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ABSTRACT

Background: Hundreds of adipokines have been identified, and their extensive range of endocrine
functions—regulating distant organs such as oral tissues—and local autocrine/paracrine roles have been
studied. In dentistry, however, adipokines are poorly known proteins in the dental pulp; few of them
have been studied despite their large number. This study reviews recent advances in the investigation of
dental-pulp adipokines, with an emphasis on their roles in inflammatory processes and their potential
therapeutic applications.
Highlights: The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin,
ghrelin, oncostatin, chemerin, and visfatin. They have numerous physiological and pathological functions
in the pulp tissue: they are closely related to pulp inflammatory mechanisms and actively participate in
cell differentiation, mineralization, angiogenesis, and immune-system modulation.
Conclusion: Adipokines have potential clinical applications in regenerative endodontics and as bio-
markers or targets for the pharmacological management of inflammatory and degenerative processes in
dental pulp. A promising direction for the development of new therapies may be the use of agonists/
antagonists to modulate the expression of the most studied adipokines.

© 2021 Japanese Association for Oral Biology. Published by Elsevier B.V. All rights reserved.
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Abbreviations: AR, adiponectin receptor; DMP, dentin matrix protein; DPSC, dental pulp stem cell; DSPP, dentin sialophosphoprotein; EDM, enamel matrix-derived
proteins; GHSR, growth hormone secretagogue receptor; I, inhibition; ICAM, intercellular adhesion molecule; IL, interleukin; LPS, lipopolysaccharides; MMP, matrix met-
alloproteinase; NAMPT, nicotinamide phosphoribosyltransferase; NK, natural killer; NO, nitric oxide; OSM, oncostatin M; OSMR, receptor for oncostatin M; PDL, periodontal
ligament; PDLSC, periodontal ligament stem cell; ROS, reactive oxygen species; S, stimulation; SASP, senescence-associated secretory phenotype; TH-1 cell, T helper-1 cell;
TNF, tumor necrosis factor; VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor.
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1. Introduction

For years, adipose tissue was underestimated as just an energy
reservoir [1—7]; however, it is now acknowledged as an endocrine
organ producing numerous multifunctional bioactive proteina-
ceous molecules, known as adipokines [2,3,8—11]. Recent studies
have identified >700 types, with diverse chemical structures, in the
secretome of adipose tissue [12—15]. Hence, they have even been
catalogued in other molecular families, such as cytokines, growth
factors, hormones, and complement proteins [1,2,16,17].

Adipokines are predominantly produced by adipocytes [16],
which form part of white and brown adipose tissue [4,9,18],
constituting a key station as a multilevel network regulating hu-
man physiology [2,4]. Cells such as fibroblasts, osteoblasts, neu-
trophils, monocytes, macrophages, T lymphocytes, and natural
killer (NK) lymphocytes also secrete adipokines [8,16]. However,
the location, origin, and function of many of them remain un-
known. Adipokines were considered exclusively associated with
pathological processes, as they are linked to obesity, diabetes, car-
diovascular diseases, and inflammation, among other pathologies
[1,2,4,8,16,17,19]. However, adipokines also orchestrate a multitude
of physiological processes [4,20], such as regulation of metabolic
homeostasis, food intake, sleep functions, and anti-inflammatory
activity [1,8,18,21—23].

Ubiquitous in nature, they are located throughout the body, and
the oral tissues are no exception. Several studies have demon-
strated the role of visfatin, chemerin, leptin, and omentin in
temporomandibular joint disorders [24—29]. Adiponectin, leptin,
resistin, chemerin, omentin, vaspin, and visfatin play active roles in
bone remodeling [30]. Leptin and adiponectin promote osteo-
genesis through differentiation of mesenchymal stem cells into
preosteoblasts and the proliferation and maturation of osteoblasts.
Contrarily, omentin-1 is a proposed biomarker of metabolic disor-
ders, including bone pathologies [31].

Adipokine quantity in periodontal tissues correlates with
certain systemic conditions [30,32]. In obese patients, leptin and
adiponectin levels are increased and decreased in the periodontal
ligament (PDL) and gingival crevicular fluid, respectively [33,34].
Conversely, higher levels of vaspin and visfatin were identified in
the crevicular fluid of patients with periodontal disease, than in
healthy individuals [35,36]. Furthermore, adiponectin [37] and
leptin [30] protect the periodontium by neutralizing the effects of
lipopolysaccharides (LPS) of the periodontal pathogenic bacteria,
inhibiting cell apoptosis, inducing antimicrobial peptide expres-
sion, and increasing growth factors that promote the proliferation
of PDL cells, improving healing in vitro [30,34,37—39].

