

Facultad de Ciencias Químicas Carrera de Ingeniería Ambiental

"MODELAMIENTO HIDRÁULICO Y DE LA CALIDAD DEL AGUA EN UN SISTEMA DE SUMINISTRO DE AGUA POTABLE EN UNA ZONA RURAL DEL CANTÓN AZOGUES"

Trabajo de titulación previo a la obtención del título de Ingeniero Ambiental

Autores:

Juan José Priori Dávila C.I: 0104927439 Correo electrónico: juanjopriori@hotmail.com

Holguer Emmanuel Acurio Vargas C.I: 0302877501 Correo electrónico: emmanuelacurio@hotmail.es

Director: Fausto Fernando García Ávila. C.I:0301454617

> Cuenca, Ecuador 20 - Diciembre - 2021

Resumen:

Actualmente las redes de distribución de agua deben mantener concentraciones de cloro residual mayor a 0.5 mg/L según lo recomendado por García et al. (2020) en tiempo de pandemia por SARS-CoV-2, sin embargo, en zonas rurales la falta de herramientas tecnológicas es un factor limitante al momento de comprender los procesos de distribución de agua y decaimiento de cloro residual, siendo necesario el desarrollo de un modelo hidráulico y de calidad. El objetivo de este trabajo de titulación fue desarrollar un modelo hidráulico y un modelo de la calidad del agua para cloro libre en el sistema de distribución de agua potable operado por la junta de agua potable Bayas, usando el programa Epanet para simular y evaluar el comportamiento hidráulico de la red y la evolución de cloro libre a través del tiempo. El modelo hidráulico se desarrolló a partir de la información catastral recolectada en el año 2018 sumado a las actualizaciones realizadas en el tiempo en el que se realizó este estudio en el software Epanet 2.0, el modelo en cuestión fue calibrado y validado con el fin de obtener valores cercanos a los encontrados en la red de abastecimiento. Del modelo hidráulico resultante se elaboró un modelo de decaimiento de cloro residual en base al cálculo de la constante de reacción del cloro con el agua k_b, determinado mediante la prueba "bottle test", la constante de reacción con la pared del tubo kw ingresada al programa se tomó de una investigación similar realizada en la zona urbana de Azogues. Los resultados del modelo hidráulico resaltaron la existencia de presiones superiores a lo estipulado en la normativa ecuatoriana, además de tramos de tubería de la red con sobredimensionamiento de diámetros. Por otra parte, del modelo de calidad se desprenden valores simulados cercanos a la realidad, además de permitir calcular una concentración óptima de cloro residual en el tanque de distribución, que satisfaga los límites ya mencionados en tiempo de pandemia por SARS-CoV-2. Finalmente, los resultados de este trabajo destacan que los modelos matemáticos reproducen de manera confiable el comportamiento de una red de abastecimiento, además de ser posible implementar un modelo hidráulico y de calidad en una zona rural.

Palabras clave: Modelo hidráulico. Cloro residual. Epanet. Red de distribución de agua potable. Simulación.

Abstract:

Currently, water distribution networks must maintain residual chlorine concentrations greater than 0.5 mg / L as recommended by García et al. (2020) in times of a SARS-CoV-2 pandemic. However, in rural areas the lack of technological tools are a limiting factor when understanding the processes of water distribution and residual chlorine decay, making it necessary to develop a hydraulic and quality model. The objective of this investigation was to develop a hydraulic model and a water quality model for free chlorine prediction in the drinking water distribution system operated by the Bayas drinking water administration, Epanet had been used to simulate and evaluate the hydraulic behavior and the evolution of free chlorine over time. The hydraulic model was developed from the information collected in 2018, added to the updates made in the period of time to date in the Epanet 2.0 software, the model in question was calibrated and validated in order to obtain close values to those found in the supply network. From the resulting hydraulic model, a residual chlorine decay model was elaborated based on the calculation of the constant reaction of chlorine with water (k_b), determined by the "bottle test", the reaction constant with the wall of the tube (k_w) entered in the program was taken from a similar investigation carried out in the urban area of Azogues. The results of the hydraulic model highlighted the existence of higher pressures than those stipulated in the Ecuadorian regulations, as well as oversized diameters in some sections of the pipe network. On the other hand, the quality model gives off close simulated values to reality. In addition, the calculation of an optimal concentration of residual chlorine in the distribution tank has reached, which satisfies the limits already mentioned in times of a SARS-CoV-2 pandemic. Finally, the results of this work demonstrated that the mathematical models could reproduce the behavior of a water supply network, additionally it is possible to implement a hydraulic and quality model in a rural area.

Keywords: Hydraulic model. Free chlorine. Epanet. Water distribution network. Simulation.

TABLA DE CONTENIDOS

INTRODU	JCCIÓN	. 19
Diagnóstic	o del problema y justificación	. 19
Objetivos.		. 21
Objetivo	o General:	. 21
Objetivo	os específicos:	. 21
Junta admi 1.REVISI	inistradora de agua potable "Bayas" ON DE LITERATURA	. 21
1.1. Bre	ve reseña histórica de la modelización de una RDAP	. 23
1.2. Pota	abilización	. 24
1.2.1.	Agua potable	. 24
1.3. Tec	nología de desinfección	. 25
1.3.1.	El cloro como desinfectante	. 25
1.3.2.	Dosificación de cloro	. 26
1.3.3.	Cloro libre residual	. 26
1.4. Sist	ema de distribución de agua potable.	. 28
1.4.1.	Variables hidráulicas en una red de distribución de agua potable	. 28
1.4.2.	Tipos de redes de distribución	.29
1.5. Mod	delación matemática en redes de distribución.	. 29
1.5.1.	Modelo hidráulico	. 29
1.5.2.	Modelo de disminución de cloro residual	. 31
1.6. Soft	tware Epanet 2.0.	. 34
1.6.1.	Ecuaciones usadas por Epanet para el modelo hidráulico	. 34
1.6.2.	Coeficiente de rugosidad	. 35
1.6.3.	Pérdidas menores	. 36
1.6.4.	Ecuaciones usadas por Epanet para el modelo de calidad	. 37
1.6.5.	Ventajas de Epanet	. 38
1.6.6.	Componentes de una red física en Epanet	. 38
17 Mo	delación de la disminución de cloro residual en zonas rurales	42
2.MATER	RIALES Y MÉTODOS	.43
2.1. Áre	a de estudio	. 43
2.2. Plan	nta de tratamiento de la JAPB	. 44
2.3. Car	acterización de la red de distribución de agua potable de la JAPB.	. 46
2.4. Mod	delación hidráulica de la red de distribución.	. 47
2.4.1.	Construcción de un modelo de la red	. 47
2.4.2.	Asignación de parámetros de la red de distribución	. 47
2.4.3.	Asignación de consumos	. 49

2.4.4.	Calibración del modelo	54
2.4.5.	Análisis del modelo	57
2.5. Ela 2.5.1.	boración del modelo de decaimiento de cloro residual Identificación de puntos de muestreo	58 58
2.5.2.	Medición de cloro residual	59
2.5.3.	Determinación del orden de la reacción	60
2.5.4.	Determinación de k _b	60
2.5.5.	Determinación de k _w	61
2.5.6.	Simulación inicial del modelo de decaimiento de cloro	61
2.5.7.	Calibración	61
2.5.8.	Validación	63
2.5.9.	Análisis de sensibilidad de los parámetros influyentes en el modelo	64
2.6. An	álisis estadístico	64
3.RESU	TADOS Y DISCUSIÓN	66
3.1. Ca	racterísticas físicas de la red y componentes	66
3.1.2	Tabla actualizada de componentes de la red identificación y caracterí	sticas
5.1.2.	ruora actualizada de componentes de la rea, raemineación y caracteri	67
3.2 Ev	aluación del modelo hidráulico	68
3.2. Lv 3.2.1.	Demanda base del área cubierta por la red	68
3.2.2.		
	Modelo hidráulico resultante de Epanet	73
3.2.3.	Modelo hidráulico resultante de Epanet Simulación inicial	73 73
3.2.3. 3.2.4.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo	73 73 77
3.2.3.3.2.4.3.2.5.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo	73 73 77 81
3.2.3.3.2.4.3.2.5.3.2.6.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo Análisis del modelo hidráulico calibrado y validado	73 73 77 81 83
3.2.3.3.2.4.3.2.5.3.2.6.3.2.7.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo Análisis del modelo hidráulico calibrado y validado Rendimiento de la red	73 73 77 81 83 92
 3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7. 3.2.8. 	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo Análisis del modelo hidráulico calibrado y validado Rendimiento de la red Red optimizada	73 73 77 81 83 92 92
3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7. 3.2.8. 3.3. Ev 3.3.1.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo Análisis del modelo hidráulico calibrado y validado Rendimiento de la red Red optimizada aluación del modelo de disminución de cloro residual Monitoreo de cloro residual 102	73 73 77 81 83 92 92 102
3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7. 3.2.8. 3.3. Ev 3.3.1. 3.3.2.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo Análisis del modelo hidráulico calibrado y validado Rendimiento de la red Red optimizada aluación del modelo de disminución de cloro residual Monitoreo de cloro residual 102 Determinación del orden de la reacción	73 73 77 81 83 92 92 102 104
3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7. 3.2.8. 3.3. Ev 3.3.1. 3.3.2. 3.3.3.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo Análisis del modelo hidráulico calibrado y validado Rendimiento de la red Red optimizada aluación del modelo de disminución de cloro residual Monitoreo de cloro residual 102 Determinación del orden de la reacción Obtención de k _b	73 73 77 81 83 92 92 102 104 105
3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7. 3.2.8. 3.3. Ev 3.3.1. 3.3.2. 3.3.3. 3.3.4.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo Análisis del modelo hidráulico calibrado y validado Rendimiento de la red Red optimizada aluación del modelo de disminución de cloro residual Monitoreo de cloro residual 102 Determinación del orden de la reacción Obtención de k _b	73 73 77 81 83 92 92 102 104 105 109
3.2.3. 3.2.4. 3.2.5. 3.2.6. 3.2.7. 3.2.8. 3.3. Ev 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5.	Modelo hidráulico resultante de Epanet Simulación inicial Calibración del modelo Validación del modelo Análisis del modelo hidráulico calibrado y validado Rendimiento de la red Red optimizada aluación del modelo de disminución de cloro residual Monitoreo de cloro residual 102 Determinación del orden de la reacción Obtención de k _b Obtención de k _w	73 73 77 81 83 92 92 102 104 105 109 110

3.3.7.	Validación	
3.3.8.	Análisis de Sensibilidad	
3.3.9.	Optimización de los niveles de cloro residual en la red	
4.CONCI	LUSIONES Y RECOMENDACIONES	
5.BIBLIC	OGRAFIA	
6.ANEXO	DS	

Índice de tablas

Tabla 1. 23	Aportes destacados a partir de 1985 en materia de modelación hidráulio	ca.
Tabla 2	Efectividad y pH favorable de componentes de cloro residual	27
Tabla 3	Fórmulas usadas por Enanet para el cálculo de A y B	35
Tabla 4	Coeficientes de pérdidas menores	36
Tabla 5	Tipos de válvulas consideradas por Enanet	40
Tabla 6	Parámetros de entrada y resultados de simulación	41
Tabla 7	Componentes físicos de la RDAP	46
Tabla 8	Nivel de rendimiento y sus índices determinantes	10
Tabla 9	Estratos determinados y número de muestras asignadas	
Tabla 10	Codificación de las líneas principales su proveniencia zona de	
abastecim	counteación de las inicas principales, su proveniencia, zona de	62
Tabla 11	Componentes físicos actualizados de la RDAP	02
Tabla 11	(Continuación) Componentes físicos actualizados de la RDAP	
Tabla 17	Eactores de consumo de agua potable por sector	69
Tabla 12.	Consumo determinado por micromedición para cada sector de la red	69
Tabla 14	Caudal invectado a la red de distribución	05
Tabla 15	Cálculo demanda base	
Tabla 16	Resumen del modelo hidráulico	72
Tabla 17	Errores cuadráticos medios entre valores simulados y medidos previo a	73 1 1a
calibració	n del modelo hidráulico	75
Tabla 17	(Continuación) Errores cuadráticos medios entre valores simulados y	15
medidos r	revio a la calibración del modelo hidráulico	76
Tabla 18	Porcentaie de conexiones a monitorear por sector	76
Tabla 19	Informe de presiones en la calibración del modelo	78
Tabla 20	Resultados de eficiencia de calibración	80
Tabla 21	Informe de presiones de validación	
Tabla 22	Resultados de eficiencia de validación	
Tabla 23.	Caudales presentes en la red a las 8:00 am y 03:00 am.	
Tabla 24.	Resultados de velocidades a las 8:00 am y 03:00 am	
Tabla 25.	Rango de presiones presentes en la red de distribución de agua potable	a
las 8:00 au	m v 3:00 am.	91
Tabla 26.	Válvulas reductoras de presión ingresadas a la red.	93
Tabla 27.	Valores previos y posteriores al uso de la bomba calculados a las 8:00	am
del prime	r día.	99
Tabla 28.	Valores de cloro residual en mg/L obtenidos en los puntos de monitore	0
durante lo	os 6 meses de control	102
Tabla 29.	Análisis de resultados obtenidos en los puntos de monitoreo.	103
Tabla 30.	Ejemplo del cálculo de orden de reacción de dos muestras	104
Tabla 31.	Valores de k _b obtenidos por estación, mes y muestra	107
Tabla 32.	Valor mensual de k _b , temperatura del agua y pH	108
Tabla 33.	Comparación de valores de cloro residual medidos y simulados a las 2:	:00
pm.	113	
Tabla 34.	Informe calibración con k _w igual a 0.04 día ⁻¹ .	114
Tabla 34.	(Continuación) Informe calibración con kw igual a 0.04 día ⁻¹	115

Tabla 35. Informe de calibración post modificación de k _b y k _w en tubería "L3	
AMARILLO".	116
Tabla 36. Resultados de eficiencia de calibración	117
Tabla 37. Informe de validación.	117
Tabla 37. (Continuación) Informe de validación.	118
Tabla 38. Influencia porcentual de kb y kw en la concentración de cloro en el nov	do
J218 a las 02:00 pm.	120
Tabla 39. Intervalo de concentraciones y sus porcentajes de nodos a distintas	
concentraciones iniciales en el tanque de distribución principal a las 8:00 am	121
Tabla 40. Intervalo de concentraciones y sus porcentajes de nodos a distintas	
concentraciones iniciales en el tanque de distribución principal a las 3:00 am	122
Tabla 41. Intervalo de concentraciones y sus porcentajes de nodos a las 8 am y 3	3 am.
Considerando una estación de recloración	126

Índice de Figuras

Figura 1.	Componentes físicos de una red de distribución	39
Figura 2.	Ubicación del área de cobertura de la red "Aurelio Bayas Martínez"4	43
Figura 3.	Proceso de potabilización de la planta de agua de JPAB: (a) entrada de	
agua a la p	olanta (b) coagulación y floculación (c) sistema de cloración (d) tanque de	e
almacenar	niento	45
Figura 4.	Parámetros de entrada de los componentes ingresados en Epanet	48
Figura 5.	Ventana de edición de patrón de demandas	49
Figura 6.	Obtención de lista de nodos de la red.	50
Figura 7.	Mapa de red, predios construidos y nodos reconocidos por Epanet	51
Figura 8.	Asignación de predios a nodos.	52
Figura 9.	Registro de datos para la obtención de informe de calibración	55
Figura 10.	Opción de Epanet para emitir informe de calibración	55
Figura 11.	Puntos de monitoreo distribuido en el area de cobertura de la red	59
Figura 12.	Líneas asignadas para la distribución del agua diferenciadas	63
Figura 13.	Mapa actualizado de la red de distribución de la JPAB.	66
Figura 14.	Variación de consumo horario	71
Figura 15.	Valores de presión día 1 a las 12:00 PM	74
Figura 16.	Valores de caudal día 1 a las 12:00 PM	77
Figura 17.	Comparación de presiones observadas en campo y calculadas post –	
calibració	1	80
Figura 18.	Caudales entrantes y salientes en los tanques de distribución secundarios	
de Señor d	le Flores	84
Figura 19.	(a) Mapa de caudales a las 8:00 am y (b) mapa de caudales a las 03:00 ar	n.
-		
85		
85 Figura 20.	(a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las	
85 Figura 20. 03:00 am.	(a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87	
85 Figura 20. 03:00 am. Figura 21.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución	89
85 Figura 20. 03:00 am. Figura 21. Figura 22.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución Presión a las 03:00 am (demanda baja) 	89 90
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). 	89 90 90
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución	89 90 90 93
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. 	89 90 90 93 94
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25. Figura 26.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. 	89 90 93 94 95
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25. Figura 26. Figura 27.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. 	89 90 93 94 95 95
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25. Figura 26. Figura 27. Figura 28.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. 	89 90 93 94 95 95 95
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25. Figura 26. Figura 27. Figura 28. Figura 29.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. 	89 90 93 94 95 95 96 96
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25. Figura 26. Figura 27. Figura 28. Figura 29. Figura 30.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. 	89 90 93 94 95 95 96 96
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 24. Figura 25. Figura 26. Figura 27. Figura 28. Figura 29. Figura 30. simulada p	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. 	89 90 93 94 95 95 96 96 1 97
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25. Figura 26. Figura 27. Figura 28. Figura 29. Figura 30. simulada p 98	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. 	89 90 93 94 95 95 96 1 97
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 24. Figura 25. Figura 26. Figura 27. Figura 28. Figura 29. Figura 30. simulada p 98 Figura 31.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 9, su mapa de contorno vs. (b) red Grupo 4, simulada post - modificaciones 9, su mapa de contorno. Grupo 4, simulada post - modificaciones 9, su mapa de contorno. 	89 90 93 94 95 95 96 1 97 97
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25. Figura 26. Figura 26. Figura 27. Figura 28. Figura 29. Figura 30. simulada p 98 Figura 31. Figura 32.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 8, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 9, su mapa de contorno vs. (b) redoversio a modificaciones y su mapa de contorno. Grevio a modificaciones y su mapa de contorno. Grupo de presión en nodos previo a modificaciones. Grupo de presión en nodos post – modificaciones. 	89 90 93 94 95 96 1 97 98 98
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 24. Figura 25. Figura 26. Figura 27. Figura 27. Figura 28. Figura 29. Figura 30. simulada p 98 Figura 31. Figura 32. Figura 33.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 8, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 9, su mapa de contorno vs. (b) redoversio a modificaciones y su mapa de contorno. Grupo de presión en nodos post – modificaciones. Grupo de modificaciones de la bomba ingresadas al editor de curvas de Ep	89 90 93 94 95 96 1 97 98 98 98
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 24. Figura 25. Figura 26. Figura 27. Figura 28. Figura 29. Figura 30. simulada p 98 Figura 31. Figura 32. Figura 33. Figura 34.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 8, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 9, su mapa de contorno vs. (b) redover 0, su modificaciones 9, su mapa de contorno vs. Frecuencia de presión en nodos post – modificaciones. Grupo 4, simulada con la adición de la bomba y su mapa de contorno vs. Redover 0, su mapa de contorno vs. 	89 90 93 94 95 96 1 97 98 98 99
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 25. Figura 26. Figura 26. Figura 27. Figura 28. Figura 29. Figura 30. simulada p 98 Figura 31. Figura 32. Figura 33. Figura 34. simulada c	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 8, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 9, su mapa de contorno vs. (b) recorevio a modificaciones y su mapa de contorno vs. (b) recorevio a modificaciones de la bomba ingresadas al editor de curvas de Epanet. Red simulada con la adición de la bomba y su mapa de contorno vs. Red con modificaciones de diámetros y VRPs y su mapa de contorno. 	89 90 93 94 95 96 1 97 98 98 99 98 99 90
85 Figura 20. 03:00 am. Figura 21. Figura 22. Figura 23. Figura 24. Figura 24. Figura 25. Figura 26. Figura 27. Figura 27. Figura 28. Figura 29. Figura 30. simulada p 98 Figura 31. Figura 32. Figura 33. Figura 34. simulada c Figura 35.	 (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 87 Variabilidad de cotas en la red de distribución. Presión a las 03:00 am (demanda baja). Presión a las 08:00 am (demanda alta). Grupo de modificaciones 1. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 7, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 8, sustitución de tuberías sobredimensionadas. Grupo de modificaciones 9, su mapa de contorno vs. (b) recorevio a modificaciones y su mapa de contorno vs. Frecuencia de presión en nodos previo a modificaciones. Grupo de simulada con la adición de la bomba y su mapa de contorno vs. Red con modificaciones de diámetros y VRPs y su mapa de contorno. Grupo de simulada con la adición de nodos post – ingreso de bomba. Grupo de simulada con de nodos post – ingreso de bomba. 	89 90 93 94 95 95 96 1 97 98 98 99 90 00

Figura 37. Ajuste exponencial para obtención de k_b por muestra para febrero 106
Figura 38. Modelo de calidad con valores de concentración en mg/L de cloro residual
a las 2:00 pm
Figura 39. Modelo de calidad de cloro residual a las 2:00 pm112
Figura 40. Comparación de valores de calidad simulados y observados en el campo. 114
Figura 41. Comparación de valores observados y calculados en la etapa de
validación118
Figura 42. Sensibilidad de la concentración de cloro ante cambios en los parámetros
k _b y k _w . 120
Figura 43. Mapa de la red con distintas concentraciones en el tanque principal a las
8:00 am: (a) 0.5 mg/L; (b) 1 mg/L; (c) 1.5 mg/L; (d) 2 mg/L 124
Figura 44. Mapa de la red con distintas concentraciones en el tanque principal a las
3:00 am: (a) 0.5 mg/L; (b) 1 mg/L; (c) 1.5 mg/L; (d) 2 mg/L 125
Figura 45. Mapa de concentración de cloro residual en mg/L con sus valores en
nodos con estación de recloración128
Figura 46. Mapa de concentración de cloro a las 8:00 am en nodos con estación de
recloración
Figura 47. Mapa de contorno de cloro a las 8 am

Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Holguer Emmanuel Acurio Vargas en calidad de autor y titular de los derechos morales y patrimoniales del trabajo de titulación "MODELAMIENTO HIDRÁULICO Y DE LA CALIDAD DEL AGUA EN UN SISTEMA DE SUMINISTRO DE AGUA POTABLE EN UNA ZONA RURAL DEL CANTÓN AZOGUES", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art, 144 de la Ley Orgánica de Educación Superior.

Cuenca, 20 de diciembre del 2021

20tc

Holguer Emmanuel Acurio Vargas C.I: 0302877501

Cláusula de Propiedad Intelectual

Holguer Emmanuel Acurio Vargas, autor del trabajo de "MODELAMIENTO HIDRÁULICO Y DE LA CALIDAD DEL AGUA EN UN SISTEMA DE SUMINISTRO DE AGUA POTABLE EN UNA ZONA RURAL DEL CANTÓN AZOGUES", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 20 de diciembre del 2021

1 mmiller

Holguer Emmanuel Acurio Vargas C.I: 0302877501

Cláusula de licencia y autorización para publicación en el Repositorio Institucional

Juan José Priori Dávila en calidad de autor y titular de los derechos morales y patrimoniales del trabajo de titulación "MODELAMIENTO HIDRÁULICO Y DE LA CALIDAD DEL AGUA EN UN SISTEMA DE SUMINISTRO DE AGUA POTABLE EN UNA ZONA RURAL DEL CANTÓN AZOGUES", de conformidad con el Art. 114 del CÓDIGO ORGÁNICO DE LA ECONOMÍA SOCIAL DE LOS CONOCIMIENTOS, CREATIVIDAD E INNOVACIÓN reconozco a favor de la Universidad de Cuenca una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos.

Asimismo, autorizo a la Universidad de Cuenca para que realice la publicación de este trabajo de titulación en el repositorio institucional, de conformidad a lo dispuesto en el Art, 144 de la Ley Orgánica de Educación Superior.

Cuenca, 20 de diciembre del 2021

VAN TOPRIORI

Juan José Priori Dávila C.I: 0104927439

Cláusula de Propiedad Intelectual

Juan José Priori Dávila, autor del trabajo de "MODELAMIENTO HIDRÁULICO Y DE LA CALIDAD DEL AGUA EN UN SISTEMA DE SUMINISTRO DE AGUA POTABLE EN UNA ZONA RURAL DEL CANTÓN AZOGUES", certifico que todas las ideas, opiniones y contenidos expuestos en la presente investigación son de exclusiva responsabilidad de su autor.

Cuenca, 20 de diciembre del 2021

VAN

Juan José Priori Dávila C.I: 0104927439

AGRADECIMIENTO

En conjunto, agradecemos a nuestros familiares y amigos por el apoyo, motivación y ejemplo, este es el primer escalón y seguiremos subiendo.

A nuestros docentes por los conocimientos y experiencia compartidos. A nuestro tutor de tesis Ing. García por la oportunidad, paciencia y guía; su experiencia y experticia nos permitió avanzar con confianza y seguridad.

A la Junta de Agua Potable de Bayas, por permitirnos desarrollar nuestra tesis en su empresa, brindarnos los datos e implementos necesarios. Además, estaremos siempre agradecidos con el Sr. Gallegos, el tiempo, información y experiencia que compartió con nosotros fueron vitales para la consecución de los objetivos planteados.

Los autores.

DEDICATORIA

Con orgullo, agradecimiento y sinceridad dedico mi tesis a mis seres queridos, quienes me han guiado, aconsejado y fortalecido en todo momento, sea satisfactorio o complicado.

Con especial énfasis a mis padres Adriana y Juan Pablo, su apoyo ha sido incondicional, ejemplar y estaré por siempre agradecido y en deuda. A mi abuela Eleonor mi segunda madre, ejemplo de resiliencia y amor. A mi abuelo Quirino, quién demostró que para influir positivamente en un niño no es necesario estar para siempre, solo reír, hablar y mirarte con cariño y respeto el tiempo que estés es suficiente.

A Claudia, mi amiga, enamorada y compañera, tú me has guiado hasta aquí y espero ser tu apoyo siempre que lo necesites, así como tú lo has sido para mí. A mí siempre pequeña hermana Paula, tu fortaleza y corazón son gigantes.

A todos, gracias.

Juan José Priori Dávila.

DEDICATORIA

A todas las personas quienes contribuyeron con esta ardua pero posible tarea, y me brindaron todo su apoyo para nunca decaer durante este proceso, gracias por todo.

Holguer Emmanuel Acurio Vargas.

INTRODUCCIÓN

Diagnóstico del problema y justificación

Diversos autores, indican que la calidad del agua para consumo humano en las redes de distribución de agua potable (RDAP) es un tema que concierne a todas las sociedades por su relación con la salud pública, justificando el amplio desarrollo de los modelos de decaimiento de cloro libre para mejorar la calidad del agua (Maul et al., 1985; Momba et al., 2000; Zhang & DiGiano, 2002; Camper et al., 2003; Woolschlager et al., 2005)

Factores que influyen en el deterioro de la calidad del agua potable dentro de los sistemas de distribución son: la edad del agua, el tipo de tratamiento, la calidad del agua tratada en el momento que ingresa al sistema de distribución, el tipo de material de la tubería, el crecimiento bacteriano y la pérdida de desinfectante residual (Patel, 2015).

El empleo de modelos de predicción se está convirtiendo rápidamente en una necesidad cada vez más urgente en la gestión de la calidad del agua potable, ya que, el control de los niveles de cloro libre y el conocimiento del funcionamiento de la RDAP permite grandes ahorros de toda índole, incluso sobre reparaciones de emergencia o no programadas (Lancey & Mays, 1990).

En los últimos años, ha crecido la necesidad de generar información y herramientas analíticas que permitan mejorar el sistema de distribución de agua potable en la ciudad de Azogues (Guanuchi & Ordoñez, 2017). Rojas (2015), planteó que los procesos del sistema de agua potable de Azogues necesitan ser modelados para entenderlos con mayor claridad y mejorar su eficiencia. Mendez & Valdiviezo (2018), realizaron el catastro de la red de distribución que abastece de agua potable a la parroquia Bayas, cantón Azogues como parte de su trabajo de titulación, exhibiendo la dependencia y necesidad de que las juntas de agua potable, empresas públicas o privadas deban integrar métodos y herramientas tecnológicas que permitan mejorar la gestión del recurso vital. Quevedo (2015), indicó que es indispensable usar la geo información existente de la red de distribución para crear modelos que permitan mejorar los procesos de gestión de la red. García (2019), realizó un modelo de decaimiento de cloro residual en la red de

distribución de agua administrada por la empresa pública de agua potable y alcantarillado de Azogues (EMAPAL – EP).

En zonas rurales las juntas de agua potable (JAPs), generalmente, actúan de manera reactiva ante las emergencias ocasionadas por una deficiente calidad del agua, sobre todo por ausencia de cloro residual. Uno de los parámetros que se debería monitorear para evaluar la calidad del agua es el cloro residual, el mismo que debería estar en una concentración de entre 0.3 y 1.5 mg/l con el propósito de mantenerla libre de contaminantes, ya sean químicos o agentes de otro tipo que causen efectos nocivos al ser humano (INEN, 2011). La mayoría de las JAPs tienen limitación de recursos, tanto humano como financiero, es así que no disponen de personal técnico para realizar monitoreos periódicos de la calidad de agua en la RDAP.

El análisis de cloro residual en una RDAP es esencial, dado que, el cloro es usado comúnmente como agente desinfectante en la mayoría de las plantas de tratamiento de agua potable (Baker, 2016). A su vez, mantener la concentración de cloro residual dentro del rango recomendado por la Organización Mundial de la Salud (OMS) es vital, debido al riesgo que conlleva transportar agua con un nivel menor a los valores mínimos permisibles de desinfectante que permita garantizar su inocuidad. En contraste, se debe controlar que no exista un exceso de este desinfectante que represente un riesgo para los usuarios del servicio (Baker, 2016; Monteiro et al., 2014).

Para predecir las variaciones de la calidad del agua en redes de distribución, se han desarrollado modelos matemáticos, razón por la cual, es indispensable desarrollar un modelo hidráulico y de calidad del agua que permita conocer el funcionamiento hidráulico de la RDAP, así como la calidad del agua suministrada por la RDAP. Según García et al. (2019), el modelamiento matemático es fundamental al momento de implantar una red de distribución de agua potable. La supervisión del comportamiento hidráulico en el sistema permite garantizar el funcionamiento eficiente de la red (Muranho et al., 2014). Modelar una red de distribución de agua para una ciudad o sector, permite dar soluciones a escenarios actuales y futuros en cuanto a: demanda, comprensión del funcionamiento y detección de anomalías (Idrobo, 2018). Además, Idrobo (2018) y Cabrera-béjar & Tzatchkov (2012), mencionan que el modelamiento hidráulico permite

localizar las zonas con posible fuente de contaminación y focalizar las estrategias de prevención.

La JAP "Bayas" tiene el compromiso de garantizar un nivel de cloro residual apropiado en cada tramo de la RDAP, lo cual se facilita con el desarrollo de un modelo de decaimiento del cloro residual. A partir de aquello, se optimiza los niveles de cloro residual, evitando el efecto perjudicial de un exceso o déficit de la concentración de cloro libre en la salud de los usuarios, así como potenciales daños en las tuberías de cobre por corrosión debido a un exceso de cloro, de igual manera permitirá evaluar la vulnerabilidad del sistema de abastecimiento a incidentes de contaminación externa. Por lo antes mencionado, la ejecución de estudios que permiten la mejora de la calidad del agua en redes de distribución es muy importante para la colectividad.

Junta administradora de agua potable "Bayas"

La junta administradora de agua potable de Bayas es una organización comunitaria sin fines de lucro que cumplen con la finalidad de prestar el servicio público de agua potable y saneamiento, su accionar se fundamenta en criterios de equidad, solidaridad, interculturalidad, eficiencia económica, sostenibilidad de recursos hídricos, calidad en la prestación de los servicios y reparto del agua. Fue formada en el año 1990 ante la necesidad de proporcionar agua de calidad a la parroquia Aurelio Bayas.

Objetivos

Objetivo General:

Desarrollar un modelo hidráulico y un modelo de la calidad del agua para cloro libre en el sistema de distribución de agua potable operado por la junta de agua potable Bayas, usando el programa EPANET para simular y evaluar el comportamiento hidráulico de la red y la evolución de cloro libre.

Objetivos específicos:

• Recolectar y clasificar información topológica, topográfica y de campo, necesarias para el modelo hidráulico.

- Realizar un modelo hidráulico representativo que permita comprender el funcionamiento de la red de abastecimiento de agua potable y el comportamiento del flujo de agua en la red.
- Elaborar una base de datos digital de los niveles de cloro residual medidos en 15 puntos de la RDAP durante la estación seca y húmeda, para formular el modelo de calidad de agua.
- Evaluar un modelo de decaimiento del cloro residual que permita describir la concentración y evolución de cloro libre en el sistema de abastecimiento de agua potable.

1. REVISION DE LITERATURA

1.1. Breve reseña histórica de la modelización de una RDAP.

El modelamiento hidráulico de sistemas de distribución de agua potable tiene una historia larga; su historia comienza en 1930, aunque los trabajos formales comenzaron en 1980. El primero en desarrollar un modelo para un sistema de tuberías fue Don Wood en la universidad de Kentucky. En la tabla 1 se detallan los autores que han contribuido al desarrollo de esta tecnología, el año y su aporte (Grayman, 2018).

Tabla 1. Aportes destacados a partir de 1985 en materia de modelación hidráulica.

Aporte	Referencia
Desarrolló una extensión para modelo hidráulico con el fin de	(Metzger, 1985)
predecir la mezcla de dos fuentes de agua al ingresar a la red.	
Desarrollaron un programa llamado WADSY - Q que permitió	(Chun & Selznick,
calcular los patrones de calidad de agua en un sistema de	1985)
distribución.	
Desarrollaron un algoritmo para calcular concentraciones, rastreo de	(Males et al., 1985)
fuentes, tiempos de viaje y asignación de costos de suministro de	
agua a diferentes partes de un sistema de distribución.	
Desarrolló un modelo para predecir la concentración de cloro en una	(Murphy, 1985)
red de distribución de flujo estacionario.	
Subdividió la red en rejillas, en las cuales el agua fluía a través de	(Liou & Kroon,
estas.	1986)
Calculó el flujo y su dirección en la red, estableció el movimiento	(Rust, 2014)
del líquido desde aguas arriba a velocidad constante. Además,	
simuló la descomposición de cloro mediante una función de primer	
orden.	

Fuente: Elaboración propia a partir de Grayman (2018).

Tabla 1. (Continuación) Aportes destacados a partir de 1985 en materia de modelación hidráulica

Aporte	Referencia
Desarrolló un software de modelación libre llamado Epanet.	(Rossman, 1993)
Introdujo un modelo basado en la transferencia de masa para la	(Rossman et al.,
descomposición del cloro, considerando la influencia de la masa de	1994)
agua y el contacto con la pared de las tuberías.	
Estudió la formación de trihalometanos en varios sistemas de	(Vasconcelos,
distribución de agua potable.	1996)
Utilizó una herramienta de software de calidad de agua e hidráulica	(Hatchett, 2014)
en tiempo real basada en Epanet-RTX.	
Realizó un informe de la conferencia acerca del modelamiento de	(Grayman, 2018)
agua dentro de sistemas de distribución con el objetivo de compartir	
las investigaciones que permitieron mejorar el suministro de agua.	
Entre los expositores se trataron aspectos teóricos, numéricos,	
biológicos, químicos, físicos. Además, se trataron temas de	
calibración y utilidad de los modelos de distribución de agua.	

