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Resumen:  

La combinación de datos hidrométricos tradicionales con trazadores ambientales 

como los isótopos estables en el agua ha demostrado ser valiosa para mejorar la 

comprensión hidrológica de las cuencas. Sin embargo, la aplicación de trazadores 

isotópicos en las cabeceras de los Andes tropicales sigue siendo limitada. La 

composición isotópica de la precipitación, el agua del suelo a lo largo de dos laderas 

experimentales con diferente cobertura vegetal (pajonal y almohadillas), los 

humedales y el caudal recolectados cada dos semanas durante un año se utilizaron 

para mejorar la comprensión de la hidrología de una cuenca de páramo del norte de 

Ecuador. El análisis de la composición isotópica de la precipitación indica que, 

aunque la precipitación local se forma en condiciones de equilibrio isotópico, está 

influenciada por procesos de reciclaje de humedad. Con respecto al 

comportamiento hidrológico, la variabilidad espacio-temporal de las señales 

isotópicas y el análisis de los proxies de tiempo de tránsito inverso (ITTP) de las 

aguas superficiales (descarga) y subsuperficiales (agua del suelo y humedales) 

sugieren que las rutas de flujo vertical son dominantes a través de la cuenca. Las 

composiciones isotópicas fuertemente amortiguadas de estas aguas sugieren 

además una alta capacidad de almacenamiento de agua en la cuenca, lo que 

aumenta el tiempo de tránsito o la edad del agua en el sistema hidrológico. Las 

señales isotópicas y los ITTP también muestran la importancia de los reservorios de 

agua subterránea bien mezclados en la hidrología del sistema. El conocimiento 

hidrológico desarrollado en este estudio no solo aumenta la comprensión de la 

generación y regulación de caudal en los páramos del norte de Ecuador, sino que 

también se puede utilizar para mejorar la gestión de los recursos hídricos en la 

región dado que permite focalizar acciones de intervención en territorio evaluando 

si dichas intervenciones podrían tener impacto sobre los componentes que 

controlan la hidrología de la cuenca. 

 

 

 

 

Palabras claves: Isotopos estables. Deuterio. Oxígeno 18. Exceso de 

deuterio. ITTP. Andes. Trópicos. Precipitación. Suelos. Humedales. 

Caudal. Antisana.  
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Abstract: 

Combining traditional hydrometric data with environmental tracers such as water 

stable isotopes has proven valuable to improve the understanding of catchment 

hydrology. Nevertheless, the application of isotopic tracers in headwater catchments 

of the tropical Andes remains limited. The stable isotopic composition of 

precipitation, soil water along two experimental hillslopes with different vegetation 

cover (tussock grass and cushion plants), wetlands, and discharge collected 

biweekly during one year was used to improve the understanding of the hydrology 

of a northern Ecuadorian paramo catchment. The analysis of the stable isotopic 

composition of precipitation indicates that although local precipitation forms under 

isotopic equilibrium conditions, it is influenced by moisture recycling processes. 

Regarding catchment hydrological behavior, the spatio-temporal variability of 

isotopic signals and the analysis of inverse transit time proxies (ITTPs) of surface 

(discharge) and subsurface (soil water and wetlands) waters suggest that vertical 

flow paths are dominant across the catchment. Strongly damped isotopic 

compositions of these waters further suggest a high water storage capacity of the 

catchment, increasing the transit time or age of water in the hydrological system. 

Isotopic signals and ITTPs also show the importance of well-mixed subsurface water 

reservoirs in the hydrology of the system. The hydrological knowledge developed in 

this study not only increases the understanding of discharge generation and 

regulation in northern Ecuadorian Paramos, but also can be used to improve the 

management of water resources in the region. Field restoration activities could be 

focused on trying to improve the catchment’s components that control its hydrology.  

 

 

 

 

 

 

 

Keywords: Water stable isotopes. Deuterium. D-excess. ITTP. Andes. 
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1. Introduction 

Headwater catchments in the tropical Andes provide many ecosystem services 

including erosion control, carbon sequestration, nutrient cycling, food provisioning, 

and production of high-quality water (Aparecido et al., 2017; Wright et al., 2017). The 

latter is favored by the continuous input of rainfall throughout the year (Celleri et al., 

2007) in combination with the unique properties of soils such as high-water retention, 

regulation, and infiltration capacities (Buytaert et al., 2005), which allow for an 

uninterrupted supply of water. This resource is crucial to support the development of 

major cities in the region such as Mérida, Bogotá, Cuenca, and Quito (Buytaert & 

Bièvre, 2012). These cities satisfy their hydroelectric, irrigation, domestic, and 

industrial needs by using water originated in headwater catchments (Célleri & Feyen, 

2009).  

Despite the importance of these catchments, there are still some regions within the 

tropical Andes where hydrology is not thoroughly understood. In particular, the 

catchment-scale hydrological knowledge in the northern Ecuadorian Andes remains 

scarce. Through the sole use of traditional hydrometric measurements, Ochoa-

Tocachi et al., (2016) analyzed the hydrological dynamics and gave important 

insights into the variable water yield of some headwater catchments in the region 

highlighting the importance of better understanding subsurface water dynamics. 

Even though the complementary use of environmental tracers such as water stable 

isotopes or geochemical data has proven valuable to obtain process-based 

understanding of catchment hydrological behavior (Inamdar et al., 2013; Mosquera 

et al., 2020), the use of these tracers in the northern Andes of Ecuador has been 

limited to high frequency studies in catchments fed mainly by glaciers melting and 

hillslopes runoff (Minaya et al., 2016). The use of a larger data set of water stable 

isotopes has not been yet applied within the northern Ecuadorian Andes.  

Water stable isotopes are natural tracers that have been useful in catchment 

hydrology, given the diversity of analyses that are derived from them (Kendall & 

McDonnell, 1998; Leibundgut et al., 2009). The determination of the local meteoric 

water line (LMWL, i.e., the regression between the stable isotopes of hydrogen, ẟ2H, 

and oxygen, ẟ18O in local precipitation) has been used to establish precipitation 

moisture sources entering tropical Andean catchments during different seasons 

(Esquivel-Hernández et al., 2019; Windhorst et al., 2013). The LMWL slope and 

intercept (D-excess) also show if evaporation plays a major role in the hydrology of 

surface water bodies (Brooks et al., 2012). Characterization of the isotopic 

composition of precipitation, surface, and subsurface waters in tropical regions has 

been used to delineate water flow paths within catchments (Crespo et al., 2011; 

Minaya et al., 2016; Mosquera, Célleri, et al., 2016; Muñoz-Villers et al., 2016), 
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quantify catchment passive storage (Lazo et al., 2019), and develop conceptual 

catchment hydrological models (Mosquera et al., 2020). Water stable isotopes are 

essential to improve the understanding of catchment hydrology, however, their 

application is still limited in tropical regions, and the Andean region is no exception. 