Although these biomolecules are crucial for multiple organic
functions, information on the influence of adipokines on the dental
pulp is limited. Most studies were performed in animals
[8,28,40—44]. Therefore, although their results should be extrapo-
lated to humans with caution, these studies open a window for
research in humans. In the pulp tissue, few adipokines have been
isolated with a pro-or anti-inflammatory effect [45—47]. Adipo-
kines mediate pulp tissue mineralization and repair [30,41,48—53],
making them a suitable target for new regenerative therapies

combined with the currently available bioactive materials [41,52].
Nevertheless, to date, no studies have integrated information on
the role of adipokines in physiological and pathological processes in
dental pulp and their potential clinical application in pulp therapy.
Therefore, this review aimed to explore the physiological, patho-
logical, and potential therapeutic roles of adipokines in the dental
pulp.

2. Materials and methods

Available literature was searched in PubMed and Scopus data-
bases to identify relevant articles published until February 28, 2021,
using the keywords dental pulp, odontoblasts, pulp fibroblasts,
adipokines, leptin, adiponectin, visfatin, resistin, ghrelin, and
chemerin. Articles focusing on adipokines in the dental pulp were
selected. Additionally, to ensure that the information obtained was
comprehensive, a manual search was performed on the reference
lists of the articles initially selected.

3. Adipokines in dental pulp

The most recently identified adipokines in dental pulp include
leptin, adiponectin, resistin, ghrelin, oncostatin, chemerin, and
visfatin. Table 1 summarizes these aspects. This article reviews
their origins, receptors, synthesis, physiologic and pathologic
functions, and potential therapeutic roles in the dental pulp tissue.

3.1. Leptin

Discovered in 1994, Leptin is a 16 kDa protein [5,130] encoded
by the Ob gene [1,5]. Its Ob-R receptor has six isoforms, Ob-Rb being
the main isoform [18,59—61]. It is distributed in almost all tissues,
explaining the pleiotropic function of leptin [51,131—133]. Although
predominantly produced by adipocytes [30,134,135], it is produced
on a smaller scale by skeletal muscle [136], placenta [137], gastric
epithelium [138], liver, brain, and pituitary gland [139—141]; it is
also synthesized and secreted by ameloblasts, pulp odontoblasts,
and fibroblasts [54,61]. Dental pulp and periodontal tissues are
important sources of leptin, both locally and systemically, because
the expression of leptin in these tissues is equivalent or higher than
that in the bone marrow [30,42].

Leptin and its receptors are expressed in human dental pulp
cells and are involved in various pathophysiological processes.
In vitro, odontoblasts have shown higher expression of leptin and
its receptors than that by cells of the pulp core; even some cyto-
plasmic processes of odontoblasts extending into the dentinal tu-
bules have shown leptin immunoreactivity [30]. The involvement
of leptin in the differentiation of odontoblast-like cells from PDL
stem cells (PDLSCs) and dental pulp stem cells (DPSCs) has been
shown [49], indicating its role in the regeneration and repair of
impaired dental structures [142] through formation of dentinal
bridges protecting pulp tissue [30,41,45,49,62]. Furthermore, leptin
reduces adipogenesis in DPSCs and PDLSCs, preventing their dif-
ferentiation into adipocytes, thereby acting as an important
modulator of dental stem cell differentiation [49].
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Table 1
Summary of data available on adipokines in the dental pulp.
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Adipokine Origin Stimulation (S) or Receptor Receptor expression Functions Influences on

inhibition (I) inflammation

Leptin Pulp fibroblasts, Neuropeptides (S) Ob-Rb [18,59—-61]. High expression in the  Stimulates the Regulates innate and
odontoblasts [54]. dental pulp [30]. differentiation of DPSC  adaptive immune
[42,51,54,55]. IL-1B, IL-6, TNF-a, Odontoblasts [30]. into odontoblast-like response [9,65],

and LPS (S) [56,57]. cells [49]. Proinflammatory
Heat exposure (S), Inhibits adipogenic [9,65], promotes the
Cold exposure (I) differentiation of PDLSC  differentiation of TH1
[58]. and DPSC [49]. cells, stimulates the
Stimulates the oxidative burst of
secretion of DSPP and monocytes and
DMP-1 [41,52,55], macrophages [66,67].
promotes the formation Production of
of dentin bridges proinflammatory
[30,41,45,49,62]. cytokines, such as TNF-
Induces angiogenesis a, IL-1, IL-2, IL-6, IL-8
[41,52,63,64]. and CC chemokine
Induces maturation of  ligands [9,49,51,65,68
tooth germ during —70].
odontogenesis [42]. Dose-dependent anti-
inflammatory effect
[30,41].