Fuente: Elaboración propia a partir de Grayman (2018).

1.2. Potabilización.

Es el proceso que se aplica al agua previo a su ingreso en la red de distribución con la finalidad de eliminar elementos de riesgo para la salud humana (Baker, 2016). El proceso de potabilización desde la captación del agua cruda hasta la entrega del agua a los usuarios determina la calidad, cantidad y continuidad del servicio entregado (Muñoz, 2020; Vuta & Dumitran, 2011).

1.2.1. Agua potable

Se entiende como agua potable al agua modificada con el objetivo de ajustar sus características químicas, físicas y microbiológicas en concordancia con lo estipulado por la normativa nacional e internacional para agua de consumo humano (Ayamani, 2018; Muñoz, 2020).

1.3. Tecnología de desinfección.

La tecnología de desinfección es la metodología usada para modificar los parámetros del agua contaminada hasta que se pueda considerar agua potable, es influyente en la calidad del agua que llega a los usuarios (Vuta & Dumitran, 2011).

1.3.1. El cloro como desinfectante

El cloro es el onceavo elemento más abundante en la naturaleza, frecuentemente presente como cloruro. Es el más usado alrededor del mundo en plantas de tratamiento de agua y su concentración recomendada dentro de una RDAP es entre 0.2 - 0.5 mg/L. Baker (2016), menciona que en caso de emergencia los niveles de cloro en la RDAP deben ser superiores a 0.5 mg/L, por ejemplo, durante la pandemia COVID-19. El cloro reacciona con los metales solubles, la materia orgánica y los microorganismos presentes en el agua (Baker, 2016; Monteiro et al., 2014). En adición, varios autores reportan numerosas ventajas y ciertas desventajas que tienen que ser gestionadas, las cuales se enlistan en los siguientes apartados.

a. Ventajas

De acuerdo con los autores Baker (2016); Boccelli et al. (2003); Mostafa et al. (2013); Vuta & Dumitran (2011), las ventajas del uso de cloro como desinfectante son:

- bajo costo
- permite conservar un remanente en el agua (cloro libre o residual)
- efectivo a bajas concentraciones
- estable
- evita enfermedades transmitidas por el agua al matar bacterias, esporas bacterianas, protozoos, quistes de protozoos, gusanos, larvas e inactiva los virus
- retarda el crecimiento de la película bacteriana (biofilm) en las tuberías
- fácil de monitorear

b. Desventajas

De acuerdo con los autores Baker (2016); Boccelli et al. (2003); Mostafa et al. (2013); Vuta & Dumitran (2011) las desventajas del uso de cloro como desinfectante son:

- su concentración disminuye con el aumento de la distancia de recorrido, tiempo de permanencia y temperatura
- su eficacia es inhibida con el aumento de la turbiedad
- su exceso provoca corrosión de las tuberías
- se crean subproductos de riesgo para la salud humana al reaccionar con materia orgánica (Trihalometanos y ácidos haloacéticos)
- su exceso provoca sabor y olor que causan molestia a los usuarios

1.3.2. Dosificación de cloro

Es la acción de agregar un volumen o cantidad de cloro al agua filtrada, en función del caudal a desinfectar. La dosis considera la necesidad de lograr la inocuidad del agua cumpliendo con la demanda de desinfección y garantizando una concentración suficiente de cloro residual que permanezca durante la distribución (Calle & Zambrano, 2015). Para el cálculo de la dosis es necesario conocer la naturaleza del agua filtrada. Baker (2016), menciona que una dosis de 12 - 20 mg/L cubre la demanda de desinfección y una vez cumplido el tiempo de contacto, mantiene una concentración de cloro libre residual de 6 - 8 mg/L. Adicionalmente, el proceso de dosificación debe ser constantemente controlado y garantizar que no exista déficit de cloro o un exceso; pues está comprobado que una dosis inadecuada es perjudicial para la salud de los usuarios (Chauca & Orozco, 2012; Rojas, 2015).

1.3.3. Cloro libre residual

Es el producto deseado de las reacciones del cloro al agregarlo al agua, tal como se puede apreciar en las siguientes fórmulas de reacción, está compuesto por ácido hipocloroso (HOCl) e ion hipoclorito (OCl⁻) (Ecuación 1) (Chauca & Orozco, 2012).

$$Cl_2(ac) + H_20 \leftrightarrow HOCl(ac) + H^+(ac) + Cl^-(ac)$$
(1)

La reacción previa resulta de incluir cloro al agua, se forma ácido hipocloroso, el mismo que produce iones hidrógeno e iones hipoclorito al separarse, como se muestra en la ecuación 2:

$$HOCl(ac) \leftrightarrow H^+(ac) + OCl^-(ac)$$
 (2)

La efectividad del ácido hipocloroso es notablemente superior, en la tabla 2 se puede observar su efectividad y pH favorable para su predominancia. La importancia de mantener una concentración mínima de 0.3 mg/L en todos los puntos de la red radica en que asegura la protección de los usuarios de un posible rebrote bacteriano o una contaminación dentro de la red (Quintiliani et al., 2017).

Tabla 2. Efectividad y pH favorable de componentes de cloro residual.

	Ácido Hipocloroso	Ion hipoclorito
Efectividad	100 %	1 %
pH favorable	5-7	Mayor a 7.5
	· · · · · · · · · · · · · · · · · · ·	(0.010)

Fuente: Elaboración propia a partir de Chauca (2012) y García (2019).

1.3.4. Factores influyentes en la disminución de cloro libre residual

Son varios los factores que influyen en la tasa de disminución de cloro libre residual en una red de distribución de agua potable (RDAP), razón por la cual su conocimiento es complejo. En los siguientes apartados se describen brevemente los principales factores.

a. Turbiedad del agua

La turbiedad en el agua provoca que los microorganismos objetivos de la desinfección se recubran de la materia orgánica, atenuando la eficiencia y eficacia del desinfectante (Chauca & Orozco, 2012; Shamsaei et al., 2013). Debido a esto, es importante que previo a la desinfección los esfuerzos por eliminar la turbiedad del agua hayan sido exitosos.

b. Temperatura del agua

La relación entre temperatura y decaimiento de cloro libre residual es directa, a mayor temperatura más rápido es el decaimiento de cloro. Además, un aumento de este parámetro provoca la aparición de subproductos de riesgo para la salud humana y un mayor crecimiento del biofilm en las tuberías (Li et al., 2019; Monteiro et al., 2017).

c. Potencial de hidrógeno (pH)

Al igual que la temperatura, un aumento del pH provoca una mayor aparición de subproductos perjudiciales para la salud. Según Li et al. (2019), es recomendable mantener un valor menor a 8. Un valor de pH mayor a 9 provoca la creación de compuestos clorados de baja efectividad (Chauca & Orozco, 2012).

d. Velocidad de agua en la tubería

Con el aumento de la velocidad de flujo, la concentración de cloro residual libre decae; la razón por la cual se da este fenómeno, es que el agua provoca el desprendimiento de parte del biofilm presente en las paredes de las tuberías. Shamsaei et al. (2013), menciona que una velocidad menor a 0.3 m/s causa un aumento en la edad del agua, disminuyendo la cantidad de cloro libre residual. Mientras que una velocidad mayor a 0.6 m/s aumenta la turbidez del agua por el desprendimiento del biofilm, resultando de la misma manera en el decaimiento del nivel de cloro libre residual.

e. Edad del agua

Su complejidad de determinación aumenta en función del tamaño de la red y de la cantidad de fuentes de agua presentes en el sistema de suministro de agua potable. Mientras mayor tiempo pasa entre la entrada del agua a la red y su llegada a los usuarios, mayor es el decaimiento del cloro libre residual e igualmente es mayor la aparición de subproductos perjudiciales para la salud. Además, el crecimiento de microorganismos se acelera al tener un mayor tiempo de contacto entre el líquido transportado y el biofilm presente en las paredes de las tuberías (Chauca & Orozco, 2012; Li et al., 2019).

1.4. Sistema de distribución de agua potable.

1.4.1. Variables hidráulicas en una red de distribución de agua potable

Las variables que definen los sistemas de distribución de agua potable son: la velocidad, presión y caudal. Las variables en cuestión determinan el éxito al momento de satisfacer la demanda en la zona de estudio. Investigaciones han demostrado los efectos del cambio de velocidad en RDAP, debido que velocidades bajas generan un tiempo alto de residencia, generando un deterioro en la calidad del agua. Por otra parte, velocidades altas

incrementan la turbidez en la RDAP (Shamsaei et al., 2013). De igual manera, la presión y el caudal son factores relevantes en el análisis de sistemas de distribución de agua potable, puesto que al contar con niveles óptimos las pérdidas de carga en el sistema se verán reducidas y el suministro será constante y eficiente (Morelos & Ramírez, 2017).

1.4.2. Tipos de redes de distribución

a. Red ramificada.

Es un sistema de abastecimiento compuesto por tuberías principales, las cuales se encuentran instaladas en zonas de mayor demanda. De esta tubería de mayor sección se integran otras de diámetro menor llamadas secundarias, las cuales abastecen a los predios (Muñoz, 2020).

b. Red reticulada.

Los sistemas reticulados se conectan formando mallas o retículos, constituyendo un sistema cerrado de abastecimiento, este tipo de redes representa un problema al momento de determinar la dirección del flujo. Sin embargo, tiene la ventaja que el agua llega al resto de la red por diferentes tuberías, siendo esto un factor positivo al momento de presentarse una avería (Cansiong & Mora, 2019).

c. Red mixta.

Un sistema mixto combina las características de las redes previamente descritas, incluyendo sus ventajas e inconvenientes (Cansiong & Mora, 2019).

1.5. Modelación matemática en redes de distribución.

1.5.1. Modelo hidráulico

Es una representación matemática de la red usada como herramienta eficaz y eficiente para el diagnóstico y mejoramiento del funcionamiento de una red de distribución de agua potable. En consecuencia, es un apoyo importante para la gestión del servicio, pues permite evaluar posibles estrategias de gestión en función de diferentes escenarios y condiciones planteadas por la administración (Muranho et al., 2014; Porfirio, 2009).

a. Ecuaciones fundamentales del comportamiento hidráulico

El comportamiento hidráulico se basa en caudales y presiones, debe cumplir con los principios de conservación de masa y de energía representados por las siguientes ecuaciones:

Ecuación de continuidad en nudos: Según García (2019), la ecuación se basa en que la suma algebraica de los caudales másicos que confluyen en un nudo debe ser igual a 0 (ecuación 3).

$$\sum_{j=1}^{nti} Q_{ij} = C_i \tag{3}$$

Donde: Q_{ij}, caudal que circula en la línea que une el nudo i al j; nti, número total de líneas que convergen en el nudo i; C_i, caudal de alimentación o consumo en el nudo i.

Ecuación de la conservación de la energía: Consiste en que la energía total de un fluido se mantiene constante, aunque pueda sufrir transformaciones a lo largo de la conducción (ecuación 4).

A continuación, se presenta la ecuación:

$$Z_1 + \frac{p_1}{\rho g} + \frac{v_1^2}{2g} = Z_2 + \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + H_f + H_m$$
⁽⁴⁾

Donde: Z_1 , es la cota del nudo de salida; Z_2 , es la cota del nudo de llegada; p_1 , es la presión del nudo de salida; p_2 , es la presión del nudo de llegada; $\frac{v_1^2}{2g}$, es la energía cinética en el nudo de salida; $\frac{v_2^2}{2g}$, es la energía cinética en el nudo de llegada; H_f , cuantifica las pérdidas de energía por fricción y H_m , las pérdidas menores ocasionadas por los accesorios (García, 2019; Ponce, 2009).

b. Simulación hidráulica con Epanet

Comprende el cálculo de la evolución de los caudales y velocidades en tuberías, las presiones en los nudos y los niveles en los depósitos. Los valores que se obtienen son calculados en función de las condiciones iniciales ingresadas al modelo (Idrobo, 2018; Mostafa et al., 2013).

c. Calibración del modelo hidráulico

Consiste en la modificación de los parámetros ingresados al modelo con la finalidad que el modelo reproduzca en lo posible las condiciones reales. Se basa en la comparación de los resultados obtenidos del modelo con los obtenidos a partir de mediciones realizadas en el campo. La etapa de calibración permite concordancia entre los valores del modelo y los obtenidos por medición en el campo (Mostafa et al., 2013).

d. Evaluación del rendimiento de la red de distribución

Según Muranho et al. (2014), se trata de la aplicación de cualquier metodología que permita al gestor o investigador conocer la eficiencia y efectividad del proceso de distribución de agua potable. Frecuentemente, se utilizan índices de rendimiento técnico (IRT), los cuales evalúan el comportamiento de cada componente del modelo en función de su presión, caudal y velocidad.

1.5.2. Modelo de disminución de cloro residual

Los modelos matemáticos de calidad de agua permiten calcular y predecir el comportamiento de diferentes especies químicas presentes en el agua, en el caso del cloro residual es posible determinar la concentración en cualquier instante del día. Los modelos de esta índole tienen como precedente un modelo hidráulico previamente calibrado y validado (Alves et al., 2014).

a. Constante global de decaimiento, k

El coeficiente global de desintegración (k), es una función expresada como la suma del coeficiente de desintegración del cloro con la parte interna de la tubería (k_w) y el coeficiente de desintegración de cloro con la masa de agua (k_b), dicha reacción se expresa mediante la ecuación 5 (Hua et al., 1999; Vidal et al., 1994).

$$k = k_w + k_b \tag{5}$$

b. Coeficiente de reacción del cloro con la masa de agua, k_b

La disminución progresiva de cloro en una RDAP se expresa por la tasa de decaimiento cloro-masa de agua, el cloro libre al ser una sustancia no conservativa presenta una tasa

de reacción de descomposición exponencial, representada por la ecuación 6 (Monteiro et al., 2014; Sánchez et al., 2010).

$$-\frac{dC}{dt}bulk = k_b C \tag{6}$$

Dónde: k_b , reacción de cloro con la masa de agua en h⁻¹; C, concentración de cloro en mg/L; t, tiempo en horas.

La constante de decaimiento k_b puede ser estimada a través de una serie de mediciones realizadas en distintos puntos de la red, este procedimiento consiste en obtener muestras y analizar la evolución del cloro libre a través del tiempo, una vez obtenidos estos datos el coeficiente k_b se obtiene por medio de un ajuste exponencial, representado por la ecuación 7 (García, 2019).

$$C = C_o e^{-k_b t} \tag{7}$$

Dónde: C_o, concentración inicial de cloro; k_b, constante de reacción de cloro-masa de agua; t, tiempo.

Esta ecuación presenta mejores ajustes con respecto a otros modelos de decaimiento, por lo que es incluida en los programas de simulación de calidad de agua en redes (Rossman, 2017).

La dinámica de la reacción entre el cloro y la masa de agua se ve influenciada por factores tales como: temperatura, materia orgánica e inorgánica disuelta, compuestos organoclorados, metales como hierro en estado +2 de oxidación y tiempo de circulación del agua (Bassey & Egbe, 2016; García, 2019).

c. Coeficiente de reacción del cloro con la pared de la tubería, k_w

Es la reacción que ocurre entre las sustancias disueltas en el agua con los materiales presentes en el área interna de la tubería por donde circula el fluido, esta reacción depende del área disponible para reaccionar y la tasa de transferencia de masa entre el fluido y la pared de la tubería, como lo representa la ecuación 8 (García, 2019; Rojacques et al., 2016; Rossman, 2001).

$$k_{wall} = \frac{2k_w k_f}{R(k_w + k_f)} \tag{8}$$

Dónde: k_{wall} , es el coeficiente de degradación agua-pared; k_w , constante de velocidad de reacción en la pared (m/día); R, radio de la tubería; k_f , coeficiente de transferencia de masa (m/día).

d. Calibración del modelo de calidad

La calibración del modelo de decaimiento de cloro residual se basa en ajustar parámetros fisicoquímicos mediante ensayos prueba y error hasta obtener un grado de coincidencia significativo entre los valores reportados de la simulación y los medidos en campo. El éxito de la calibración del modelo de calidad depende de factores como: la calibración previa del modelo hidráulico y la obtención en campo del coeficiente k_b (Alves et al., 2014).

e. Simulación de calidad con Epanet

Según lo establecido por Rossman (2001), el software Epanet aplica el método Lagrangiano para aproximar el movimiento del agua a volúmenes más discretos de agua que fluyen en las tuberías y se mezclan en las conexiones en intervalos de longitud fija. Los intervalos de tiempo de simulación son más cortos en comparación a los del modelo hidráulico con el fin de acomodarlos dentro de los intervalos de tiempo de desplazamiento al interior de la tubería. Durante la fase de simulación, el contenido de cada segmento se ve sometido a una reacción y un incremento de la masa total. Mientras que el volumen de caudal que entra en cada nudo se mantiene y las posiciones de los segmentos son actualizadas.

f. Análisis de sensibilidad de parámetros

El análisis de sensibilidad permite cuantificar el grado en que los parámetros de las ecuaciones afectan a las variables. Si un modelo es sensible ante pequeños cambios en los valores en determinado parámetro, el rendimiento puede verse comprometido y alterado. Mientras que los parámetros poco sensibles pasan a un plano secundario (García, 2019; Wang et al., 2019).

1.6. Software Epanet 2.0.

Es un programa de acceso abierto desarrollado por la Agencia de Protección Ambiental de los Estados Unidos (EPA). El programa permite conocer el comportamiento hidráulico y de calidad de una red de distribución de agua a presión a partir de simulaciones (García, 2019; Morelos & Ramírez, 2017; Muranho et al., 2014).

Ponce (2009), define a Epanet como una herramienta de investigación capaz de proporcionar una visión detallada del comportamiento del agua mientras se está dando su transporte. Adicionalmente, permite plantear estrategias de gestión y escenarios futuros, con la finalidad de conocer el tipo y la capacidad de respuesta de la red.

1.6.1. Ecuaciones usadas por Epanet para el modelo hidráulico

El modelo hidráulico de Epanet al igual que cualquier otro modelo debe cumplir las leyes de conservación de masa y conservación de la energía. La razón de esto es que una red está compuesta por accesorios conectados entre sí y dependientes unos de otros (Muñoz, 2020).

La información de las ecuaciones usadas por el programa para la modelación hidráulica son las definidas en el manual de usuario realizado por Rossman (2001) y las descritas por Guanuchi & Ordoñez (2017), se presentan a continuación:

a. Conservación de masa: Esta ecuación se aplica para cada nudo y tanque del sistema (ecuación 9).

$$\sum Q_i - U = 0 \tag{9}$$

Donde: Q_i , es la entrada de agua en la tubería i; U, es el agua usada en el nodo. En caso de existir tanques se debe incluir un nuevo término a la ecuación 10;

$$\sum Q_i - U - \frac{ds}{dt} = 0 \tag{10}$$

En la cual $\frac{ds}{dt}$, es el cambio en el almacenamiento-

 b. Conservación de la energía: La condición a cumplir es que la diferencia entre dos puntos en una red debe ser la misma, y está determinado por la siguiente ecuación (ecuación 11):

$$Z_1 + \frac{p_1}{\gamma} + \frac{V_1^2}{2g} + \sum h_p = Z_1 + \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + \sum h_L + \sum h_m$$
(11)

Dónde: Z, elevación; P, presión; γ , peso específico del fluido; V, velocidad; g, aceleración de la gravedad; h_p , cabeza añadida en las bombas; h_L , pérdida de carga en las tuberías y h_m , pérdidas menores.

La pérdida de carga está definida por la ecuación 12 que se presenta a continuación:

$$h_L = Aq^B \tag{12}$$

Dónde: h_L , pérdida de carga; q, caudal; A, coeficiente de resistencia; B, exponente de caudal.

Epanet distingue 3 tipos de fórmulas en función de la metodología para calcular los valores de A y B, presentados en la tabla 3.

Fórmula	Coeficiente de Resistencia (A)	Exponente de Caudal (B)
Hazen - Williams	$10.674C^{-1.852}d^{-4.871}L$	1.852
Darcy - Weisbach	$0.0827 \text{ f}(\varepsilon, d, Q)d^{-5}L$	2
Chezy – Manning	$10.294 n^2 d^{-5.33} L$	2

Tabla 3. Fórmulas usadas por Epanet para el cálculo de A y B

Fuente: Elaboración propia a partir de Rossman (2017)

Donde: C, coeficiente de rugosidad de Hazen – Williams; ε , es el coeficiente de rugosidad de Darcy – Weisbach; f, es el factor de fricción dependiente de ε , d y Q; n, es el coeficiente de rugosidad de Chezy – Manning; d, es el diámetro de la tubería; L, es la longitud de la tubería y Q es el caudal.

1.6.2. Coeficiente de rugosidad

El coeficiente de rugosidad debe ser determinado de manera empírica, y su valor depende del material de la tubería y su antigüedad.

1.6.3. Pérdidas menores

Las pérdidas menores son ocasionadas por accesorios, cambios en el régimen de transporte del agua o por cambios de dirección del flujo, la ecuación 13 es la usada por el programa para cuantificar las pérdidas:

$$h_L = Kp(\frac{V^2}{2g}) \tag{13}$$

Donde: K_p, coeficiente de pérdidas menores; v, velocidad de flujo; g, aceleración de la gravedad.

En la tabla 4 se presentan los coeficientes de pérdidas menores para diferentes accesorios y situaciones que se pueden dar en la red.

Conectores	Coeficiente de pérdidas
Válvula de Globo abierta	10
Válvula de ángulo abierta	5
Válvula de retención, abierta	2.5
Válvula de compuerta abierta	0.2
Válvula de compuerta 25% cerrada	0.3
Válvula de compuerta 50% cerrada	2.1
Válvula de compuerta 75% cerrada	1.7
Codo de radio pequeño	0.9
Codo de radio mediano	0.8
Codo de radio grande	0.6
Codo de 45°	0.4
Codo cerrado con inversión de flujo	2.2
T estándar, dirección de paso	0.6
T estándar, dirección de desvío	1.8
Entrada recta	0.5
Salida brusca	1
Expansión 20°	0.02
Expansión 60°	0.07
Contracción 20° *d/D= 0.2	0.3
Contracción 20° *d/D= 0.6	0.15
D= diámetro mayor y d= diámetro menor	

Tabla 4. Coeficientes de pérdidas menores.

Fuente: Elaboración propia a partir de Rossman (2017).

Existen 2 tipos de modelos hidráulicos diferenciados por el tipo de flujo, pueden ser estáticos o dinámicos. Los modelos estáticos consideran que no hay variación en los caudales inyectados y demandados en la red, el nivel en el tanque es constante y la operación de la red es invariable. Por otro lado, los modelos dinámicos consideran

variación en los caudales inyectados y demandados de la red, el nivel en los tanques varia y la operación de la red es dinámica (Rossman, 2001).

1.6.4. Ecuaciones usadas por Epanet para el modelo de calidad

Las ecuaciones empleadas por Epanet para determinar la calidad del agua, están basadas en el principio de conservación de la masa, integrado a las cinéticas de reacción. El modelo contempla los siguientes fenómenos (Rossman, 2001):

- Transporte convectivo en las tuberías,
- Mezcla en la confluencia de tuberías,
- Mezcla en depósitos de regulación,
- Reacciones en el seno de agua.

La velocidad de reacción en el seno de agua se expresa generalmente como una función potencial de la concentración, según la ecuación 14:

$$R = kC^n \tag{14}$$

Donde, k es la constante de reacción; n, orden de reacción; Coeficiente de transferencia de masa.

La velocidad de disminución de cloro en una red es modelada a través de una reacción simple de primer orden (ecuación 15).

$$R = k_b C^n \tag{15}$$

Donde, k_b<0; n=1

La reacción de la masa de agua con las paredes de la tubería se expresa mediante la relación de dos factores, el primero determina la superficie expuesta por unidad de volumen y el segundo se representa mediante un coeficiente de transferencia de masa, el cual se encuentra en función del coeficiente de difusión molecular de las especies reactivas y del número de Reynolds. La ecuación 16 representa la velocidad de reacción para cinéticas de primer orden (Monteiro et al., 2014).

$$R = \frac{4k_w k_f C}{d(k_w + k_f)} \tag{16}$$

Donde k_f , coeficiente de transferencia de masa expresado por el coeficiente adimensional de Sherwood (Sh); k_w , constante de reacción en la pared; d, diámetro de la tubería.

1.6.5. Ventajas de Epanet

En la siguiente lista se encuentran las ventajas del programa para la modelación hidráulica y de calidad según los autores (García, 2019; Ponce, 2009; Rossman, 2017).

- no hay límite en el tamaño de la red de distribución
- calcula pérdidas por fricción
- calcula pérdidas menores por accesorios
- modela diferentes tipos de válvulas
- es de libre acceso

Con respecto a la simulación del modelo de calidad Epanet presenta una serie de ventajas descritas a continuación por diversos autores (Monteiro et al., 2014; Sánchez et al., 2010; Vidal et al., 1994).

- aprovecha la información ingresada previamente en el modelo hidráulico
- simula la evolución temporal de sustancias no conservativas en una RDAP
- realiza cálculos estáticos de mezclas a lo largo del sistema
- permite al usuario ingresar datos iniciales de calidad de agua

1.6.6. Componentes de una red física en Epanet

Epanet modela una red de distribución de agua a través de un conjunto de líneas conectadas por sus nudos extremos. Las líneas representan tuberías, bombas, o válvulas y los nudos representan puntos de conexión entre tuberías y sus extremos terminales (Rossman, 2001).

La figura 1 muestra cómo se conectan los componentes físicos para formar una red de distribución.

Figura 1. Componentes físicos de una red de distribución. Fuente: Rossman (2001)

Los componentes físicos usados en el software se encuentran detallados en el manual de usuario de Epanet 2.0.

a. Depósitos

Son nudos con una determinada capacidad de almacenamiento, su volumen de agua puede variar con el tiempo durante el período de simulación. El nivel de los depósitos durante la fase de simulación debe ser óptimo, debido a que Epanet impide la salida de agua cuando los niveles son críticos (Rossman, 2001). Las variables a ingresar son:

- cota de solera (nivel de agua igual a cero)
- diámetro
- nivel inicial, mínimo y máximo
- calidad inicial del agua

Los resultados obtenidos de la simulación son:

- caudal de entrada y salida
- altura piezométrica
- presión
- calidad del agua

b. Válvulas.

Las válvulas son líneas reguladoras de la presión, se encuentran distribuidas en la red con el fin de limitar el caudal en determinadas zonas (Rossman, 2001). Los parámetros a ingresar son:

- nudo inicial y final
- diámetro
- estado
- consigna

Los resultados obtenidos de la simulación son el caudal y la pérdida de carga.

La tabla 5 indica los distintos tipos de válvulas que considera el software y sus consideraciones al momento de ingresar una.

Tipo de válvula	Descripción	Consideración
Válvulas reductoras de	Control de la caída de	No pueden conectarse directamente a
presión (VRP)	presión.	un depósito
		No pueden compartir el mismo nudo
		aguas abajo.
Válvulas sostenedoras	Mantiene la presión del	No pueden conectarse directamente a
de presión (VSP)	nudo aguas arriba.	un depósito
		No pueden compartir el mismo nudo
		aguas abajo.
Válvulas de rotura de	Fuerzan la caída de	
carga (VRC)	presión.	
Válvulas de control de	Limita el caudal de paso.	No pueden conectarse directamente a
_caudal (VCQ)		un depósito.
Válvulas de regulación	Simula una válvula	
_(VRG)	parcialmente cerrada.	
Válvulas de propósito	Permite al usuario	
general (VPG)	ingresar una relación	
	pérdida/caudal.	

Tabla 5. Tipos de válvulas consideradas por Epanet.

Fuente: Elaboración propia a partir de Rossman (2017).

c. Tuberías

Las tuberías son líneas que transportan agua entre los diferentes nudos de caudal. Epanet asume que las tuberías se encuentran llenas durante la simulación, por ende, el flujo es a presión. El sentido de flujo es siempre desde la mayor altura piezométrica a la menor (Rossman, 2001).

Los parámetros básicos y los resultados obtenidos del proceso de simulación de una tubería se presentan a continuación en la tabla 6:

ora o. 1 arametros de entrada y resultados de sindración.				
Parámetro de entrada	Resultado esperado			
• Diámetro,	Caudal de circulación,			
• Longitud,	• Velocidad de flujo,			
• Coeficiente de rugosidad (estado de	• Pérdida de carga unitaria,			
la tubería),	• Factor de fricción para la fórmula de			
• Estado (abierto/cerrado),	Darcy-Weisbach,			
• Nudo inicial y final.	• Velocidad media de reacción,			
	• Calidad media del agua.			

Tabla 6. Parámetros de entrada y resultados de simulación.

Fuente: Elaboración propia a partir de Rossman (2017).

d. Nudos

Los nudos o nudos de caudal son puntos donde convergen las tuberías o sus extremos, a través de estos el agua entra o sale, incluso pueden ser solo puntos de paso (Rossman, 2001).

Los parámetros básicos de entrada son:

- cota con respecto a un nivel de referencia (m.s.n.m.)
- demanda de agua
- calidad inicial del agua

Los resultados obtenidos posterior a la fase de simulación son:

- altura piezométrica, suma de la cota de altura más la altura de la presión de la columna de agua
- presión
- calidad del agua

Por otra parte, los nudos pueden también:

- tener una demanda variable en función del tiempo
- presentar distintos tipos de demanda (doméstica, industrial, etc.)
- ser una fuente emisora de un contaminante
- presentar una demanda negativa (ingreso de agua en la red)

1.7. Modelación de la disminución de cloro residual en zonas rurales.

Hoy en día mantener los niveles de cloro residual en el agua potable es sumamente relevante debido a que durante el desarrollo de esta investigación se suscitó la pandemia de SARS-CoV-2 (COVID-19) que azotó a la humanidad, previo a este acontecimiento mundial la OMS recomendaba mantener el cloro residual en un promedio mínimo de 0.2 mg/L en los puntos más alejados de la red, con el fin de evitar rebrotes bacteriológicos que afecten la salud de los usuarios (Crider et al., 2018). Sin embargo, Randazzo et al. (2020) comprobó que el virus SARS-CoV-2 está estrechamente relacionado con el SARS-CoV, siendo este último muy sensible a la desinfección con cloro, debido a la presencia de una capa lipídica en su estructura (Wang et al., 2005). Por lo que García et al. (2020) concluye que al estar estos dos virus relacionados es recomendable mantener un nivel de cloro residual mayor a 0.5 mg/L en todos los puntos de la red con el fin de evitar que el agua potable sea un medio de propagación de SARS-CoV-2, y además que sirva como un agente de desinfección de manos y superficies.

2. MATERIALES Y MÉTODOS

2.1. Área de estudio.

La red de distribución de agua potable en estudio está localizada en la parroquia "Aurelio Bayas Martínez", centro poblado conformante de la parte urbana y rural de la ciudad de Azogues. Esta ciudad, se caracteriza por ser el cantón más poblado de la provincia del Cañar con un valor correspondiente a 70 064 habitantes según el censo realizado por el Instituto Nacional de Estadística y Censos (INEC) en el año 2010 (García et al., 2019). La parroquia "Aurelio Bayas Martínez", fundada el 24 de febrero de 1936 tiene una superficie de alrededor 293.18 ha; se encuentra localizada en el centro del cantón Azogues, al noreste de la cabecera cantonal, cómo se puede apreciar en la Figura 2 (Mendez & Valdiviezo, 2018; Velecela, 2010).

Figura 2. Ubicación del área de cobertura de la red "Aurelio Bayas Martínez". Fuente: Elaboración propia.

La entidad encargada de la distribución de agua potable en la parte urbana de la ciudad de Azogues es la Empresa Municipal de Agua Potable y Alcantarillado EMAPAL EP. En tanto en las zonas rurales del cantón, las Juntas de Agua Potable (JAP) son las encargadas de abastecer de agua potable. Así, la Junta de Agua Potable de Bayas (JAPB) es la encargada de suministrar el líquido vital a la población de la parroquia Aurelio Bayas.

La estación meteorológica más cercana a la zona de estudio corresponde a la ubicada en el colegio "José Benigno Iglesias", localizada en el cantón Biblián. La estación es utilizada por el Instituto Nacional de Meteorología e Hidrología (INAHMI) para la elaboración de sus publicaciones respecto al cantón Azogues (Rivas, 2017). Su clima predominante es "frío" a "muy frío" en la parte alta y "templado" en la zona baja, con una temperatura media anual de 14 grados Celsius (PDOT-AZOGUES, 2018). La temperatura media anual mínima es de 8.6 grados Celsius y la temperatura media anual máxima es 19.7 grados Celsius. La dirección del viendo predominante es Sur – Norte, con una velocidad promedio anual de 2.75 m/s. La precipitación media anual es 1106 mm y la humedad relativa promedio es 67% (Rivas, 2017; Romero, 2015). No existen estaciones definidas; sin embargo, se puede determinar que de junio a octubre se presentan los valores más bajos de precipitación (época seca), mientras que los meses de noviembre a mayo se presentan los niveles más altos de precipitación (época lluviosa) (Rivas, 2017). La pendiente predominante en el cantón es superior al 50% (Méndez & Valdiviezo, 2018; Rivas, 2017; Romero, 2015). La JAPB abastece de agua potable a 1300 usuarios, con un aproximado de 6000 personas en total.

2.2. Planta de tratamiento de la JAPB.

El proceso de potabilización de agua cruda en la JAPB se divide en cuatro niveles de operación: captación de agua cruda, clarificación (coagulación, floculación, sedimentación y filtración), desinfección, y almacenamiento. El agua cruda es captada en la parte alta de diferentes sectores de la parroquia y cuenta con un total de 5 fuentes de agua cruda; Pilzhun, Mahuarcay, Santa Ana, Chagracashca, y Chanin, el agua no potabilizada ingresa a la planta de tratamiento a través de una serie de tuberías conectadas al tanque de recepción de agua cruda (Figura 3 (a)).

La etapa de clarificación se desarrolla gracias a la adición de Sulfato de Aluminio al 2%, esta solución es preparada por los operadores luego de comprobar los niveles iniciales de turbiedad, una vez añadido el coagulante, el agua atraviesa lentamente un floculador de flujo vertical, cuyo tiempo de retención es de aproximadamente 21 minutos (Figura 2 (b)). Una vez concluida esta fase de operación el agua pasa a una fase de sedimentación y filtración rápida, finalmente el agua libre de materia orgánica es conducida a una cámara de cloración donde se somete a un ciclo de desinfección agregando hipoclorito de calcio, la dosificación se realiza de manera directa mediante un sistema de goteo (Gutiérrez, 2016) (Figura 3 (c)). Finalmente, el agua potable es almacenada en un tanque cilíndrico de hormigón de 200 metros cúbicos de capacidad (Figura 3 (d)).

Figura 3. Proceso de potabilización de la planta de agua de JPAB: (a) entrada de agua a la planta (b) coagulación y floculación (c) sistema de cloración (d) tanque de almacenamiento.

Fuente: Elaboración propia.