This issue is due to the scarcity of isotopic monitoring networks (Mosquera, Célleri, 

et al., 2016). Although isotopic studies in the tropical Andes have been 

predominantly carried out in the south of Ecuador where old volcanism produced 

shallow soils and compact bedrock is found close to the surface (Molina et al., 2019), 

it is not usually applied to environments with recent volcanic activity during the 

Holocene that provided input of volcanic ash and produced deeper soils where 

bedrock is deeper buried (Hall et al., 2017). The limited tracer studies in the northern 

Ecuadorian Andes limit the improvement of catchment hydrological knowledge and 

therefore the efficacy of water management-related institutions that work in these 

highlands. Improving hydrological knowledge could help these institutions to better 

direct the efforts and resources that they spend within the field.  

Limited hydrological knowledge is a hindrance to adequate catchment management 

strategies (Pataki et al., 2011). Therefore, adequate management needs to respond 

not only to science but also to society's needs (Falkenmark & Folke, 2002). In this 

context, institutions pursuing to manage Andean headwater catchments in a socio-

ecohydrological way have emerged. Those institutions, however, often lack 

scientific-based knowledge over which to rely on management and conservation 

efforts. A thorough understanding of catchment hydrology across different time and 

spatial scales is key to support water management institutions and their interest in 

guaranteeing water availability to future generations. In this sense, water stable 

isotopic studies can help increase hydrological knowledge that can be used for 

decision-making by determining catchment storage and different flow paths that 

water follows up to the streams.  

Private and public institutions are making great efforts to manage headwater 

catchments along the Andes. Specifically, in the northern Ecuadorian Andes, those 

institutions are buying and instrumenting headwater catchments to study their 

hydrology (EPMAPS & FONAG, 2018). Important insights have been acquired in 

terms of determining runoff coefficients. However, there is still a lack of knowledge 

about catchment hydrological behavior. This study addresses this issue by using 

water stable isotopes to answer the following research questions in a northern 

Ecuadorian catchment from which Quito obtains part of its potable water.   

 • What are the spatio-temporal patterns of the isotopic composition of 

precipitation, soil-water, wetlands, and discharge in a small headwater catchment in 

north Ecuador? 
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• How does water mix at the catchment scale?  

2. Materials and Methods 

2.1 Study Area 

This research was developed in a small headwater catchment situated within the 

Jatunhuaycu Experimental Observatory (JEO, 0°30′19′′S, 78°14′29′′W; Fig. 1a,b). 

The observatory covers an area of 32.6 km2 of Paramo ecosystem and used to be 

part of a cattle farm until 2011 (EPMAPS & FONAG, 2018). The observatory is 

located in the northern Ecuadorian Andes, specifically within the Antisana Water 

Conservation Area which is 55 km southeast of Quito city. At the moment, Quito´s 

Water Fund (FONAG), and Empresa Pública Metropolitana de Agua Potable y 

Saneamiento (EPMAPS-Q) own the observatory and are actively researching its 

hydrology, ecology, and the impacts of conservation efforts since 2011 in 

collaboration with academic partner institutions. FONAG manages the study 

catchment given that it feeds Mica´s reservoir, an important water source for 

EPMAPS-Q and Quito inhabitants (EPMAPS & FONAG, 2018). This study was 

carried out in micro-catchment 1 (0.66 km2), hereafter referred as JTU_01 (Fig. 1c). 

JTU was equipped in the scope of the ParamoSUS project, a joint collaboration effort 

between Ecuadorian and Belgian academic institutions, EPMAPS-Q and FONAG.  

JTU_01 has a mean annual precipitation of 641 mm and a mean annual discharge 

of 59 mm, presenting a very low runoff coefficient (annual discharge to precipitation) 

of 0.09 (Ochoa-Tocachi et al., 2016). Regarding the catchment´s soils, those near 

Antisana Volcano are deep, reaching depths around 5 to 7 m since they are a 

sequence of buried soils due to active volcanoes in the area. In other areas closed 

to La Mica Lagoon, buried soils have been observed beneath scoria and glacial-

fluvial sediments up to 27 meters in depth. The soils are young and slightly altered 

vitric andosols (Calispa et al., 2021; Onderet, 2018). Histosols are common in flat 

zones where organic matter is accumulated (EPMAPS & FONAG, 2018). Both types 

of soils have high water regulation and retention capacity, low bulk density, and high 

saturated hydraulic conductivity (Páez-Bimos et al., 2020). The land use in JEO was 

grazing until 2011, and now is 100 % conservation. The vegetation is distributed as 

follows: tussock grass 48%, cushion plants 40 %, and others 12% (EPMAPS & 

FONAG, 2018). Regarding geology, in the study area, we found the Pisayambo 

geological formation which is characterized by a lithology of Andesitic lava and 

ashfall deposit. 
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Figure 1. a) Location of the Jatunhuaycu Experimental Observatory (JEO) in the northern Ecuadorian Andes.  b) 
Microcatchment 1 (JTU_01) within the JEO. c) Monitoring setup of ParamoSUS project (Vanacker et al., 2017) at JTU_01 
including the Tussock grass (TU, orange circles) and Cushion plant (CU, green circles) experimental hillslopes showing the 
location of the soil water samplers at the upper (UP), upper replica (UPR), middle (MI), and lower (LO) parts of the hillslope, 
the wetlands (WE) at the bottom of each hillslope (blue circles), and discharge station (white circle). Subplot c) also shows 
an example of a representative soil profile (horizons A, 2A, 2BC) within the catchment (Calispa et al., 2021). Suction cups 
(SC) were used to collect soil water at the A, 2A, and 2BC horizons and wick samplers (WS) were used to collect soil water 
at the interface of the A-2A and 2A-2BC horizons. At the CU_UP position a rain gauge and a precipitation water sampler 
were installed. 