Adiponectin  Lymphocytes, Heat exposure (I), AR1 and AR2 [72—74]. AR1 and AR2 receptors  Facilitates osteoblast Anti-inflammatory
neutrophils, and Cold exposure (S) are expressed in dental  proliferation and effect by regulating
endothelial cells [58]. pulp [43]. differentiation [75,76]. immune cells such as
[71,72]. Promotes reparative macrophages and

dentin formation by inducing secretion of
increasing DSPP and anti-inflammatory ILs
DPP expression and [79].

stimulating Inhibits TLR-4
hydroxyapatite crystals expression [80].
formation [43,77].

Induces angiogenesis

[78].

Resistin Monocytes and IL-1, IL-6 and TNF-o.  Not identified [83], N/A Functions not clarified Proinflammatory;

macrophages [81]. (S) [81]. although potential [82,87]. induces the production
EDM (S) [82]. candidates have been of cytokines such as IL-
ascribed [84—86]. 6, IL-1, IL-12, and TNF-a.
[88,89].
Counteracts the anti-
inflammatory effects of
adiponectin by
promoting the
expression of VCAM,
ICAM, and pentraxin 3
[87,90].
Inflammaging [83]

Chemerin Dental pulp cells such Obesity, diabetes CMKLR1, also known as  Odontoblasts [91], Differentiation of Proinflammatory, it

as odontoblasts [91]. and cardiovascular ~ ChemR23 or DEZ [96]. immune cells such as odontoblasts and incites the release of
disease (S) [92—94] immature plasmacytoid ameloblasts [91,98]. proinflammatory
IL-1B (S) [93,95] dendritic cells, myeloid Induces calcium cytokines such as TNF-
dendritic cells, mobilization, during a, IL6 and IL-1
macrophages, and NK odontogenesis [91]. [100,101].
cells [44,97]. Induces angiogenesis Anti-inflammatory,
[99]. mediated by the release
of NO and inhibition of
VCAM-1 expression
[16,102].
Ghrelin Preodontoblasts, Obesity (I) [103]. GHSR [104]. Suspected to be found Stimulation of GHSR Anti-inflammatory,

odontoblasts and blood
vessels [40,50].

in odontoblasts
[105,106].

expression [104].
Stimulates
proliferation,
differentiation, bone
metabolism and
regulates osteoblast
apoptosis [107—109].
Regulates development
and formation of hard
tissues, such as bones
and teeth [40].
Influences
dentinogenesis
[40,110].

inhibits the production
of proinflammatory
cytokines [111].

(continued on next page)
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Table 1 (continued )
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Adipokine Origin Stimulation (S) or Receptor Receptor expression Functions Influences on
inhibition (I) inflammation
Oncostatin Odontoblasts, IL-1a, TNF-o. and IL- OSMR [117]. Pulp stem cells [118]. Increases Proinflammatory,
fibroblasts, endothelial 6 (S)[115,116] and chondrogenic, through induction of
and inflammatory cells  bacterial LPS (S) adipogenic and cytokines and MMP
[46], neutrophils [114]. osteogenic [116,120—123].
[112,113], dendritic differentiation of dental
cells [114]. pulp stem cells [118].
Regulates growth,
differentiation, gene
expression, immune
response and tissue
remodeling processes
[118,119].
Visfatin Neutrophils [124,125].  FK866: visfatin Not identified N/A Inhibits neutrophil Production of

inhibitor (I) [126].  [16,127,128].

apoptosis and increases
neutrophil
inflammatory response
[124].

Pulpal aging, through
cellular senescence
[47].

It creates chronic
proinflammatory

proinflammatory
cytokines, such as IL-18,
TNF-a, IL-6, and co-
stimulatory molecules,
by CD14+ monocytes
[124].

Increases the
expression of ICAM-1
and VCAM-1 [129].

microenvironments
that favor pulp
pathology [47].