2.3. Caracterización de la red de distribución de agua potable de la JAPB.

La red de abastecimiento de Bayas es una red mixta tipo abierta, en el año 2018 se realizó el catastro de la red de distribución administrada por la JAPB, la metodología se basó en jornadas de ubicación y caracterización de los elementos desde la planta de tratamiento hasta los puntos finales de las líneas de distribución (Méndez & Valdiviezo, 2018). Desde el año 2018 se han realizado cambios relevantes en la red, como el cambio de cámaras rompe presiones a válvulas de control de presión. Además, la red se encuentra en constante expansión debido al crecimiento poblacional de la parroquia Bayas. De esta manera se pudo definir la cobertura de la red, la cual abastece a la parte urbana y rural de la zona. Los componentes físicos de la red se describen a continuación en la tabla 7:

Componente	Número de	Longitud (metros)
	componente	
Tanque de distribución principal de 200 m ³	1	-
localizado en la planta de tratamiento.		
Tanque de distribución secundario de 200 m ³	1	-
localizado en el sector "Señor de Flores".		
Tanque de distribución secundario de 150 m ³	1	-
localizado en el sector "Señor de Flores".		
Válvulas rompe presiones	10	-
Válvulas de control de flujo	39	-
Válvulas de purga	12	-
Tubería 160 mm	3	3408
Tubería 110 mm	5	1784
Tubería 90 mm	1	18
Tubería 63 mm	36	7069
Tubería 50 mm	15	5956
Tubería 40 mm	3	200
Tubería 32 mm	29	4624
Tubería 25 mm	25	3947

Tabla 7. Componentes físicos de la RDAP.

Tubería 20 mm	1 80	
Total	2700	0
		•

Fuente: Elaboración propia a partir del catastro realizado por Méndez & Valdiviezo (2018).

2.4. Modelación hidráulica de la red de distribución.

- 2.4.1. Construcción de un modelo de la red
 - a. Recopilación de datos e información específica de la RDAP

Para modelar el comportamiento de la RDAP se partió del levantamiento catastral de tuberías, válvulas y accesorios, realizado por Méndez & Valdiviezo (2018), el archivo en formato *shapefile* contenía las características y las propiedades hidráulicas de la red de tuberías, tales como: longitud, diámetro y rugosidad. Además, presenta las características de válvulas y accesorios. De igual manera, la información predial fue suministrada por la oficina de avalúos y catastros de la municipalidad de Azogues.

2.4.2. Asignación de parámetros de la red de distribución

La elevación de los vértices de las tuberías se obtuvo al importar el esquema de la red al programa Google Earth Pro, referenciando altimétricamente cada uno de los vértices.

Al concluir la recolección de información los datos obtenidos fueron ingresados de manera sistemática como se presenta a continuación:

- Los archivos obtenidos del trabajo de Méndez & Valdiviezo (2018) no cuentan con un formato admisible por Epanet, por lo que se recurrió al software CovertGISEpanet, pasando el archivo de un formato *shape* (.shp) a un fichero de datos de entrada de extensión (.inp), el cual se pudo ejecutar de manera correcta en el programa de simulación.
- Se dibujaron las actualizaciones en la red conforme a lo manifestado por los operadores de la planta de agua, además se trazaron los elementos faltantes como los reservorios y válvulas.

- Se asignó un código específico a las etiquetas de las válvulas, nudos y tuberías, además se digitaron los valores de entrada correspondientes a los componentes anteriormente mencionados (Figura 4).
- 4. Se ingresaron los coeficientes de variación de caudal en la ventana de editor de patrón de demandas (Figura 5).
- 5. Se verificó que los datos ingresados de toda la red sean los correctos antes de empezar el proceso de simulación.

Propiedad	Valor		Descinded	Vala.	_
*ID Válvula	V60	^	×ID Tubería	P258	-
*Nudo Inicial	J337		*Nudo Inicial	1235	_
*Nudo Final	J338		*Nudo Final	J309	
Descripción			Descripción		
Etiqueta			Etiqueta		
*Diámetro	20		*Longitud	102.91	
*Tipo	Reductora		*Diámetro	63	
*Consigna	30		*Rugosidad	140	
Coef. Pérdidas	0		Coef. de Pérdidas	0	
Estado Fijo	Ninguno	Ninguno		Abierto	
Caudal	No Disponible				
Velocidad	No Disponible	_	Coef. Pared		
Deposito D1			Conexión J313		
Propiedad	Valor		Propiedad	Valor	
*ID Depósito	D1	^	*ID Conexión	J313	-
Coordenada-X	740711.12		Coordenada-X	740250.78	
Coordenada-Y	9699957.44		Coordenada-Y	9698805.00	
Descripción			Descripción		
Etiqueta			Etiqueta		
*Cota	2787		*Cota	2586	
*Nivel Inicial	2.8		Demanda Base	0.02	
*Nivel Mínimo	0.5		Patrón de Demanda		
*Nivel Máximo	3		Categoría de Demanda	1	
*Diámetro	9		Coef. Emisor		
Volumen Mínimo			Calidad Inicial		

6. Se procedió a iniciar la primera simulación.

Figura 4. Parámetros de entrada de los componentes ingresados en Epanet. Fuente: Elaboración propia.

D Patrón	Des	Descripción						
1	Patrón de tiempos de ejemplo					_		
Intervalo de Tie	1	2	3	4	5	6	7	8
Factor	0.5	1.3	1.0	1.2	-	-	_	
•								- 3
Incremento								

Figura 5. Ventana de edición de patrón de demandas. Fuente: Rossman (2017).

2.4.3. Asignación de consumos

La información específica como el consumo sectorizado de la RDAP usada en el cálculo de la demanda base fue entregada por la administración de la junta de agua potable de Bayas, el documento en formato .xlsx contenía los datos correspondientes al consumo por sectores de los meses de agosto de 2020 a marzo de 2021.

a. Medición de consumo horario

i. Micromedición

Los valores de consumo correspondientes a la micromedición se realizaron en función de los informes de facturación de la JAPB. Se procesaron los datos de 6 meses con el objetivo de obtener un coeficiente de consumo sectorial, la cantidad de predios por sector y el porcentaje de predios por sector. A continuación, se procedió a obtener una lista de los nodos del modelo con sus respectivas coordenadas, exportando el plano de la red desde Epanet hacia Excel como un archivo de texto, como se puede apreciar en la Figura 6.

Nuevo Abrir Guardar Guardar como		<u></u>	Exportar Plano a: (• [Archivo de Texto (.map]]	Aceptar
Importar	>		 Enhanced Metafile (.emf) 	Lancelar
Exportar	>	Plano		
Configurar página Vista Preliminar Imprimir		Escenario Red	C Drawing Exchange File (.dxf)	<u>A</u> yuda
Preferencias				
1 CALIBRADO Y VALIDADO.net				
2 CALIBRACION 1.net				
3 RED SIMULADA EXITOSAMENTE Y ACTUALIZADA.net 4 RED SIMULADA EXITOSAMENTE Y ACTUALIZADA.net				
Salir				

Figura 6. Obtención de lista de nodos de la red. Fuente: Elaboración propia.

El siguiente paso consistió en elaborar una capa mediante la herramienta ArcMap titulada "NODOS Epanet, la misma que se agregó al mapa de ArcMap junto a la capa de predios urbanos y predios rurales contruidos para su posterior análisis, tal como se puede apreciar en la figura 7.

Figura 7. Mapa de red, predios construidos y nodos reconocidos por Epanet. Fuente: Elaboración propia.

Una vez obtenido el mapa de la figura 7, se agregaron los predios al nodo más cercano como se muestra en la figura 8. En la cual se puede apreciar la metodología de asignación de predios al nodo J26; al que le correspondió el abastecimiento de 3 predios. La metodología previamente descrita es la planteada por CONAGUA (2015) y fue usada por Guanuchi & Ordoñez (2017).

Figura 8. Asignación de predios a nodos. Fuente: Elaboración propia.

Posterior a este proceso se creó una tabla mediante el programa Excel, en la cual se colocaron columnas para ID del nodo, predios asignados, sector al que pertenece, coeficiente de consumo y demanda o requerimiento. La demanda para cada nodo se obtuvo al multiplicar el número de predios asignados por el coeficiente de consumo del sector, como indica la ecuación 17:

$$D_i = N_i * CS_j \tag{17}$$

Donde: D_i , es la demanda en el nodo i; N_i , es el número de nodos asignados al nodo i; CS_i , es el coeficiente de consumo del sector j.

Finalmente, se realizó la sumatoria de requerimiento de todos los nodos presentes en la red, obteniendo el caudal consumido o facturado por la JAPB en litros por segundo, este caudal no contempla las pérdidas por fugas o tomas ilegales.

ii. Macromedición

La macromedición se realizó con la finalidad de considerar la variabilidad de la demanda de agua de la red debido a las costumbres de los usuarios y a la hora del día (Guanuchi & Ordoñez, 2017). Se procedió a monitorear la altura del agua en los tanques, tomando como referencia su compuerta. El tiempo total de monitoreo se fijó en 48 horas comenzando el día 1 a las 7:00 am y terminando el día 3 a la misma hora. La altura se midió cada hora durante el día y cada 2 horas.

Los datos se procesaron a partir de la fórmula detallada a continuación en la ecuación 18:

$$Q_{pn} = \frac{\Delta H * \pi * D^2}{4t} \tag{18}$$

Dónde: Qp_n es el caudal consumido a la hora n; ΔH , es la variación de altura; D, es el diámetro del tanque; t, es el tiempo en el que se dio la variación de altura.

Posteriormente, se realizó un promedio del caudal inyectado en cada hora para obtener un valor representativo. El resultado obtenido es el caudal inyectado a la red, el cual se utilizó para obtener el porcentaje de agua no contabilizada y un coeficiente de compensación, este fue utilizado para incluir el agua no contabilizada a la demanda de cada nodo de acuerdo con la ecuación 19 (García, 2019).

$$DR_i = D_i * CO \tag{19}$$

Dónde: DR_i, es la demanda nodal real del nodo i; D_i, es la demanda del nodo i y CO, es el coeficiente de compensación.

El caudal perdido por fugas se determinó calculando la diferencia de los resultados obtenidos en la macromedición y la micromedición según la ecuación 20:

$$\% ANC = \frac{Q_i - Q_c}{Q_i} * 100$$
(20)

Dónde: ANC, es el Agua No Contabilizada; Q_i, es el caudal inyectado a la red (macromedición); Q_c es el caudal consumido o facturado (micromedición).

A su vez, la constante de compensación se obtuvo mediante la ecuación 21 presentada a continuación:

$$CO = \frac{Q_i}{Q_c} \tag{21}$$

Dónde: CO, es el coeficiente de compensación; Q_i es el caudal inyectado a la red (macromedición); Q_{c_i} es el caudal consumido (micromedición).

iii. Curva de modulación

La curva de modulación permite que el modelo se comporte de manera similar a la realidad, modificando las demandas en los nodos durante los picos de consumo, a partir de los caudales obtenidos durante la macromedición, se continuó con la obtención del coeficiente de variación, según la ecuación 22.

$$k = \frac{Q_{pn}}{Q_{pr}} \tag{22}$$

Dónde: k, es el coeficiente del caudal consumido a la hora n; Q_{pn} , es el caudal consumido a la hora n; Q_{pr} , es el caudal promedio consumido.

2.4.4. Calibración del modelo

a. Simulación inicial del modelo hidráulico

La simulación desarrollada por el software contempla la evolución de las variables a través del tiempo, esto se conoce como simulación en tiempo extendido. El modelo planteado es un modelo dinámico representado por una serie de ecuaciones diferenciales, sin embargo, para obtener valores de presión y velocidad en un período extendido se recurre a una curva de variación de la demanda (Avesani et al., 2012).

Una vez que se elaboró el modelo hidráulico, se efectuó una simulación inicial, para lo cual fue necesario medir la presión en 30 nodos. Una vez medidas las presiones en campo se compararon con las mediciones de presión simuladas, con el propósito de identificar el error entre los valores y realizar la calibración correspondiente. Los resultados obtenidos del proceso de simulación prolongada se dividieron en dos: resultados obtenidos en nodos (presiones y demandas) y en tuberías (caudal y velocidades) (García, 2019).

Se realizó una comparación inicial de los valores obtenidos en campo y los simulados inicialmente; lo cual demostró que el proceso de calibración era vital para la consecución

de un error mínimo aceptable. La comparación se realizó creando un fichero de texto con los nodos monitoreados, la hora de monitoreo y el valor de presión medido en campo. El siguiente paso fue cargar el fichero en la sección de datos de calibración, como se muestra en la figura 9.

Proyecto	Informe	Extensiones	Datos de Calib	ración		×
Resu	men		Parámetro Demanda	Nombre del Archivo de Ca	alibración	Buscador
Valor	es por defe	cto	Altura Presión	C:\Users\User\Desktop\	TESIS 2021\RE	ď
Dato	s de Calibra	ación	Calidad Caudal			<u>E</u> ditar
Opci	ones de Cá	lculo	Velocidad			
Calco	ular			Aceptar C	ancelar	Ayuda

Figura 9. Registro de datos para la obtención de informe de calibración. Fuente: Elaboración propia.

Por último, mediante la opción de emitir un informe de calibración (Figura 10) disponible en Epanet, se obtuvo un gráfico de correlación, estadísticas principales y un gráfico de barras comparando los valores simulados con los medidos en el campo.

Figura 10. Opción de Epanet para emitir informe de calibración. Fuente: Elaboración propia.

b. Calibración del modelo hidráulico

Aunque la literatura recomienda una gran variedad de métodos para calibrar un modelo hidráulico, en este trabajo la calibración se llevó a cabo mediante el ajuste de parámetros de entrada como: demanda base, pérdidas de carga, y coeficiente de rugosidad de las

tuberías. Estos ajustes se desarrollaron mediante pruebas de ensayo y error, los valores usados como objetivo durante la calibración, se obtuvieron durante una jornada de medición de las presiones en un número superior al 10% de los nodos totales del modelo. Las pruebas de ensayo y error se realizaron hasta obtener una calificación "Muy Buena" según la tabla 8 de niveles de rendimiento hidráulico, la cual depende de los valores del índice de Nash-Sutcliffe (E) (ecuación 23), y el error medio normalizado (RSR) (ecuación 24) (Moriasi et al., 2007).

Nivel de	\mathbf{E}	RSR
Rendimiento		
Muy bueno	0.75 < E < 1.00	0.00 < RSR < 0.50
Bueno	0.65 < E < 0.75	0.50 < RSR < 0.60
Satisfactorio	0.50 < E < 0.65	0.60 < RSR < 0.70
Insatisfactorio	E < 0.50	RSR > 0.70

Tabla 8. Nivel de rendimiento y sus índices determinantes.

Fuente: Elaboración propia a partir de Moriasi et al., (2007).

c. Validación del modelo hidráulico

Una vez realizada la calibración del modelo hubo que validar el mismo, para lo cual, se compararon las mediciones de presión obtenidas en 20 puntos distintos a los utilizados en el proceso de calibración.

De igual modo, se calculó el índice de Nash-Sutcliffe (E), y el error medio normalizado (RSR) determinado por la ecuación 23 y 24 respectivamente (Moriasi et al., 2007; Ramos, 2013).

$$E = 1 - \frac{MSE^{Sim}}{MSE^{Obs}} = 1 - \frac{\sum_{t=1}^{n} (Y_t^{Obs} - Y_t^{Sim})^2}{\sum_{t=1}^{n} (Y_t^{Obs} - Y_t^{Promedio})^2}$$
(23)

Donde: MSE^{obs}, MSE^{sim}, son los errores cuadráticos medios de los datos observados y simulados respectivamente.

$$RSR = 1 - \frac{RMSE^{Sim}}{STDVE^{Obs}} = \frac{\sqrt{(\sum_{t=1}^{n} (Y_t^{Obs} - Y_t^{Sim})^2)}}{\sqrt{(\sum_{t=1}^{n} (Y_t^{Obs} - Y_t^{Promedio})^2)}}$$
(24)

Donde: RMSE representa el error medio cuadrático y STDVE la desviación estándar de las observaciones.

Con los resultados de los índices previamente descritos se utilizó la tabla 8 para corroborar el nivel de rendimiento del modelo validado.

2.4.5. Análisis del modelo

a. Evaluación del rendimiento de la red de distribución

La evaluación del rendimiento de la RDAP se realizó a través del uso de indicadores de rendimiento técnico (IRT), los cuales permitieron evaluar el comportamiento de la red, comparándolo con valores de referencia (García, 2019). Los IRT se calcularon en función de las presiones y velocidades nodales máximas y mínimas, generando valores entre 0% (servicio deficiente) y 100% (servicio eficiente), además el IRT de la edad se calculó en función del tiempo de permanencia óptimo y deficiente del agua tratada (Zischg et al., 2017).

El IRT de la presión se calculó en función de la ecuación 25:

$$IRT_{press} = \frac{\sum_{i=1}^{NN} Q_i IRT_i}{\sum_{i=1}^{NN} Q_i}$$

$$IRT_i = \begin{cases} 0; & p_i \le p_{min} \\ 1; & p_{min} \le p_i \le p_{max} \\ 1 - \frac{p_i - p_{max}}{p_{max} - p_{min}}; & p_{max} \le p_i \le 100 \\ 0; & p_i > 100 \end{cases}$$
(25)

Donde: IRT_i, es una constante en función de las presiones nodales máximas y mínimas; NN, es el número de nodos en el sistema; Q_i, la demanda total. El IRT de la velocidad se calculó en función de la ecuación 26:

$$IRT_{vel} = \frac{\sum_{i=1}^{NP} Q_i IRT_i}{\sum_{i=1}^{NP} Q_i}$$

$$IRT_i = \begin{cases} 0; & V_i \leq V_{min} \\ \frac{V_i - V_{min}}{V_{media} - V_{min}}; & V_{min} \leq V_i \leq V_{media} \\ \frac{V_i - V_{max}}{V_{media} - V_{max}}; & V_{media} \leq V_i \leq V_{max} \\ 0; & V_i > V_{max} \end{cases}$$

$$(26)$$

Donde: IRT_i, es una constante en función de las velocidades mínimas y máximas; NP, es el número de tuberías en el sistema; Q_i, es el caudal que circula por la tubería i. El IRT de la edad se calculó de acuerdo con lo establecido en la ecuación 27:

$$IRT_{edad} = \frac{\sum_{i=1}^{NN} Q_i IRT_i}{\sum_{i=1}^{NP} Q_i}$$

$$IRT_i = \begin{cases} 0; & E \ge E_{max} \\ 1; & E \le E_{optima} \end{cases}$$

$$I= \begin{cases} 1 - \left(\frac{E - 24}{120 - 24}\right); & E_{optima} \le Edad \le E_{max} \end{cases}$$

$$(27)$$

Donde: IRT_{edad} , es una constante en función del tiempo de permanencia óptimo y deficiente del agua tratada en los nodos; NN, es el número de nodos en el sistema; Q_{i} , la demanda total.

2.5. Elaboración del modelo de decaimiento de cloro residual.

2.5.1. Identificación de puntos de muestreo

Con la finalidad de garantizar un modelo representativo y con sesgo mínimo, se realizó un muestreo aleatorio estratificado, segmentando a toda la población en subgrupos con una característica en común; las variables consideradas han sido: altura, distancia a la planta de tratamiento y densidad poblacional (Fuentelsaz, 2004). Una vez definidos los estratos se procedió a definir el tamaño de muestra para cada uno de estos, aplicando el método de asignación óptima, el cual permite al muestreador definir el tamaño de las mismas (Otzen & Manterola, 2017). En la tabla 9 se puede observar los estratos determinados y el tamaño muestral definido.

Número de estrato	Identificación	Número de muestras
1	Zona rural	2
2	Zona urbana	6
3	Planta de tratamiento	1
4	Tanques de almacenamiento	1
5	Nodos extremos de la red	5
-	Total de puntos de monitoreo	15

Tabla 9. Estratos determinados y número de muestras asignadas.

Fuente: Elaboración propia.

A continuación, se presenta la figura 11, la cual contiene los puntos de monitoreo dispersos en el área de cobertura de la red. Se puede identificar en la leyenda los estratos definidos previamente en la tabla 9.

Figura 11. Puntos de monitoreo distribuido en el area de cobertura de la red. Fuente: Elaboración propia

2.5.2. Medición de cloro residual

Para la medición de cloro residual en los diferentes puntos de la red se aplicó la metodología *Bottle Test* descrita por varios autores, la cual consiste en obtener una muestra de agua representativa en cada punto y almacenarlo en un *cooler* para sus posteriores análisis en laboratorio, dicho método ha sido aplicado en la mayoría de estudios experimentales. Los pasos que se siguieron consistieron primero en la preparación de los envases plásticos de acuerdo a lo estipulado por la norma NTE INEN 2169: 2013; a continuación, se tomaron las muestras considerando que previamente se deje correr el agua por un tiempo aproximado de 2 minutos. Finalmente, las muestras fueron almacenadas en un *cooler* para mantener la temperatura constante durante sus

posteriores mediciones (García, 2019; Musz-Pomorska et al., 2019; Rimmer, 2018; Vuta & Dumitran, 2011).

La metodología antes descrita se realizó durante la estación seca y estación húmeda debido a las variaciones en la calidad del agua y temperatura. Para cada estación se determinaron 3 meses de monitoreo, una vez por mes se tomó una muestra significativa de 1000 ml por cada punto previamente definido, lo que resultó en 15 muestras por mes, 45 muestras por estación y 90 muestras en total.

La medición de cloro residual se realizó con dos colorímetros HACH DR 890, mientras que el pH y la temperatura del agua se determinaron con un equipo HANNA HI 98108 $pHep^+$. Los resultados obtenidos en campo fueron necesarios para determinar el orden de la reacción, así como k_b .

2.5.3. Determinación del orden de la reacción

A partir de los datos obtenidos de los muestreos, se procedió a determinar el orden de la reacción mediante el software Microsoft Excel. Varios autores mencionan que el orden 1 es el que mejor se ajusta al comportamiento del cloro residual hasta alcanzar su consumo total (Musz-Pomorska et al., 2019). Sin embargo, se procedió a graficar para cada muestra la concentración con el tiempo para orden 0, el logaritmo neperiano de la concentración con el tiempo para orden 1 y el inverso de la concentración con el tiempo para orden 2. Para cada gráfica se obtuvo el coeficiente R² con la finalidad de cuantificar el ajuste de estas con los datos, posteriormente se determinó el orden más adecuado (García, 2019; Guanuchi & Ordoñez, 2017).

2.5.4. Determinación de k_b

La constante de decaimiento con la masa de agua (k_b) se obtuvo a partir de la ecuación resultante de cada gráfico, luego de realizar el ajuste exponencial respectivo (Boccelli et al., 2003; García, 2019; Mostafa et al., 2013). La forma de la ecuación de cada gráfica se expresa a través de la ecuación 28:

$$C = Co * e^{-k_b K b, t} \tag{28}$$

La constante k_b fue obtenida con la ecuación 28 para cada muestra, posteriormente se realizó un promedio mensual y determinó un valor de kb representativo para toda la red (García, 2019). Con la finalidad de conocer la influencia de la estacionalidad en el coeficiente, se calculó un k_b para la estación seca y un k_b para la estación húmeda.

2.5.5. Determinación de k_w

La determinación de la constante de decaimiento de cloro con la pared de las tuberías (k_w) no dispone de una metodología definida para su cálculo (Mostafa et al., 2013). La complejidad en la obtención de este coeficiente es resultado de la amplia variedad de factores que influyen en su valor; las variables son: el material de las tuberías, el diámetro, la rugosidad, la edad, la presencia de *biofilm* en las paredes y la temperatura del agua (García, 2019; Vuta & Dumitran, 2011). En función de lo recomendado en la literatura, se asumió el valor calculado por García (2019), dicho valor se ajustó durante la etapa de calibración.

2.5.6. Simulación inicial del modelo de decaimiento de cloro

Partiendo del modelo hidráulico calibrado y validado, se procedió a ingresar y corregir las opciones de calidad y las opciones de reacción para el modelo. Una vez asignados dichos valores se proporcionó un valor inicial de calidad al tanque de la planta de tratamiento (Caballero, 2016). Finalmente se realizó la simulación del modelo, la misma que debido al error entre los valores simulados y observados demostró la necesidad de integrar la etapa de calibración.

2.5.7. Calibración

La calibración del modelo consistió en modificar los parámetros k_b y/o k_w . Caballero (2016) recomienda asignar valores de k_w distintos para cada línea principal saliente de la planta de tratamiento y para cada línea principal saliente de los tanques de distribución, incluyendo sus respectivas ramificaciones. Por tanto, se procedió a designar un código a cada tubería principal y sus ramificaciones, como se puede apreciar en la tabla 10 y la figura 12.

Número	Código	Proveniencia	Tipo de zona de	Puntos de monitoreo
de línea			abastecimiento	
1	L1 - Verde	Planta de	Urbana	Planta de tratamiento
		tratamiento.	Rural	Leg Abuga
				Iglesia Leg Tabacay
				EMAUS
2	L2 - ROJO	Planta de	Tanques de	Tanques Señor de Flores
		tratamiento	distribución	
3	L3 -	Planta de	Rural	Tanques Señor de Flores
	AMARILLO	tratamiento.	Tanques de	
			distribución	
4	L4 -	Planta de	Urbana	Los troncales
	CELESTE	tratamiento		Casa titi
		Tanques de		Corazón de María
		distribución.		
5	L5 -	Tanques de	Urbana	Oficinas Junta de Agua
	NARANJA	distribución		Casa profe
				Calvario bajo
				Calvario alto
6	L6 - LILA	Tanques de	Rural	Opar taller
		distribución.		Opar 2

Tabla 10.Codificación de las líneas principales, su proveniencia, zona de
abastecimiento y puntos de monitoreo presentes.

Fuente: Elaboración propia.

Figura 12. Líneas asignadas para la distribución del agua diferenciadas Fuente: Elaboración propia.

Una vez codificadas y diferenciadas las líneas principales y su proveniencia se continuó con la modificación del valor de k_w en donde fuese necesario (Caballero, 2016). Los ensayos continuaron hasta que se obtuvo una correlación de valores medios en el informe de calibración emitido por el programa superior a 0.95 (Rossman, 2017).

2.5.8. Validación

Para la validación se establecieron 15 puntos distintos a los utilizados en las etapas anteriores. Al igual que durante la etapa de calibración se obtuvo un informe de calibración interpretado como informe de validación, en el cual se compararon los nuevos valores de concentración observados con los simulados. Adicionalmente, se calculó el

índice de Nash-Sutcliffe (E), y el error medio normalizado (RSR) determinado por las ecuaciones 29 y 30 respectivamente (Moriasi et al., 2007).

$$E = 1 - \frac{MSE^{Sim}}{MSE^{Obs}} = 1 - \frac{\sum_{t=1}^{n} (Y_t^{Obs} - Y_t^{Sim})^2}{\sum_{t=1}^{n} (Y_t^{Obs} - Y_t^{Promedio})^2}$$
(29)

Donde: MSE^{obs}, MSE^{sim}, son los errores cuadráticos medios de los datos observados y simulados respectivamente.

$$RSR = 1 - \frac{RMSE^{Sim}}{STDVE^{Obs}} = \frac{\sqrt{(\sum_{t=1}^{n} (Y_t^{Obs} - Y_t^{Sim})^2)}}{\sqrt{(\sum_{t=1}^{n} (Y_t^{Obs} - Y_t^{Promedio})^2)}}$$
(30)

Donde: RMSE representa el error medio cuadrático y STDVE la desviación estándar de las observaciones.

2.5.9. Análisis de sensibilidad de los parámetros influyentes en el modelo

La metodología aplicada fue la de perturbación de parámetros, la cual consistió en la modificación de un parámetro especifico mientras se mantuvieron a los demás parámetros constantes. Posteriormente, se cuantifico la variación de los valores de concentración de cloro residual en la red (Moriasi et al., 2007; Wang et al., 2019). Los parámetros más influyentes en un modelo de calidad son k_b y k_w ; debido a esto el primer parámetro modificado fue k_b mientras se mantenía constante el valor de k_w . Por último, se modificó k_w mientras se mantenía constante el valor de k_b (García, 2019).

2.6. Análisis estadístico.

Los análisis estadísticos realizados se muestran en un informe de calibración propio del software Epanet, entre las herramientas presentadas se encuentran, gráfico de correlación y comparación de valores medios, media de los errores absolutos entre los valores medidos y calculados para todas las observaciones, y el error cuadrático medio (raíz cuadrada de la media de los errores cuadráticos entre los valores medidos y calculados para todas las observaciones) (Rossman, 2017). Adicional a la estadística entregada por Epanet se realizó un análisis hidráulico de desempeño técnico, con el fin de analizar la presión y la velocidad del agua en las tuberías y nodos del sistema determinando el porcentaje de tuberías y nodos que cumplen con los requisitos de velocidad, presión, y

tiempo de permanencia recomendados en diversos estudios, la metodología de este análisis estadístico se encuentra descrita en el apartado 2.4.5 (Zischg et al., 2017).

3. RESULTADOS Y DISCUSIÓN

3.1. Características físicas de la red y componentes.

3.1.1. Mapa actualizado de la red y sus componentes

La red de distribución de la JPAB se trazó conforme al levantamiento catastral realizado por Méndez & Valdiviezo (2018), las actualizaciones realizadas durante el lapso transcurrido desde su catastro hasta la realización de esta investigación se comprobaron y dibujaron con el técnico encargado de la ampliación y mantenimiento de la red. En la figura 13, se puede apreciar la red obtenida en QGIS 3.1, sobre la cual se desarrolló el modelo hidráulico y el modelo de decaimiento de cloro residual.

Figura 13. Mapa actualizado de la red de distribución de la JPAB. Fuente: Elaboración propia.

3.1.2. Tabla actualizada de componentes de la red, identificación y características

La tabla 11 proporciona una visión general de los componentes físicos actualizados desde el 2017, año en que se realizó el último levantamiento catastral de la RDAP por parte de Méndez & Valdiviezo (2018). La información necesaria para desarrollar este apartado fue actualizada en el software QGIS conjuntamente con el operador encargado de las actualizaciones.

Componente	Longitud (m)	Sector	Coordenada X	Coordenada Y
Válvula	-	Leg Tabacay	740572	9696791
limitadora de				
caudal (25ø)				
Válvula de	-	Oriente Alto	740993	9697990
regulación de				
presión (63ø)				
Válvula de	-	Oriente Alto	740892	9697820
regulación de				
presión (63ø)				
Válvula de	-	Oriente Bajo	740339	9697195
regulación de				
presión (63ø)				
Válvula de	-	Oriente Bajo	740454	9697269
regulación de				
presión (63ø)				
Válvula de	-	Leg Tabacay	740553	9698991
regulación de				
presión (32ø)				
Válvula de	-	Leg Abuga	740574	9699044
regulación de				
presión (32ø)			5 40242	0.00000.0
Válvula de	-	Leg Tabacay	740343	9699036
regulation de				
presion (32Ø)		T T 1	740552	0.00001
Valvula de	-	Leg Tabacay	/40553	9698991
regulation de				
presion (40Ø)		Conceán do	740504	0607960
valvula de	-	Corazon de María	/40504	909/809
regulación (50g)		Ivialia		
Vélunie de		Orionto Alto	740080	0607080
valvula ue	-	Offente Alto	740989	9097980
nrosión (50g)				
$\frac{\text{presion}(300)}{\text{Tuboría}(32.6)}$	19.76	Leg Tabacay	740642	9698573
$\frac{1 \text{ uperia } (52 \text{ g})}{\text{Tuboría } (40 \text{ g})}$		Leg Tabacay	740042	0609601
1 uberia (400)	33	Leg Aduga	/40834	9098001

 Tabla 11.
 Componentes físicos actualizados de la RDAP.

Fuente: Elaboración propia.

Componente	Longitud (m)	Sector	Coordenada X	Coordenada Y	
Tubería (25ø)	100	Leg Abuga	740951	9698776	
Tubería (25ø)	130	Señor de Flores	741118	9698359	
Tubería (25ø)	505	Zhyrincay	741231	9698342	
Tubería (25ø)	200	Zhyrincay	741090	9698315	
Tubería (25ø)	87.67	Zhyrincay	741161	9698359	
Tubería (32ø)	30	Oriente Alto	741592	9698219	
Tubería (50ø)	260.3	Corazón de	739844	9697805	
		María			
Tubería (25ø)	79.86	Oriente Bajo	740117	9697259	
Tubería (63ø)	Tubería (63ø) 45.89		739958	9697262	
Tubería (25ø)	5ø) 46 Leg Abuga		741219	9698208	
Tubería (63ø)	106	Corazón de	740337	9697656	
		María			
Tubería (25ø)	235.66	Leg Tabacay	740360	9698640	
Tubería (63ø) 102.91 Coraz		Corazón de	740343	9697661	
		María			
Tubería (32ø) 72.74		Corazón de 740413		9697703	
		María			
Tubería (25ø)	143.62	Señor de Flores	741356	9698179	
Total	2230.41				

Tabla 11 (Continuación) Com	nonentes	físicos	actualizados	de la	RDAP
1 auta 11. (Commutacion) Com	ponences	1151005	actualizados	uc la	$\mathbf{N} \mathbf{D} \mathbf{A} \mathbf{I}$

Fuente: Elaboración propia.

Se actualizó un total de 2230.41 metros de tuberías entre los cuales figuran líneas de conducción de diversos diámetros, siendo notable una expansión de 8.3% en relación a los 27000 metros registrados en el año 2018, cuando se realizó la última campaña de levantamiento de información. De igual manera, se actualizó un total de 10 válvulas reductoras de presión, en lugar de las antiguas cámaras rompe presiones, debido a que varios autores como Benites (2019) menciona que las cámaras de concreto comprometen la calidad final del agua, por su falta de hermeticidad que las vuelve vulnerables a factores externos, por lo que es recomendable cambiar estas estructuras por válvulas presurizadas de control de presión.

3.2. Evaluación del modelo hidráulico.

3.2.1. Demanda base del área cubierta por la red

a. Micromedición

El factor de consumo sectorial se calculó a partir de los datos de facturación domiciliaria correspondientes a los meses de agosto, septiembre y octubre del 2020, enero, febrero y

marzo de 2021; estos valores fueron suministrados por la JPAB. Para el cálculo de esta constante se consideraron los valores de consumo altos y bajos que presentaban los distintos usuarios de la red. Las tasas de consumo por predio y el número de predios por sector se presentan en la tabla 12.

Sector	Factor de consumo	Predios	
	(Litros/segundo*predio)		
Leg Tabacay	0.00531	127	
Leg Abuga	0.00527	219	
Señor de Flores	0.00595	70	
Corazón de María	0.00668	240	
Oriente Alto	0.00542	146	
Oriente Bajo	0.00758	260	
General Veintimilla	0.00935	116	
Zhirincay	0.00347	87	
-			

Tabla 12.Factores de consumo de agua potable por sector

Fuente: Elaboración propia.

Los factores de consumo más altos se registraron en los sectores de General Veintimilla y Oriente Bajo, mientras que las constantes de consumo más bajas se registraron en el sector de Zhirincay y Leg Abuga, comprobando lo establecido por Idrobo (2018), quien menciona que existe una disparidad entre las zonas periurbanas y rurales en lo que respecta al consumo de agua potable. Los resultados de consumo por sector se encuentran representados en la tabla 13.