 

2.2 Experimental Design 

To better understand hydrological behavior, two experimental hillslopes at JTU_01 

were implemented and monitored as part of the ARES PRD ParamoSUS project 

(Vanacker et al., 2017). Each one consisted of four sampling positions, upper (UP), 

upper replica (UPR), middle (MI), and lower (LO). At the end of both hillslopes, wells 

were installed. These wells consisted of 2 inches diameter by 2 meters long PVC 

pipes that were placed vertically within the wetland. Holes were drilled along the pipe 

to allow soil-water to recharge the well. A v-notch gauge was also monitored at the 

catchment outlet. All sampling sites along the hillslopes were implemented with soil-

water samplers. A precipitation water sampler and a rain gauge were installed at the 

upper part of the cushion hillslope. The experimental setup in JTU_01 is presented 

in Fig. 1c. The monitored hillslopes differed in dominant vegetation cover. One was 

dominated by tussock grasses (Calamagrostis intermedia) and the other by cushion 

plants (Azorella pedunculata). Hereafter, we will refer to them as TU and CU, 

respectively. At each sampling position in both hillslopes, the soils were 

characterized up to a depth of 135 cm following the (FAO, 2015) guidelines. Five soil 
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horizons were determined, namely O, A, 2A, 2BC, 3BC, but only the A,2A, 2BC were 

monitored (Calispa et al., 2021). Their depth at each sampling location along the 

experimental hillslopes is presented in Table 1. It is important to mention that despite 

the tussock well is installed within the wetland, its location immediately below the 

tussock slope (contour lines in Fig. 1c) means that it is a transition between the 

hillslope and the wetland. 

Table 1. Location of tussock grass and cushion plants pits, and soil profile characterization at each pit (Calispa et al., 2021). 

Soil horizon depth refers to the soil horizon depth within the soil profile. CU: cushion plants experimental hillslope. TU: 
Tussock grass experimental hillslope. UP, UPR, MI. and LO correspond to upper, upper replica, middle, and lower sampling 
position, respectively. 

Position Coordinates 
Altitude  

(m.a.s.l.) 

Soil Horizon depth (cm) 

O A 2A 2BC 3BC 

 
TU_UR 0°29'27.6'' S / 78°14'38.4'' W 4191 0-5 5-30 30-70 70-85 85-110  

TU_UPR 0°29'27.6'' S / 78°14'38.4'' W 4183 0-5 5-30 30-70 70-85 85-110  

TU_MI 0°29'24'' S / 78°14'34.8'' W 4156 0-4 4-27 27-70 70-95 95-115  

TU_LO 0°29'20.4'' S / 78°14'31.2'' W 4132 0-7 7-45 45-92 92-110 110-135  

CU_UPR 0°29'2.4'' S / 78°14'38.4'' W 4165 0-8 8-30 30-60 60-80 80-102  

CU_UP 0°29'2.4'' S / 78°14'38.4'' W 4166 0-8 8-30 30-60 60-80 80-102  

CU_MI 0°29'2.4'' S / 78°14'34.8'' W 4157 0-8 8-32 32-70 70-103 103-125  

CU_LO 0°29'6'' S / 78°14'34.8'' W 4138 0-10 10-40 40-75 75-110 110-120  

 

Within the ParamoSUS project, the team collected biweekly samples of water in 
precipitation, soil, wetlands, and discharge during the period March 2019 to March 
2020 (Páez-Bimos et al., 2020). Precipitation samples were collected using a 
polypropylene collector covered with aluminum foil. A 5 mm thick oil layer was added 
into the collector to prevent isotopic fractionation due to evaporation (Mook, 2000). 
The team collected soil-water samples using two types of samplers, specifically, 
ceramic suction cups (SC) and fiber glass wick samplers (WS). SCs were used in 
the A, 2A, and 2BC horizons (Fig. 1c and Table 2). SCs are lysimeters that consist 
of three parts: the suction cup itself, the sampling bottle, and the suction container. 
The SCs were 0.50 m in length and had a ceramic cup with a maximum pore size of 
1 μm at one end. During each sampling campaign, a negative pressure between 45 
to 50 KPa was applied to the SCs to collect water from the soil into a 500 ml glass 
bottle. A hose was connected to the glass bottles, covered with aluminum foil, and 
placed inside closed buckets. To collect water in the transition horizons (A-2A, and 
2A-2BC), the team used wick samplers. Wick samplers consist of 30 by 30 cm 

polypropylene plates in which 9.5 mm–diameter fiberglass wicks were untangled. 
The wicks were placed in direct contact with the soil by digging a hole within the soil 
pit at the depth of interest. To ensure that all the plate was in contact with the soil 
matrix a press was used to tighten the sampler in the dug hole. A 2-inch PVC tube 
connected the bottom of the plates with a 1-gallon plastic container. A suction of 55 



 

Braulio César Lahuatte Imbaquingo   Página 15 
 

cm was applied to the wicks (Singh et al., 2018). The codification of soil-water 
samplers was established by Vanacker et al., (2017) and includes information about 
the hillslope dominant vegetation cover (TU or CU), sampling position (UP, UPR, MI, 
or LO), soil water sampling device (SC or WS), and soil horizon or transition (1 for 
shallow, 2 for intermediate, and 3 for deep). For example, TU_UP_SC1 corresponds 
to the suction cup (SC) placed in the tussock slope (TU), upper position (UP), and in 
the A horizon (First Horizon) (Table 2 and Fig. 1c). Accordingly, CU_LO_WS1 
corresponds to the wick sampler placed in the cushion slope, lower position, and 
between the transition of A to 2A horizons (First transition, Table 2 and Fig. 1c). 
Finally, wetlands and discharge were sampled directly from the wells and in-stream.  

Table 2. Depth of installed soil-water samplers (suction cups or SC, and wick samplers or WS) along the experimental 
hillslopes (Vanacker et al., 2017). CU: cushion plants experimental hillslope. TU: Tussock grass experimental hillslope. UP, 
UPR, MI. and LO correspond to upper, upper replica, middle, and lower sampling position, respectively. 