AR, adiponectin receptor; DMP, dentin matrix protein; DPP, dentin phosphoprotein; DPSC, dental pulp stem cell; DSPP, dentin sialophosphoprotein; ICAM, intercellular
adhesion molecule; IL: interleukin; LPS, lipopolysaccharides; N/A: no information available; MMP, matrix metalloproteinase; NK, natural killer; NO, nitric oxide; OSM,
oncostatin M; OSMR, receptor for oncostatin M; Ob-Rb, leptin receptor (b isoform); PDLSC, periodontal ligament stem cell; TLR-4, toll-like receptor-4; TH1, T helper 1 cell; TNF,

tumor necrosis factor; VCAM, vascular cell adhesion molecule.

Leptin stimulates odontoblasts by increasing the secretion and
expression of dentin sialophosphoprotein (DSPP) and dentin ma-
trix protein 1 (DMP-1) [41,52,55], which are important for odon-
togenic differentiation and dentin mineralization [143].
Additionally, if we consider odontoblasts the first line defense
against microorganisms and their by-products, leptin may inevi-
tably contribute to autocrine/paracrine signaling pathways for
repair, mineralization, and tertiary dentin formation.

Leptin has proangiogenic effects [63,64] and increases the
expression of vascular endothelial growth factor (VEGF) and
fibroblast growth factor, positively influencing proliferation, dif-
ferentiation, mineralization, neovascularization, and reparative
dentin formation in pulp tissue, as demonstrated both in vitro and
in vivo [30,42,52,144]. These growth factors are synergistic with
leptin for the stimulation of angiogenesis [145], crucial for the
recruitment and mobilization of stem cells to the site of pulp injury
[41] and for tooth development [146].

During odontogenesis, intense expression of leptin and VEGF in
ameloblasts, cells of the stratum intermedium, odontoblasts, and
some cells of the dental papilla, induce angiogenesis in the tooth
germ and support its maturation [42]; similar expression was found
in human and rat dental germs [42,147,148]. Additionally, leptin
expressed by these cells promotes tooth development by facili-
tating endothelial cell recruitment and blood vessel branching [42],
leading to the release of leptin from specialized cells of the gingival
epithelium [30].

However, similar to its systemic effect, leptin is proin-
flammatory in dental pulp and regulates both innate and adaptive
immune responses under normal and pathological conditions
[9,65,149]. Leptin expression is increased in inflammatory condi-
tions [68,149], additionally promoting the secretion of other acute
phase reactant cytokines, such as interleukin IL-1, IL-2, IL-6, IL-8,
tumor necrosis factor alpha (TNF-a), and CC chemokine ligands
(CCL3, CCL4, and CCL5) [9,49,51,68—70]. Like other

proinflammatory cytokines, leptin promotes T helper 1 (TH1) cell
differentiation, stimulates the oxidative burst in macrophages
[66,67], influences the proliferation, differentiation, activation, and
cytotoxicity of NK cells [150], and modulates the initiation and
progression of autoimmune responses [134,151]. This shows that
high local leptin levels stimulate the immune system [152],
modulating its development, proliferation, maturation, and acti-
vation [65,68]. Further, leptin is associated with increased expres-
sion of CCL20 [153], allowing the recruitment of memory T cells and
immature dendritic cells [154,155] and lymphocyte trafficking,
magnifying pulpal inflammatory response [68].

Further, physiologically, neuropeptides induce leptin release,
whereas in a pathological state, IL-1f, IL-6, TNF-a, infectious and
inflammatory stimuli, such as LPS, do so [56,57], triggering greater
production of neuropeptides that increase the release of leptin and
cytokines, thereby increasing inflammatory process. Despite the
proinflammatory nature of leptin [68,149], it likely induces a dose-
dependent, anti-inflammatory effect [41,51]. Though this has not
been well elucidated, it may be assumed that leptin increases the
recruitment of lymphocytes and macrophages to the dental pulp
and, together with its angiogenic, mineralizing, and differentiating
effects, it promotes the repair and regeneration of the pulp—dentin
complex, thus protecting it from infection and inflammation
[30,41,55].