Sect	or	Consumo	Porcentaje (%)
		(Litros/segundo)	
Leg	Tabacay	0.6790	8.4
Leg	Abuga	1.1601	14.35
Seño	or de Flores	0.4163	5.15
Cor	azón de María	1.6173	20
Orie	ente Alto	0.8070	9.98
Orie	ente Bajo	2.0020	24.76
Gen	eral Veintimilla	1.1037	13.65
Zhir	rincay	0.3015	3.73
Tota	ıl	8.09	

 Tabla 13.
 Consumo determinado por micromedición para cada sector de la red.

Fuente: Elaboración propia.

El consumo mensual promedio de los usuarios de toda la red fue de 8.09 L/s, siendo más alto el porcentaje de consumo en el sector Oriente Bajo (24.76%) en relación con los otros siete sectores.

b. Macromedición

En la tabla 14 se exponen los valores de caudal inyectado a la red de distribución, obtenidos a partir de la macromedición, basada en la observación de la variación del nivel de agua en el tanque principal durante 48 horas. El caudal mínimo horario inyectado a la red es de 12.2 L/s (06:00 am), el caudal máximo inyectado a la red es de 21.9 L/s (22:00 pm), finalmente se obtuvo que en promedio se inyecta a la red 16.01 L/s.

Fabla 14.	Caud	al inyectado a la rec	d de distribuci	ón.
		Hora medición	Caudal	Coeficiente
			inyectado	
			(L/s)	
		1:00:00	14.63	0.67
		2:00:00	14.63	0.67
		3:00:00	14.00	0.64
		4:00:00	14.00	0.64
		5:00:00	14.53	0.66
		6:00:00	12.26	0.56
		7:00:00	18.63	0.85
		8:00:00	20.07	0.92
		9:00:00	19.01	0.87
		10:00:00	18.53	0.85
		11:00:00	16.79	0.77
		12:00:00	15.83	0.72
		13:00:00	16.41	0.75
		14:00:00	16.89	0.77
		15:00:00	13.52	0.62
		16:00:00	12.33	0.56
		17:00:00	15.03	0.69
		18:00:00	15.22	0.69
		19:00:00	18.63	0.85
		20:00:00	16.22	0.74
		21:00:00	15.25	0.70
		22:00:00	21.90	1.00
		23:00:00	16.51	0.75
		0:00:00	13.47	0.62

Fuente: Elaboración propia.

A partir del caudal promedio inyectado a la red obtenido de la macromedición y el caudal consumido resultante de la micromedición, se pudo afirmar que existen pérdidas dentro de la red de distribución de agua potable. Las pérdidas en cuestión son ocasionadas por fugas en tuberías o por tomas de agua ilegales o no reportadas a la JAPB. Con la finalidad

de cuantificar está pérdida se obtuvo el porcentaje de agua no contabilizada (%ANC), como se muestra a continuación:

Caudal inyectado: 16.01 L/s

Caudal consumido: 8.09 L/s

% ANC=
$$\frac{16.01-8.09}{16.01}$$
 * 100
% ANC= 49.46

Con la finalidad de reconocer los periodos de consumo bajo, medio y alto se obtuvo la curva de variación de consumo horario presentada en la figura 14.

Figura 14. Variación de consumo horario Fuente: Elaboración propia.

Considerando como hora inicial las 06:00 am, se puede apreciar en la figura 14 un aumento en el consumo de agua hasta las 08:00 am, a partir de ese momento comienza a disminuir el consumo hasta las 12:00 pm, posteriormente existe un aumento ligero hasta las 14:00 pm. La tendencia hasta las 16:00 pm es de disminución, pero a partir de ese instante comienza a aumentar hasta las 19:00 pm, la tendencia es contraria hasta las 21:00 pm para aumentar hasta su pico máximo a las 22:00 pm. Finalmente, disminuye abruptamente hasta la 1:00 am y el nivel se mantiene ligeramente constante hasta las 05:00 am.

La figura 14 muestra que existen dos períodos de consumo alto, en las primeras horas de la mañana y en la noche. El consumo mínimo se da en la madrugada y a las 16:00 pm, mientras que los valores de consumo medios se dan en el transcurso de la mañana.

Se obtuvo la demanda base para cada nodo considerando el %ANC, lo cual permitió que el caudal inyectado a la red durante la simulación sea similar al real. En la tabla 15 se presenta un ejemplo del cálculo de la demanda base para ciertos nodos de la red.

ID nodo	Altura	Demanda base	Número de predios abastecido s	Sector	Coeficiente de consumo sectorial (L/s*predio)	Requerimient o nodal sin %ANC
J2	2748	0.1765	15	Señor de Flores	0.00594	0.0892
J3	2773	0.0353	3	Señor de Flores	0.00594	0.0178
J4	2721	0.0396	3	Corazón de María	0.00668	0.0200
J5	2722	0.1412	12	Señor de Flores	0.00594	0.0713
J6	2773	0.0353	3	Señor de Flores	0.00594	0.0178
J 7	2721	0.1586	12	Corazón de María	0.00668	0.0801

Tabla 15.	Cálculo d	demanda	base.
1 uonu 15.		aomanau	ouse.

Fuente: Elaboración propia.

Los resultados completos del cálculo de demanda base se presentan en el anexo 1 y se toma como ejemplo el nodo "J5", al cual se le asignó el abastecimiento de 12 predios. Los predios asignados a este nodo se encuentran en el sector "Seños de Flores", por lo que el coeficiente de consumo fue 0.005948 L/s*predio. El consumo nodal es el producto de su coeficiente sectorial y el número de predios asignados, a este valor se lo multiplica por el factor de corrección 1.97; resultado de la división entre macromedición y micromedición. La demanda base para el nodo "J5" considerando el % ANC fue 0.14124 L/s, dicho valor fue utilizado por el modelo durante la simulación.

3.2.2. Modelo hidráulico resultante de Epanet

Partiendo desde el esquema de la red correctamente trazada, con todas sus conexiones revisadas, componentes ingresados y sus parámetros respectivos. Se procedió a obtener el resumen del modelo, que se presenta en la tabla 16.

Tabla 16. Resumen del model	o nidraulico.
Número de depósitos	3
Número de tuberías	290
Número de conexiones	331
Número de bombas	0
Número de válvulas	54
Unidades de caudal	LPS
Ecuación de pérdidas	H-W
Parámetro de calidad	Cloro

Tabla 16.	Resumen	del	modelo	hidráulico.

Fuente: Epanet.

Las características de las tuberías y nodos se presentan en el anexo 2, en donde se pueden apreciar cota, demanda base en nodos que no son de guía o válvulas y las características de las tuberías.

3.2.3. Simulación inicial

La simulación inicial permitió obtener valores de presión y caudal, estos datos se utilizaron para determinar la necesidad de calibrar el modelo. Los datos obtenidos de la primera simulación del modelo hidráulico se dividieron en dos partes: resultados en nodos y resultados en líneas de conducción. Como primer apartado se muestra los resultados en conexiones, la figura 15 proporciona una visión general de los valores de presión en los nodos de la red a las 12:00 pm del primer día. En la figura previamente mencionada se pudo determinar que las presiones en la red modelada se encuentran en un rango desde 2.71 hasta 139.37 m.c.a.

Figura 15. Valores de presión día 1 a las 12:00 PM Fuente: Elaboración propia.

Se realizó una comparación de los datos medidos en una campaña de monitoreo en 44 puntos de la RDAP con los valores simulados inicialmente. El número de puntos de muestreo de presiones corresponde al 14 % del total de conexiones de la red, cumpliendo con lo enunciado por Kepa & Stańczyk-Mazanek (2014), quienes recalcan que los puntos de control in situ deben ser mínimo el 2% del total de nodos de la red estudiada. La localización y número de puntos de medición se calcularon en función del número de predios por sector, considerando también como punto de control los manómetros de las válvulas rompe presiones ubicadas a lo largo de la red (Tabla 18).

De la tabla 17 se desprende que los valores calculados y observados son discordantes en un promedio de 5.49 m.c.a. Se aprecia que en el nodo J109 el margen de error entre el valor simulado y el medido es de 20.86 m.c.a, siendo este el de máximo error, debido a lo expuesto se procedió a realizar la calibración del modelo.

Estadísticas de calibración para presión							
Localización	Observado	Calculado	Error	RMS			
J190	56.24	58.89	2.651	2.651			
J120	91.4	94.31	2.907	2.907			
J107	35.15	35.62	0.47	0.47			
J137	98.43	100.56	2.13	2.13			
J138	45.7	45	0.7	0.7			
J117	84.37	86.71	2.34	2.34			
J109	112.49	133.36	20.869	20.869			
J193	101.94	105.24	3.299	3.299			
J176	49.21	57.08	7.867	7.867			
J76	7.03	8.3	1.267	1.267			
J290	24.6	21.74	2.86	2.86			
J195	49.21	53.46	4.248	4.248			
J3	10.54	9.67	0.872	0.872			
J158	59.76	63.11	3.35	3.35			
J166	42.18	44.86	2.685	2.685			
J69	98.45	107.79	9.338	9.338			
J180	101.94	103.08	1.138	1.138			
J182	84.37	94.47	10.104	10.104			
J321	77.33	77.7	0.369	0.369			
J13	59.76	71.75	11.987	11.987			
J235	35.15	45.14	9.99	9.99			
J80	24.6	26.49	1.889	1.889			
J24	87.88	101.98	14.104	14.104			
J37	73.82	68.84	4.977	4.977			
J44	49.21	54.54	5.332	5.332			
J59	38.67	62.31	23.64	23.64			
J91	56.25	55.79	0.461	0.461			
J252	73.82	79.69	5.869	5.869			
J 9	98.43	113.03	14.6	14.6			
J63	56.24	61.29	5.051	5.051			
J233	70.3	74.97	4.668	4.668			
J240	35.15	30	5.15	5.15			
J116	31.64	35.75	4.115	4.115			

Tabla 17.Errores cuadráticos medios entre valores simulados y medidos previo a la
calibración del modelo hidráulico.

Estadísticas de calibración para presión						
Localización	Observado	Calculado	Error	RMS		
J128	42.18	38.52	3.663	3.663		
J129	45.7	47.46	1.76	1.76		
J200	91.4	95.33	3.929	3.929		
J298	91.4	94.32	2.923	2.923		
J75	28.7	30	1.3	1.3		
J199	84.37	88.96	4.592	4.592		
J222	30	30	0	0		
J229	98.43	101.51	3.075	3.075		
J161	63.29	65	1.71	1.71		
J143	91.4	105.97	14.569	14.569		
J215	35.15	48	12.85	12.85		
Promedio	61.89	66.54	5.492	7.719		
Correlación entre	Correlación entre los términos 0.981					

Tabla 17. (Continuación) Errores cuadráticos medios entre valores simulados y medidos previo a la calibración del modelo hidráulico.

Fuente: Epanet.

Tabla 18.Porcentaje de conexiones a monitorear por sector.

Sector	Número de predios	Porcentaje de conexiones a monitorear (%)	Número de conexiones a monitorear
Leg Tabacay	127	10	5
Leg Abuga	219	17	8
Señor de Flores	70	6	3
Corazón de María	240	19	9
Oriente Alto	146	12	6
Oriente Bajo	260	21	10
General Veintimilla	116	9	4
Zhirincay	87	7	3
Total	1265		48

Fuente: Elaboración propia.

Como segunda parte de los datos obtenidos de la primera simulación se encuentran los resultados en las líneas de conducción, la figura 16 representa los valores de caudal en L/s que circula en los distintos tramos de la red, los valores de caudal oscilan entre 0.01 y 16.88 L/s, además se destaca que el caudal simulado a las 12:00 pm del primer día en el reservorio de la planta de tratamiento fue de 16.88 L/s, mientras que el caudal medido en el mismo punto durante la campaña de macro medición fue de 16.01 L/s.

Figura 16. Valores de caudal día 1 a las 12:00 PM Fuente: Elaboración propia.

3.2.4. Calibración del modelo

En los nodos en los cuales la diferencia entre la presión observada y simulada fue mayor a 5 m.c.a (puntos críticos), se modificaron los parámetros tales como: coeficientes de rugosidad, diámetros de tuberías, demanda base y cotas. Es así, que las pruebas de ensayo y error terminaron al lograr diferencias menores a 5 m.c.a entre las presiones observadas y simuladas en todos los nodos. Los valores de calibración medidos en campo se encuentran en el anexo 3.

La diferencia máxima aceptable entre los valores de presión observados en campo y los simulados en los nodos en cuestión, se basó en lo resuelto por varios investigadores en sus respectivos casos de estudio. Así, Walski (1983) menciona que es complejo generar un valor máximo de error entre los 2 valores, sin embargo, concluye que un promedio de 3.1 m.c.a con valores máximos de 10 m.c.a es razonable. En años recientes, se ha continuado con el estudio de los modelos de predicción de diferentes parámetros en una red de distribución de agua potable, tal es el caso de Rathi et al. (2020), quienes, luego de aplicar diferentes métodos para la etapa de calibración, lograron un error máximo de 4.37 m.c.a entre los valores observados y simulados en campo. La variabilidad en la metodología de calibración, así como características de la red y precisión de los instrumentos utilizados para la medición en campo, permite encontrar estudios con valores mínimos de error (Walski, 1983). Yunarni Widiarti et al. (2020) presentaron un error máximo de 2.74 m.c.a y una correlación de 0.928.

Se presenta en la tabla 19 los nodos de control utilizados durante el proceso de calibración. Se distinguen las presiones observadas en campo, las simuladas por el programa, el error medio cuadrático para cada nodo y el coeficiente de correlación.

Estadíst	Estadísticas post calibración para presión						
Localización	Observado	Calculado	Error	RMS			
J180	56.24	61.04	4.798	4.798			
J120	91.40	94.45	3.047	3.047			
J107	35.15	35.62	0.470	0.470			
J137	98.43	94.51	3.916	3.916			
J138	45.70	45.00	0.700	0.700			
J117	84.37	86.48	2.106	2.106			
J109	112.49	111.78	0.714	0.714			
J183	101.94	104.32	2.381	2.381			
J166	49.21	53.75	4.539	4.539			
J76	7.03	8.17	1.143	1.143			
J279	24.60	21.68	2.916	2.916			
J185	49.21	53.64	4.430	4.430			
J3	10.54	9.62	0.919	0.919			
J148	59.76	62.82	3.063	3.063			
J156	42.18	39.84	2.338	2.338			
J69	98.45	101.33	2.878	2.878			

Tabla 19.Informe de presiones en la calibración del modelo.

Estadísticas de calibración para presión						
Localización	Observado	Calculado	Error	RMS		
J170	101.94	100.51	1.434	1.434		
J172	84.37	88.24	3.873	3.873		
J310	77.33	72.82	4.506	4.506		
J13	59.76	58.87	0.892	0.892		
J225	35.15	39.89	4.740	4.740		
J80	24.60	26.21	1.608	1.608		
J24	87.88	84.20	3.683	3.683		
J37	73.82	69.84	3.981	3.981		
J44	49.21	52.35	3.135	3.135		
J59	38.67	42.38	3.711	3.711		
J91	56.25	51.64	4.609	4.609		
J242	73.82	74.63	0.808	0.808		
J 9	98.43	101.96	3.534	3.534		
J63	56.24	61.22	4.984	4.984		
J223	70.30	72.34	2.039	2.039		
J230	35.15	35.00	0.150	0.150		
J116	31.64	32.17	0.535	0.535		
J128	42.18	37.86	4.317	4.317		
J129	45.70	42.63	3.066	3.066		
J190	91.40	95.23	3.831	3.831		
J287	91.40	94.22	2.825	2.825		
J75	28.70	30.00	1.300	1.300		
J189	84.37	88.18	3.809	3.809		
J212	30.00	30.00	0	0		
J219	98.43	96.04	2.391	2.391		
J151	63.29	60.00	3.290	3.290		
J143	91.40	95.48	4.077	4.077		
J205	35.15	35.15	0	0		
Promedio	61.89	62.57	2.670	3.063		
Correlaci	rminos	0.994				

Tabla 19. (Continuación) Informe de las presiones en la calibración del modelo.

Fuente: Elaboración propia.

El 50% de los nodos demostraron una variación menor a 3 m.c.a entre la presión observada y la obtenida por simulación del modelo. La totalidad de los nodos presentaron una variación entre los valores de las presiones nodales previamente mencionados menor a 5 m.c.a. El error promedio fue 2.6 m.c.a, el error máximo fue 4.98 m.c.a en el nodo J63 y la correlación entre términos observados y simulados fue 0.994. De acuerdo con esto,

se pudo afirmar que los resultados de la calibración cumplen con lo recomendado por los autores citados en este apartado para error y correlación.

En la figura 17 se aprecia que la diferencia varía de 0 a 4.98 m.c.a. Por lo tanto, se demuestra gráficamente la fiabilidad del modelo hidráulico luego de la calibración, sin embargo, como requerimiento para continuar con la investigación, se realizó una etapa de validación.

Fuente: Elaboración propia.

Adicionalmente, se exponen en la tabla 20 los resultados de la eficiencia de calibración calculada en base al índice Nash-Sutcliffe (E), con un valor de 0.873; el error cuadrático medio normalizado (RSR) tiene un valor de 0.358, resultando en una calificación de "muy buena" de acuerdo con las consideradas estipuladas en la tabla 8 del apartado 2.4.4 de la metodología.

Tabla 20.Resultados de eficiencia de calibración.

Índice	Valor	Calificación
Nash-Sutcliffe (E)	0.873	Muy buena
Error cuadrático medio	0.358	Muy buena
normalizado (RSR)		

Fuente: Elaboración propia.

Se confirmó que el modelo está correctamente calibrado y reproduce el comportamiento hidráulico real de la red. La etapa de validación se realizó mediante la medición de presión en puntos diferentes a los utilizados durante la etapa de calibración; permitiendo demostrar la precisión del modelo generado.

3.2.5. Validación del modelo

Se definieron 20 nodos repartidos entre los sectores del área de estudio diferentes a los usados durante la etapa previa, con el fin de realizar una comparación entre los valores observados y los simulados por el modelo calibrado. La selección de los nodos se llevó a cabo mediante las mismas consideraciones tomadas en cuenta durante la primera simulación y calibración. Los valores de validación medidos en campo se encuentran en el anexo 3.

En la tabla 21 se presenta el resultado del informe de calibración emitido por Epanet. Se distinguen los 20 nodos seleccionados, sus presiones observadas in situ, presiones calculadas por el modelo y el error.

Estadísticas post validación para presión							
Localización	Observado	Calculado	Error	RMS			
J145	66.81	69.88	3.070	3.070			
J121	42.19	41.34	0.851	0.851			
J188	66.81	64.68	2.131	2.131			
J312	98.43	101.22	2.792	2.792			
J100	105.49	101.72	3.770	3.770			
J90	24.61	21.45	3.161	3.161			
J168	105.49	101.66	3.833	3.833			
J152	94.94	91.79	3.149	3.149			
J172	91.40	88.31	3.095	3.095			
J157	56.26	53.56	2.701	2.701			
J11	49.23	47.31	1.916	1.916			
J17	35.16	30.61	4.548	4.548			
J52	84.39	82.38	2.005	2.005			
J21	94.94	93.62	1.321	1.321			
J26	84.39	83.25	1.137	1.137			
J249	31.64	33.27	1.629	1.629			
J191	38.68	36.51	2.165	2.165			

Tabla 21.Informe de presiones de validación.

Fuente: Elaboración propia.

Estadísticas post validación para presión							
Localización Observado Calculado Error F							
J60	56.26	54.47	1.791	1.791			
J127	66.81	66.98	0.169	0.169			
J116	38.68	37.05	1.626	1.626			
Promedio	2.336	2.5					
Correlaci	Correlación entre los términos						

Tabla 21. (Continuación) Informe de las presiones de validación.

Fuente: Elaboración propia.

La diferencia estuvo entre 0.851 y 4.54 m.c.a, el error promedio fue 2.33 m.c.a; cumpliendo de esta forma con lo recomendado por los autores citados en el apartado correspondiente al error máximo a conseguir después de la etapa de calibración. A partir de estos resultados, se obtuvieron el índice Nash-Sutcliffe (E) y el Error cuadrático medio normalizado (RSR), expuestos en la tabla 22.

Tabla 22.Resultados de eficiencia de validación.

Índice	Valor	Calificación
Nash-Sutcliffe (E)	0.94	Muy buena
Error cuadrático medio	0.25	Muy buena
normalizado (RSR)		

Fuente: Elaboración propia.

El índice E obtenido fue 0.94, el RSR fue 0.25; estos valores permitieron calificar a la eficiencia de calibración como "Muy buena". La correlación presentada entre los valores de presión observados y calculados fue 0.995, la cual es positiva y están acorde a lo recomendado por los autores citados en el apartado correspondiente a los resultados de la calibración.

El modelo se consideró calibrado y validado de acuerdo con lo previamente expuesto. La aproximación a la realidad es significativa, por lo que se pudo analizar la situación de la red, plantear diferentes escenarios y considerar los posibles efectos de los mismos en la distribución de agua.

3.2.6. Análisis del modelo hidráulico calibrado y validado

Una vez terminada la etapa de validación, se procedió a analizar la situación de la red o comportamiento hidráulico en dos escenarios. El primero corresponde a una parte del día en que la demanda es baja y el segundo un horario en que la demanda es alta.

A las 8:00 am el caudal enviado por la planta de tratamiento fue de 17.15 LPS (demanda alta), por otro lado, el caudal enviado a las 3:00 am fue de 16.6 LPS (demanda baja). La diferencia entre los valores de caudal enviados fue de 0.55 LPS. Durante la madrugada los tanques de distribución ubicados en el sector "Señor de Flores" se llenan completamente y el excedente se desborda. Lo previamente indicado sumado al porcentaje de agua no contabilizada influyeron en el patrón de demanda ingresado al modelo, razón por la cual la diferencia entre el caudal enviado durante el período de demanda baja y el período de demanda baja no es mayor.

En la figura 19 se distinguen las simulaciones realizadas a las 8:00 am (a) y a las 03:00 am (b), se aprecia el tanque principal identificado con el número 1 y los tanques de distribución secundarios identificados con el número 2 y 3. De la planta de tratamiento salen 3 líneas principales, las mismas que se reconocen en la figura 19 por transportar caudales superiores a 1 LPS (línea celeste), a 5 LPS (línea verde) y a 10 LPS (línea amarilla).

En la figura 19 se distingue una línea con caudal superior a 5 LPS (línea verde), que tiene su origen en los tanques de distribución secundarios 2 y 3; se puede apreciar con mayor detalle en la figura 18 que del tanque de distribución 2 sale una línea con caudal superior a 1 LPS (línea celeste), mientras que del tanque de distribución 3 salen: una línea con caudal superior a 5LPS (línea verde) y otra línea con caudal superior a 1 LPS (línea celeste). La mayor parte de la red transporta un caudal menor a 1 LPS; las líneas con caudales mayores corresponden a matrices que abastecen a los tanques de distribución y de las cuales se ramifican tuberías responsables del abastecimiento a los diferentes sectores de la red.

Figura 18. Caudales entrantes y salientes en los tanques de distribución secundarios de Señor de Flores. Fuente: Elaboración propia.

La diferencia entre los caudales circundantes en la red no se aprecia gráficamente debido a que la variación entre el período de demanda baja y el período de demanda alta no es significativa. En la tabla 23 se propuso una clasificación de caudales circundantes en la red, junto con el porcentaje de tuberías que transportan dichos caudales, la longitud total de tuberías que manejan cada intervalo de caudal, y el porcentaje de la red en función de la longitud total de tuberías que transportan cada intervalo de caudal. Estos valores se obtuvieron para la hora de demanda alta (8:00 am) y la hora de demanda baja (3:00 am).

	08:00 am				03:00 am			
Interva- lo de	Número tuberías	% tubería	Longitud total (m)	% de red	Número tuberías	% de tuberías	Longitud total	% de red
caudal		S						
Q ≤1	219	63.67	19 957.89	67.6	233	67.73	20 806.52	70.5
				9				7
1< Q	76	22.09	5 764.73	19.5	67	19.48	5 190.87	17.6
≤5				5				1
5< Q	21	6.10	1 281.41	4.35	16	4.65	1 006.64	3.41
≤10								
10< Q	28	8.14	2 478.36	8.41	28	8.14	2 478.36	8.41
≤18								
Total	344	100	29 482.39	100	344	100	29 482.39	100
Enantes E	lahanaaián							

Tabla 23. Caudales presentes en la red a las 8:00 am y 03:00 am.

Fuente: Elaboración propia.

De esta forma, se pudo resumir en la tabla 23 el comportamiento de la red en función del caudal para dos situaciones distintas: demanda alta y demanda baja. A las 8:00 am existió una predominancia de caudales menores a 1 LPS dentro de la red; el 67.69%, que en distancia cubierta por tuberías representa alrededor de 19958 metros. Los caudales entre 1 y 5 LPS se presentaron en el 19.55% de la red; que en distancia cubierta por tuberías equivale a 5 764 metros. Posteriormente, los caudales comprendidos entre 10 y 18 LPS se dieron en el 8.41% de la red; que en distancia cubierta por tuberías es igual a 2 478 metros; las tuberías que manejan estos caudales altos son predominantemente matrices que conducen el agua directo desde el tanque de distribución principal hacia los tanques de distribución secundarios. Por último, los caudales entre 5 y 10 LPS representaron el 4.35%; cubriendo una distancia en tuberías de 1 281 metros, estos caudales se observaron en líneas que salen de los tanques de distribución secundarios para abastecer a la zona baja de la red. A las 03:00 am de acuerdo con la tabla 23 se aprecia una variación ligera a lo previamente descrito en el horario de demanda alta. La principal diferencia es que las tuberías que transportan caudales menores a 1 LPS aumentaron en un 2.88 %. Por el lado contrario dicho porcentaje se redujo para los caudales comprendidos entre 1 y 5 LPS, con un 1.94% menos; de igual forma para los caudales entre 5 y 10 LPS hubo una reducción del 0.94%.

Figura 19. (a) Mapa de caudales a las 8:00 am y (b) mapa de caudales a las 03:00 am.Fuente: Elaboración propia.

La velocidad es un factor primordial al momento de analizar el modelo hidráulico resultante, de la variable en cuestión depende la capacidad de purga de sedimentos que pueden haberse depositado al fondo de las tuberías. Janis et al. (2007) menciona que el suministro a alta velocidad provoca fuerzas de corte entre las paredes de la tubería y el agua que fluye, reduciendo así el crecimiento microbiano o cualquier forma de depósito, además, agrega que la velocidad alta es un factor importante para el lavado de las tuberías en los sistemas y redes de distribución, sin embargo las velocidades excesivas son responsables de la corrosión y posterior estallido de las tuberías en el sistemas de distribución (Alkali et al., 2017). Las velocidades bajas traen consecuencias negativas para el sistema, debido a que puede verse comprometida la calidad del agua, por las reacciones entre el cloro residual y los sedimentos acumulados (Shamsaei et al., 2013).

Agunwamba et al. (2018) en su investigación establecieron un rango de velocidades de 0.2 a 2 m/s como valores mínimos y máximos respectivamente. Sin embargo, Mazouz & Abdelraouf (2021) fijan el valor máximo de la velocidad en sistemas de distribución de agua en 1.5 m/s, coincidiendo con lo establecido en el código ecuatoriano de la construcción, que estable que la velocidad del agua en una RDAP debe mantenerse entre 0.5 y 1.5 m/s (INEN, 2012). Para el análisis de velocidad en esta investigación se fijó el valor mínimo en 0.2 m/s y el valor máximo en 1.5 m/s.

El análisis de velocidades de flujo resalta que existe velocidades inferiores a lo recomendado en las zonas terminales de los 8 sectores de cobertura de la red, la figura 20 presenta una visión general de las velocidades calculadas en el proceso de simulación a las 8:00 am y a las 3:00 am, siendo las horas de mayor y menor demanda respectivamente.

Figura 20. (a) Mapa de velocidades a las 8:00 am y (b) mapa de velocidades a las 03:00 am.
Fuente: Elaboración propia.

Los resultados de velocidad se muestran a continuación en la tabla 24. Como se puede observar en la tabla 24, a las 8:00 am el 47% del total de tuberías tiene una velocidad inferior a lo recomendado por Agunwamba et al. (2018). El 48% de líneas de conducción a la misma hora cumplen con los límites establecidos anteriormente, y únicamente el 5% de tuberías tienen una velocidad superior a lo establecido en la normativa ecuatoriana. A las 3:00 am que es la hora de menor demanda el 46% de tuberías prevalecen con una velocidad de estancamiento, el 49% cumplen con los límites planteados, y el 6% sobrepasa el valor establecido en la normativa nacional.

	8:00	am	03:00 am		
Intervalo de velocidad	Nro. tuberías	% tuberías	Nro. tuberías	% de tuberías	
V ≤0,2	136	47	133	46	
0,2< V ≤1,5	139	48	141	49	
V>1,5	15	5	16	6	
Total	290		290		

Tabla 24.Resultados de velocidades a las 8:00 am y 03:00 am.

Fuente: Elaboración propia.

Los resultados descritos en la parte superior pueden explicarse gracias a lo enunciado por Agunwamba et al. (2018) y Alkali et al. (2017), quienes atribuyen las velocidades excessivas a sectores donde la demanda de agua es alta, mientras que las velocidades anormalmente bajas las relacionan con el sobredimensionamiento de la red.

La presión en la red de distribución se ve influenciada por varios factores, el principal es la orografía. En la figura 21, se aprecia la variabilidad de elevación existente en la red; se puede apreciar que entre el punto más alto y el más bajo de distribución hay aproximadamente 200 metros de diferencia. La existencia de grandes diferencias en elevación de un terreno resulta en un problema complejo para la implementación de una red de distribución de agua potable (Kepa, 2021).

Figura 21. Variabilidad de cotas en la red de distribución. Fuente: Elaboración propia.

La importancia de controlar la presión en la red de distribución radica en que valores muy bajos representan un riesgo de intrusión. Por otra parte, valores muy altos aumentan la probabilidad de que las tuberías fallen, resultando en fugas, servicio intermitente, etc. (García, 2019; Tilmant et al., 2011). Berardi et al. (2018), mencionan que la presión debe mantenerse entre 30 m.c.a y 70 m.c.a; remarcan la utilidad de válvulas rompedoras de presión y bombas con la finalidad de mantener los niveles previamente mencionados. Kepa (2021), determinó que en Polonia niveles menores a 20 m.c.a en una red de distribución de agua potable son inaceptables, pues en caso de incendios la presión sería

insuficiente en el intento de combatirlos. La misma autora señala que se debe evitar presiones superiores a 60 m.c.a, reduciendo de esta manera la posibilidad de fallas en las tuberías. La norma ecuatoriana considera aceptables niveles máximos de 70 m.c.a para el diseño de sistemas de agua potable (CPE INEN 5, 1992).

En el presente estudio, al analizar las presiones durante periodos de demanda baja (Figura 22) y alta (Figura 23), se distingue que la diferencia entre los valores del presente parámetro entre los 2 periodos de demanda no es apreciable gráficamente. Sin embargo, se puede notar que existen presiones menores a 30 m.c.a y superiores a 70 m.c.a, incumpliendo con lo recomendado por la norma ecuatoriana y lo recomendado por diversas investigaciones.

Figura 22. Presión a las 03:00 am (demanda baja). Fuente: Elaboración propia.

Figura 23. Presión a las 08:00 am (demanda alta). Fuente: Elaboración propia.

En la tabla 25 se presentan las categorías de presión determinadas para el presente caso de estudio, sus valores, el número de nodos con dicho valor y el porcentaje de nodos que se incluyen en cada categoría.

		8:	00 a. m.	3:00 a. m.		
Presión	Valores	Nro.	Porcentaje	Nro. Nodos	Porcentaje	
		Nodos	-		-	
Muy baja	0-15	54	16.31	51	15.41	
Baja	15-30	34	10.27	23	6.95	
Aceptable	30-70	130	39.27	141	42.60	
Alta	>70	113	34.14	116	35.05	
Total		331	100	331	100	

Tabla 25.Rango de presiones presentes en la red de distribución de agua potable a
las 8:00 am y 3:00 am.

Fuente: Elaboración propia.

De la tabla 25 se extrae que para las 08:00 am el 39.27 % de los nodos cumplen con la presión recomendada por la norma y estudios diversos. El 26.5 % de nodos presentan presiones por debajo de 30 m.c.a, que es el valor mínimo recomendado. El 34.14 % de nodos tiene presiones que exceden el valor de 70 m.c.a, que es el valor máximo estipulado por la normativa ecuatoriana. Por otra parte, a las 03:00 am el 42.6% de los nodos cumple con los valores recomendados. El 22% de nodos tiene niveles por debajo del valor mínimo recomendado. El 35% de nodos tiene presiones que superan el valor máximo recomendado por la normativa ecuatoriana.

Tal como se pudo deducir de las figuras 22, 23 y la tabla 25 la diferencia de comportamiento hidráulico entre los periodos de demanda baja y alta no es significativa. Comparando las figuras 22 y 23 con la figura 21 correspondiente a las cotas características de la zona de estudio, en donde está emplazada la red, se determinó que las presiones excesivas se encuentran en la parte baja con alturas menores a 2700 m.s.n.m. En contraste las presiones muy bajas se encuentran en la parte alta de la red, donde la cota es cercana a los 2800 m.s.n.m. La orografía provoca que exista tal variabilidad en las presiones, por lo cual es recomendado analizar cambios de tuberías, implementar válvulas reductoras de presión y considerar la implementación de bombas en zonas estratégicas. Las modificaciones mencionadas, permitirían proporcionar niveles adecuados de presión y evitar los riesgos que conllevan tener presiones muy bajas o excesivas.

3.2.7. Rendimiento de la red

Los resultados de presión en los nodos a las 03:00 am, se utilizaron para aplicar la ecuación 25 y obtener el IRT_{press}. El valor que se obtuvo fue de 65%, este valor es menor al IRT_{press} de 79.81% obtenido por García (2019) en una red de distribución de agua potable localizada en la misma zona de estudio. Así, se decidió implementar válvulas reductoras de presión en puntos estratégicos de la red, sustituir tuberías con diámetros superiores a los necesarios, modificar la consigna de VRP preexistentes, inclusión de bomba y modificar el estado de válvulas limitadoras de caudal.

El IRT de velocidad obtenido mediante la ecuación 26 a partir de las velocidades registradas en las tuberías a las 3:00 am, resultó en 42.41%. Este valor fue superior al registrado por García (2019) de 19.05% obtenido a partir del análisis de una red en una zona estudio de características similares a la de la presente investigación. Una forma de cuantificar la calidad del agua cuando existe velocidades bajas en la red es el cálculo del índice de rendimiento técnico del tiempo de permanencia en horas (ecuación 27), el IRT calculado a las 3:00 am del cuarto día fue del 100%, lo que representa que el tiempo de permanecía en toda la red es menor a 24 horas, cumpliendo con lo recomendado por la EPA (2002), de este resultado se desprende que a pesar de existir velocidades bajas en el sistema, el tiempo de permanencia es óptimo, por lo que flujo lento no afecta en la calidad final del agua (Machell & Boxall, 2014). La hora de simulación fue escogida en base a lo establecido por Rossman (2001), el mismo sugiere que se debe asignar un tiempo inicial de permanencia de 60 horas en el depósito.