Position 
  Samplers´ depth (cm) 

  A1 A-2A1 2A1 2A-2BC1 2BC1 

  SC12 WS12 SC22 WS22 SC32 

TU_UPR   17.5 30 50 70 77.5 
TU_UP   17.5 30 50 70 77.5 

TU_MI   15.5 27 48.5 70 82.5 

TU_LO   26 45 68.5 92 101 

CU_UPR   19 30 45 60 70 

CU_UP   19 30 45 60 70 

CU_MI   20 32 51 70 86.5 

CU_LO   20.5 40 57.5 75 92.5 
Note:  
1 Corresponding soil horizon or transition in which the sampler was installed (from left to right represents the soil profile). 
2 Samplers´ code,  

2.3 Water Stable Isotopes Laboratory Analysis 

Immediately after collecting the water from all the sampling sites during the bi-weekly 

monitoring campaigns, they were filtered using a 0.45 μm pore RC membrane, and 

2 ml amber glass bottles were filled with the filtered water. Then, the samples were 

transported and stored without being exposed to light to prevent isotopic 

fractionation due to evaporation (Mook, 2000). The samples were analyzed in the 

University of Cuenca´s soil and water chemical analysis laboratory. Water stable 

isotopes (ẟ2H or Deuterium, and ẟ18O) were determined using a Picarro L2130-i 

isotope water vapor analyzer that has a precision of 0.5 ‰ for ẟ2H and 0.1 ‰ for 

ẟ18O. Three secondary standards were used to calibrate the Picarro instrument and 

ensure analysis quality. To reduce the memory effect, the samples were analyzed 

by batches containing similar water sample types, and during each analysis, six 

injections were done into the analyzer and the first three were discarded. The 

measurements of the last three injections were compared to the equipment 

precisions and the secondary standards´ standard deviations. If the measurements 



 

Braulio César Lahuatte Imbaquingo   Página 16 
 

were above the precisions the analysis was repeated. ChemCorrect 1.2.0 software 

was used to verify if contamination occurred. Only one soil sample was contaminated 

representing 0.08 % of all the samples. The results are presented in ẟ notation using 

the Vienna Standard Mean Ocean Water (V-SMOW) as reference (Craig, 1961). 

2.4  Isotopic spatio-temporal variation and mixing analysis 

To assess isotopic spatio-temporal variation in precipitation, we plotted the isotopic 

composition together with the precipitation amount. We described how the isotopic 

composition varied based on the precipitation amount along the study period. 

Moreover, we calculated the linear correlation between ẟ2H and ẟ18O in precipitation 

to determine the local meteoric water line LMWL. The LMWL was used as quality 

control for the mixing analysis of soils, wetlands, and discharge since we verified 

that all the samples lay close to the LMWL and corresponded to a mixture of 

precipitation within the catchment. Soils, wetlands, and discharge isotopic 

composition were plotted and compared to precipitation composition to assess their 

spatio-temporal variation. We described the influence that precipitation input 

composition had over the different sampling positions and depths by visually 

analyzing if the response was directly related or showed a contrary behavior.  

A second-order isotopic parameter, “D-excess”, was calculated for all the collected 

samples using the following equation: D-excess= ẟ2H-8ẟ18O (Dansgaard, 1964). D-

excess values in precipitation were used as a proxy for determining vapor source 

regions by comparing our D-excess values to the 10‰ value obtained in the global 

meteoric water line GMWL (Craig, 1961). Also, the D-excess values in soils, 

wetlands, and discharge were compared to precipitation D-excess since lower D-

excess values mean that samples suffered post rainfall evaporation (Kendall & 

Coplen, 2001). We calculated the following metrics for the isotopic composition and 

D-excess: the number of samples, maximum and minimum value, standard 

deviation, and mean.  

Concerning mixing processes, it is assumed that precipitation input composition is 

conserved as it travels through the system (Jasper et al., 2015; Kim & Jung, 2014). 

The subsurface movement of the water through internal catchment flow paths 

causes attenuation of the precipitation input signal due to advection and dispersion 

processes. When the tracer arrives to a sampling position (soil samplers, wells, or 

discharge), it has been affected by these processes and therefore its signal reflects 

the subsurface hydrological dynamics occurring within the catchment (Hrachowitz et 

al., 2016; Kirchner, 2016; McGuire & McDonnell, 2006). The inverse transit time 

proxies ITTPs (Tetzlaff et al., 2009) were used to identify differences in internal flow 

paths of water through the catchment. ITTP is a simple metric of tracer signal 
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damping, which is the ratio between the standard deviation of ẟ18O in an outflow to 

the standard deviation of ẟ18O in precipitation. To determine the standard deviation 

for the outflows and the precipitation we used all the samples collected during the 

study period for each collector. The lower the ITTP, the greater the attenuation and 

the transit time. Tetzlaff et al., (2009) found that ITTPs of 0.5 to 0.6 corresponded to 

mean transit times of around 4 months. ITTPs of 0.2 to 0.3 corresponded to mean 

transit times of 6 to 12 months. ITTPs lower than 0.1 corresponded to mean transit 

times of 1 to 3.5 years.    

3. Results 

3.1 Precipitation isotopic composition 

Precipitation amount and precipitation isotopic composition are presented in Fig. 2. 

The precipitation regime during the study period was bimodal with two precipitation 

peaks (Fig. 2a). The first rainy season started in March 2019 and finalized in June 

2019 when a dry season started. This dry season lasted until late September 2019. 

The next wet season took place from then up to March 2020, but during this wet 

period two dry biweeks were registered (late January and late February 2020; Fig. 

2a). The precipitation isotopic composition followed closely the temporal dynamic of 

precipitation amount. That is, depleted isotopic values (< -15‰ in ẟ18O) were 

observed during the wettest periods (e.g., Mar-Jun 2019 and Oct 2019-Jan 2020), 

and enriched isotopic values (> -10‰ in ẟ18O) were found during the driest periods 

(e.g., Jun-Sep 2019 and Feb 2020). Figure 2b shows that the ẟ18O-ẟ2H relation in 

local precipitation (i.e., LMWL) had a similar slope (8.2) if compared to the GMWL 

(8), indicating that evaporation does not affect the isotopic composition of local 

precipitation (Kendall & McDonnell, 1998). Therefore, the results hereafter shown 

for mixing processes will be focused on ẟ18O as it reflects the temporal dynamics of 

both water stable isotopes. The intercept (D-excess) of the LMWL was higher 

(16.15‰) than that of the GMWL (10‰), indicating the effect of reevaporated 

moisture sources in local precipitation.  
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Figure 2. a) Biweekly time series of precipitation amount (grey bars) and δ18O isotopic composition (blue line). b) δ18O-δ2H 
relation in local precipitation showing the local meteoric water line (LMWL) and the global meteoric water line (GMWL). 

3.2 Soils, Wetlands, and Discharge Isotopic Composition 

The isotopic composition of soil water, wetlands, and discharge is presented in Fig. 