3.2. Adiponectin

Isolated in 1995, adiponectin is a 30 kDa protein [2], encoded by
the ADIPOQ gene [156], and mainly produced by adipocytes.
However, it was recently reported to be synthesized also by lym-
phocytes, neutrophils [71,72], myocytes, endothelial cells, and
cardiomyocytes [157]. Two distinct isoforms have been identified: a
full-length, low-molecular-weight adiponectin that functions pri-
marily in the brain, and a globular form that functions in the liver,
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which act as ligands for the receptors, adipoR1 and adipoR2
[72—74]. The first is expressed ubiquitously, but predominantly in
skeletal muscle, while the second is expressed mainly in the liver
[74,158]. Both types of receptors have been isolated within pulp
tissue, with a higher affinity for the full-length isoform [43].

Although known primarily as an anti-inflammatory adipokine,
recent studies have indicated that their biological functions differ
according to the isoform. Full-length adiponectin blocks endotoxin-
induced IL-6 secretion and induces anti-inflammatory interleukins
secretion [79]. However, the globular form triggers cytokine pro-
duction, making it proinflammatory [159]. This is evidenced in
skeletal joints, where adiponectin plays a proinflammatory role by
inducing release of IL-6 and metalloproteinase 1 from synovial fi-
broblasts involved in matrix degradation; higher amount of adi-
ponectin was found in the synovial fluid of rheumatoid arthritis and
osteoarthritis patients [160,161]. Further studies may clarify this
dual biological effect.

Adiponectin plays a major role in two important hard tissues. In
bone, adiponectin promotes osteoblast proliferation and differen-
tiation [75,76] and protects against bone resorption [162,163].
However, an in vitro study performed on rat pulp cells determined
that the application of 10 pg/ml adiponectin for 12 days signifi-
cantly improved pulp tissue mineralization, which is assumed to
occur because adiponectin increases the expression of DSPP and
dentin phosphoprotein, forming complexes with type I collagen
and promoting the formation of hydroxyapatite crystals, resulting
in reparative dentin formation. However, no significant differences
were observed on previous days and at different concentrations,
indicating the importance of concentration and time in tissue
mineralization [43,77].

Adiponectin induces the synthesis of anti-inflammatory media-
tors in immune cells, primarily targeting macrophages [80]. Adipo-
nectin inhibits the activation of M1 macrophages (proinflammatory),
promotes the proliferation of M2 macrophages (anti-inflammatory)
[164—166] and its production of interleukin 10 (IL-10) [167], and
inhibits the expression of Toll-like receptor 4, preventing the acti-
vation of NF-kB [80]. These anti-inflammatory mechanisms may also
occur in the dental pulp; however, clinical application of adiponectin
requires further research.

3.3. Resistin

Resistin is a 12.5 kDa dimeric protein, first identified in 2001
[88,168]. In humans, it is predominantly produced by macrophages
and monocytes, induced by proinflammatory cytokines, such as IL-
1, IL-6, and TNF-« [81]. It circulates throughout the bloodstream in
the organism because of its affinity for vascular endothelial cells
[87], though concentrating in inflamed areas [37,88]. The resistin
receptor remains unknown [83], although potential candidates
have been ascribed [84—86].

The biological function of resistin remains ambiguous [87];
nevertheless, it has a predominantly proinflammatory function, due
to increased concentration in inflamed areas [169]. It induces the
release of proinflammatory cytokines, such as IL-6, IL-1, IL-12, and
TNF-o [88,89], and directly counteracts the anti-inflammatory effects
of adiponectin in vascular endothelial cells by promoting the
expression of vascular adhesion molecule (VCAM), intercellular
adhesion molecule (ICAM), and pentraxin 3 [87,90]. Moreover,
resistin was recently shown to severely influence aging due to its
proinflammatory function as it always increases during inflammag-
ing [83].

In cells of mesenchymal origin, including human dental pulp
cells, enamel matrix-derived proteins (EDM) dramatically increase
the expression of resistin, indicating that part of the biological ef-
fects of EDM on tissue regeneration may involve resistin [82].
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Although EDM has been successfully used in periodontal regener-
ation and root surgery for its antimicrobial and mineralization ca-
pabilities [170,171], its role in dental pulp remains unclear because
of its ability to increase resistin levels, which are proinflammatory
at high concentrations [82]. Therefore, further exploration is
necessary before the clinical application of resistin.