3.2.8. Red optimizada

Con el objetivo de optimizar la presión se agregaron al modelo válvulas reductoras de presión (VRP) en puntos estratégicos de la red. Es recomendable instalar una VRP por cada 50 metros de desnivel (Agüero, 2003).

En la tabla 26 se detallan las válvulas ingresadas, identificación de la tubería en la que se instalaron, así como las coordenadas de instalación. La presión de entrada y de salida se obtuvieron de la simulación a las 03:00 am.

VRP	TUBERÍA	COORD. X	COORD. Y	Presión entrada	Presión salida
V55	P90	740616.14	9699424.43	68.2	30
V56	P290	740507.22	9699429.75	61.93	30
V57	P292	740271.35	9699491.38	69.89	30
V58	P91	740690.21	9699040.44	69.06	30
V59	P28	740078.79	9698699.84	70.65	40
V60	P48	740628.57	9698590.4	63.55	30
V61	P285	740713.38	9697946.8	68.73	30

Tabla 26.	Válvulas reductoras de presión ingresadas a la red.
-----------	---

Fuente: Elaboración propia.

La figura 24 muestra en un recuadro una ramificación de la red, la cual presenta un desnivel de aproximadamente 180 metros entre el punto A y B. Debido a esto se instalaron las VRP "V55", "V56" y "V57" resaltadas en los recuadros rojos; asegurando de esta forma que la presión al final de la tubería no exceda el límite de 70 m.c.a.

Figura 24. Grupo de modificaciones 1. Fuente: Elaboración propia.

En la red de distribución existen válvulas reguladoras de caudal, de las cuales se reconocieron 2 que, al ser cambiadas por válvulas reductoras de presión, permiten disminuir la ocurrencia de altas presiones. La primera válvula sustituida es la "V34", ubicada sobre la tubería "P291", a ésta se le asignó una consigna de 30. La segunda válvula cambiada es la "V21" sobre la tubería "P179", a ésta se le asignó una consigna de 30. A su vez se determinó cambiar el estado de la válvula "V27", que permanecía

cerrada a estado "abierta". Por último, se modificaron las consignas de todas las válvulas reductoras de presión en la red para que la presión de salida sea de 30 m.c.a.

La figura 25 delimita el área de la red en la que se cambiaron los diámetros de todas las tuberías de 32mm y 25 mm por tuberías de 20 milímetros. Esta modificación permitió reducir la presión en los finales de cada línea. En la figura 26, se señalan 3 áreas distintas denominadas M3-A, M3-B y M3-C; en la primera se cambiaron las tuberías previas a tuberías con diámetros de 32 mm, en la segunda se cambiaron las tuberías previas a tuberías de 20 mm y finalmente en la tercera se cambiaron las tuberías previas a tuberías con diámetro de 20 mm. La siguiente modificación de diámetros se muestra en la figura 27; se cambiaron las tuberías con diámetro 32 mm por tuberías de diámetro 20 mm. Se prosiguió con la sustitución de tuberías, tal como se muestra en la figura 28, en donde se procuró tener tuberías con diámetro de 25mm en toda el área mostrada dentro del cuadro rojo. Finalmente, se cambiaron las tuberías "P222" y la tubería "P218" de 32 mm a 20 mm y de 32 mm a 25 mm respectivamente, como se aprecia en la figura 29.

Figura 25. Grupo de modificaciones 2, sustitución de tuberías sobredimensionadas. Fuente: Elaboración propia.

Figura 26. Grupo de modificaciones 3, sustitución de tuberías sobredimensionadas. Fuente: Elaboración propia.

Figura 27. Grupo de modificaciones 4, sustitución de tuberías sobredimensionadas. Fuente: Elaboración propia.

Figura 28. Grupo de modificaciones 5, sustitución de tuberías sobredimensionadas. Fuente: Autores.

Figura 29. Grupo de modificaciones 6, sustitución de tuberías sobredimensionadas. Fuente: Autores.

Mediante las presiones y velocidades obtenidas por simulación, una vez realizadas las modificaciones detalladas previamente, se calculó nuevamente el IRT de presión y el IRT de velocidad. Los resultados mostraron que se mejoró el IRT de presión previo de 65% a 78.5%. La diferencia se aprecia gráficamente en la figura 30, en donde el área con presiones excesivas representada por el color rojo en la sección (a) es significativamente menor al área con presiones excesivas representadas por el color rojo en la sección (b). A partir de la comparación de las figuras 31 y 32, se definió que el porcentaje de nodos con presiones adecuadas previo a las modificaciones era de 39%; dicho valor una vez realizadas las modificaciones aumentó a 65%. El porcentaje de nodos con presión

excesiva se redujo del 34% al 13%; sin embargo, del valor de 13% de nodos con presión superior a 70 m.c.a, tan solo 11 de 44 nodos superan los 80 m.c.a, lo que significa que el 75% son valores cercanos al límite superior definido. El IRT de velocidad, una vez aplicados los cambios al sistema de distribución, no varió su valor de 42%.

Figura 30. (a) Red simulada post - modificaciones y su mapa de contorno vs. (b) red simulada previo a modificaciones y su mapa de contorno.
Fuente: Elaboración propia.

Figura 31. Frecuencia de presion en nodos previo a modificaciones. Fuente: Elaboración propia.

Figura 32. Frecuencia de presión en nodos post – modificaciones. Fuente: Elaboración propia.

Darweesh (2018) aconseja considerar la introducción de bombas en caso de que las mejoras luego de agregar VRP y cambiar diámetros, no sean suficientes. En la zona alta del sector de Leg Abuga y Señor de Flores se presentan presiones muy por debajo del nivel mínimo aceptable, por lo que se recurrió al uso de una bomba que suministre energía extra al sector, las especificaciones ingresadas a Epanet de la bomba se detallan en la figura 33. Para esta investigación se eligió utilizar una bomba espiral Pedrollo 2CP40 de 12 hp de potencia, el punto óptimo de funcionamiento de esta se fijó en un caudal medio

de 25 LPS y una altura media de 50 m.c.a, se siguió la metodología planteada por Goñi, (2017) para determinar la bomba ideal para el sistema.

Editor de Curva		×					
ID Curva B1	Descripción Pedrollo 2 CP	Descripción Pedrollo 2 CP40 12hp					
Tipo de Curva BOMBA 💌	Ecuación Altura = 66,67	7-0,02667(Caudal)^2,00					
Caudal Altura 25 50	Attura (m)	60- 50- 40- 30- 20- 10-					
	~	0 10 20 30 40 Caudal (LPS)					
Cargar	Guardar	Aceptar Cancelar <u>A</u> yuda					

Figura 33. Especificaciones de la bomba ingresadas al editor de curvas de Epanet. Fuente: Elaboración propia.

Las presiones calculadas antes y después introducir la bomba se presentan a continuación en la tabla 27.

ID	Presión previa	Presión posterior	Porcentaje de
	(m.c.a)	(m.c.a)	mejora (%)
J72	3.45	47.95	1290
J73	3.42	46.73	1266
J175	5.12	48.53	848
J211	4.39	42.08	859
J176	3.44	32.01	831
J111	5.61	24.05	329
J76	8.12	18.74	131
J278	6.59	7.07	7

Tabla 27.Valores previos y posteriores al uso de la bomba calculados a las 8:00 am
del primer día.

Fuentes: Autores.

De la tabla 27 se deduce que existió un incremento notable de alrededor del 695 % de la presión en la zona alta de Leg Abuga y Señor de Flores, esta mejora se confirmó con el

cálculo del IRT de presión, su valor previo al ingreso de la bomba fue de 78.5 % y su valor actual con la bomba fue del 90%, mientras que el IRT de la velocidad aumentó un 7% en relación a su valor calculado previo al uso de la bomba, llegando a un 49%.

La figura 34 presenta una comparación del mapa de contorno de presiones de la red simulada con las modificaciones de diámetros y válvulas rompe presiones frente a la misma red con el suministro extra de energía de la bomba, de la figura observada en la parte inferior se obtiene que la mejoría en la zona alta de Leg Abuga y Señor de Flores es notable en comparación al resultado anterior. De igual forma, la figura 35 presenta el porcentaje de nodos con presiones óptimas después de ingresar la bomba al sistema, la figura en cuestión es comparable con la figura 32, denotando que existe un incremento del 3% de nodos que cumplen con un rango de 30 a 70 m.c.a, mientras que el número de nodos que tienen una presión inferior a lo recomendado se redujo de un 16% a 10%.

Figura 34. Red simulada con la adición de la bomba y su mapa de contorno vs. Red simulada con modificaciones de diámetros y VRPs y su mapa de contorno.
Fuente: Elaboración propia.

Figura 35. Frecuencia de presión de nodos post – ingreso de bomba. Fuente: Elaboración propia.

A partir del análisis de resultados del modelo hidráulico, se determinó que la red de distribución de agua potable tiene un amplio margen de mejora. Es característico de zonas rurales de alta montaña la presencia de presiones excesivamente altas y excesivamente bajas. Este es un problema sumamente complejo de afrontar dadas las condiciones económicas de las instituciones responsables del abastecimiento de agua. Adicionalmente, la falta de estudios técnicos en los años de construcción y diseño de la red junto con la no disponibilidad de un software de simulación como el ejecutado en esta investigación generaron problemas de sobredimensionamiento y ausencia de registros históricos de actualizaciones. La Junta Administradora de Agua Potable de la parroquia Bayas (JAAPB), puede mejorar el sistema de distribución mediante la sustitución de tuberías en las zonas detalladas, pues existe sobredimensionamiento de la red. Además, el déficit de VRP en la red causa presiones excesivas debido a la brusca y frecuente variabilidad de cotas del área de distribución del servicio. Finalmente, se cuantificó el efecto positivo de instalar una bomba en la zona alta de la red, caracterizada por sus bajas presiones. Los resultados del modelo hidráulico son de utilidad para los técnicos de la JAPB, pues sirven como base para futuros planes de acción, estudios de optimización de la red, calidad de agua, localización de fugas y capacidad de expansión.

3.3. Evaluación del modelo de disminución de cloro residual.

3.3.1. Monitoreo de cloro residual

La tabla 28 expone los valores de cloro residual obtenidos en los 15 puntos de muestreo monitoreados en los meses de agosto, septiembre, octubre de 2020 y enero, febrero, y marzo del 2021.

Tabla 28.	Valores de cloro residual en mg/L obtenidos en los puntos de monitoreo
dura	nte los 6 meses de control.

Número	Agosto	Septiembre	Octubre	Enero	Febrero	Marzo
de						
muestra						
1	1.45	0.76	1.14	0.8	1.51	0.85
2	1.12	0.48	0.19	0.16	1.06	0.79
3	1.36	0.53	0.18	0.05	1.72	0.8
4	0.33	0.08	0.19	0.04	0.95	0.6
5	0.77	0.52	0.09	0.23	0.8	0.49
6	0.18	0.4	0.17	0.08	0.77	0.55
7	1.12	0.47	0.1	0.1	1.48	0.8
8	1.09	0.46	0.2	0.1	1.42	0.71
9	1.19	0.55	0.16	0.03	1.46	0.76
10	0.88	0.46	0.23	0.04	1.51	0.69
11	1.1	0.54	0.13	0.05	1.2	0.63
12	1.19	0.44	0.21	0.04	1.05	0.73
13	0.62	0.47	0.2	0.06	1.25	0.78
14	0.57	0.45	0.21	0.4	1.47	1.14
15	0.19	0.44	0.2	0.05	0.95	0.69

Fuente: Elaboración propia.

Los promedios mensuales obtenidos en un análisis preliminar se resumen en la tabla 29, el cloro libre promedio medido en el sistema durante la estación seca fue de 0.53 mg/L y para la estación húmeda fue de 0.7 mg/L. Sin embargo, la normativa técnica ecuatoriana INEN 1108, establece que el cloro residual debe mantenerse en un rango de 0.3-1.5 mg/L con el fin de evitar un posible rebrote microbiano y asegurar la calidad final del agua. De esta tabla se deduce que, en el 35% de los monitoreos realizados no se cumplió con la norma, con especial recurrencia en los meses de octubre y enero (INEN, 2011). La importancia de contar con 3 mediciones por estación se evidenció debido a que se presentaron problemas por niveles muy bajos en la red en 2 de los 6 meses monitoreados, y al contar con réplicas se pudo continuar con el trabajo de investigación. Los niveles

monitoreados en el tanque fueron adecuados, el problema se presentó durante la medición en los puntos dispersos en la red; los niveles excesivamente bajos se explicaron por la presencia de fugas la noche previa al monitoreo y por fallas en el sistema de cloración, que al ser rústico es susceptible a taponamientos.

Los valores de temperatura y pH durante la estación seca fueron de 16.6 °C y 7.70 respectivamente, mientras que el tiempo de decaimiento de cloro residual en este periodo fue de 20 horas promedio. De igual manera, durante la estación húmeda la temperatura y el pH se mantuvieron en 17.81 °C y 7.94 respectivamente, siendo ligeramente diferente a lo registrado en la estación seca, mientras que el tiempo de decaimiento de cloro residual se redujo a 19 horas promedio en comparación a las 20 horas registradas en la estación seca. De los resultados en cuestión se destaca que existe una ligera variación del tiempo de decaimiento entre las dos épocas, esto puede ser explicado por lo planteado por Monteiro. et al (2015), en su obra menciona que el decaimiento de cloro libre es mayor cuando la temperatura de la masa de agua aumenta gradualmente, sin embargo, la variación de temperatura no es muy grande en este estudio por lo que la variación del tiempo de decaimiento del desinfectante tampoco es notable (Tabla 29).

Analisis de resultados obtenidos en los puntos de monitoreo.							
Concentra-	Promedio	Promedio	Promedio	Cloro	Cloro		
ción	decaimien-	pН	temperatura	Libre	Libre		
promedio	to (horas)		(°C)	Mínimo	Máxi-		
(mg/L)				(mg/L)	mo		
					(mg/L)		
0.88	31	7.51	17.56	0.18	1.45		
0.47	23	7.71	15.35	0.08	0.76		
0.24	5	7.89	16.89	0.09	1.14		
0.53	20	7.70	16.6				
0.15	4	8.21	17.85	0.03	0.80		
1.24	30	8.04	17.51	0.77	1.72		
0.73	22	7.58	18.09	0.49	1.14		
0.70	19	7.94	17.81				
	Analisis de res Concentra- ción promedio (mg/L) 0.88 0.47 0.24 0.53 0.15 1.24 0.73 0.70	Oncentra- ción Promedio decaimien- to (horas) 0.88 31 0.47 23 0.24 5 0.53 20 0.15 4 1.24 30 0.73 22 0.70 19	Analisis de resultados obtenidos en los j Concentra- promedio (mg/L) Promedio decaimien- to (horas) Promedio pH 0.88 31 7.51 0.47 23 7.71 0.24 5 7.89 0.53 20 7.70 0.15 4 8.21 1.24 30 8.04 0.73 22 7.58 0.70 19 7.94	Analisis de resultados obtenidos en los puntos de mon decaimien- promedio (mg/L)Promedio decaimien- pHPromedio temperatura (°C) 0.88 317.5117.56 0.47 237.7115.35 0.24 57.8916.89 0.53 207.7016.6 0.15 48.2117.85 1.24 308.0417.51 0.73 227.5818.09 0.70 197.9417.81	Analisis de resultados obtenidos en los puntos de monitoreo.Concentra- ción decaimien- to (horas)Promedio pHPromedio temperatura (°C)Cloro Libre Mínimo (mg/L) 0.88 317.5117.560.18 0.47 237.7115.350.08 0.24 57.8916.890.09 0.53 207.7016.6 0.15 48.2117.850.03 1.24 308.0417.510.77 0.73 227.5818.090.49 0.70 197.9417.81		

bla 29	Análisis d	e resultados	obtenidos en l	los nuntos	de monitoreo
$LOIA \Delta J$.	Analisis u	c resultados	obtemuos en i	ios punios	uc momoreo.

Fuente: Elaboración propia.

3.3.2. Determinación del orden de la reacción

El orden de reacción se calculó conforme a lo establecido en el apartado 2.5.3, determinando una reacción de primer orden, al presentar una mayor tendencia lineal y un alto coeficiente de correlación R^2 en la mayoría de las muestras analizadas. La tabla 30 proporciona un ejemplo del procedimiento empleado para determinar el orden de reacción, en el caso de la muestra 1 y 8 del mes de octubre presentan un R^2 de 0.93 y 0.96 para una reacción de orden cero respectivamente; 0.97 y 0.97 para una reacción de primer orden; 0.81 y 0.91 para un orden de reacción dos, presentando un mejor ajuste la reacción de primer orden, estos resultados son comparables con los obtenidos por Kim et al. (2015) donde afirma que una reacción de primer orden es capaz de predecir de manera precisa la tasa de descomposición del cloro residual, por lo tanto en esta investigación se decidió emplear una reacción de primer orden en el modelo de calidad. Los resultados obtenidos del orden de reacción de cada muestra se presentan en el anexo 5.

Tabla 30.Ejemplo del cálculo de orden de reacción de dos muestras.Muestra 1Muestra 8

Fuente: Elaboración propia.

Fuente: Elaboración propia.

3.3.3. Obtención de k_b

La obtención de k_b se realizó para cada muestra (anexo 4), luego se obtuvo un promedio mensual de los coeficientes de decaimiento de cloro para finalmente obtener un valor representativo para cada estación. A continuación, en la figura 36 se presenta la gráfica de obtención de k_b para el mes Septiembre de la época seca y el cálculo de k_b para febrero de la época húmeda (Figura 37). En las figuras mencionadas se presentan las líneas de tendencia exponencial para cada muestra y su ecuación representativa de la que se extrajo k_b .

Figura 36. Ajuste exponencial para obtención de k_b por muestra para septiembre.

Fuente: Elaboración propia.

Figura 37. Ajuste exponencial para obtención de k_b por muestra para febrero. Fuente: Elaboración propia.

A manera de ejemplo para la muestra 1 del mes Septiembre el valor de k_b fue -0.105, para la muestra 5 del mes Febrero el valor de k_b fue -0.121. Los coeficientes de decaimiento de cloro con la masa de agua (k_b) para cada muestra durante las 2 estaciones del año (época seca y época húmeda) se presentan en la tabla 31.

	Estación seca					Estación húmeda						
Número	Age	osto	Septie	embre	Oct	ubre	En	ero	Fet	orero	Ma	arzo
de												
muestra												
	h ⁻¹	d ⁻¹										
1	0.06	1.46	0.11	2.52	0.13	3.10	0.18	4.34	0.09	2.11	0.11	2.52
2	0.07	1.75	0.12	2.78	*	*	*	*	0.09	2.04	0.08	1.94
3	0.07	1.66	0.11	2.66	*	*	*	*	0.07	1.61	0.10	2.38
4	0.32	7.56	*	*	*	*	*	*	0.31	7.39	0.34	8.16
5	0.17	4.15	0.21	5.14	*	*	*	*	0.12	2.90	0.14	3.38
6	0.24	5.69	0.17	3.98	*	*	*	*	0.44	10.61	0.34	8.16
7	0.06	1.46	0.10	2.33	*	*	*	*	0.06	1.42	0.08	1.90
8	0.10	2.35	0.09	2.23	*	*	*	*	0.06	1.49	0.23	5.47
9	0.16	3.72	0.13	3.05	*	*	*	*	0.11	2.52	0.18	4.42
10	0.11	2.69	0.10	2.50	*	*	*	*	0.06	1.49	0.27	6.41
11	0.14	3.43	0.11	2.66	*	*	*	*	0.10	2.42	0.18	4.39
12	0.06	1.54	0.13	3.07	*	*	*	*	0.11	2.71	0.14	3.24
13	0.10	2.33	0.17	4.06	*	*	*	*	0.14	3.46	0.15	3.53
14	0.31	7.51	0.19	4.51	*	*	0.18	4.42	0.12	2.86	0.10	2.35
15	0.24	5.71	0.31	7.49	*	*	*	*	0.14	3.29	0.16	3.74

Tabla 31.Valores de kb obtenidos por estación, mes y muestra.

*Los valores de k_b calculados a partir de puntos de monitoreo con concentraciones de cloro residual menores a 0.3 μg/m³ no son considerados debido a que los puntos necesarios para asegurar un correcto ajuste exponencial no son los suficientes (los niveles iniciales bajos se obtuvieron en los días que se presentó problemas con la dosificación de cloro, debido a deficiencias en la operación de la red) (García, 2019). Fuente: Elaboración propia.

En la tabla 32 se presentan los valores de k_b por mes junto con la temperatura promedio del agua para cada mes respectivamente. Adicionalmente una columna más correspondiente al pH promedio del agua para cada mes de monitoreo. En función del análisis realizado a los datos se observa que, al aumentar la temperatura, el valor de k_b aumentó. Debido a esto se afirma y corrobora los resultados expuestos por García (2019), Li et al. (2019) y Monteiro et al. (2017) que manifiestan que, la velocidad de decaimiento de cloro depende de la temperatura del líquido y por lo tanto de la estacionalidad.

Estación	Mes	k _b h ⁻¹	k _b día ⁻¹	Temperatura	pН
				agua	promedio
				promedio	
				(°C)	
Seca	Agosto	0.147	3.534	17.6	7.5
	Septiembre	0.146	3.499	15.3	7.7
	Octubre	0.129	3.096	16.9	7.9
	Promedio	0.141	3.376	16.6	7.7
Húmeda	Enero	0.183	4.385	17.8	8.2
	Febrero	0.122	2.923	17.5	8
	Marzo	0.151	3.630	18.1	7.6
	Promedio	0.152	3.646	17.8	7.9

Tabla 32.Valor mensual de kb, temperatura del agua y pH.

Fuente: Elaboración propia.

A partir de lo previamente obtenido se definió que la variación de k_b entre las estaciones existe. Sin embargo, en el presente estudio no es representativa o suficiente para realizar un modelo distinto para cada estación. El k_b promedio de la estación seca es ligeramente menor al de la estación húmeda, con valores de 0.141 y 0.152 h⁻¹ respectivamente.

La poca variación climatológica entre las estaciones explica la leve diferencia en la velocidad de decaimiento del cloro dentro de la red. La influencia de la temperatura del agua en la velocidad de decaimiento del cloro está proporcionalmente determinada por la amplitud de esta variación. La variación de k_b no es significativa cuando el aumento de temperatura de una estación a otra es menor a 10 °C; en cambio, cuando la variación de temperatura entre estaciones es de 10 a 20 °C, el valor de k_b en la temperatura superior (0.09 h^{-1}) es notoriamente mayor al k_b a una temperatura menor (0.03 h^{-1}) en el mismo caso de estudio (Hua et al., 1999; Monteiro et al., 2015). Como resultado de la consideración previa se calculó un k_b promedio estacional; el k_b resultante y usado para el modelo de calidad fue de 0.147 h^{-1} o en su defecto 3.528 día⁻¹; este valor elevado de k_b provocó que el tiempo de decaimiento en el presente estudio sea de 20 horas en promedio.

Estos valores de k_b y tiempo de decaimiento obtenidos experimentalmente son comparables con los reportados por diferentes estudios realizados en el mismo cantón, Guanuchi & Ordoñez (2017), obtuvieron un valor de k_b de 3.71 dia⁻¹ y un tiempo de decaimiento que varía entre 30 y 40 horas. De igual manera, García et al. (2019), calculó un k_b de 3.69 dia⁻¹ y un tiempo de decaimiento de 40 horas, los estudios previamente

mencionados aplicaron una metodología similar para la obtención del coeficiente en cuestión. Los resultados de esta investigación y las ya mencionadas son alarmantes, debido a que Xu et al. (2018) en su investigación menciona que los contenidos elevados de materia orgánica son responsables del decaimiento rápido de cloro libre en redes de abastecimiento de agua potable; además, se relaciona con la formación de subproductos nocivos para la salud de los consumidores finales como los trihalometanos (THM). El cálculo de k_b en cada red donde se proponga realizar un modelo de calidad se debe determinar de manera experimental. Sánchez et al. (2010) obtuvo un valor sumamente inferior al de la presente investigación, el k_b usado por los autores fue de 0.23 día⁻¹, por lo tanto, el tiempo de decaimiento en esta red fue de aproximadamente 72 horas, igualmente Monteiro et al. (2014), realizó un modelo de calidad con un k_b calculado experimentalmente de 0.27 día⁻¹.

Debido a la dependencia de la variable de las características específicas de cada zona de estudio, la obtención experimental del coeficiente k_b es necesaria (anexo 7). Las características identificadas que provocan la diferencia de valores entre el k_b resultante en la presente investigación y los k_b usados por otros autores son: edad del agua, contenido de materia orgánica, material y edad de las tuberías, técnicas de mantenimiento, tecnología de potabilización y temperatura del agua.

3.3.4. Obtención de k_w

El k_w usado para el modelo desarrollado en esta investigación fue el reportado por García et al. (2021), en su estudio acerca de la modelación de cloro residual en una red de distribución de agua potable en tiempos de pandemia de 0.066 dia⁻¹. La razón por la cual se consideró y acepto el uso de esta contante es que la zona de estudio donde se obtuvo este coeficiente es colindante con la de la presente investigación, la edad de las tuberías es similar y el agua cruda usada en el proceso, así como su proceso de desinfección, son iguales. Adicional a esto, el valor antes mencionado se encuentra dentro del rango determinado en el manual de Epanet 2.0 comprendido entre 0 y 0.15 día ⁻¹ (Rossman, 2001).

3.3.5. Simulación inicial

Una vez obtenido un modelo hidráulico consistente se ingresó en Epanet los valores de concentración inicial medidos en el reservorio de la planta de tratamiento, además en la ventana de calidad del programa se insertó las constantes de k_b (-3.528 dia⁻¹) y k_w (-0.066 dia⁻¹), con los valores ingresados y comprobados se realizó la simulación del modelo de calidad.

El modelo de calidad resultante se muestra en las figuras 38 y 39, estas figuras se diferencian en que la primera presenta los valores de concentración de cloro residual en mg/L sobre el mapa, y la segunda muestra los nodos coloreados de acuerdo a su concentración. De estas vistas generales se desprende que los valores de cloro residual a las 2:00 pm en los puntos de la red más distantes a la planta de tratamiento, se encuentran por debajo del valor mínimo recomendado por Crider et al. (2018) de 0.5 mg/L, por lo que se comparó con los 27 valores obtenidos en campo a la hora mencionada para comprobar la consistencia de los resultados, estos valores fueron usados para la calibración del modelo. La tabla 33 muestra una comparación de los valores de cloro libre simulados y medidos a las 2:00 pm. Es notable que existe una diferencia significativa en ciertos nodos de la red, por lo que al existir este error se procedió a realizar la calibración del modelo.

Universidad de Cuenca

Figura 38. Modelo de calidad con valores de concentración en mg/L de cloro residual a las 2:00 pm.Fuente: Elaboración propia.

Figura 39. Modelo de calidad de cloro residual a las 2:00 pm. Fuente: Elaboración propia.

Tabla 33.	Comparación de valores de cloro residual medidos y simulados a las 2:00
pm.	

Estadísticas sin calibración de calidad.								
Localización	Observado (Calculado	Error	RMS				
D1	1.36	1.36	0.002	0.002				
D2	0.83	0.77	0.065	0.065				
D3	0.84	0.78	0.059	0.059				
J144	0.55	0.32	0.232	0.232				
J117	0.58	0.42	0.164	0.164				
J200	1.22	1.13	0.085	0.085				
J166	0.72	0.62	0.1	0.1				
J111	0.92	0.98	0.065	0.065				
J183	0.6	0.45	0.149	0.149				
J80	0.75	0.7	0.049	0.049				
J279	0.5	0.6	0.098	0.098				
J170	0.56	0.41	0.154	0.154				
J310	0.35	0.22	0.13	0.13				
J124	0.68	0.55	0.126	0.126				
J155	0.49	0.32	0.169	0.169				
J236	0.68	0.54	0.143	0.143				
J16	0.68	0.56	0.119	0.119				
J53	0.49	0.35	0.136	0.136				
J36	0.4	0.28	0.124	0.124				
J26	0.43	0.35	0.084	0.084				
J22	0.42	0.32	0.099	0.099				
J39	0.48	0.37	0.109	0.109				
J231	0.52	0.37	0.153	0.153				
J191	0.5	0.35	0.149	0.149				
J116	0.68	0.56	0.118	0.118				
J128	0.42	0.29	0.129	0.129				
J129	0.55	0.4	0.154	0.154				
Promedio	0.64	0.53	0.117	0.126				
Correlaci	Correlación entre los términos							

Fuente: Elaboración propia.

El error promedio calculado entre los valores simulados y los medidos en campo previo a la calibración fue de 0.117, de este resultado se destaca que los valores de cloro libre obtenidos de la primera simulación son similares a los medidos en la red de abastecimiento; no obstante, la correlación de 0.973 y la ligera diferencia entre los valores presentados resalta la necesidad de una fase de calibración.

A continuación, en la figura 40 se aprecia gráficamente la diferencia entre los valores medidos y los simulados.

Figura 40. Comparación de valores de calidad simulados y observados en el campo.*3.3.6. Calibración*

La calibración del modelo se realizó mediante ensayos de prueba y error, modificando el valor inicial de k_b y k_w . Lo primero fue reducir el valor de k_w de toda la red hasta 0.04, mejorando de esta manera la diferencia existente entre los valores calculados y observados, como se aprecia en la tabla 34. Los valores de cloro residual medidos en campo para la calibración del modelo de calidad se presentan en el anexo 6.

Estadísticas post calibración para calidad							
Localización	Localización Observado Calculado Er						
D1	1.36	1.37	0.007	0.007			
D2	0.83	0.82	0.007	0.007			
D3	0.84	0.84	0.001	0.001			
J144	0.55	0.45	0.101	0.101			
J117	0.58	0.54	0.039	0.039			
J210	1.22	1.19	0.032	0.032			
J176	0.72	0.7	0.024	0.024			
J111	0.92	1.04	0.121	0.121			
J193	0.6	0.55	0.05	0.05			
J80	0.75	0.77	0.02	0.02			
J279	0.5	0.65	0.154	0.154			
J180	0.56	0.5	0.064	0.064			
J321	0.35	0.29	0.063	0.063			

1 abia 54. Informe canoración con K_W igual a 0.04 día \sim	e calibración con k _w igual a 0.04 día ⁻¹	•
---	---	---

Fuente: Elaboración propia.

Estadísticas post calibración para calidad							
Localización	Observado	Calculado	Error	RMS			
J124	0.68	0.63	0.047	0.047			
J165	0.49	0.41	0.078	0.078			
J246	0.68	0.62	0.056	0.056			
J16	0.68	0.65	0.034	0.034			
J53	0.49	0.42	0.066	0.066			
J36	0.40	0.37	0.034	0.034			
J26	0.43	0.44	0.015	0.015			
J22	0.42	0.42	0.001	0.001			
J39	0.48	0.46	0.019	0.019			
J241	0.52	0.45	0.067	0.067			
J201	0.5	0.45	0.05	0.05			
J116	0.68	0.66	0.025	0.025			
J128	0.42	0.37	0.054	0.054			
J129	0.55	0.51	0.038	0.038			
Promedio	0.64	0.61	0.047	0.059			
Correlaci	Correlación entre los términos 0.978						

Tabla 34. (Continuación) Informe calibración con kw igual a 0.04 día⁻¹.

Fuente: Elaboración propia.

La diferencia promedio entre los valores observados y calculados fue de 0.047, demostrando así, que la calibración se realizaba de manera adecuada, pues este valor es menor a la diferencia promedio de la simulación inicial de 0.117. No obstante, el problema se mantuvo en los nodos J111 y J279, debido a esto se modificó el valor de k_b para la línea que conecta este nodo, hasta lograr un valor calculado similar al real. El nodo J111 se encuentra sobre la línea P129 o la codificada como "L3 AMARILO" en la figura 12. El nodo J279 se encuentra sobre la línea P60, la misma que es una ramificación de la "L3 AMARILLO" de la figura 12, razón por la cual se aumentó la rugosidad a 140 de las tuberías que componen la "L3 AMARILLO" (figura 12). Adicionalmente se usó el k_w inicial de 0.066 en estas tuberías, y se aumentó el k_b de 3.528 a 3.9 consiguiendo así una correlación de 0.987 y la diferencia promedio entre los valores observados y calculados de 0.043, como se observa en la tabla 35.

Estadísticas post calibración para calidad							
Localización	Localización Observado Calculad						
D1	1.36	1.37	0.01	0.01			
D2	0.83	0.81	0.019	0.019			
D3	0.84	0.84	0	0			
J144	0.55	0.44	0.11	0.11			
J117	0.58	0.54	0.039	0.039			
J210	1.22	1.19	0.03	0.03			
J176	0.72	0.69	0.03	0.03			
J111	0.92	1	0.08	0.08			
J193	0.6	0.54	0.059	0.059			
J80	0.75	0.76	0.01	0.01			
J290	0.5	0.59	0.09	0.09			
J180	0.56	0.49	0.07	0.07			
J321	0.35	0.27	0.08	0.08			
J124	0.68	0.63	0.05	0.05			
J165	0.49	0.41	0.08	0.08			
J246	0.68	0.64	0.04	0.04			
J16	0.68	0.66	0.02	0.02			
J53	0.49	0.43	0.06	0.06			
J 36	0.4	0.37	0.03	0.03			
J26	0.43	0.44	0.01	0.01			
J22	0.42	0.42	0	0			
J39	0.48	0.46	0.02	0.02			
J241	0.52	0.45	0.07	0.07			
J201	0.5	0.45	0.05	0.05			
J116	0.68	0.67	0.01	0.01			
J128	0.42	0.37	0.05	0.05			
J129	0.55	0.51	0.04	0.04			
Promedio	0.64	0.61	0.043	0.052			
Correlación entre los términos 0.987							

Tabla 35. Informe de calibración post modificación de k_b y k_w en tubería "L3 AMARILLO".

Fuente: Elaboración propia.

Los resultados de la eficiencia de calibración se muestran en la tabla 36. Se obtuvo una puntuación de 0.95 del índice Nash-Sutcliffe (E), representando una calificación "muy buena", además el error cuadrático medio normalizado (RSR) tiene un valor de 0.22, resultando también en una calificación de "muy buena" de acuerdo con las consideraciones estipuladas en la tabla 8 del apartado 2.4.4 de la metodología.

Tabla 36. Resultados de efici	encia de calibración	
Índice	Valor	Calificación
Nash-Sutcliffe (E)	0.95	Muy buena
Error cuadrático medio	0.22	Muy buena
normalizado (RSR)		

1 • 1

Fuente: Elaboración propia.

Se confirmó que el modelo está correctamente calibrado y reproduce el comportamiento del cloro residual en la red. La etapa de validación se realizó mediante la medición de cloro en puntos diferentes a los utilizados durante la calibración; permitiendo demostrar la precisión del modelo generado.

3.3.7. Validación

La validación se realizó con 25 puntos monitoreados, siendo estos en lo posible distintos a los de la etapa previa. En la tabla 37 se presenta el informe de calibración obtenido y en la figura 41 se presenta la comparación de los valores observados con los calculados. Los valores de cloro residual medidos en campo para la validación del modelo de calidad se presentan en el anexo 6.