3. It is observed that all the collected samples lie within or very close to the LMWL. 

These observations depict that they are composed of a mixture of precipitation from 

different rainfall events. The TU_UPR_SC1 and TU_UPR_WS1 sampling sites 

registered the most depleted isotopic compositions (Fig. 3g). With regard to enriched 

values, none of the samples had concentrations higher than -10.6 ‰ in ẟ18O and -

77 ‰ in ẟ2H (Fig. 3 and Table 3). A slight shift (D-excess) is observed in soil water 

under cushions plants, wetlands, and discharge in relation to the LWML. Those 

samples consistently plotted below the LMWL, while soil water under tussock grass 

lied closer to it, with mean D-excess values for soils under cushion plants were lower 

than those in the soils underlying tussock grass vegetation regardless of sampling 

position and depth (Table 3). The same trend is observed for the minimum and 

maximum D-excess values of soil water. D-excess values in soil water were smaller 

and presented a lower temporal variability than those in precipitation as depicted by 

the low standard deviation of the isotopic values of soil water (Table 3). 
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Figure 3 δ18O-δ2H relation in soil water collected using suction cups (SC) and wick samplers (WS) at the upper (UP), upper 

replica (UPR), middle (MI), and lower (LO) parts of the cushion plant (CP) and tussock grass (TU) experimental hillslopes, 
the wetlands (WE) at the bottom of each hillslope, and discharge at the catchment outlet (Q). Samples were collected 
biweekly during the period March 2019-March 2020. Sampling depths for each soil water sampler are shown below the 
sampler code.  

The spatio-temporal dynamic of soil water isotopic composition is shown in Fig 4. 

The attenuation of the isotopic composition of soil water tended to increase as the 

sampling depth increased. However, different soil water mixing dynamics are 

observed when the isotopic composition of soils and precipitation are compared. For 

instance, the isotopic composition of soil water showed isotopic dynamics similar to 

that of precipitation at all sampling positions in CU_SC1 and TU_WS1 (Fig. 4a, Fig. 

4d). That is, the depleted isotopic composition of rainfall during the first rainy period 

(March to June 2019) caused a depletion in the isotopic composition of soil water a 

few biweeks later. On the contrary, some sampling sites at shallow depths did not 

respond to the isotopic composition of precipitation (Fig. 4b). Enriched isotopic 

values were found at all positions, except at UPR, in the TU_SC1 samplers during 

the end of the first rainy season (Fig. 4b) when depleted isotopic values were 

observed in precipitation. The isotopic composition in TU_WS2 at the UP position 

showed a similar trend of isotopic enrichment during the more isotopically depleted 

precipitation period during the first rainy season (Fig. 4h). Soil water at lower depths 

(SC2, WS2, and SC3) generally had more attenuated signals compared to 

precipitation and soil water at shallower soil layers (Fig. 4e-j). 
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Table 3. Summary statistics of the isotopic composition (δ18O and D-excess= δ2H-8 δ18O ) and inverse transit time proxies 
(ITTPs) in soil water collected using suction cups (SC) and wick samplers (WS) at the upper (UP), upper replica (UPR), middle 
(MI), and lower (LO) parts of the cushion plant (CP) and tussock grass (TU) experimental hillslopes, wetlands (WE) at the 
bottom of the cushion plant (CP) and tussock grass (TU) experimental hillslopes, discharge at the catchment outlet (Q), and 
precipitation (P) during the period March 2019-March 2020. Sampling depths for each soil water sampler are shown in 
Table 2. n=number of samples.  

Sampler n δ18O(‰) D_excess (‰)   ITTPs 
max min mean sd* max min mean sd* 

TU UPR 

SC1 27 -11.9 -19.5 -14.5 2.3 13.9 9.9 11.6 1.0   0.49 
WS1 26 -11.3 -18.3 -14.6 2.3 14.1 10.0 11.4 1.0   0.49 
SC2 25 -12.7 -14.9 -13.8 0.7 15.3 10.5 11.8 0.9   0.15 
WS2 21 -11.8 -14.2 -13.1 0.4 13.0 9.1 10.6 1.1   0.09 
SC3 26 -13.3 -15.0 -14.3 0.6 13.8 10.6 11.6 0.8   0.12 

                           

TU UP 

SC1 27 -11.8 -14.5 -13.1 0.6 15.5 9.4 12.1 1.0   0.12 
WS1 25 -10.6 -16.0 -13.4 1.8 14.7 7.0 10.1 1.6   0.37 
SC2 26 -13.2 -14.0 -13.6 0.3 14.8 11.2 12.2 0.7   0.06 
WS2 25 -11.0 -14.0 -12.3 0.8 12.1 6.6 8.1 1.2   0.17 
SC3 26 -13.5 -14.5 -13.7 0.2 15.1 11.1 12.5 0.8   0.04 

                           

TU MI 

SC1 27 -11.2 -14.7 -13.1 1.1 13.4 9.0 10.6 1.0   0.23 
WS1 27 -11.6 -14.0 -13.0 0.7 14.7 10.7 12.0 0.8   0.15 
SC2 22 -12.4 -14.2 -13.0 0.6 14.7 10.6 11.7 0.9   0.13 
WS2 25 -12.3 -14.3 -13.3 0.7 14.0 10.1 11.7 1.0   0.15 
SC3 25 -13.6 -15.0 -14.3 0.4 14.7 11.3 12.2 0.9   0.09 

                           

TU LO 

SC1 26 -11.7 -14.2 -12.8 0.7 13.7 10.4 11.4 0.6   0.15 
WS1 22 -10.9 -15.8 -13.2 1.7 10.3 6.7 8.4 1.0   0.35 
SC2 27 -12.6 -14.5 -13.4 0.6 14.4 9.8 11.2 0.8   0.13 
WS2 23 -12.3 -14.5 -13.4 0.8 13.9 6.2 10.4 1.3   0.16 
SC3 25 -13.6 -14.6 -14.2 0.3 14.3 10.9 11.7 0.7   0.07 

             

CU UPR 

SC1 25 -11.0 -16.7 -14.0 1.6 8.4 5.8 7.1 0.8   0.33 
WS1 22 -11.7 -17.4 -14.6 1.6 11.1 7.2 9.3 0.9   0.33 
SC2 27 -11.8 -14.0 -13.1 0.7 9.8 7.0 8.1 0.7   0.15 
WS2 17 -11.6 -13.4 -12.7 0.5 8.9 5.2 7.2 0.9   0.10 
SC3 25 -12.7 -14.8 -13.4 0.7 9.9 7.3 8.6 0.6   0.14 

