NSE CSIRO-Mk3-6-0 0.88 0.87 0.86 0.86 0.87 0.86 0.88 0.87 0.87 0.88 0.88 0.86 

 Assembly 0.90 0.91 0.90 0.89 0.89 0.87 0.89 0.89 0.88 0.86 0.89 0.87 

 GISS-E2-R 0.89 0.88 0.86 0.86 0.87 0.86 0.88 0.88 0.87 0.88 0.86 0.87 

 IPSL-CM5A-MR 0.88 0.91 0.88 0.88 0.89 0.86 0.88 0.88 0.87 0.88 0.88 0.86 

  MIROC-ESM 0.88 0.87 0.85 0.85 0.88 0.87 0.87 0.84 0.87 0.86 0.87 0.86 

KGE CSIRO-Mk3-6-0 0.75 0.72 0.73 0.72 0.78 0.76 0.77 0.73 0.77 0.75 0.76 0.73 

 Assembly 0.77 0.79 0.80 0.77 0.82 0.77 0.81 0.75 0.78 0.77 0.74 0.74 

 GISS-E2-R 0.77 0.75 0.72 0.71 0.77 0.73 0.76 0.75 0.77 0.72 0.71 0.74 

 IPSL-CM5A-MR 0.76 0.79 0.79 0.76 0.79 0.74 0.77 0.78 0.75 0.75 0.74 0.71 

  MIROC-ESM 0.73 0.73 0.73 0.72 0.79 0.73 0.79 0.72 0.75 0.73 0.75 0.74 

PBIAS CSIRO-Mk3-6-0 -0.88 0.81 0.42 1.44 0.87 1.73 0.61 1.76 1.00 -0.88 0.04 -0.76 

 Assembly -0.44 0.70 0.37 1.67 -0.01 0.85 0.02 0.99 0.70 -2.91 0.58 -0.30 

 GISS-E2-R -1.67 0.61 -0.48 1.96 0.08 1.00 0.98 1.82 0.33 -0.94 0.27 -0.67 

 IPSL-CM5A-MR -1.33 0.42 0.45 1.05 -0.22 0.65 0.20 1.68 0.17 -1.84 -0.20 -0.38 

  MIROC-ESM -0.93 1.11 -0.07 1.53 -0.40 0.74 -0.58 2.02 0.68 -0.19 0.86 -0.31 

MARE CSIRO-Mk3-6-0 0.16 0.16 0.14 0.13 0.14 0.13 0.15 0.15 0.16 0.17 0.16 0.18 

 Assembly 0.14 0.13 0.12 0.12 0.12 0.13 0.14 0.14 0.16 0.17 0.16 0.17 

 GISS-E2-R 0.16 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.16 0.17 0.18 0.17 

 IPSL-CM5A-MR 0.15 0.12 0.12 0.13 0.13 0.14 0.15 0.15 0.16 0.16 0.16 0.18 

  MIROC-ESM 0.16 0.15 0.15 0.14 0.13 0.14 0.15 0.16 0.16 0.18 0.17 0.17 

RMSE CSIRO-Mk3-6-0 0.69 0.80 0.86 0.88 0.78 0.69 0.52 0.51 0.58 0.72 0.77 0.77 

 Assembly 0.64 0.66 0.73 0.79 0.72 0.66 0.50 0.48 0.56 0.78 0.75 0.72 

 GISS-E2-R 0.68 0.75 0.86 0.88 0.77 0.68 0.53 0.50 0.58 0.74 0.85 0.72 

 IPSL-CM5A-MR 0.68 0.64 0.78 0.81 0.73 0.70 0.54 0.50 0.58 0.71 0.79 0.77 

  MIROC-ESM 0.69 0.78 0.87 0.91 0.74 0.67 0.55 0.57 0.59 0.78 0.81 0.74 

MAE CSIRO-Mk3-6-0 0.54 0.61 0.65 0.65 0.56 0.45 0.38 0.37 0.43 0.54 0.59 0.58 

 Assembly 0.49 0.50 0.55 0.57 0.51 0.44 0.36 0.35 0.43 0.56 0.58 0.54 

 GISS-E2-R 0.53 0.55 0.65 0.67 0.56 0.47 0.39 0.35 0.43 0.56 0.64 0.54 

 IPSL-CM5A-MR 0.51 0.48 0.56 0.61 0.54 0.48 0.40 0.37 0.44 0.52 0.59 0.57 

  MIROC-ESM 0.54 0.60 0.67 0.67 0.56 0.46 0.40 0.40 0.44 0.59 0.61 0.55 

MCM CSIRO-Mk3-6-0 0.55 0.52 0.53 0.53 0.58 0.56 0.58 0.53 0.56 0.55 0.56 0.51 

 Assembly 0.59 0.62 0.63 0.59 0.64 0.58 0.62 0.57 0.57 0.54 0.55 0.53 

 GISS-E2-R 0.57 0.57 0.53 0.52 0.58 0.54 0.56 0.55 0.56 0.52 0.50 0.53 

 IPSL-CM5A-MR 0.56 0.63 0.61 0.58 0.60 0.54 0.57 0.57 0.55 0.54 0.54 0.50 

  MIROC-ESM 0.54 0.53 0.53 0.52 0.60 0.55 0.58 0.50 0.55 0.52 0.54 0.53 
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TABLE IV 
THE SAME AS IN TABLE III BUT FOR EL LABRADO. 