Estadísticas post validación para calidad							
Localización	Observado	Calculado	Error	RMS			
D1	2.01	2.05	0.04	0.04			
D2	1.25	1.23	0.017	0.017			
D3	1.25	1.25	0	0			
J109	0.6	0.54	0.063	0.063			
J121	1.16	1.14	0.018	0.018			
J179	0.85	0.8	0.047	0.047			
J312	1.15	1.06	0.089	0.089			
J145	0.6	0.57	0.029	0.029			
J99	0.7	0.65	0.047	0.047			
J185	1.2	1.12	0.077	0.077			
J69	0.77	0.75	0.021	0.021			
J173	0.45	0.36	0.091	0.091			
J63	1	0.93	0.073	0.073			
J233	0.9	0.88	0.019	0.019			
J94	0.9	0.82	0.077	0.077			

Fuente: Elaboración propia.

Estadísticas post validación para calidad							
Localización	Observado	Calculado	Error	RMS			
J46	0.8	0.72	0.082	0.082			
J29	0.78	0.74	0.035	0.035			
J20	0.6	0.54	0.059	0.059			
J259	0.55	0.6	0.046	0.046			
J128	0.6	0.55	0.052	0.052			
J327	0.7	0.64	0.062	0.062			
J81	1.2	1.11	0.086	0.086			
J133	0.7	0.68	0.017	0.017			
J76	1.42	1.44	0.02	0.02			
J166	1.1	1.03	0.072	0.072			
Promedio	0.93	0.89	0.05	0.056			
Correlaci	Correlación entre los términos 0.995						

Tabla 37. (Continuación) Informe de validación.

Fuente: Elaboración propia.

El índice E obtenido fue de 0.97, el RSR fue de 0.16; estos valores permitieron calificar a la eficiencia de calibración como "Muy buena". La correlación presentada entre los

valores de cloro observados y calculados fue 0.995, la cual es positiva.

El modelo se considera calibrado y validado de acuerdo con lo previamente expuesto. La aproximación a la realidad es significativa, por lo que se puede analizar la situación de la red, plantear diferentes escenarios y considerar los posibles efectos en la calidad del agua distribuida.

3.3.8. Análisis de Sensibilidad

Se continuó con la cuantificación de la influencia de los parámetros k_b y k_w en la concentración de cloro residual del presente modelo. Se escogió el nodo J218 debido a su ubicación estratégica dentro de la red, este distribuye a la zona más poblada de Bayas. El parámetro k_b se redujo en un 10%, 20%, 30%, 40% y 50%; obteniendo la variación máxima de la concentración de cloro en el punto J218 de 22.73% al reducir en un 50% el valor de k_b . Por el otro lado, el mismo parámetro se aumentó un 10%, 20%, 30%, 40% y 50%; obteniendo una variación máxima de la concentración máxima de la concentración de 10 parámetro se aumentó un 10%, 20%, 30%, 40% y 50%; obteniendo una variación máxima de la concentración de cloro en el nodo J218 de 18.18% al aumentar en un 50 % el valor de k_b .

El parámetro k_w se redujo en un 10%, 20%, 30%, 40% y 50%; obteniendo una variación porcentual máxima de la concentración de cloro en la red de 7.27%. Por otro lado, el mismo parámetro se aumentó un 10%, 20%, 30%, 40% y 50% obteniendo una variación máxima de la concentración de cloro de 5.45% en el nodo J218 de la red. Los resultados previamente enunciados se presentan en la tabla 38, adicionalmente en la figura 42 se representa la tendencia del cloro al modificar el parámetro k_b , manteniendo constante k_w ; así como el parámetro k_w , manteniendo contante k_b .

5210	a las 02.00	pm.					
k _b					kw		
Nodo		J218		Nodo		n247	
control				control			
Hora		02:00 pm		Hora		14:00 pm	
Concentra-	% varia-	%	k _b	Concentra	%	%	kw
ción nodo X	ción	varia-	inicial	-ción nodo	variación	variación	inicial
	cloro	ción k _b		Х	cloro	\mathbf{k}_{w}	
1.35	22.73	-50%	-1.765	1.18	7.27	-50%	-0.02
1.3	18.18	-40%	-2.118	1.16	5.45	-40%	-0.024
1.25	13.64	-30%	-2.471	1.15	4.55	-30%	-0.028
1.2	9.09	-20%	-2.824	1.13	2.73	-20%	-0.032
1.15	4.55	-10%	-3.177	1.12	1.82	-10%	-0.036
1.1	0,00	0%	-3.53	1.1	0	0%	-0.04
1.06	-3.64	10%	-3.883	1.09	-0.91	10%	-0.044
1.02	-7.27	20%	-4.236	1.08	-1.82	20%	-0.048
0.98	-10.91	30%	-4.589	1.06	-3.64	30%	-0.052
0.94	-14.55	40%	-4.942	1.05	-4.55	40%	-0.056
0.9	-18.18	50%	-5.295	1.04	-5.45	50%	-0.06

Tabla 38. Influencia porcentual de k_b y k_w en la concentración de cloro en el nodo 1218 a las 02.00 nm

Fuente: Elaboración propia.

Fuente: Elaboración propia.

De acuerdo con las modificaciones aplicadas al modelo, se determinó que la influencia del parámetro k_b en relación al parámetro k_w es 3 veces superior. En otras palabras, el modelo es 3 veces más sensible a la modificación de k_b que a la modificación de k_w . Estos resultados coinciden en su totalidad con lo que mencionan varios autores, quienes en sus estudios determinaron que la modificación del valor k_w no es determinante en un modelo de calidad (Alkali et al., 2017b; Garcíia, 2019; Li et al., 2019b; Monteiro et al., 2017; Wu et al., 2005).

3.3.9. Optimización de los niveles de cloro residual en la red

a. Modificación de concentración de cloro en tanque principal.

Se probó el modelo con 4 concentraciones distintas en el tanque de distribución principal, estas son presentadas en la tabla 39 para las 8:00 am (demanda alta) y en la tabla 40 para las 3:00 am (demanda baja); se incluye en estas tablas el porcentaje de nodos que tienen concentración por debajo de lo recomendado por la normativa ecuatoriana previo a la pandemia, concentración menor a lo recomendado por la OMS durante pandemia y concentración superior a lo recomendado por la normativa ecuatoriana.

Tabla 39.Intervalo de concentraciones y sus porcentajes de nodos a distintas
concentraciones iniciales en el tanque de distribución principal a las 8:00 am.08:00 AM

		00.00 ANI		
Intervalo de	Cloro inicial	Cloro inicial	Cloro inicial	Cloro inicial
concentración	0.5 mg / L	1 mg / L	1.5 mg / L	2 mg / L
C < 0.3	78.5 %	4.2 %	0.3 %	0 %
$0.3 \le C < 0.5$	21.2 %	59.9 %	11.2 %	2.6 %
$0.5 \le C < 1.5$	0.3 %	35.9 %	88.5 %	87.2 %
C≥1.5	0 %	0 %	0 %	10.3 %

Fuente: Elaboración propia.

		03:00 AM		
Intervalo de	Cloro inicial	Cloro inicial	Cloro inicial	Cloro inicial
concentración	0.5 mg / L	1 mg / L	1.5 mg / L	2 mg / L
C < 0.3	77.2 %	12.2 %	1.6 %	0.3 %
$0.3 \leq C < 0.5$	22.4 %	48.7 %	19.6 %	4.8 %
$0.5 \leq C < 1.5$	0.3 %	39.1 %	78.8 %	85.6 %
C ≥ 1.5	0 %	0 %	0 %	9.3 %

Tabla 40.Intervalo de concentraciones y sus porcentajes de nodos a distintas
concentraciones iniciales en el tanque de distribución principal a las 3:00 am.

Fuente: Elaboración propia.

La tabla 39, contiene los resultados de simulaciones realizadas a las 08:00 am con diferentes concentraciones iniciales en el tanque principal de la planta de tratamiento de agua potable. Con una concentración inicial de 0.5 mg / L se incumple la normativa nacional en el 78.5% de los nodos en época normal (Figura 43 (a)). Tomando en consideración los niveles recomendados por la OMS para situaciones de emergencia como la presentada en la actualidad de Covid 19, se cumple solo en 0.3% de los nodos.

La concentración de 1 mg/L en el tanque principal, resulta en el cumplimiento de los niveles recomendados por la OMS para la época de pandemia en el 35.9% de los nodos. Sin embargo, considerando lo estipulado por la normativa ecuatoriana de mínimo 0.3 mg/L y máximo 1.5 mg/L se cumple en el 95.8% de los nodos (Figura 43(b)).

La concentración de 1.5 mg/L en el tanque principal, se mantiene como la ideal para asegurar que el agua distribuida a los usuarios durante época de pandemia no constituya un riesgo o posible medio de difusión. El 88.5% de los nodos mantienen niveles superiores a 0.5 mg/L y menores a 1.5 mg/L cumpliendo así con los valores recomendados en tiempos de SARS CoV-2, mientras que el 11.2% de los nodos restantes, se mantiene superior a 0.3 y menor a 0.5 mg/L cumpliendo con la normativa ecuatoriana, además de cumplir con los niveles de cloro recomendados en las zonas más alejadas de la red, como se puede apreciar en la figura 43(c).

La dosificación en el tanque de la planta de tratamiento, que asegura una concentración de 2 mg/L en el tanque principal, resulta en un cumplimiento de lo estipulado por la OMS

para situaciones de emergencia en un porcentaje de 87.2%, sin embargo, al aumentar la concentración inicial en la planta también se excede en un 9.3% del total de nodos el valor máximo fijado en la normativa nacional de 1.5 mg/L, siendo contraproducente aumentar el nivel de cloro hasta un nivel de 2 mg/L (figura 43 (d)).

La tabla 40, presenta los resultados de las simulaciones a las 3:00 am para una gama de concentraciones de cloro residual en el tanque principal de la planta de agua. Para una concentración inicial de 0.5 mg/L, el 77.2% de los nodos se encuentran por debajo del valor mínimo establecido en la normativa nacional, mientras que únicamente el 0.3% de los nodos cumple con el valor de cloro residual recomendado en tiempos de pandemia (figura 44(a)). Por otra parte, al aumentar a una concentración de 1 mg/L el porcentaje de nodos que incumple la normativa nacional se ve reducido al 12.2 %, mientras que el 39.1 % de los nodos cumple con los requisitos de cloro residual recomendados para eliminar el SARS-CoV-2 (figura 44 (b)).

Una concentración inicial de 1.5 mg/L en la planta de tratamiento asegura que el 78.8% de los nodos cumpla con lo recomendado para que el agua potable no represente medio de difusión de SARS-CoV-2, a su vez únicamente el 0.3% incumple con la normativa nacional. Finalmente, una concentración de 2 mg/L en la planta de tratamiento asegura que el 6% de nodos cumpla con los requerimientos de cloro residual en tiempos de pandemia, sin embargo, el 9.3% de nodos incumple con el límite máximo de 1.5 mg/L estipulado en la normativa nacional, siendo superior a este (figura 44(c) y 44(d)).

A partir del análisis realizado para el régimen de demanda baja (03:00am) y régimen de demanda alta (8:00 am), se determinó que la concentración ideal a mantener en el tanque principal ubicado en la planta de tratamiento de agua es de 1.5 mg/L \pm 0.2, pues asegura el cumplimiento de la normativa local en más del 98% de los nodos y el cumplimiento de la recomendación de la OMS en tiempos de pandemia, en un aproximado del 80% de los nodos. Los nodos con concentración menor a 0.5 mg/L, están localizados en los finales de línea de distribución (figura 43(c) y 44(c)), sin embargo, estos nodos cumplen con los valores mínimos permitidos por la normativa nacional de 0.3 mg/L. La solución factible consiste en que la JAPB realice un plan de mantenimiento para el lavado de estos nodos,

pues al estar ubicados al final de la red, sufren de acumulación de sedimentos; aumentando la velocidad de decaimiento del cloro.

Figura 43. Mapa de la red con distintas concentraciones en el tanque principal a las 8:00 am: (a) 0.5 mg/L; (b) 1 mg/L; (c) 1.5 mg/L; (d) 2 mg/L.
Fuente: Elaboración propia.

Figura 44. Mapa de la red con distintas concentraciones en el tanque principal a las 3:00 am: (a) 0.5 mg/L; (b) 1 mg/L; (c) 1.5 mg/L; (d) 2 mg/L.
Fuente: Elaboración propia.

 b. Implementación de una estación de recloración en los tanques secundarios de distribución.

A razón de que la concentración de cloro inicial en el tanque principal de la planta de tratamiento no exceda la normativa ecuatoriana de 1.5 mg/L por la cercanía de hogares a la planta de potabilización; en el modelo se creó una estación de recloración en los tanques de distribución secundaria del "Señor de Flores", esto con la intención de aumentar el nivel de cloro residual en los reservorios mencionados, de esta manera se cumple con lo recomendado por la OMS, garantizando niveles superiores a 0.5 mg/L en todos los puntos de la red, sin exceder el nivel máximo estipulado por la normativa ecuatoriana de 1.5 mg/L.

La dosificación de cloro se realizó aplicando la metodología de cloración usada en la planta de tratamiento (sistema de goteo), la misma permitió aumentar la concentración previa de 0.8 ± 0.1 mg/l a una concentración constante de salida de los tanques de 1.5 ± 0.2 mg/L, obteniendo los resultados presentados en la tabla 41.

Intervalo de	Cloro inicial 1.5 mg / L	Cloro inicial 1.5 mg / L
concentración	8 am	3 am
C < 0.3	0 %	0 %
$0.3 \le C < 0.5$	0.63 %	2.5 %
$0.5 \le C < 1.5$	99.37 %	97.5 %
C≥1.5	0 %	0 %

Tabla 41.Intervalo de concentraciones y sus porcentajes de nodos a las 8 am y 3am. Considerando una estación de recloración

Fuente: Elaboración propia.

Una vez instalada la estación de recloración, se consiguió el cumplimiento de los niveles mínimos recomendados por la OMS en situación de pandemia en el 99.37% de los nodos a las 8 am y en el 97.5% de los nodos las 3:00 am. Los porcentajes de nodos restantes con concentración menor a lo recomendado por la OMS, cumplen con la norma local, siendo estos mayores a 0.3 mg/L. A continuación, en la figura 45 se puede apreciar el mapa resultante del modelo a las 8:00 am con los valores de concentración de cloro residual en mg/L, en la figura 46 se aprecia el mapa resultante del modelo a las 8:00 am con los valores de modelo a las 8:00 am con los nodos coloreados de acuerdo a su concentración, además, en la figura 47 su respectivo mapa de

contorno. Los valores de concentración iguales a cero mg/L corresponden a nodos ubicados después de una válvula cerrada, lo que significa que no transportan agua tratada.

Universidad de Cuenca

Figura 45. Mapa de concentración de cloro residual en mg/L con sus valores en nodos con estación de recloración.
Fuente: Elaboración propia.

Figura 46. Mapa de concentración de cloro a las 8:00 am en nodos con estación de recloración.

Figura 47. Mapa de contorno de cloro a las 8 am. Fuente: Elaboración propia.

4. CONCLUSIONES Y RECOMENDACIONES

Se desarrolló un modelo hidráulico y un modelo de calidad de agua para cloro libre, estos fueron calibrados y validados con la finalidad de ser una representación de la realidad del sistema de distribución de agua potable operado por la junta de agua de Bayas. El programa utilizado fue Epanet, el mismo que permitió simular, evaluar y modificar el modelo hidráulico y el modelo de calidad. A partir de los resultados emitidos por el programa, la evaluación del comportamiento hidráulico, la evaluación de los niveles de cloro libre en la red y los efectos de las mejorar planteadas, se concluye lo siguiente:

Es posible implementar modelos hidráulicos y de calidad en redes de distribución de agua potable ubicadas en zonas rurales o comunidades en desarrollo donde no existe ningún tipo de información, mediante la colaboración de universidades y los dirigentes de las JAPs.

La falta de recursos es una característica en común de zonas rurales, complicando la gestión de una red de distribución de agua potable, la capacitación de sus operadores y la implementación de nuevas tecnologías, condicionando así la capacidad mejora.

La orografía de la zona donde se implementa una red de distribución de agua influye en las presiones en nodos, la velocidad de conducción y dificulta la obtención, calibración y validación de un modelo hidráulico y de calidad.

La disponibilidad de información precisa y actualizada acerca de los componentes físicos de una red es clave para la creación de una red en el programa Epanet o sus equivalentes.

El modelo hidráulico resultante obtuvo un rendimiento de "muy bueno" en función de los índices de eficiencia de calibración E=0.94; RSR=0.25; además, se obtuvo una correlación de Pearson R=0.997; evidenciando así la confiabilidad del modelo realizado.

Las ramificaciones terminales de la red se encuentran sobredimensionadas, por lo cual las presiones son superiores a la normativa local para diseño de sistemas de agua potable.

Existe un déficit de válvulas reductoras de presión en zonas que presentan desniveles mayores a 50 metros.

Los índices de rendimiento técnico (IRT) de la red sin mejoras fueron: IRT_{press} = 65%; IRT_{vel} : 42,42%; IRT_{edad} : 100%; una vez ingresadas 7 válvulas reductoras de presión en zonas estratégicas y disminuido el diámetro de tuberías en los sectores con presiones excesivas; resultó en una mejora del IRT_{press} = 78.5%.

La inclusión de una bomba en la zona alta de la red, con la intención de impulsar el agua tratada desde el tanque principal de la planta de tratamiento hacía los tanques secundarios de "Señor de Flores", permitió mejorar los índices IRT_{press} a 90%, IRT_{vel} a 49% y el IRT_{edad} se mantuvo en el 100%, pues esta zona se caracteriza por presentar problemas de presiones bajas debido a la topografía variable del sector.

La velocidad de flujo del agua en varios tramos de la red es menor a lo recomendado por la normativa local. Sin embargo, la demanda alta asegura un tiempo de permanencia del líquido en la red menor a 24 horas; asegurando de esta manera la buena calidad del agua recibida por los usuarios.

El manejo del modelo hidráulico por parte del personal técnico de la JPAB ayudará en la gestión y manejo de la red, la prestación del servicio a los usuarios y la planificación de acciones de mantenimiento y mejora.

El porcentaje de agua no contabilizada de la red se calculó en 49.46%, lo cual significa que, por cada litro tratado, se pierde en fugas o tomas ilegales aproximadamente el mismo valor; el cual es similar a lo obtenido por distintos estudios en redes de distribución ubicadas en zonas rurales.

La simulación del modelo realizado permitirá a los técnicos de la JAPB ubicar zonas estratégicas para detener el servicio en caso de intrusión de contaminantes químicos o biológicos.

El modelo hidráulico realizado servirá de base para futuras investigaciones internas o en colaboración con instituciones educativas para detección de fugas o dispersión de agentes químicos o biológicos.

El caudal de agua tratado por la planta excede a la demanda en horas de la noche, debido a esto se produce desborde en el tanque principal, así como en los tanques de distribución secundarios del "Señor de Flores", lo cual ocasionó que la diferencia entre las horas de demanda baja y demanda alta no sea significativa.

El monitoreo de los niveles de cloro residual por 6 meses fue vital para la formulación del modelo de calidad de agua, pues el agua de cada lugar tiene características propias en cuanto a contenido de materia orgánica e inorgánica, temperatura y pH; por lo que la obtención de un contante kb para cada caso de estudio es un requisito indispensable.

Se obtuvo que el tiempo de decaimiento del cloro residual del agua no varió entre estaciones y fue en promedio de 20 horas; siendo menor al promedio de 48 horas observado por otros autores.

El pH en promedio del agua distribuida durante los 6 meses de monitoreo fue de 7.85; cumpliendo con lo establecido en la normativa nacional.

El kb obtenido fue de -3.52 dia⁻¹, siendo este similar al k_b calculado para una red de distribución colindante a la del presente estudio y superior a lo calculado por investigadores de otros países, este resultado es un indicador de la elevada cantidad de materia orgánica e inorgánica del agua.

La variación de la temperatura del agua entre la estación seca y húmeda de la zona de estudio no es determinante en las constantes de decaimiento de cloro, pues la diferencia de la temperatura del agua observada entre estas estaciones fue menor a 5 °C.

La simulación del modelo de calidad permitió ubicar las zonas con niveles inferiores a lo recomendado por la normativa.

En función de los índices de eficiencia de calibración el modelo de calidad se calificó como "Muy bueno", obteniendo un E igual a 0.97, y un RSR de 0.16; además, el coeficiente correlación de Pearson fue de 0.995; lo que permite asegurar que el modelo es una representación confiable de la realidad.

El factor más influyente en el decaimiento de cloro residual es k_b ; por lo contrario, k_w es el factor menos influyente; fortaleciendo la importancia de calcular experimentalmente k_b y permitiendo a los investigadores tomar el valor de k_w de la literatura.

La concentración de cloro residual en el tanque principal durante los 6 meses de monitoreo y las etapas de calibración – validación, mostraron una variabilidad alta; con niveles desde 0.76 mg/L hasta 2.01 mg/L; revelando la necesidad de mejorar la tecnología de dosificación.

El modelo de calidad permitió determinar que, con 1.5 mg/L de concentración de cloro residual en el tanque principal, se logra que 88.5% de nodos tenga niveles superiores a lo recomendado por la OMS (0.5mg/L) para la época de pandemia y menores al límite superior estipulado por la normativa local (1.5mg/L).

La simulación del modelo de calidad con la implementación de una estación de recloración en los tanques "Señor de Flores", permitió conocer que el 99.37 % de los nodos cumplirían con el nivel mínimo recomendado por la OMS (0.5 mg/L) en época de pandemia y menores al límite superior estipulado por la normativa local (1.5mg/L); al mantener una concentración de cloro residual de 1.5 mg/L en los tanques de "Señor de Flores".

El modelo de calidad permitirá a los técnicos de la JAPB predecir la concentración de cloro residual en los puntos más alejados de la red, ahorrar recursos, disminuir costos de operación y garantizar la calidad de su servicio.

Como recomendaciones se sugiere:

Mantener un control constante del proceso previo a la desinfección y los niveles de turbiedad posteriores al mismo, reduciendo al máximo la materia orgánica e inorgánica presente en el agua.

Realizar estudios de contenido de trihalometanos en el agua, pues la literatura indica que la interacción del cloro como desinfectante en agua con contenido alto de materia orgánica y pH cercano a 8, resulta riesgoso por la probable formación de estos subproductos perjudiciales para la salud de los usuarios.

Instalar un medidor de caudal a la salida de la planta de tratamiento, permitiendo así mantener un registro que permita cuantificar las pérdidas en estudios posteriores.

Registrar mediante informes las actualizaciones realizadas sobre la red, incluyendo coordenadas de actualización y detalle de las acciones realizadas.

Automatizar la dosificación de cloro en el tanque principal, asegurando que la concentración se mantenga constante en el tiempo.

Reducir el caudal tratado desde las 10:00 pm hasta las 06:00 am, evitando así que el excedente provoque desbordes en los tanques de distribución secundaria del "Señor de Flores".

Realizar mantenimiento periódico a las válvulas de control de nivel por flotación (flotadoras) instaladas en los tanques de distribución secundarios del "Señor de Flores".

Cambiar progresivamente los diámetros de tuberías en las zonas con sobredimensionamiento indicadas en la presente investigación.

Instalar válvulas reductoras de presión en las tuberías indicadas en la presente investigación.

Realizar monitoreos trimestrales de cloro residual y presión en distintos puntos de la red, para mantener la eficiencia del modelo y detectar anomalías.

En caso de realizar modificaciones en la red, realizarlas a la red del modelo hidráulico, para que este mantenga su utilidad y confiabilidad en sus resultados.

5. BIBLIOGRAFIA

- Agüero, R. (2003). Agua Potable Para Poblaciones Rurales. *Journal of Chemical Information and Modeling*, 1–169. https://www.ircwash.org/sites/default/files/221-16989.pdf
- Agunwamba, J. C., Ekwule, O. R., & Nnaji, C. C. (2018). Performance evaluation of a municipal water distribution system using waterCAD and Epanet. *Journal of Water Sanitation and Hygiene for Development*, 8(3), 459–467. https://doi.org/10.2166/washdev.2018.262
- Alkali, A. N., Yadima, S. G., Usman, B., Ibrahim, U. A., & Lawan, A. G. (2017a). Design of a Water Supply Distribution Network Using Epanet 2.0: a Case Study of Maiduguri Zone 3, Nigeria. Arid Zone Journal of Engineering, Technology and Environment, 13(03), 347–355.
- Alkali, A. N., Yadima, S. G., Usman, B., Ibrahim, U. A., & Lawan, A. G. (2017b). Design of a Water Supply Distribution Network Using Epanet 2.0: a Case Study of Maiduguri Zone 3, Nigeria. Arid Zone Journal of Engineering, Technology and Environment, 13(03), 347–355.
- Alves, Z., Muranho, J., Albuquerque, T., & Ferreira, A. (2014). Water distribution network's modeling and calibration. A case study based on scarce inventory data. *Procedia Engineering*, 70, 31–40. https://doi.org/10.1016/j.proeng.2014.02.005
- Avesani, D., Righetti, M., Rigiietti, D., & Bertola, P. (2012). *The extension of EPANET* source code to simulate unsteady flow in water distribution networks with variable head tanks. 960–974.
- Ayamani, N. P. (2018). "Mejoramiento de la Eficiencia Hidraulica de la Red de Distribución de Agua Potable en la Zona Rinconada - Juliaca por el Metodo de la Sectorizacion." Universidad Nacional del Altiplano.

- Baker, B. R. (2016). The Effect of a Distance from Water Treatment Plant on Residual Chlorine. International Journal of Advanced Engineering Research and Science, 3(10), 181–187. https://doi.org/10.22161/ijaers/310.29
- Baños Caballero, D. (2016). Modelado y simulación de la calidad de agua en una red de abastecimiento municipal: implementación y validación en el municipio de Alcantarilla.
- Bassey, G., & Egbe, J. (2016). Residual Chlorine Decay in Water Distribution Network. *International Journal of Scientific Research and Engineering Studies*, *3*(3), 1–6.
- Benites, U. (2019). *Mejoramiento del servicio de agua potable e instalación del servicio de saneamiento de la localidad de Uchumarca, Uchumarca.* 71.
- Berardi, L., Simone, A., Laucelli, D. B., Ugarelli, R. M., & Giustolisi, O. (2018). Relevance of hydraulic modelling in planning and operating real-time pressure control: Case of Oppegård municipality. *Journal of Hydroinformatics*, 20(3), 535– 550. https://doi.org/10.2166/hydro.2017.052
- Boccelli, D. L., Tryby, M. E., Uber, J. G., & Summers, R. S. (2003). A reactive species model for chlorine decay and THM formation under rechlorination conditions. *Water Research*, 37(11), 2654–2666. https://doi.org/10.1016/S0043-1354(03)00067-8
- Cabrera-béjar, J. A. (Universidad nacional autonoma de M., & Tzatchkov, V. mexicano de tecnologia del agua). (2012). Modelacion de redes de distribucion de agua con suministro intermitente. *Tecnologia y Ciencias Del Agua, III*, 5–25.
- Calle, L., & Zambrano, C. (2015). *Optimizacion del proceso de floculacion y coagulacion de la planta potabilizadora de la junta de agua potable de Bayas*. Universidad de Cuenca.

- Cansiong, F., & Mora, P. (2019). Diseño de la red de agua potable para el santuario de Shoenstatt en la ciudad de Guayaquil, provincia del Guayas.
- Chauca, C. A. F., & Orozco, C. L. S. (2012a). "Diseño E Implementación De Un Sistema Automatizado Para La Dosificación De Cloro En El Tratamiento De Agua Potable En La Comunidad San Vicente De Lacas". 166.
- Chauca, C. A. F., & Orozco, C. L. S. (2012b). "Diseño E Implementación De Un Sistema Automatizado Para La Dosificación De Cloro En El Tratamiento De Agua Potable En La Comunidad San Vicente De Lacas". 166.
- Chun, D. G., & Selznick, H. L. (1985). *Computer Modeling of Distribution System Water Quality*. 448–456.
- CPE INEN 5, N. T. E. (1992). Normas Para Estudio Y Diseño De Sistemas De Agua Potable Y Disposición De Aguas Residuales Para. Normas Para Estudio Y Diseño De Sistemas De Agua Potable Y Disposición De Aguas Residuales Para Poblaciones Mayores a 1000 Habitantes, 9, 291.
- Crider, Y., Sultana, S., Unicomb, L., Davis, J., Luby, S. P., & Pickering, A. J. (2018). Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh. *Science of the Total Environment*, 613– 614, 840–846. https://doi.org/10.1016/j.scitotenv.2017.09.135
- Darweesh, M. S. (2018). Impact of variable speed pumps on water quality in distribution systems. *Water SA*, *44*(3), 419–427. https://doi.org/10.4314/wsa.v44i3.09

- EPA. (2002). Effects of Water Age on Distribution System Water Quality. *United States Environmental Protection Agency*.
- Fuentelsaz, C. (2004). Cálculo del tamaño de la muestra Formación continuada. *Matronas Profesión*, *5*(18), 5–13.
- Garcia, F. (2019). Modelo de decaimiento de cloro libre en la red de distribución de agua potable en la ciudad de Azogues, Ecuador. In *Repositorio Institucional UNALM*. http://repositorio.lamolina.edu.pe/handle/UNALM/3845
- García, F., Avilés, A., Ordoñez, J., Guanuchi, C., Flores del Pino, L., & Ramos, L. (2019). Pressure management for leakage reduction using pressure reducing valves. Case study in an Andean city. *Alexandria Engineering Journal*, 58(4), 1313–1326. https://doi.org/10.1016/j.aej.2019.11.003
- García, F., Avilés, A., Ordoñez, J., Guanuchi, C., Flores, L., & Ramos, L. (2021). Modeling of residual chlorine in a drinking water network in times of pandemic of the SARS-CoV-2 (COVID-19). Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00084-w
- García, F., Valdiviezo-Gonzales, L., Cadme-Galabay, M., Gutiérrez-Ortega, H., Altamirano-Cárdenas, L., Arévalo, C. Z.-, & Flores del Pino, L. (2020). Considerations on water quality and the use of chlorine in times of SARS-CoV-2 (COVID-19) pandemic in the community. *Case Studies in Chemical and Environmental Engineering*, 2(September), 100049. https://doi.org/10.1016/j.cscee.2020.100049
- Goñi, S. (2017). Diseño y optimización de la red de abastecimiento del municipio de Beire.

- Grayman, W. M. (2018). HISTORY OF WATER QUALITY MODELING IN The 1980s Conference on Water Quality Modeling in Distribution Systems. 1st International WDSA / CCWI 2018 Joint Conference, Kingston, Ontario, July 23-25, 1–9.
- Guanuchi, C., & Ordoñez, J. (2017). Evaluacion del cloro residual en la red de distribucion de agua potable del canton Azogues a traves de un modelo experimental. Universidad de Cuenca.
- Gutierrez, A. (2016). Evaluación de la calidad del agua en los diferentes procesos de tratamiento para su potabilización en la Junta administradora de agua potable regional Bayas- Azogues. In *Facultad de Ciencias Quimicas Universidad de Cuenca* (Vol. 87, Issue 1,2).
- Hatchett, S. (2014). Water Utility Case Study of Real- Time Network Hydraulic and Water Quality Modeling Using EPANET RTX Libraries Office of Research and Development. November.
- Hua, F., West, J., Barker, R., & Forster, C. (1999). Modelling of Chlorine Decay in Municipal Water Supplies. *Water Research*, 33(12), 2735–2746.
- Idrobo, P. (2018). Desarrollo de un modelo de simulacion mediante el software Epanet de la red de distribucion de agua potable de la cabecera cantonal de Guano, provincia de Chimborazo. Escuela superior politecnica de Chimborazo.
- INEN. (2012). Codigo Ecuatoriano de la construcción ordenanza municipal basica de construcción. In *Instituto Ecuatoriano de Normalización*.
- Kepa, U. (2021). Use of the hydraulic model for the operational analysis of the water supply network: A case study. Water (Switzerland), 13(3), 1–15. https://doi.org/10.3390/w13030326

- Kepa, U., & Stańczyk-Mazanek, E. (2014). A hydraulic model as a useful tool in the operation of a water-pipe network. *Polish Journal of Environmental Studies*, 23(3), 995–1001.
- Kim, H., Kim, S., & Koo, J. (2015). Modelling chlorine decay in a pilot scale water distribution system subjected to transient. *Proceedia Engineering*, 119(1), 370–378. https://doi.org/10.1016/j.proeng.2015.08.897
- Lancey, K., & Mays, L. (1990). O P T I M A L RELIABILITY-BASED DESIGN OF PUMPING AND DISTRIBUTION SYSTEMS. *Manager*, *116*(2), 249–268.
- Li, R. A., McDonald, J. A., Sathasivan, A., & Khan, S. J. (2019a). Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review. *Water Research*, 153, 335–348. https://doi.org/10.1016/j.watres.2019.01.020
- Li, R. A., McDonald, J. A., Sathasivan, A., & Khan, S. J. (2019b). Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review. *Water Research*, 153, 335–348. https://doi.org/10.1016/j.watres.2019.01.020
- Liou, C. P., & Kroon, J. R. (1986). Propagation and Distribution of Waterborne Substances in networks.
- Machell, J., & Boxall, J. (2014). Modeling and Field Work to Investigate the Relationship between Age and Quality of Tap Water. *Journal of Water Resources Planning and Management*, 140(9), 04014020. https://doi.org/10.1061/(asce)wr.1943-5452.0000383
- Males, R. M., Clark, R. M., Wehrman, P. J., & Gates, W. E. (1985). Algorithm for Mixing Problems in Water Systems. *Journal of Hydraulic Engineering*, 111(2), 206–219. https://doi.org/10.1061/(asce)0733-9429(1985)111:2(206)

- Maul, A., El-Shaarawi, A. H., & Block, J. C. (1985). Heterotrophic bacteria in water distribution systems. I. Spatial and temporal variation. *Science of the Total Environment, The*, 44(3), 201–214. https://doi.org/10.1016/0048-9697(85)90094-4
- Mazouz, K., & Abdelraouf, B. (2021). Analysis of The Simulation of The Water Supply Network of The New City of Guelma by Epanet. *Pakistan Journal of Geology*, 0(0), 35–40. https://doi.org/10.2478/pjg-2021-0005
- Mendez, I., & Valdiviezo, K. (2018). *Elaboracion del catastro de la red de agua potable en la parroquia Aurelio Bayas de la ciudad de Azogues*. Universidad de Cuenca.

Metzger, I. (1985). Water Quality Modeling of Distribution Systems. 422-429.