                           

CU UP 

SC1 26 -11.2 -14.4 -13.0 0.8 7.0 3.4 4.9 0.9   0.18 
WS1 16 -11.6 -13.3 -12.3 0.6 8.1 4.1 6.0 1.1   0.13 
SC2 23 -11.6 -13.1 -12.5 0.4 6.9 5.0 5.9 0.4   0.08 
WS2 14 -11.5 -13.5 -12.8 0.5 9.6 5.4 7.2 1.0   0.11 
SC3 24 -13.1 -14.3 -13.7 0.4 8.6 7.0 7.6 0.4   0.08 

                           

CU MI 

SC1 26 -10.9 -15.8 -13.8 1.5 8.5 5.2 6.7 0.8   0.31 
WS1 23 -10.8 -15.2 -12.8 1.4 9.2 6.8 7.8 0.7   0.29 
SC2 26 -12.1 -14.1 -12.8 0.6 8.3 6.7 7.4 0.5   0.13 
WS2 20 -11.7 -13.6 -12.7 0.5 11.8 6.1 8.7 1.3   0.11 
SC3 25 -13.0 -14.5 -13.8 0.5 8.8 7.4 8.0 0.4   0.10 

                           

CU LO 

SC1 23 -11.4 -15.6 -13.7 1.3 8.6 6.0 7.2 0.9   0.27 
WS1 21 -11.8 -13.3 -12.6 0.5 10.1 7.0 7.7 0.7   0.11 
SC2 24 -12.5 -14.4 -13.2 0.6 8.9 7.2 8.0 0.5   0.12 
WS2 20 -11.4 -13.2 -12.4 0.6 11.0 7.0 8.3 0.9   0.13 
SC3 26 -13.0 -14.6 -13.7 0.5 9.0 6.4 8.1 0.5   0.11 

              
TU 

  

WE  27 -11.4 -15.8 -12.9 0.9 7.8 5.4 6.9 0.6   0.19 

 

 

 

 

              
CU WE  27 -12.5 -13.0 -12.7 0.2 7.8 6.1 7.1 0.4   0.03 

                           
Q 27 -13.3 -13.6 -13.5 0.1 9.0 8.3 8.6 0.2   0.01 
                           
P 27 -6.4 -22.3 -12.4 4.8 16.8 8.7 13.6 2.3         - 

ITTPs is the ratio between ẟ18O standard deviation in an outflow to the standard deviation of δ18O in precipitation. 
*sd: standard deviation 
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Figure 4. Spatio-temporal variation of the biweekly isotopic composition of precipitation (blue lines) and soil water collected 
using suction cups (SC) and wick samplers (WS) at the upper (UP), upper replica (UPR), middle (MI), and lower (LO) parts 
of the cushion plant (CP) and tussock grass (TU) experimental hillslopes during the period March 2019-March 2020. 
Sampling depth for each soil water sampler is shown in Table 2. Blue line represents precipitation isotopic composition, 
and it is scaled according to y axis values presented at the right of the figure.    

The time series of the isotopic composition of wetlands and discharge are presented 

in Fig. 5. CU_WE and Q (discharge) presented attenuated isotopic compositions 

with almost negligible variation throughout the whole study period (Table 3, Fig. 5a 

and Fig. 5c). Even though TU_WE presented an attenuated signal during the dry 

periods when the isotopic composition of precipitation was enriched, its isotopic 

signal decreased during wetter periods when the isotopic composition of 

precipitation decreased (Fig. 5b). 
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Figure 5. Spatio-temporal variation of the biweekly isotopic composition of precipitation (blue lines), wetlands (WE) at 
the bottom of the cushion plant (CU) and tussock grass (TU) experimental hillslopes, and discharge at the catchment 
outlet (Q) during the period March 2019-March 2020.  Blue line represents precipitation isotopic composition, and it is 
scaled according to y axis values presented at the right of the figure.    

3.3 Mixing processes along the catchment 

As a proxy for mixing processes within the study catchment, we used the ITTP metric 

(Fig. 6 and Table 3). Discharge at the catchment outlet presented the lowest ITTP 

value (0.01) among all sampling sites (Table 3). Wetlands had ITTP values of 0.03 

and 0.19 for the CU and TU hillslopes respectively. The soils´ ITTPs presented in 

Fig. 6 show that they generally decrease with depth regardless of the topographic 

position. The shallower collectors SC1 and WS1 showed the largest ITTPs along 

both experimental hillslopes. However, lower values than expected for shallow 

collectors were found (circles in Fig. 6).  

Within the cushion plants experimental hillslope, the UP_WS1 and LO_WS1 shallow 

collectors had ITTPs of 0.13 and 0.11, respectively. These values are lower than 

ITTPs found in deeper soil layers such as UPR_SC3 (0.14). For deeper soil 

collectors (SC2, WS2, SC3) the ITTP values were small and their variation with 

depth is not clear, with values usually lower than 0.15. The UP_SC3 showed the 

lowest ITTP of all along this experimental hillslope (0.08).  

Regarding the tussock grass experimental hillslope, three shallow soil water 

sampling sites showed ITTPs lower than 0.16 (UP_SC1, LO_SC1, and MI_WS1). 

Similar to the cushion plant hillslope, within the tussock grass hillslope at sampling 

depths below SC2 the ITTPs were small, generally lower than 0.2. An upper position 

sampling site showed the lowest ITTP, specifically, UP_SC3 (0.04). The second 

lower ITTP is also in the upper position, namely, the UP_SC2 with a ITTP of 0.06. 

As can be noticed, shallow soil water samplers showed the biggest ITTPs but 

samplers from SC2 and deeper did not show a clear difference regarding ITTPs in 

the two experimental hillslopes.  
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Figure 6. Inverse Transit Time Proxies (ITTPs) of soil water collected using suction cups (SC) and wick samplers (WS) at the 

upper (UP), upper replica (UPR), middle (MI), and lower (LO) parts of the cushion plant (CU) and tussock grass (TU) 

experimental hillslopes versus sampling depth. Sampling depths for each soil water sampler are shown in Table 2. 