 El Labrado Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

NSE CSIRO-Mk3-6-0 0.88 0.87 0.87 0.87 0.87 0.90 0.89 0.86 0.88 0.89 0.87 0.87 

Assembly 0.90 0.91 0.90 0.90 0.91 0.90 0.89 0.88 0.88 0.88 0.88 0.88 

GISS-E2-R 0.88 0.87 0.86 0.86 0.88 0.88 0.89 0.87 0.88 0.88 0.86 0.88 

IPSL-CM5A-MR 0.90 0.90 0.89 0.89 0.90 0.89 0.86 0.86 0.89 0.88 0.87 0.88 

MIROC-ESM 0.88 0.88 0.88 0.88 0.90 0.88 0.87 0.83 0.87 0.86 0.86 0.86 

KGE CSIRO-Mk3-6-0 0.76 0.74 0.73 0.73 0.79 0.81 0.78 0.75 0.78 0.75 0.75 0.74 

Assembly 0.79 0.79 0.82 0.77 0.82 0.80 0.79 0.76 0.79 0.77 0.73 0.73 

GISS-E2-R 0.75 0.75 0.73 0.71 0.77 0.76 0.77 0.78 0.79 0.73 0.71 0.74 

IPSL-CM5A-MR 0.78 0.77 0.79 0.76 0.82 0.79 0.76 0.75 0.78 0.75 0.75 0.74 

MIROC-ESM 0.75 0.74 0.76 0.74 0.81 0.77 0.76 0.70 0.76 0.72 0.73 0.75 

PBIAS CSIRO-Mk3-6-0 -0.48 0.09 -0.25 1.31 0.53 0.56 -0.13 1.64 0.97 -0.65 -0.11 -1.38

Assembly -0.62 0.14 -0.55 1.11 -0.10 0.38 -0.33 1.34 0.45 -2.10 -0.09 -1.34

GISS-E2-R -0.72 -0.17 -0.73 1.75 -0.03 0.49 0.43 1.44 0.23 -0.63 -0.18 -1.60

IPSL-CM5A-MR -0.97 -0.07 -0.98 0.65 -0.42 0.16 0.16 1.50 0.02 -1.36 -1.00 -1.87

MIROC-ESM -0.53 0.40 -0.77 0.87 -0.89 0.17 -0.68 2.01 0.31 -0.40 0.22 -1.25

MARE CSIRO-Mk3-6-0 0.15 0.15 0.14 0.14 0.14 0.13 0.15 0.15 0.16 0.16 0.16 0.17 

Assembly 0.14 0.13 0.12 0.12 0.12 0.13 0.14 0.14 0.16 0.16 0.16 0.16 

GISS-E2-R 0.16 0.15 0.14 0.14 0.14 0.14 0.15 0.15 0.16 0.17 0.17 0.16 

IPSL-CM5A-MR 0.14 0.14 0.12 0.13 0.13 0.14 0.16 0.16 0.17 0.16 0.16 0.17 

MIROC-ESM 0.16 0.15 0.14 0.13 0.13 0.14 0.16 0.17 0.17 0.18 0.17 0.17 

RMSE CSIRO-Mk3-6-0 0.67 0.76 0.78 0.80 0.73 0.54 0.44 0.47 0.58 0.69 0.75 0.71 

Assembly 0.61 0.63 0.66 0.69 0.62 0.54 0.43 0.43 0.58 0.71 0.73 0.69 

GISS-E2-R 0.68 0.76 0.81 0.81 0.71 0.60 0.44 0.45 0.59 0.72 0.79 0.67 

IPSL-CM5A-MR 0.62 0.68 0.70 0.72 0.64 0.55 0.48 0.47 0.57 0.70 0.75 0.69 

MIROC-ESM 0.67 0.74 0.75 0.77 0.66 0.58 0.48 0.52 0.62 0.76 0.79 0.73 

MAE CSIRO-Mk3-6-0 0.51 0.57 0.59 0.62 0.52 0.38 0.33 0.32 0.42 0.52 0.56 0.54 

Assembly 0.46 0.48 0.50 0.55 0.46 0.38 0.31 0.31 0.41 0.52 0.56 0.51 

GISS-E2-R 0.53 0.56 0.62 0.63 0.53 0.42 0.33 0.31 0.42 0.54 0.62 0.51 

IPSL-CM5A-MR 0.46 0.51 0.52 0.58 0.49 0.41 0.36 0.33 0.42 0.51 0.57 0.53 

MIROC-ESM 0.52 0.58 0.59 0.60 0.50 0.41 0.35 0.37 0.44 0.57 0.61 0.52 

MCM CSIRO-Mk3-6-0 0.57 0.55 0.55 0.54 0.59 0.64 0.59 0.54 0.57 0.55 0.55 0.52 

Assembly 0.61 0.63 0.65 0.61 0.65 0.63 0.60 0.57 0.58 0.55 0.54 0.53 

GISS-E2-R 0.55 0.56 0.53 0.52 0.59 0.57 0.58 0.57 0.58 0.53 0.50 0.54 
IPSL-CM5A-MR 0.60 0.60 0.62 0.59 0.64 0.61 0.55 0.53 0.57 0.55 0.54 0.53 

MIROC-ESM 0.55 0.55 0.57 0.56 0.62 0.59 0.55 0.47 0.55 0.51 0.52 0.53 
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