- Momba, M. N. B., Kfir, R., Venter, S. N., & Cloete, T. E. (2000). An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. *Water SA*, 26(1), 59–66.
- Monteiro, L., Figueiredo, D., Dias, S., Freitas, R., Covas, D., Menaia, J., & Coelho, S. T. (2014). Modeling of chlorine decay in drinking water supply systems using EPANET MSX. *Procedia Engineering*, 70, 1192–1200. https://doi.org/10.1016/j.proeng.2014.02.132
- Monteiro, Laura, Figueiredo, D., Covas, D., & Menaia, J. (2017). Integrating water temperature in chlorine decay modelling: a case study. Urban Water Journal, 14(10), 1097–1101. https://doi.org/10.1080/1573062X.2017.1363249
- Monteiro, Laura, Viegas, R. M. C., Covas, D. I. C., & Menaia, J. (2015). Modelling chlorine residual decay as influenced by temperature. *Water and Environment Journal*, 29(3), 331–337. https://doi.org/10.1111/wej.12122

- Morelos, R. A., & Ramírez Hernández, J. (2017). Modelación hidráulica de la red de distribución de agua potable en una ciudad Mexicana EPANET. *Revista Iberoamericana de Ciencias*, 4(2), 120–132.
- Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007a). MODEL EVALUATION GUIDELINES FOR SYSTEMATIC QUANTIFICATION OF ACCURACY IN WATERSHED SIMULATIONS. 50(3), 885–900.
- Moriasi, D. N., Arnold, J. G., Liew, M. W. van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007b). MODEL EVALUATION GUIDELINES FOR SYSTEMATIC QUANTIFICATION OF ACCURACY IN WATERSHED SIMULATIONS. 50(3), 885–900.
- Mostafa, N. G., Matta, M. E., & Halim, H. A. (2013). Simulation of chlorine decay in water distribution networks using watercad Case study. *Journal of Engineering and Applied Science*, 60(1), 25–42.
- Muñoz, D. (2020). Diseño del sistema de abastecimiento de agua potable del centro poblado Quinuash, Huanuco, 2020. In Universidad Católica Los Ángeles de Chimbote.
- Muranho, J., Ferreira, A., Sousa, J., Gomes, A., & Sá Marques, A. (2014). Technical performance evaluation of water distribution networks based on EPANET. *Proceedia Engineering*, 70, 1201–1210. https://doi.org/10.1016/j.proeng.2014.02.133

Murphy, S. B. (1985). Modeling Chlorine Concentrations in Municipal Water Systems.

Musz-Pomorska, A., Widomski, M. K., Matczuk, A., & Sadura, K. (2019). Modeling chlorine distribution in water supply system utilizing empirically determined chlorine decay rate. *E3S Web of Conferences*, 100(1), 1–8. https://doi.org/10.1051/e3sconf/201910000054

- Otzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. *International Journal of Morphology*, 35(1), 227–232. https://doi.org/10.4067/S0717-95022017000100037
- Patel, R. V. G. H. M. (2015). Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply. 311–319. https://doi.org/10.1007/s13201-014-0193-7
- PDOT-AZOGUES. (2018). Plan Nacional De Desarrollo Y Ordenamiento Territorial Del Canton Azogues. 1–383.
- Ponce, P. (2009). Diseño hidráulico de redes a presión en los sistemas de riego, emprleando un modelo matemático.
- Porfirio, P. (2009). Disieño hidrualiuco de redes a presión en los sistemas de riego, empleando un modelo matemático.
- Quevedo, A. (2015). Realidad aumentada en dispositivos móviles "Android" aplicada a la geolocalizacion de equipamientos de agua potable de EMAPAL - EP". Universidad de Cuenca.
- Quintiliani, C., Alfonso, L., Di Cristo, C., Leopardi, A., & De Marinis, G. (2017). Exploring the Use of Operational Interventions in Water Distribution Systems to Reduce the Formation of TTHMs. *Procedia Engineering*, 186, 475–482. https://doi.org/10.1016/j.proeng.2017.03.258
- Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. *Water Research*, 181. https://doi.org/10.1016/j.watres.2020.115942

- Rathi, S., Gupta, R., Labhasetwar, P., & Nagarnaik, P. (2020). Challenges in calibration of water distribution network: A case study of Ramnagar Elevated Service Reservoir command area in Nagpur City, India. *Water Science and Technology: Water Supply*, 20(4), 1294–1312. https://doi.org/10.2166/ws.2020.047
- Rimmer, C. (2018). West Cumbria Chlorine Decay Modelling Methods Review of Existing Water Quality and Hydraulic Model.
- Rivas, P. (2017). Confort Térmico En Viviendas Vernáculas, Técnica De Construcción De Bahareque En Azogues - Ecuador. *Universidad de Cuenca*, 34,56.
- Rojacques, M., Oscar, F., Jimenez, M., & Rodriguez, J. (2016). Decaimiento de la calidad del agua en redes ocasinado por la variación de los coeficientes de reacción del cloro con el volumen de agua y la pared de las tuberías.
- Rojas, J. (2015). Modelamiento de los sistemas de potabilizacion de agua, orientado al diseño de los sistemas de control supervisorio, caso EMAPAL EP AZOGUES.
 Universidad Politecnica Salesiana.
- Romero, Z. (2015). "Atlas del Cantón Azogues." 73.
- Rossman, L. A. (2018). *Epanet an Advanced Water Quality Modeling Package for* (p. 31136).
- Rossman, Lewis A., Clark, R. M., & Grayman, W. M. (1994). Modeling Chlorine Residuals in Drinking-Water Distribution Systems. *Journal of Environmental Engineering*, 120(4), 803–820. https://doi.org/10.1061/(asce)0733-9372(1994)120:4(803)

Rust, T. (2014). Predicting Water Quality in Bulk Distribution Systems. December.

- Sánchez, L. D., Rodríguez, S., Escobar, J. C., & Torres, P. (2010). Modelación del cloro residual y subproductos de la desinfección en un sector piloto del sistema de distribución de agua potable de la ciudad de Cali. *Ingeniería Y Competitividad*, 12(1), 127–138. https://doi.org/10.25100/iyc.v12i1.2706
- Shamsaei, H., Othman Jaafar, I., & Basri, N. E. A. (2013). Effects velocity changes on the water quality in water distribution systems. *Research Journal of Applied Sciences, Engineering and Technology*, 5(14), 3783–3790. https://doi.org/10.19026/rjaset.5.4525
- Tilmant, A., Goor, Q., & Kelman, R. (2011). Optimal Multipurpose-Multireservoir Operation Model with Variable Productivity of Hydropower Plants. *Journal of Water Resources Planning and Management*, 137(February), 258–267. https://doi.org/10.1061/(ASCE)WR.1943-5452
- Vasconcelos, J. J. (1996). Characterization and Modeling of Chlorine Decay in Distribution Systems. 433.
- Velecela, R. (2010). Cultura y tradiciones de 4 parroquias del cantón Azogues: Bayas, Javier Loyola, Cojitambo y San Miguel de Porotos. Universidad de Cuenca.
- Vidal, R., Matinez, F., & Ayza, M. (1994). Aplicaciones de los modelos de calidad en la simulación de las redes de distribución de agua potable. *Ingenieria Del Agua*, 1, 55–68.
- Vuta, L. I., & Dumitran, G. E. (2011). Some aspects regarding chlorine decay in water distribution networks. *Conferinta Aerul Si Apa Componente Ale Mediului*, 253–259.
- Walski, T. M. (1983). Technique for Calibrating Network Models. Journal of Water Resources Planning and Management, 109(4), 360–372. https://doi.org/10.1061/(asce)0733-9496(1983)109:4(360)

- Wang, X. W., Li, J. S., Jin, M., Zhen, B., Kong, Q. X., Song, N., Xiao, W. J., Yin, J., Wei, W., Wang, G. J., Si, B. Y., Guo, B. Z., Liu, C., Ou, G. R., Wang, M. N., Fang, T. Y., Chao, F. H., & Li, J. W. (2005). Study on the resistance of severe acute respiratory syndrome-associated coronavirus. *Journal of Virological Methods*, 126(1–2), 171–177. https://doi.org/10.1016/j.jviromet.2005.02.005
- Wang, Y. H., Wu, Y. H., Du, Y., Li, Q., Cong, Y., Huo, Z. Y., Chen, Z., Yang, H. W., Liu, S. M., & Hu, H. Y. (2019a). Quantifying chlorine-reactive substances to establish a chlorine decay model of reclaimed water using chemical chlorine demands. *Chemical Engineering Journal*, 356(May 2018), 791–798. https://doi.org/10.1016/j.cej.2018.09.091
- Wang, Y. H., Wu, Y. H., Du, Y., Li, Q., Cong, Y., Huo, Z. Y., Chen, Z., Yang, H. W., Liu, S. M., & Hu, H. Y. (2019b). Quantifying chlorine-reactive substances to establish a chlorine decay model of reclaimed water using chemical chlorine demands. *Chemical Engineering Journal*, 356, 791–798. https://doi.org/10.1016/j.cej.2018.09.091
- Woolschlager, J., Rittmann, B., & Piriou, P. (2005). Water quality decay in distribution systems – problems, causes, and new modeling tools. *Urban Water Journal*, 2(2), 69–79. https://doi.org/10.1080/15730620500144027
- Wu, Z. Y., Walski, T. M., Naumick, G., Dugandzic, J., & Nasuti, R. (2005). Optimizing water system improvement for a growing community. *Proceedings of the 8th International Conference on Computing and Control for the Water Industry, CCWI* 2005: Water Management for the 21st Century, 2(October 2002), 99.
- Mendez, I., & Valdiviezo, K. (2018). *Elaboracion del catastro de la red de agua potable en la parroquia Aurelio Bayas de la ciudad de Azogues*. Universidad de Cuenca.
- Xu, J., Huang, C., Shi, X., Dong, S., Yuan, B., & Nguyen, T. H. (2018). Role of drinking water biofilms on residual chlorine decay and trihalomethane formation: An

experimental and modeling study. *Science of the Total Environment*, 642, 516–525. https://doi.org/10.1016/j.scitotenv.2018.05.363

- Yunarni Widiarti, W., Wahyuni, S., Utami Agung Wiyono, R., Hidayah, E., Halik, G., & Sisinggih, D. (2020). Evaluation of pipe network distribution system using EPANET
 2.0 (a case study of the city of Jember). *IOP Conference Series: Earth and Environmental Science*, 437(1), 0–9. https://doi.org/10.1088/1755-1315/437/1/012043
- Zhang, W., & DiGiano, F. A. (2002). Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: A statistical study of causative factors. *Water Research*, *36*(6), 1469–1482. https://doi.org/10.1016/S0043-1354(01)00361-X
- Zischg, J., Mair, M., Rauch, W., & Sitzenfrei, R. (2017). Enabling efficient and sustainable transitions of water distribution systems under network structure uncertainty. *Water (Switzerland)*, 9(9). https://doi.org/10.3390/w9090715

6. ANEXOS

ANEXO 1: Cálculo de la demanda base nodal.

ID nodo	Altura	Demanda base	Número de predios abastecidos	Sector	Coeficiente de consumo sectorial (L/s*predio)	Requerimiento nodal sin %ANC
J1	2781	0,0000	0			0,0000
J2	2748	0,1766	15	SEÑOR DE FLORES	0,00595	0,0892
J3	2773	0,0353	3	SEÑOR DE FLORES	0,00595	0,0178
J4	2721	0,0397	3	CORAZÓN DE MARÍA	0,00668	0,0200
J5	2722	0,1412	12	SEÑOR DE FLORES	0,00595	0,0714
J6	2773	0,0353	3	SEÑOR DE FLORES	0,00595	0,0178
J7	2721	0,1587	12	CORAZÓN DE MARÍA	0,00668	0,0802
J8	2716	0,0000	0			0,0000
J9	2618	0,3887	21	GENERAL VEINTIMILLA	0,00935	0,1964
J10	2699	0,5552	30	GENERAL VEINTIMILLA	0,00935	0,2806
J11	2714	0,5359	50	ORIENTE ALTO	0,00542	0,2708
J12	2712	0,0000	0			0,0000
J13	2677	0,4287	40	ORIENTE ALTO	0,00542	0,2167
J14	2657	0,0857	8	ORIENTE ALTO	0,00542	0,0433
J15	2635	0,0150	1	ORIENTE BAJO	0,00758	0,0076
J16	2722	0,0000	0			0,0000
J17	2696	0,2551	17	ORIENTE BAJO	0,00758	0,1289
J18	2695	0,0300	2	ORIENTE BAJO	0,00758	0,0152
J19	2613	0,2101	14	ORIENTE BAJO	0,00758	0,1062
J20	2596	0,0300	2	ORIENTE BAJO	0,00758	0,0152
J21	2586	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J22	2600	0,1351	9	ORIENTE BAJO	0,00758	0,0683
J23	2597	0,0900	6	ORIENTE BAJO	0,00758	0,0455
J24	2604	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J25	2606	0,1501	10	ORIENTE BAJO	0,00758	0,0758
J26	2596	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J27	2610	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J28	2597	0,0300	2	ORIENTE BAJO	0,00758	0,0152

J29	2617	0,0150	1	ORIENTE BAJO	0,00758	0,0076
J30	2619	0,1351	9	ORIENTE BAJO	0,00758	0,0683
J31	2617	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J32	2618	0,0000	0	ORIENTE BAJO	0,00758	0,0000
J33	2621	0,0000	0	ORIENTE BAJO	0,00758	0,0000
J34	2621	0,0000	0			0,0000
J35	2598	0,1651	11	ORIENTE BAJO	0,00758	0,0834
J36	2603	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J37	2597	0,0300	2	ORIENTE BAJO	0,00758	0,0152
J38	2602	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J39	2622	0,1501	10	ORIENTE BAJO	0,00758	0,0758
J40	2623	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J41	2621	0,0900	6	ORIENTE BAJO	0,00758	0,0455
J42	2621	0,0000	0			0,0000
J43	2623	0,0000	0		0.00770	0,0000
J44	2607	0,1200	8	ORIENTE BAJO	0,00758	0,0607
J45	2615	0,1351	9	ORIENTE BAJO	0,00758	0,0683
J46	2610	0,0300	2	ORIENTE BAJO	0,00758	0,0152
J47	2619	0,0900	6	ORIENTE BAJO	0,00758	0,0455
J48	2610	0,0450	3	ORIENTE BAJO	0,00758	0,0228
J49	2622	0,0750	5	ORIENTE BAJO	0,00758	0,0379
J50	2632	0,0600	4	ORIENTE BAJO	0,00758	0,0303
J51	2628	0,1050	7	ORIENTE BAJO	0,00758	0,0531
J52	2628	0,0000	0			0,0000
J53	2628	0,1351	9	ORIENTE BAJO	0,00758	0,0683
J54	2631	0,0300	2	ORIENTE BAJO	0,00758	0,0152
J55	2628	0,0150	1	ORIENTE BAJO	0,00758	0,0076
J56	2628	0,0000	0			0,0000
J57	2635	0,0000	0			0,0000
J58 159	2635	0,0000	0	ORIENTE	0.00758	0,0000
	2029	0.1200		BAJO	0.00758	0,0003
JUU 	2011	0,1200	0	BAJO	0,00738	0,0007
J61 162	2615	0.1190	<u> </u>	CORAZÓN DE	0.00668	0.0601
163	2650	0.1851	10	MARÍA GENERAI	0.00935	0.0035
	2030	0.2061	10	VEINTIMILLA	0.00935	0.1407
J04	2070	0,2901	10	VEINTIMILLA	0,00935	0,1497

J65	2670	0,0740	4	GENERAL VEINTIMILLA	0,00935	0,0374
J66	2669	0,0925	5	GENERAL VEINTIMILLA	0,00935	0,0468
J67	2715	0,0000	0	ORIENTE ALTO	0,00542	0,0000
J68	2713	0,0322	3	ORIENTE ALTO	0,00542	0,0163
J69	2710	0,0926	7	CORAZÓN DE MARÍA	0,00668	0,0468
J70	2649	0,2248	17	CORAZÓN DE MARÍA	0,00668	0,1136
J71	2772	0,0000	0			0,0000
J72	2772	0,0000	0			0,0000
J73	2788	0,0417	4	LEG ABUGA	0,00527	0,0211
J74	2788	0,0522	5	LEG ABUGA	0,00527	0,0264
J75	2663	0,0420	4	LEG TABACAY	0,00531	0,0212
J76	2675	0,0000	0			0,0000
J77	2777	0,0835	8	LEG ABUGA	0,00527	0,0422
J78	2758	0,0730	7	LEG ABUGA	0,00527	0,0369
J79	2771	0,0000	0			0,0000
J80	2772	0,0000	0			0,0000
J81	2757	0,0322	3	ORIENTE ALTO	0,00542	0,0163
J82	2735	0,0206	3	ZHIRINCAY	0,00347	0,0104
J83	2755	0,0412	6	ZHIRINCAY	0,00347	0,0208
J84	2752	0,0412	6	ZHIRINCAY	0,00347	0,0208
J85	2742	0,0589	5	SEÑOR DE FLORES	0,00595	0,0297
J86	2737	0,0235	2	SEÑOR DE FLORES	0,00595	0,0119
J87	2708	0,1878	18	LEG ABUGA	0,00527	0,0949
J88	2771	0,0000	0			0,0000
J89	2770	0,0000	0			0,0000
J 90	2747	0,0353	3	SEÑOR DE FLORES	0,00595	0,0178
J91	2748	0,1177	10	SEÑOR DE FLORES	0,00595	0,0595
J92	2660	0,1200	8	ORIENTE BAJO	0,00758	0,0607
J93	2644	0,0300	2	ORIENTE	0,00758	0,0152
J94	2648	0,0300	2	ORIENTE BAJO	0,00758	0,0152
J95	2655	0,0900	6	ORIENTE	0,00758	0,0455
J96	2729	0,0353	3	SEÑOR DE FLORES	0,00595	0,0178
J97	2719	0,2087	20	LEG ABUGA	0,00527	0,1055
J98	2687	0,1043	10	LEG ABUGA	0,00527	0,0527
J99	2688	0,0835	8	LEG ABUGA	0,00527	0,0422
J100	2637	0,0939	9	LEG ABUGA	0,00527	0,0475
J101	2673	0,0626	6	LEG ABUGA	0,00527	0,0316
J102	2674	0,0522	5	LEG ABUGA	0,00527	0,0264

J103	2745	0,0118	1	SEÑOR DE FLORES	0,00595	0,0059
J104	2620	0,0945	9	LEG TABACAY	0,00531	0,0477
J105	2628	0,0840	8	LEG TABACAY	0,00531	0,0424
J106	2617	0,0529	4	CORAZÓN DE MARÍA	0,00668	0,0267
J107	2618	0,0661	5	CORAZÓN DE MARÍA	0,00668	0,0334
J108	2618	0,0000	0			0,0000
J109	2564	0,0000	0			0,0000
J110	2561	0,0525	5	LEG TABACAY	0,00531	0,0265
J111	2675	0,0000	0			0,0000
J112	2780	0,0835	8	LEG ABUGA	0,00527	0,0422
J113	2726	0,0522	5	LEG ABUGA	0,00527	0,0264
J114	2722	0,0730	7	LEG ABUGA	0,00527	0,0369
J115	2729	0,0823	12	ZHIRINCAY	0,00347	0,0416
J116	2698	0,0000	0			0,0000
J117	2712	0,1029	15	ZHIRINCAY	0,00347	0,0520
J118	2559	0,0210	2	LEG TABACAY	0,00531	0,0106
J119	2587	0,0315	3	LEG TABACAY	0,00531	0,0159
J120	2634	0,0420	4	LEG TABACAY	0,00531	0,0212
J121	2618	0,0000	0			0,0000
J122	2605	0,0945	9	LEG TABACAY	0,00531	0,0477
J123	2617	0,0420	4	LEG TABACAY	0,00531	0,0212
J124	2587	0,0840	8	LEG TABACAY	0,00531	0,0424
J125	2708	0,1719	13	CORAZÓN DE MARÍA	0,00668	0,0869
J126	2710	0,0264	2	CORAZÓN DE MARÍA	0,00668	0,0134
J127	2731	0,0000	0			0,0000
J128	2683	0,0000	0			0,0000
J129	2709	0,0686	10	ZHIRINCAY	0,00347	0,0347
J130	2714	0,0480	7	ZHIRINCAY	0,00347	0,0243
J131	2695	0,0480	7	ZHIRINCAY	0,00347	0,0243
J132	2698	0,0000	0			0,0000
J133	2720	0,0206	3	ZHIRINCAY	0,00347	0,0104
J134	2705	0,0274	4	ZHIRINCAY	0,00347	0,0139
J135	2719	0,2144	20	ORIENTE ALTO	0,00542	0,1083
J136	2717	0,0000	0			0,0000
J137	2559	0,0315	3	LEG TABACAY	0,00531	0,0159
J138	2593	0,0210	2	LEG TABACAY	0,00531	0,0106
J139	2666	0,0000	0			0,0000
J140	2666	0,0000	0			0,0000

J141	2616	0,0525	5	LEG TABACAY	0,00531	0,0265
J142	2620	0,0420	4	LEG TABACAY	0,00531	0,0212
J143	2627	0,0210	2	LEG TABACAY	0,00531	0,0106
J144	2621	0,0525	5	LEG TABACAY	0,00531	0,0265
J145	2611	0,0000	0			0,0000
J146	2559	0,0315	3	LEG TABACAY	0,00531	0,0159
J147	2566	0,0315	3	LEG TABACAY	0,00531	0,0159
J148	2616	0,0945	9	LEG TABACAY	0,00531	0,0477
J149	2634	0,0525	5	LEG TABACAY	0,00531	0,0265
J150	2718	0,0132	1	CORAZÓN DE MARÍA	0,00668	0,0067
J151	2716	0,0264	2	CORAZÓN DE MARÍA	0,00668	0,0134
J152	2656	0,0000	0	CORAZÓN DE MARÍA	0,00668	0,0000
J153	2656	0,0000	0		0,00535	0,0000
J154	2621	0,1322	10	CORAZÓN DE MARÍA	0,00668	0,0668
J155	2624	0,1984	15	CORAZÓN DE MARÍA	0,00668	0,1002
J156	2655	0,0000	0		0,00535	0,0000
J157	2650	0,1851	14	CORAZÓN DE MARÍA	0,00668	0,0936
J158	2715	0,0397	3	CORAZÓN DE MARÍA	0,00668	0,0200
J159	2698	0,2116	16	CORAZÓN DE MARÍA	0,00668	0,1069
J160	2692	0,0793	6	CORAZÓN DE MARÍA	0,00668	0,0401
J161	2656	0,1719	13	CORAZÓN DE MARÍA	0,00668	0,0869
J162	2651	0,0264	2	CORAZÓN DE MARÍA	0,00668	0,0134
J163	2649	0,0661	5	CORAZÓN DE MARÍA	0,00668	0,0334
J164	2670	0,0264	2	CORAZÓN DE MARÍA	0,00668	0,0134
J165	2701	0,0397	3	CORAZÓN DE MARÍA	0,00668	0,0200
J166	2697	0,0529	4	CORAZÓN DE MARÍA	0,00668	0,0267
J167	2698	0,2116	16	CORAZÓN DE MARÍA	0,00668	0,1069
J168	2725	0,0417	4	LEG ABUGA	0,00527	0,0211
J169	2714	0,0209	2	LEG ABUGA	0,00527	0,0105
J170	2647	0,0529	4	CORAZÓN DE MARÍA	0,00668	0,0267
J171	2640	0,0264	2	CORAZÓN DE MARÍA	0,00668	0,0134
J172	2647	0,0264	2	CORAZÓN DE MARÍA	0,00668	0,0134
J173	2641	0,0264	2	CORAZÓN DE MARÍA	0,00668	0,0134
J174	2621	0,0529	4	CORAZÓN DE MARÍA	0,00668	0,0267
J175	2641	0,0397	3	CORAZÓN DE MARÍA	0,00668	0,0200

2781	0,0000	0			0,0000
2785	0,0209	2	LEG ABUGA	0,00527	0,0105
2783	0,0209	2	LEG ABUGA	0,00527	0,0105
2772	0,0000	0	SEÑOR DE FLORES	0,00595	0,0000
2564	0,0315	3	LEG	0,00531	0,0159
2561	0,0000	0	INDACAT		0,0000
2594	0,0315	3	LEG TABACAY	0,00531	0,0159
2585	0,0315	3	LEG TABACAY	0,00531	0,0159
2648	0,0315	3	LEG TABACAY	0,00531	0,0159
2668	0,0522	5	LEG ABUGA	0,00527	0,0264
2659	0,0315	3	LEG TABACAY	0,00531	0,0159
2727	0,1530	13	SEÑOR DE FLORES	0,00595	0,0773
2705	0,0206	3	ZHIRINCAY	0,00347	0,0104
2694	0,0069	1	ZHIRINCAY	0,00347	0,0035
2731	0,0209	2	LEG ABUGA	0,00527	0,0105
2717	0,1461	14	LEG ABUGA	0,00527	0,0738
2716	0,0000	0			0,0000
2677	0,1252	12	LEG ABUGA	0,00527	0,0633
2633	0,2645	20	CORAZÓN DE MARÍA	0,00668	0,1337
2635	0,0600	4	ORIENTE BAJO	0,00758	0,0303
2639	0,0300	2	ORIENTE BAJO	0,00758	0,0152
2781	0,0000	0			0,0000
2781	0,0000	0			0,0000
2781	0,0000	0			0,0000
2781	0,0000	0			0,0000
2781	0,0000	0	LEG ABUGA	0,00527	0,0000
2675	0,0000	0			0,0000
2747	0,1252	12	LEG ABUGA	0,00527	0,0633
2722	0,0000	0			0,0000
2723	0,1565	15	LEG ABUGA	0,00527	0,0791
2722	0,0000	0			0,0000
2666	0,0420	4	LEG TABACAY	0,00531	0,0212
2611	0,0000	0			0,0000
2722	0,0000	0			0,0000
2722	0,0000	0			0,0000
2710	0,1461	14	LEG ABUGA	0,00527	0,0738
2772	0,0000	0			0,0000
2772	0,0000	0			0,0000
	2781 2785 2783 2772 2564 2594 2585 2648 2668 2659 2772 2705 2694 2731 2717 2705 2694 2731 2717 2635 2635 2635 2635 2635 2635 2635 2635 2637 2781 2781 2781 2781 2781 2781 2722 2723 2722 2666 2611 2722 2710 2772 2710 2772 2710 2772 2710 2772 2772	2781 0,0000 2785 0,0209 2773 0,0209 2772 0,0000 2564 0,0315 2561 0,0000 2594 0,0315 2585 0,0315 2648 0,0522 2659 0,0315 2668 0,0522 2659 0,0315 2705 0,0206 2694 0,0069 2731 0,0209 2717 0,1461 2716 0,0000 2637 0,1252 2633 0,2645 2635 0,0600 2781 0,0000 2781 0,0000 2781 0,0000 2781 0,0000 2747 0,1252 2722 0,0000 2781 0,0000 2781 0,0000 2747 0,1252 2722 0,0000 2747 0,1252 2753 <td>2781 0,0000 0 2785 0,0209 2 2783 0,0209 2 2772 0,0000 0 2564 0,0315 3 2551 0,0015 3 2585 0,0315 3 2668 0,0522 5 2659 0,0315 3 2705 0,0206 3 2694 0,0000 0 2717 0,1530 13 2705 0,0206 3 2694 0,0009 1 2717 0,1461 14 2716 0,0000 0 2635 0,0600 4 2635 0,0600 4 2639 0,0300 2 2781 0,0000 0 2781 0,0000 0 2781 0,0000 0 2781 0,0000 0 2772 0,0000 0 2772<</td> <td>2781 0.0000 0 2785 0.0209 2 LEG ABUGA 2772 0.0000 0 SENOR DE FLORES 2564 0.0315 3 LEG TABACAY 2561 0.0000 0 2594 0.0315 3 LEG TABACAY 2668 0.0522 5 LEG ABUGA 2668 0.0522 5 LEG ABUGA 2659 0.0315 3 LEG TABACAY 2668 0.0522 5 LEG ABUGA 2659 0.0315 3 LEG TABACAY 2705 0.0206 3 ZHIRINCAY 2694 0.0069 1 ZHIRINCAY 2694 0.0069 1 ZHIRINCAY 2633 0.2645 20 CORAZÓN DE MARÍA 2633 0.2645 20 CORAZÓN DE MARÍA 2633 0.6000 4 ORIENTE BAJO 2639 0.0300 2 ORIENTE BAJO 2781 0.0000 <</td> <td>2781 0.0000 0 2785 0.0209 2 LEG ABUGA 0.00527 2783 0.0209 2 LEG ABUGA 0.00527 2772 0.0000 0 SEÑOR DE 0.00595 2564 0.0315 3 LEG 0.00051 2551 0.0000 0 2585 0.0315 3 LEG 0.00531 7ABACAY 0.00531 TABACAY 0.00531 2648 0.0315 3 LEG abuGA 0.00531 2668 0.0522 5 LEG AbuGA 0.00531 2669 0.0315 3 EG 0.00531 2727 0.1530 13 SENOR DE 0.00595 2705 0.0206 3 ZHIRINCAY 0.00347 2694 0.0069 1 ZHIRINCAY 0.00377 2716 0.0000 0 2633 0.2645 20 CORAZÓN DE 0.00527</td>	2781 0,0000 0 2785 0,0209 2 2783 0,0209 2 2772 0,0000 0 2564 0,0315 3 2551 0,0015 3 2585 0,0315 3 2668 0,0522 5 2659 0,0315 3 2705 0,0206 3 2694 0,0000 0 2717 0,1530 13 2705 0,0206 3 2694 0,0009 1 2717 0,1461 14 2716 0,0000 0 2635 0,0600 4 2635 0,0600 4 2639 0,0300 2 2781 0,0000 0 2781 0,0000 0 2781 0,0000 0 2781 0,0000 0 2772 0,0000 0 2772<	2781 0.0000 0 2785 0.0209 2 LEG ABUGA 2772 0.0000 0 SENOR DE FLORES 2564 0.0315 3 LEG TABACAY 2561 0.0000 0 2594 0.0315 3 LEG TABACAY 2668 0.0522 5 LEG ABUGA 2668 0.0522 5 LEG ABUGA 2659 0.0315 3 LEG TABACAY 2668 0.0522 5 LEG ABUGA 2659 0.0315 3 LEG TABACAY 2705 0.0206 3 ZHIRINCAY 2694 0.0069 1 ZHIRINCAY 2694 0.0069 1 ZHIRINCAY 2633 0.2645 20 CORAZÓN DE MARÍA 2633 0.2645 20 CORAZÓN DE MARÍA 2633 0.6000 4 ORIENTE BAJO 2639 0.0300 2 ORIENTE BAJO 2781 0.0000 <	2781 0.0000 0 2785 0.0209 2 LEG ABUGA 0.00527 2783 0.0209 2 LEG ABUGA 0.00527 2772 0.0000 0 SEÑOR DE 0.00595 2564 0.0315 3 LEG 0.00051 2551 0.0000 0 2585 0.0315 3 LEG 0.00531 7ABACAY 0.00531 TABACAY 0.00531 2648 0.0315 3 LEG abuGA 0.00531 2668 0.0522 5 LEG AbuGA 0.00531 2669 0.0315 3 EG 0.00531 2727 0.1530 13 SENOR DE 0.00595 2705 0.0206 3 ZHIRINCAY 0.00347 2694 0.0069 1 ZHIRINCAY 0.00377 2716 0.0000 0 2633 0.2645 20 CORAZÓN DE 0.00527

J215	2716	0,0000	0			0,0000
J216	2612	0,0626	6	LEG ABUGA	0,00527	0,0316
J217	2612	0,0000	0			0,0000
J218	2611	0,0840	8	LEG	0,00531	0,0424
J219	2694	0,0313	3	LEG ABUGA	0,00527	0,0158
J220	2722	0,0000	0			0,0000
J221	2722	0,0353	3	SEÑOR DE	0,00595	0,0178
J222	2656	0,0000	0	FLOKES		0,0000
J223	2655	0,0000	0			0,0000
J224	2655	0,1455	11	CORAZÓN DE	0,00668	0,0735
J225	2716	0,0000	0	MANIA		0,0000
J226	2702	0,0000	0			0,0000
J227	2717	0,0000	0			0,0000
J228	2717	0,2144	20	ORIENTE	0,00542	0,1083
J229	2716	0,0000	0	ALIO		0,0000
J230	2716	0,0000	0			0,0000
J231	2712	0,0000	0			0,0000
J232	2681	0,0000	0			0,0000
J233	2702	0,0000	0			0,0000
J234	2626	0,2591	14	GENERAL VEINTIMILLA	0,00935	0,1309
J235	2644	0,0000	0			0,0000
J236	2645	0,2961	16	GENERAL VEINTIMILLA	0,00935	0,1497
J237	2694	0,1801	12	ORIENTE BAIO	0,00758	0,0910
J238	2684	0,0000	0	2100		0,0000
J239	2684	0,0000	0			0,0000
J240	2660	0,0000	0			0,0000
J241	2681	0,0000	0			0,0000
J242	2681	0,0000	0			0,0000
J243	2660	0,0000	0			0,0000
J244	2628	0,0000	0			0,0000
J245	2640	0,0600	4	ORIENTE BAJO	0,00758	0,0303
J246	2628	0,0000	0			0,0000
J247	2629	0,0150	1	ORIENTE BAIO	0,00758	0,0076
J248	2628	0,0000	0	Ditto		0,0000
J249	2621	0,0000	0			0,0000
J250	2628	0,0000	0			0,0000
J251	2635	0,0150	1	ORIENTE BAJO	0,00758	0,0076
J252	2637	0,0750	5	ORIENTE BAIO	0,00758	0,0379
J253	2621	0,0000	0	5.00		0,0000

J254	2621	0,0000	0			0,0000
J255	2621	0,0000	0			0,0000
J256	2596	0,1501	10	ORIENTE BAIO	0,00758	0,0758
J257	2621	0,0000	0	DAJO		0,0000
J258	2623	0,0000	0			0,0000
J259	2618	0,0000	0	ORIENTE BAJO	0,00758	0,0000
J260	2621	0,0300	2	ORIENTE BAJO	0,00758	0,0152
J261	2602	0,0150	1	ORIENTE	0,00758	0,0076
J262	2567	0,0150	1	ORIENTE BAJO	0,00758	0,0076
J263	2775	0,0000	0	SEÑOR DE	0,00595	0,0000
J264	2774	0,0000	0	TEORES		0,0000
J265	2774	0,0000	0			0,0000
J266	2772	0,0000	0			0,0000
J267	2772	0,0000	0			0,0000
J268	2772	0,0000	0			0,0000
J269	2272	0,0000	0	SEÑOR DE	0,00595	0,0000
J270	2770	0,0214	2	ORIENTE	0,00542	0,0108
J271	2771	0,0000	0	- millio		0,0000
J272	2771	0,0000	0			0,0000
J273	2770	0,0000	0			0,0000
J274	2753	0,0065	1	ZHIRINCAY	0,00330	0,0033
J275	2731	0,0000	0			0,0000
J276	2733	0,0206	3	ZHIRINCAY	0,00347	0,0104
J277	2768	0,0137	2	ZHIRINCAY	0,00347	0,0069
J278	2763	0,0069	1	ZHIRINCAY	0,00347	0,0035
J279	2753	0,0069	1	ZHIRINCAY	0,00347	0,0035
J280	2725	0,0137	2	ZHIRINCAY	0,00347	0,0069
J281	2776	0,1252	12	LEG ABUGA	0,00527	0,0633
J282	2760	0,0235	2	SEÑOR DE FLORES	0,00595	0,0119
J283	2615	0,1058	8	CORAZÓN DE MARÍA	0,00668	0,0535
J284	2781	0,0000	0			0,0000
J285	2781	0,0000	0			0,0000
J286	2781	0,0000	0			0,0000
J287	2683	0,0000	0			0,0000
J288	2564	0,0000	0			0,0000
J289	2561	0,0315	3	LEG TABACAY	0,00531	0,0159
J290	2675	0,0000	0			0,0000
J291	2615	0,0000	0			0,0000
J292	2621	0,0000	0			0,0000

J293	2696	0,0000	0		0,0000
J294	2696	0,0000	0		0,0000
J295	2781	0,0000	0		0,0000
J296	2681	0,0000	0		0,0000
D1	0	0,0000	0 LEG ABUGA	0,00527	0,0000

ANEXO 2: Características de tuberías y nodos.