4. Discussion 

4.1 Isotopic spatio-temporal patterns in precipitation 

The similar slope of the LMWL (8.2) and GMWL (8; Dansgaard, 1964; Rozanski et 

al., 1993) indicates that condensation prior precipitation occurs under isotopic 

equilibrium conditions (Clark & Fritz, 1997; Kendall & McDonnell, 1998). These 

conditions are likely to occur in the paramos given their relatively homogenous 

meteorological conditions with low temporal seasonality throughout the year (Celleri 

et al., 2007). The higher D-excess of the LMWL (16.15 ‰) in relation to the GMWL 

(10‰) shows that local precipitation is likely influenced by recycled water vapor 

(Esquivel-Hernández et al., 2019). This effect is likely to occur in the Amazon forest 

(Gat & Matsui, 1991; Salati et al., 1979) where water is recycled before reaching the 

Andean highlands of JTU-01. The temporal dynamic of the isotopic composition of 

precipitation during the study period showed the so-called seasonal and amount 

effects (Rozanski et al., 1993). That is, the isotopic composition of precipitation was 

usually enriched during the dryer periods with low precipitation amounts, whereas it 

was depleted during the rainy periods with high precipitation inputs. Our results are 

in line with those reported at montane sites in the south Ecuadorian Andes 

(Mosquera et al., 2012; Mosquera, Célleri, et al., 2016; Windhorst et al., 2013) in 

which the slopes and intercepts (D-excess) of the LMWLs were close to 8 and larger 

than 10‰. However, longer and finer temporal resolution precipitation isotopic 
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records are necessary to carry out a thorough assessment of the origin of the air 

masses forming local precipitation and the factors influencing its isotopic 

composition. 

4.2 Spatio-temporal patterns in soils, wetlands, and discharge 

D-excess values in soil water in the cushion plant experimental hillslope were lower 

than those in precipitation (Table 3), indicating that the isotopic composition of ẟ2H 

changed at a faster rate than ẟ18O in the soil (Leibundgut et al., 2009). From a 

hydrological point of view, these observations might indicate that soils under cushion 

plant vegetation are more affected by evaporation than those under tussock grass 

vegetation since the latter presented D-excess values similar to precipitation (Table 

3). This difference could be explained by the protective effect caused by the long 

needles of tussock grass vegetation, producing a shadow effect that prevents water 

evaporation to affect shallow soil layers in comparison to the cushion plant 

vegetation that is directly exposed to solar radiation. It is important to note that D-

excess values in soil water did not systematically decrease with depth, which is also 

consistent with soil water evaporation from the topsoil. By installing soil water 

collectors in the topsoil, this effect could be assessed in future studies. Discharge 

and water stored in wetlands also presented lower D-excess values than 

precipitation (Table 3), indicating that their isotopic signals were also affected by 

evaporation. Nevertheless, the fact that the isotopic composition of most surface 

(i.e., discharge) and subsurface (i.e., soil water and wetlands) water samples lied 

very close to the LMWL (Fig. 3) indicates that the effect of fractionation by 

evaporation is overall small as has been reported for other paramo sites in south 

Ecuador (Mosquera et al., 2020; Mosquera, Célleri, et al., 2016). This is likely related 

to the high infiltration and saturated hydraulic conductivity of the soils (Ochoa-

Tocachi et al., 2016; Páez-Bimos et al., 2020).  

The temporal dynamic of the isotopic composition of soil water did not show clear 

differences between the experimental hillslopes. In general, soil water isotopic 

signals were strongly attenuated with respect to the signal of precipitation, with only 

a few shallow soil layers resembling the temporal dynamic of the latter (Fig. 4). The 

isotopic signals were very similar at all sampling sites for most sampling depths, 

which might point to similar soil hydrological conditions. The observations are in line 

with those recently reported by Mosquera et al., (2020) for volcanic soils in the 

paramo of south Ecuador. However, some unexpected effects were observed such 

as at TU_UP_WS2 (Fig. 4h), whose isotopic composition increased while the 

isotopic composition of rainfall decreased. Since this effect was not found at another 

sampling site/depth, it could be attributed to local pedological conditions uphill of the 

soil water sampler (Kirchner, 2016). The diversity of “waveforms”, especially at 
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shallow sampling depths, show the complexity of water flow paths along the 

experimental hillslopes. These observations suggest that subsurface flow dynamics 

in paramo catchments may be different even at small spatial scales as found in other 

ecosystems (Kim & Jung, 2014; Kirchner, 2016; McDonnell et al., 1991).  

The wetlands located below the cushion plant and tussock grass experimental 

hillslopes presented different isotopic dynamics. The reaction of the tussock grass 

wetland to depleted precipitation isotopic signal during rainy periods may be due to 

its location. It situates immediately after the experimental hillslope and so during 

rainy periods, part of the tussock grass shallow soils may be hydrological active and 

feed the wetland (Eguchi & Hasegawa, 2008; Hasegawa & Sakayori, 2000; McGuire 

& McDonnell, 2010; Mosquera, Célleri, et al., 2016). During the less rainy seasons, 

it appears that the shallow layers of the tussock grass hillslope are not hydrologically 

active, and that the wetland is hydrologically connected to deeper soil layers 

presenting more attenuated isotopic signals. Regarding the cushion plant wetland, 

the strongly attenuated and stable isotopic signal throughout the whole study period 

probably results due to its location in the middle of the wetland, enhancing water 

mixing mechanisms (Minaya et al., 2016; Mosquera et al., 2015).  

The damping of the isotopic composition that is observed in the river water could be 

indicative for a mixing of deep subsurface water (Asano et al., 2002). The sole use 

of water stable isotopes cannot help to unravel the depth or location of this reservoir, 

and more research is needed to unravel the water storage capacity and transit time 

of the system (McGuire & McDonnell, 2006).    

4.3 Mixing processes along the catchment 

Soil water at shallow depths slightly resembled the isotopic composition of 

precipitation and had small differences among sampling sites (Fig. 4a-4d), 

suggesting a low influence of precipitation in mixing with water stored in soils 

(Mosquera et al., 2020). At lower depths, soil water isotopic composition showed 

strong damping and little variation with depth regardless of the sampling position in 

line with the high-water retention capacity of volcanic soils in the paramo (Páez-

Bimos et al., 2020). The strong mixing capacity of soil water in deeper soil layers is 

supported by similar ITTPs (Fig. 6). These findings show the effect of vertical flow 

paths on soil water percolation. These findings are similar to those reported by 

Asano et al., 2002; Mosquera et al., 2020; Muñoz-Villers & McDonnell, 2012, 

including sites dominated by volcanic soils.  