ID Nodo	Cote (m)	Domanda	Nodo	Cota (m)	Domanda
	Cota (III)	T DC	11000	Cota (III)	I DC
		LPS			LPS
J1	2787	0	J191	2610	0.03
J2	2748	0.177	J192	2619	0.09
J3	2773	0.035	J193	2610	0.045
J4	2721	0.04	J194	2622	0.075
J5	2722	0.141	J195	2632	0.06
J6	2770	0.035	J196	2628	0.105
J7	2721	0.159	J197	2628	0
J8	2716	0	J198	2628	0.135
J9	2627	0.389	J199	2631	0.03
J10	2699	0.555	J200	2628	0.015
J11	2714	0.536	J201	2628	0
J12	2712	0	J202	2635	0
J13	2677	0.429	J203	2635	0
J14	2657	0.086	J204	2629	0.135
J15	2722	0	J205	2629	0.12
J16	2696	0.255	J206	2615	0.13
J17	2690	0.03	J207	2644	0
J18	2621	0.21	J208	2650	0.185
J19	2596	0.03	J209	2672	0.296
J20	2586	0.045	J210	2670	0.074
J21	2600	0.18	J211	2669	0.093
J22	2597	0.05	J212	2715	0
J23	2604	0.05	J213	2713	0.032
J24	2610	0.25	J214	2710	0.093
J25	2596	0.05	J215	2649	0.225
J26	2610	0.1	J216	2772	0
J27	2597	0.035	J217	2772	0
J28	2617	0.015	J218	2785	0.042
J29	2622	0.135	J219	2785	0.052
J30	2617	0.045	J220	2663	0.042
J31	2618	0	J221	2678	0
J32	2621	0	J222	2777	0.083
J33	2621	0	J223	2758	0.073
J34	2598	0.165	J224	2773	0

J35	2599	0.045	J225	2775	0
J36	2597	0.03	J226	2757	0.032
J37	2599	0.045	J227	2735	0.021
J38	2622	0.15	J228	2755	0.041
J39	2623	0.045	J229	2752	0.041
J40	2621	0.09	J230	2742	0.059
J41	2621	0	J231	2737	0.024
J42	2623	0	J232	2707	0.188
J43	2607	0.12	J233	2770	0
J44	2615	0.135	J234	2770	0
J45	2748	0.118	J235	2747	0.035
J46	2655	0.12	J236	2593	0.021
J47	2644	0.03	J237	2677	0
J48	2648	0.03	J238	2681	0
J49	2655	0.09	J239	2616	0.052
J50	2729	0.035	J240	2620	0.042
J51	2719	0.209	J241	2627	0.021
J52	2688	0.083	J242	2622	0
J53	2637	0.094	J243	2562	0.02
J54	2673	0.063	J244	2585	0.02
J55	2674	0.052	J245	2616	0.094
J56	2745	0.012	J246	2634	0.03
J57	2620	0.094	J247	2717	0.013
J58	2628	0.084	J248	2715	0.026
J59	2617	0.045	J249	2653	0
J60	2618	0.043	J250	2653	0
J61	2611	0	J251	2621	0.132
J62	2564	0	J252	2624	0.198
J63	2563	0.02	J253	2653	0
J64	2645	0	J254	2650	0.185
J65	2780	0.083	J255	2715	0.04
J66	2735	0.072	J256	2698	0.212
J67	2704	0.073	J257	2692	0.079
J68	2730	0.082	J258	2653	0.172
J69	2698	0	J259	2651	0.026
J70	2712	0.103	J260	2649	0.066
J71	2559	0.021	J261	2670	0.026
J72	2587	0.031	J262	2701	0.04
J73	2634	0.042	J263	2697	0.053
J74	2611	0	J264	2698	0.212

J75	2605	0.094	J265	2725	0.052
J76	2617	0.042	J266	2714	0.021
J77	2587	0.084	J267	2646	0.053
J78	2708	0.172	J268	2640	0.026
J79	2710	0.026	J269	2647	0.026
J80	2735	0	J270	2641	0.026
J81	2682	0	J271	2621.5	0.06
J82	2706	0.069	J272	2641	0.04
J83	2696	0.048	J273	2787	0
J84	2691	0.048	J274	2783	0.021
J85	2720	0.021	J275	2782.5	0.021
J86	2705	0.027	J276	2772	0
J87	2719	0.1604	J277	2564	0.031
J88	2718	0	J278	2561	0
J89	2593	0.021	J279	2585	0.025
J90	2677	0	J280	2648	0.031
J91	2681	0	J281	2670	0.1
J92	2616	0.052	J282	2659	0.031
J93	2620	0.042	J283	2727	0.153
J94	2627	0.021	J284	2705	0.021
J95	2621	0.052	J285	2694	0.007
J96	2622	0	J286	2716	0.146
J97	2562	0.02	J287	2690	0
J98	2585	0.02	J288	2677	0.125
J99	2616	0.094	J289	2633	0.13
J100	2634	0.03	J290	2635	0.06
J101	2717	0.013	J291	2639	0.03
J102	2715	0.026	J292	2787	0
J103	2653	0	J293	2787	0
J104	2653	0	J294	2787	0
J105	2621	0.132	J295	2787	0
J106	2624	0.198	J296	2786.5	0
J107	2653	0	J297	2645	0
J108	2650	0.185	J298	2744	0.125
J109	2715	0.04	J299	2721	0
J110	2698	0.212	J300	2721	0.157
J111	2692	0.079	J301	2722	0
J112	2653	0.172	J302	2662	0.042
J113	2651	0.026	J303	2620	0
J114	2649	0.066	J304	2721	0

J115	2670	0.026	J305	2721	0
J116	2701	0.04	J306	2711	0.146
J117	2697	0.053	J307	2772	0
J118	2698	0.212	J308	2772	0
J119	2725	0.052	J309	2782	0.063
J120	2714	0.021	J310	2690	0
J121	2646	0.053	J311	2612	0.063
J122	2640	0.026	J312	2612	0
J123	2647	0.026	J313	2610	0.084
J124	2641	0.026	J314	2694	0.031
J125	2621.5	0.06	J315	2722	0
J126	2641	0.04	J316	2722	0.035
J127	2787	0	J317	2650	0
J128	2783	0.021	J318	2653	0
J129	2782.5	0.021	J319	2653	0.145
J130	2772	0	J320	2716	0
J131	2564	0.031	J321	2704	0
J132	2561	0	J322	2718	0
J133	2718	0.16	J323	2770	0
J134	2718	0	J324	2753	0.007
J135	2718	0	J325	2735	0
J136	2712	0	J326	2735	0.021
J137	2681	0	J327	2768	0.014
J138	2699	0	J328	2751	0.007
J139	2626	0.259	J329	2749	0.007
J140	2644	0	J330	2717	0.014
J141	2645	0.296	J331	2778	0.12
J142	2690	0.18	J332	2763	0.024
J143	2684	0	J333	2615	0.106
J144	2684	0	J334	2787	0
J145	2660	0	J335	2787	0
J146	2680	0	J336	2787	0
J147	2680	0	J337	2682	0
J148	2660	0	J338	2564	0
J149	2628	0	J339	2561	0.031
J150	2646	0.07	J340	2678	0
J151	2628	0	J341	2621	0
J152	2629	0.015	J342	2696	0
J153	2628	0	J343	2696	0
J154	2621	0	J344	2787	0

J155	2628	0	J345	2681	0
J156	2635	0.015	J346	2783	0
J157	2637	0.075	J347	2770	0
J158	2621	0	J348	2722	0
J159	2621	0	J349	2782	0
J160	2621	0	J350	2772	0
J161	2596	0.15	J351	2744	0
J162	2621	0	J352	2724	0
J163	2623	0	J353	2711	0
J164	2618	0	J354	2714	0
J165	2621	0.03	J355	2716	0
J166	2602	0.015	J356	2713	0
J167	2594	0.02	J357	2712	0
J168	2778	0	J358	2708	0
J169	2778	0	J359	2728	0
J170	2775	0	J360	2765	0
J171	2772	0	J361	2643	0.119
J172	2772	0	J362	2617	0.053
J173	2775	0	J363	2636	0.06
J174	2775	0	J364	2618	0.03
J175	2770	0.021	J365	2617	0.02
J176	2773	0	J366	2586	0.02
J177	2770	0	J367	2618	0
J178	2718	0.02			
J179	2720	0			
J180	2719	0			
J181	2719	0.024			
J182	2746	0.02			
J183	2772	0			
J184	2775	0.01			
J185	2787	0			
J186	2653	0			
J187	2653	0			
J188	2715	0			
J189	2696	0			
J190	2728	0.014			

ID Tubería	Nodo Inicial	Nodo Final	Diámetro	Rugosidad	Pérdida de carga
P1	J11	J12	3.56	63	120
P2	J13	J14	167.3	40	130
P3	J5	J15	1.22	63	120
P4	J16	J17	10.34	63	120
Р5	J38	J39	21.51	63	140
P6	J44	J45	40.45	32	130
P7	J46	J47	74.15	32	130
P8	J50	J51	0.2278	63	120
Р9	J52	J53	58.1	63	120
P10	J54	J55	0.9342	63	120
P11	J66	J67	9.469	63	120
P12	J72	J73	8.65	160	120
P13	J76	J77	155.1	25	120
P14	J78	J6	18	63	120
P15	J80	J81	156.9	32	120
P16	J82	J83	40.05	32	120
P17	J87	J267	5.85	63	140
P18	J97	J98	207.42	25	120
P19	J100	J101	21.51	25	120
P20	J103	J104	121.8	63	120
P21	J111	J112	152.9	25	140
P22	J81	J114	28.75	63	130
P23	J119	J120	64.99	20	140
P24	J121	J122	144	20	120
P25	J123	J118	128.6	20	140
P26	J81	J273	7.96	32	140
P27	J114	J133	350.41	63	130
P28	J136	J335	62.3	20	140
P29	J140	J141	109.5	63	120
P30	J141	J142	41.94	32	120
P31	J140	J143	81	32	120
P32	J135	J144	63.7	20	140
P33	J144	J145	80.87	20	140
P34	J157	J158	71.55	50	130
P35	J166	J167	76.02	50	120
P36	J168	J169	53.82	25	120
P37	J170	J171	45.02	25	120
P38	J174	J72	475.64	160	140
P39	J73	J175	121.11	160	140
P40	J178	J179	112.9	20	120
P41	J183	J184	35	25	120

P42	J186	J187	82.32	25	140
P43	J188	J189	110	20	120
P44	J192	J193	36.92	25	120
P45	J202	J201	6.94	40	130
P46	J204	J139	290	32	120
P47	J205	J136	165.1	20	130
P48	J212	J337	106.16	20	120
P49	J214	J215	1	32	120
P50	J216	J97	34.54	25	130
P51	J222	J223	250	63	120
P52	J234	J235	155	63	140
P53	J236	J237	187.2	63	130
P54	J243	J244	4	63	120
P55	J256	J31	15.65	25	130
P56	J260	J261	1	160	120
P57	J266	J267	11.23	32	120
P58	J275	J276	50	25	120
P59	J129	J277	87.67	20	120
P60	J278	J279	140	40	140
P61	J152	J280	260.3	63	130
P62	J281	J283	6.22	160	120
P63		2 J265	5.15	110	120
P64		3 J269	2	63	140
P65	J284	J128	150	25	140
P66	J334	J190	105	40	140
P67	J86	J290	54.15	25	130
P68	J289	J216	8.2	25	130
P69	J138	J204	33	32	130
P70	J283	J197	1.11	160	120
P71	J291	J198	2.07	160	120
P72	J322	J194	1.56	160	120
P73	J322	J282	2.1	200	120
P74	J1	J293	35.83	50	120
P75	J293	J294	186.84	50	120
P76	J294	J200	333.36	50	120
P77	J200	J295	400.73	50	120
P78	J295	J202	100.04	50	120
P79	J202	J208	200.05	50	130
P80	J208	J188	274.98	50	130
P81	J188	J86	185.79	50	130
P82	J86	J96	221.7	110	130
P83	J2	J185	235.49	110	140

P84	J185	J218	42.6	110	140
P85	J7	J4	2.13	110	130
P86	J218	J217	5.31	63	120
P87	J96	J166	134.34	40	130
P88	J166	J95	147.37	40	140
P89	J95	J185	90.25	32	140
P90	J200	J328	109.65	32	120
P91	J203	J113	44.6	40	140
P92	J190	J287	3	40	130
P93	J75	J74	53.74	20	140
P94	J74	J182	49.77	20	140
P95	J182	J119	60.36	20	140
P96	J107	J121	55.4	20	140
P97	J121	J123	76.5	20	140
P98	J123	J178	161.19	20	130
P99	J178	J108	3.37	32	130
P100	J118	J117	105.14	20	140
P101	J190	J137	56	32	120
P102	J139	J146	2.72	25	130
P103	J146	J215	137.58	32	120
P104	J215	J103	214.19	32	120
P105	J103	J140	7.91	32	130
P106	J205	J180	157.05	32	130
P107	J180	J136	8.02	32	130
P108	J97	J100	80.66	25	120
P109	J100	J183	22.57	25	120
P110	J183	199	436.75	25	120
P111	J198	J296	51.15	160	130
P112	J296	J297	130.62	160	120
P113	J297	J298	361.42	160	120
P114	J298	J299	311.76	160	120
P115	J299	J206	197.05	160	120
P116	J207	J300	181.03	160	120
P117	J300	J301	100.95	160	120
P118	J301	J302	102.09	160	120
P119	J302	J303	110.63	160	120
P120	J303	J304	91.64	160	120
P121	J304	J305	96.18	160	120
P122	J305	J306	250.32	160	120
P123	J306	J307	386.24	160	120
P124	J307	J263	74.55	160	120
P125	J71	J177	0.17	160	120

P126	J175	J211	699.97	160	140
P127	J211	J176	241.06	160	140
P128	J176	J111	173.21	160	140
P129	J111	J76	212.94	160	120
P130	J76	J278	282.73	160	120
P131	J278	J260	18	160	120
P132	J267	J88	0.73	63	130
P133	J270	J80	130	63	140
P134	J80	J82	25.25	32	130
P135	J82	J271	27.09	32	130
P136	J273	J126	6	25	140
P137	J273	J275	191	25	120
P138	J275	J274	262	25	120
P139	J272	J116	281	25	120
P140	J116	J127	328.47	50	140
P141	J116	J186	336.78	25	140
P142	J186	J132	3.57	25	130
P143	J132	J115	66.55	25	130
P144	J132	J131	108.31	25	130
P145	J130	J129	100.3	25	140
P146	J6	J90	200	63	130
P147	J90	J5	271.5	63	140
P148	J89	J84	52.31	32	130
P149	J84	J102	28.14	32	130
P150	J84	J85	71.57	25	130
P151	J90	J89	17.94	32	130
P152	J225	J226	9.12	63	140
P153	J225	J224	5.06	63	120
P154	J227	J66	1.21	63	120
P155	J66	J11	7.64	63	140
P156	J228	J13	378.03	63	120
P157	J13	J229	34.03	63	140
P158	J238	J292	2.38	63	120
P159	J240	J91	4.81	63	130
P160	J91	J94	68.45	63	120
P161	J94	J92	109.38	63	120
P162	J94	J93	54.78	63	120
P163	J91	J52	252.55	63	140
P164	J52	J54	0.48	63	120
P165	J54	J50	5.72	63	130
P166	J50	J241	0.28	63	130
P167	J247	J49	20.66	63	120

P168	J49	J249	61.52	32	140
P169	J249	J248	23.58	32	120
P170	J248	J57	14.84	32	120
P171	J56	J192	6.3	63	120
P172	J192	J191	92.64	63	140
P173	J191	J60	151.47	63	120
P174	J249	J58	76.5	32	120
P175	J58	J48	90.86	32	120
P176	J58	J59	160.42	32	130
P177	J245	J246	127.93	63	140
P178	J250	J32	0.5	63	130
P179	J32	J251	2.19	63	120
P180	J32	J33	2.32	63	120
P181	J254	J40	4.81	63	130
P182	J40	J41	3.67	63	120
P183	J288	J255	3.23	63	120
P184	J42	J46	66.3	32	120
P185	J46	J44	98.05	32	120
P186	J44	J43	227.54	32	120
P187	J40	J38	65.89	63	140
P188	J38	J34	363.97	63	140
P189	J34	J35	102.08	50	130
P190	J34	J36	5.11	63	130
P191	J36	J37	91.82	50	130
P192	J252	J257	28.69	63	140
P193	J257	J256	9.46	25	130
P194	J31	J30	79.99	25	120
P195	J257	J29	119.17	63	140
P196	J29	J28	9.09	63	130
P197	J29	J18	116.18	63	140
P198	J18	J253	206.84	63	140
P199	J18	J24	73.86	25	140
P200	J24	J25	48.91	25	130
P201	J24	J21	71.34	63	140
P202	J21	J20	79.9	50	130
P203	J21	J22	36.52	63	140
P204	J22	J23	60.29	50	130
P205	J22	J19	47.12	50	130
P206	J24	J26	59.64	25	140
P207	J26	J258	35.84	25	130
P208	J258	J27	37.24	25	130
P209	J258	J259	45.91	25	120

P210	J16	J238	189.98	63	120
P211	J79	J266	8.19	110	130
P212	J266	J3	11.54	110	130
P213	J3	J2	193.42	110	140
P214	J218	J7	4.53	110	130
P215	J4	J148	39.25	50	140
P216	J148	J149	17.89	50	140
P217	J156	J68	46.2	50	130
P218	J68	J165	142.82	25	130
P219	J68	J157	106.9	50	130
P220	J165	J164	58.39	32	120
P221	J164	J163	29.16	32	120
P222	J165	J69	572.33	20	120
P223	J159	J150	1	50	130
P224	J150	J219	0.52	50	130
P225	J151	J221	1.16	50	130
P226	J221	J152	281.57	50	130
P227	J159	J168	140	64	140
P228	J168	J170	41.14	50	140
P229	J170	J161	58.72	50	130
P230	J161	J162	139.33	32	120
P231	J161	J160	51.47	50	130
P232	J221	J220	0.31	50	130
P233	J154	J153	260.45	50	140
P234	J153	J172	86.3	25	120
P235	J172	J105	41.95	25	140
P236	J105	J106	7.67	25	140
P237	J156	J124	61.3	50	140
P238	J124	J125	75.86	40	120
P239	J124	J155	519.25	50	120
P240	J230	J10	6.67	63	120
P241	J10	J63	255.64	63	120
P242	J63	J64	0.6	63	120
P243	J64	J65	5.44	63	120
P244	J63	J62	234.19	32	130
P245	J64	J231	362.4	63	120
P246	J10	J233	464.27	50	120
P247	J233	19	238.69	32	120
P248	J233	J232	4.55	63	130
P249	J260	J177	17	160	120
P250	J322	J195	1.84	50	120
P251	J264		3 1	160	120

P252		4	1	0.5	64	120
P253		3 J268		2	63	120
P254	J191	J308		127.71	63	120
P255	J308	J61		3.44	63	120
P256	J239	J242		350	32	120
P257	J310	J173		74.74	32	120
P258	J106	J309		102.91	63	140
P259	J211	J210		24.67	63	130
P260	J209	J208		136.64	25	130
P261	J146	J312		81.2	20	130
P262	J312	J147		268.12	20	130
P263	J180	J181		168.98	20	120
P264	J312	J313		235.66	20	120
P265	J106	J311		11.46	300	0.1
P266	J311	J310		131.77	63	120
P267	J7	J316		8.6	63	120
P268	J316	J8		28.43	63	120
P269	J316	J315		43.41	63	140
P270	J315	J148		11.58	63	140
P271	J133	J134		37.46	63	120
P272	J187	J130		53.2	25	140
P273	J5	J317		45.35	63	140
P274	J317	J318		72.48	63	120
P275	J317	J225		5.67	63	120
P276	J77	J319		146.62	25	120
P277	J96	J319		288.52	50	130
P278	J319	J2		29.65	50	130
P279	J177	J320		3.82	160	120
P280	J320	J70		0.54	160	120
P281	J262	J321		1.35	110	120
P282	J321		2	1.32	110	120
P283	J320	J321		11.39	110	120
P284		1 J322		1	160	120
P285	J157	J339		139.27	50	140
P286	J324	J159		10	50	130
P287	J325	J156		3	50	130
P288	J11	J326		220	64	140
P289	J129	J327		105	20	120
P290	J329	J330		96.94	32	120
P291	J331	J199		38.38	32	120
P292	J110	J332		193.57	25	120
P293	J333	J109		124.29	25	120

Universidad de Cuenca

P294	J336	J135	107.35	20	140
P295	J338	J213	184.24	20	120

Número de	Nodo	Intervalo de medición	Hora EPANET	Presión (PSI)	Presión (m.c.a)
medicion	1100	17.00 10.00	17.00	00	56.04
1	J180	1/:00 - 19:00	17:00	80	56.24
2	J120	10:00 - 12:00	11:00	130	91.4
3	J107	10:00 - 12:00	11:00	50	35.15
4	J137	10:00 - 12:00	11:00	140	98.43
5	J138	10:00 - 12:00	11:00	65	45.7
6	J117	17:00 - 19:00	18:00	120	84.37
7	J109	17:00 - 19:00	18:00	160	112.49
8	J183	17:00 - 19:00	17:00	145	101.94
9	J166	12:00 -14:00	13:00	70	49.21
10	J76	12:00 -14:00	13:00	10	7.03
11	J279	12:00 -14:00	14:00	35	24.6
12	J185	12:00 -14:00	12:00	70	49.21
13	J3	12:00 -14:00	12:50	15	10.54
14	J148	10:00 - 12:00	10:00	85	59.76
15	J156	10:00 - 12:00	10:00	60	42.18
16	J69	17:00 - 19:00	17:00	140	98.45
17	J170	17:00 - 19:00	17:00	145	101.94
18	J172	17:00 - 19:00	17:00	120	84.37
19	J310	17:00 - 19:00	17:00	110	77.33
20	J13	17:00 - 19:00	18:00	85	59.76
21	1225	12:00 -14:00	14:00	50	35.15
22	180	12:00 -14:00	14:00	35	24.6
23	124	12.00 - 16.00	16:00	125	87.88
23	137	14:00 - 16:00	16:00	105	73.82
25	I44	14:00 - 16:00	16:00	70	49.21
26	159	14:00 - 16:00	16:00	55	38.67
20	<u> </u>	17:00 - 19:00	18:00	80	56.25
28	1242	17:00 - 19:00	18:00	105	73.82
20	10	14:00 - 16:00	16:00	140	98.43
30	163	17:00 - 19:00	19:00	80	56.24
31	1223	10:00 - 12:00	10:00	100	70.3
31	1220	10:00 12:00	10:00	50	35.15
32		10.00 - 12.00	18:00	45	31.64
24	1129	17:00 10:00	18.00	40	42.19
35	J120	17.00 - 19.00 17.00 19.00	18:00	65	42.10
36	J129 1100	17.00 - 19.00	11:00	130	-+J./ 01 /
27	1297	10.00 - 12.00	11:00	130	71. 4
20	J20/	10:00 - 12:00	11:00	41	71.4
30	J/3	10:00 - 12:00	11:00	41	<u> </u>
39	J189	10:00 - 12:00	11:00	120	45./
40	J212	10:00 - 12:00	11:00	130	91.4
41	J219	10:00 - 12:00	11:00	130	91.4
42	J151	10:00 - 12:00	11:00	50	35.15
43	J143	10:00 - 12:00	12:00	120	84.37
44	J205	12:00 -14:00	13:00	50	35.15

ANEXO 3: Presiones medidas en campo para calibración y validación.

VALIDACIÓN

VILLIDITCION									
Número de	Nodo	Intervalo de medición	Hora EPANET	Presión (PSI)	Presión (m.c.a)				
medición									
1	J145	12:00 -14:00	14:00	95	66.81				
2	J121	12:00 -14:00	14:00	60	42.19				
3	J188	12:00 -14:00	14:00	95	66.81				
4	J312	12:00 -14:00	14:00	140	98.43				
5	J100	14:00 - 16:00	15:00	150	105.49				
6	J90	14:00 - 16:00	15:00	35	24.61				
7	J168	14:00 - 16:00	15:00	150	105.49				
8	J152	14:00 - 16:00	15:00	135	94.94				
9	J172	14:00 - 16:00	15:00	130	91.4				
10	J157	14:00 - 16:00	15:00	80	56.26				
11	J11	14:00 - 16:00	15:00	70	49.23				
12	J17	14:00 - 16:00	15:00	50	35.16				
13	J52	14:00 - 16:00	15:00	120	84.39				
14	J21	14:00 - 16:00	16:00	135	94.94				

Universidad de Cuenca

15	J26	14:00 - 16:00	16:00	120	84.39
16	J249	14:00 - 16:00	16:00	45	31.64
17	J191	14:00 - 16:00	16:00	55	38.68
18	J60	14:00 - 16:00	16:00	80	56.26
19	J127	14:00 - 16:00	16:00	95	66.81
20	J116	14:00 - 16:00	16:00	55	38.68

ANEXO 4: Fichas de monitoreo cloro residual.

Fecha	Ubicación en UTM (Zona 17 M)	N° de muestra	1
15/Agosto/2020	E =740708.00, S= 9699957.00	Zona	Planta de tratamiento
	C VS t	рН	7.53
2,50 2,00 1,50	$y = 2,0958e^{-0.061x}$ $R^2 = 0,8851$	Medición insitu de cloro Temperatura agua	1.45 mg/l 14
1,00 0,50 0,00 0 10	20 30 40 50	Clima	Despejado
Ubicación		Junta autónoma	
56 m Image of Image o	Planta de tratamiento de agua Planta de tratamiento de agua Contrata de tratamiento de agua Cont	kb	-0.061 h ⁻¹
Punto de muestreo		Curva de decaimien	to

Punto de muestreo

Curva de decaimiento

kb

-0.073

h-1

Fecha	Ubicación en UTM (Zona 17 M)	\mathbf{N}° de muestra	3
15/Agosto/2020 E = 741064, S= 9697948		Zona	Oficinas Junta de Agua
			Potable
	C VS t	рН	7.48
2	v = 1 7393a-0.069x	Medición insitu de	1.36 mg/l
	$R^2 = 0.9046$	cloro	
1,5		Temperatura agua	15.8
1		Clima	Despejado
0,5			
0			
0	10 20 30 40 50		

Ubicación

Punto de muestreo

kb -0.069 h⁻¹

Ubicación

Punto de muestreo

kb -0.315 **h**⁻¹

entre de la constant de la constant

Punto de muestreo

Curva de decaimiento

kb

-0.173

h⁻¹

Ubicación

Curva de decaimiento

Punto de muestreo

h-1

Ubicación

kb	-0.061	h -1

Punto de muestreo

Fecha	Ubicación en UTI	M (Zona 17 M)	N° de muestra	8
15/Agosto/2020	E =739966, S=969	6976	Zona	Calvario alto
	C VS t		рН	7.51
1,5			Medición insitu de cloro	1.09 mg/l
1	$y = 1,3976e^{-0,098x}$		Temperatura agua	19.4
0,5	N - 0,8000		Clima	Despejado
0	10 20	30 40		
Ubicación				

kb

```
Punto de muestreo
```

Curva de decaimiento

-0.098

h⁻¹

Fecha	Ubicación en UTM (Zona 17 M)	N° de muestra	9
15/Agosto/2020	E =740479, S=9697270	Zona	Via Oriente
		рН	7.44
4.5	C VS t	Medición insitu de cloro	1.19 mg/l
1,5	$y = 1,3927e^{0.133x}$ $R^2 = 0,8806$	Temperatura agua	17.8
		Clima	Despejado
0,5	·•		
0 5	10 15 20 25 30		

Ubicación

kb	-0.155	h -1

Punto de muestreo

Fecha	Ubicación en UTM (Zona 17 M)	\mathbf{N}° de muestra	10
15/Agosto/2020	E =740470, S= 9697622	Zona	Casa Titi

Ubicación

kb

-0.112

h-1

Punto de muestreo

Punto de muestreo

kb

Curva de decaimiento

Ubicación

kb	-0.064	h -1

-0.143

h⁻¹

Punto de muestreo

Curva de decaimiento

Fecha	Ubicación en UTM (Zona 17 M)	N° de muestra	13
15/Agosto/2020	E =740608, S=9698135	Zona	Los troncales
		рН	7.51
		Medición insitu de	0.62 mg/l
		cloro	
		Temperatura agua	18.4

kb

Ubicación

Curva de decaimiento

-0.097

h-1

Punto de muestreo

energia de la construcción de la

Punto de muestreo

Curva de decaimiento

kb

-0.313

h⁻¹

Fech	a	Ubicación en U	JTM (Zona 17 M)		\mathbf{N}° de muestra	15	
15/A	gosto/2020	E = 740062, S=	9698845		Zona	EMAUS	
		C VS t			рН	7.63	
0	,2	··· 0 1202 0 238X			Medición insitu de	0.19 mg/l	
0.1	15	$Y = 0.1302e^{0.230x}$ $R^2 = 0.9168$			cloro Temperatura agua	193	
0	,1				Clima	Despejado	
0,0)5	•••••					
	0	•••••	•••••••				
	0	5	10	15			

Ubicación

ANEXO 5: Orden de reacción determinada para cada punto de muestreo durante los 6 meses de monitoreo.

Primer Trimestre									
		Agosto		Septiembre			Octubre		
Reacción	Primer Orden	Segundo Orden	Tercer Orden	Primer Orden	Segundo Orden	Tercer Orden	Primer Orden	Segundo Orden	Tercer Orden
1	0.9843	0.8851	0.4893	0.7434	0.9385	0.6337	0.9368	0.975	0.8138
2	0.9028	0.9702	0.6082	0.8072	0.9438	0.636	0.9863	0.9051	0.779
3	0.9582	0.9046	0.6032	0.9356	0.9689	0.8334	0.9515	0.9427	0.8927
4	0.8919	0.9665	0.7586	0.9346	0.9128	0.8053	0.9731	0.9762	0.8886
5	0.9133	0.8372	0.5921	0.8705	0.9307	0.729	0.8824	0.8393	0.7844
6	0.9273	0.9568	0.8461	0.7833	0.9773	0.75	0.9973	0.9684	0.8646
7	0.9458	0.9492	0.7042	0.8695	0.9556	0.917	0.9524	0.8948	0.8254
8	0.9116	0.8606	0.4082	0.9355	0.9379	0.7732	0.9627	0.9766	0.9189
9	0.8239	0.8806	0.4284	0.8755	0.9946	0.8826	0.8257	0.9151	0.9626
10	0.8858	0.9156	0.6106	0.9285	0.9529	0.7481	0.8952	0.9709	0.9565
11	0.821	0.9638	0.6315	0.76	0.9247	0.7214	0.9796	0.9365	0.8848
12	0.968	0.7783	0.3404	0.8755	0.9662	0.8888	0.9948	0.9407	0.8639
13	0.9084	0.9559	0.8212	0.9549	0.8835	0.4964	0.8984	0.9861	0.9507
14	0.6449	0.9179	0.9182	0.8048	0.994	0.7653	0.996	0.9007	0.7502
15	0.6593	0.9168	0.9544	0.8687	0.8966	0.6828	0.7751	0.94	0.7751

Segundo Trimestre									
	Enero			Febrero			Marzo		
Reacción	Primer Orden	Segundo Orden	Tercer Orden	Primer Orden	Segundo Orden	Tercer Orden	Primer Orden	Segundo Orden	Tercer Orden
1	0.9674	0.8872	0.55683	0.9774	0.8871	0.6689	0.9345	0.8148	0.2621
2	0.7425	0.9472	0.9306	0.754	0.974	0.904	0.8947	0.9642	0.7994
3	0.9167	0.8687	0.7714	0.9575	0.7144	0.2598	0.9671	0.9335	0.5726
4	0.75	0.9993	0.75	0.9365	0.8481	0.341	0.9204	0.9757	0.8046
5	0.6202	0.8869	0.8983	0.9368	0.7606	0.3523	0.9883	0.9703	0.8493
6	0.9643	1	0.9643	0.9367	0.8931	0.4353	0.954	0.9737	0.8163
7	0.9356	0.9633	0.847	0.9264	0.6874	0.2302	0.7694	0.8958	0.5665
8	0.9606	0.9826	0.8213	0.91714	0.7004	0.2197	0.7836	0.936	0.7962
9	0.9	0.8402	0.8	0.8512	0.746	0.2136	0.9429	0.9619	0.7267
10	0.8526	0.9	0.8526	0.9756	0.7489	0.4655	0.9057	0.9503	0.7787
11	1	0.9574	0.871	0.9865	0.9662	0.7378	0.8428	0.9772	0.7267
12	0.9643	0.8976	0.8322	0.9633	0.8871	0.6162	0.9465	0.9609	0.7824
13	0.9826	0.9223	0.7988	0.9755	0.8418	0.5308	0.924	0.9702	0.6834
14	0.7692	0.8851	0.9998	0.95	0.9277	0.6933	0.9406	0.9604	0.6497
15	0.9231	0.9936	0.9796	0.8993	0.9394	0.7908	0.9326	0.976	0.7418

ANEXO 6: Concentraciones de cloro medidas e	n campo para calibración y validación.
---	--

Hora	Concentración mg/L
10:00	1.36
10:00	0.83
10:00	0.84
10:00	0.55
10:00	0.58
10:00	1.22
11:00	0.72
11:00	0.92
11:00	0.6
11:00	0.75
11:00	0.5
11:00	0.56
12:00	0.35
12:00	0.68
12:00	0.49
12:00	0.68
12:00	0.68
12:00	0.49
13:00	0.4
13:00	0.43
13:00	0.42
13:00	0.48
13:00	0.52
14:00	0.5
14:00	0.68
14:00	0.42
14:00	0.55
	Hora 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 11:00 11:00 11:00 11:00 11:00 11:00 12:00 12:00 12:00 12:00 12:00 12:00 13:00 13:00 13:00 14:00 14:00 14:00

VALIDACIÓN						
Nodo	Hora	Concentración mg/L				
D1	11:00	2.01				
D2	11:00	1.25				
D3	11:00	1.25				
J109	11:00	0.6				
J121	11:00	1.16				
J179	12:00	0.85				
J312	12:00	1.15				
J145	12:00	0.6				
J99	12:00	0.7				
J185	12:00	1.2				
J69	13:00	0.77				
J173	13:00	0.45				
J63	13:00	1				
J233	13:00	0.9				
J94	14:00	0.9				
J46	14:00	0.8				
J29	14:00	0.78				
J20	14:00	0.6				
J259	14:00	0.55				
J128	14:00	0.6				
J327	15:00	0.7				
J81	15:00	1.2				
J133	15:00	0.7				
J76	15:00	1.42				
J166	15:00	1.1				

ANEXO 7: Fotografías evidencia de trabajo en campo.

Universidad de Cuenca