Even though wetlands in the southern Ecuadorian paramos do not present isotopic 

signals as damped as in our study area (Lazo et al., 2019), our results indicate that 
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Andean Paramo wetlands play a major role in catchment water storage in which 

water mixes prior to leaving the hydrological system at the catchment outlet 

(Mosquera et al., 2015) or that they may be an inactive hydrological reservoir where 

water is stored for longer periods of time. The difference in average values of the 

isotopic composition of wetlands and discharge (0.7 ‰ ẟ18O) suggests that although 

the temporal variability of their isotopic composition is almost negligible (except for 

the tussock grass wetland during the driest periods), they are recharged by different 

sources and/or during different periods (Correa et al., 2017; Kirchner, 2003). That, 

since the so-called altitudinal effect is not likely to cause this difference in isotopic 

composition given that the altitudinal difference in JTU_01 between the upper and 

lower part of the tussock grass hillslope is only 59 m and an isotopic lapse rate of -

0.3 ‰ in ẟ18O per 100 m elevation increase has been reported in a paramo 

ecosystem in south Ecuador (Mosquera, Célleri, et al., 2016). Therefore, long-term 

data is necessary to further investigate this issue.  

Having the historical input signal would have helped to determine how old is the 

water stored in different catchment compartments (i.e., soil water, wetlands, and 

discharge). However, our results can help to develop a preliminary but valuable 

conceptual model of catchment hydrology (Hrachowitz et al., 2016), where discharge 

is fed by a hydrological reservoir presenting complete mixing conditions (Mosquera, 

Segura, et al., 2016). The depth of this reservoir contributing to discharge is not yet 

clear, but it may be composed of water from deeper soil layers (a few to tens of 

meters deep) and/or fractures in the shallow bedrock. Nevertheless, the presented 

isotopic dataset provided valuable insights into catchment hydrology in the northern 

Andes of Ecuador complementing tracer studies performed at higher temporal 

resolution (Minaya et al., 2016) but without long-term data. This information can be 

used by local stakeholders, water managers, and decision-makers (e.g., FONAG 

and EPMAPS). For example, it is observed that all the water produced in this 

catchment, even during stormflow events (Silva Palmay & Ortiz Moya, 2020), comes 

from a deep water reservoir standing out the role of soils and wetlands as water 

regulators in these ecosystems (Lazo et al., 2019; Mosquera et al., 2020; Mosquera, 

Célleri, et al., 2016). Besides, our data can be coupled with hydrological models, 

where calibration should consider that most of the water is produced in reservoirs 

with a complete mixing, even during periods of high rainfall intensity. Finally, the 

isotopic information could be used in combination with geochemical data and high 

frequency tracers data (Correa et al., 2018; Minaya et al., 2016) to further improve 

the process-based understanding of the hydrology of the different Andean 

catchments in northern Ecuador. 
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5. Conclusions 

Catchment hydrology of a small experimental paramo catchment was investigated 

using a biweekly dataset set of the stable isotopic composition of precipitation, soil 

water, wetlands, and discharge. Condensation at the study site seems to occur 

under equilibrium conditions as evidenced by the similar slope of the LMWL (8.2) 

compared to that of the GMWL (8). The larger D-excess of the former (16.2‰) as 

compared to the latter (10‰) suggests that local precipitation might be influenced 

by recycled moisture from the Amazon Basin. Soil water (at shallow soil layers), 

wetlands, and discharge are little affected by evaporation effects, although future 

investigation should assess this effect in the shallow layer of the soil where 

evaporation could be expected to be more influential. Isotopic attenuation of soil 

water was homogeneous at all sampling positions along both experimental 

hillslopes, increasing with depth regardless of the ground vegetation cover. 

Wetlands and discharge showed an almost invariant isotopic composition during the 

study period showing the importance of well-mixed reservoirs in the hydrology of the 

system. Although ITTPs showed a decreasing trend with depth, a clear pattern was 

not observed, highlighting the complexity of the hydrology of the study area. Even 

though longer isotopic datasets combined with complementary hydrometric and 

geochemical information are needed to improve the understanding of catchment 

hydrology in our study site, these findings are useful for water managers working in 

the region as it improves our general understanding of the complex hydrological 

behavior of paramo catchments in northern Ecuador. These findings can also serve 

as a basis to test hypothesis of discharge generation using complementary 

geochemical information and mathematical models. 
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6. Appendix A 

Summary of precipitation isotopic composition  

Campaign Date 
δ18O 

(‰) 

δ2H 

(‰) 

D_excess 

(‰) 

Cumulative 

Precipitation 

(mm) 

1 12/3/2019 -10.38 -69.87 13.15 14.4 
2 18/3/2019 -8.93 -60.13 11.27 7.1 

3 27/3/2019 -11.52 -77.50 14.67 65.9 

4 9/4/2019 -16.85 -119.72 15.04 77.5 

5 25/4/2019 -22.17 -161.94 15.41 53.3 

6 8/5/2019 -19.80 -149.75 8.66 19.6 

7 22/5/2019 -22.28 -168.73 9.55 55.3 

8 5/6/2019 -22.22 -164.54 13.25 65.5 

9 19/6/2019 -13.53 -96.28 11.96 21.8 

10 3/7/2019 -8.07 -49.28 15.26 12.9 

11 16/7/2019 -12.03 -82.76 13.52 21.9 

12 31/7/2019 -11.61 -79.31 13.55 14.4 

13 15/8/2019 -8.36 -51.88 15.03 12.9 

14 28/8/2019 -6.39 -35.15 15.94 9.3 

15 11/9/2019 -7.80 -46.33 16.05 4.9 

16 24/9/2019 -9.32 -58.54 16.03 50.5 

17 16/10/2019 -11.25 -73.23 16.77 30.4 

18 29/10/2019 -18.92 -138.44 12.91 68.5 

19 13/11/2019 -12.77 -87.99 14.16 49.6 

20 26/11/2019 -13.33 -92.02 14.63 53.2 

21 10/12/2019 -11.40 -80.49 10.71 23.7 

22 26/12/2019 -10.45 -69.76 13.86 29.7 

23 7/1/2020 -10.29 -72.34 9.96 23.4 

24 21/1/2020 -11.36 -78.21 12.69 3.3 

25 4/2/2020 -14.06 -100.89 11.57 39.5 

26 18/2/2020 -6.44 -35.51 15.98 1.0 

27 3/3/2020 -8.73 -53.63 16.21 57.8 
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