3.4. Chemerin

Chemerin, a chemotactic protein whose weight varies according
to its state of activity (16 kDa) or inactivity (18 kDa), was discovered
in 2007 [96,172]. It acts as a ligand for the G protein-coupled re-
ceptor CMKLR1 (ChemR23 or DEZ) [96]. The presence of chemerin
and its receptor is established in odontoblasts and ameloblasts
[91]; the chemerin receptor is also expressed in several immune
cells, such as immature dendritic cells, myeloid dendritic cells,
macrophages, and NK cells [44,97].

Chemerin plays a dual role, in both proinflammatory and anti-
inflammatory activities, in the body. It triggers chemotaxis of
immature dendritic cells and macrophages and promotes the
release of proinflammatory cytokines such as TNF, IL-6, and IL-1
[100,101,173,174]. Its anti-inflammatory action on vascular endo-
thelial cells could be due to nitric oxide (NO) release via activation
of endothelial NO synthase, and inhibition of TNF-a-induced
VCAM-1 expression in endothelial cells [16,102].

Though the biological function of chemerin within dental pulp is
not yet known, it has been suggested to participate in angiogenesis
[99]; during odontogenesis, it is assumed to promote the differ-
entiation of ameloblasts and odontoblasts through the Chem23
signaling pathway [91,98]. This was corroborated in vitro in mice,
where chemerin and its receptor were found to be expressed dur-
ing odontogenesis, allowing the differentiation of mesenchymal
and epithelial cells. Chemerin is the first receptor expressed at a
later stage of tissue differentiation, leading to the assumption that
in early stages, chemerin binds to other receptors (GPR1 and
CCRL2) to induce calcium mobilization for hard tissue formation
[91].

3.5. Ghrelin

Ghrelin is a 3.3 kDa peptide hormone with two major forms
(acylated and deacylated [biologically inactive]) [104,175,176]. First
identified in 1999 as an endogenous ligand for the growth hormone
secretagogue receptor (GHSR) [104], ghrelin is an anti-
inflammatory adipokine that inhibits proinflammatory cytokines
[111]. Though produced predominantly by the stomach, it is also
expressed in tissues such as the placenta, pancreas, hematopoietic
cells, liver, kidneys, lungs [104,177,178], mammary tissue, and pulp
cells [50,179,180]. The presence of ghrelin has been reported in
many biological fluids, such as blood [104,177], cerebrospinal fluid
[181], breast milk [179,182], and saliva [183—186].

Several studies demonstrated the presence of ghrelin mRNA in
human osteoblasts, stimulating autocrine and/or paracrine prolif-
eration, differentiation mechanisms, and bone metabolism
[107—109]. As dental tissue shares several functional, develop-
mental, and anatomical similarities with bone, ghrelin activity
might be similar in them [187]. Its presence in human dental pulp,
especially in the odontoblast layer, where it is speculated to influ-
ence dentinogenesis, healing, regeneration [105,106], and miner-
alization [50], was identified in vitro. Another study in rats
demonstrated decreased ghrelin tissue levels in obesity, in organs
including the tongue and teeth, corroborating the presence of
ghrelin in the dental pulp [103]. However, the presence of ghrelin
receptors in teeth has not yet been established [50].
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Although ghrelin can reach dental pulp via the bloodstream, it
was proposed to be produced in situ by odontoblasts or blood vessels
[50]. An analysis on extracted teeth showed ghrelin levels of
26.4 fmol/mg and 28.2 fmol/mg in the pulp of canines and molars,
respectively. This represents low ghrelin levels compared with those
in the gastric mucosa [104], but higher than that in many other tis-
sues, as detected by RT-PCR [180]. It could be speculated that teeth
constitute an important source of ghrelin, locally and systemically.

The presence of ghrelin during odontogenesis was determined
in embryonic and postnatal mice by detecting the acylated form in
ameloblasts and odontoblasts. In the initial stages of tooth forma-
tion, ghrelin was evidently expressed in the enamel organ epithe-
lium and mildly in the underlying mesenchyme. In advanced and
postnatal stages, ghrelin is expressed preferentially in preamelo-
blasts, preodontoblasts, ameloblasts, and odontoblasts, related to
the synthesis of dentin and enamel matrices [40], indicating the
importance of this adipokine in tooth development.

The function of ghrelin-induced GH needs to be determined, as
it can reportedly promote bone and tooth development through the
GH/insulin-like growth factor-1 axis [110,188]. Furthermore, as
ghrelin functions through GHSR, the presence of GHSR in amelo-
blasts and odontoblasts should be determined.

3.6. Oncostatin

Oncostatin M (OSM) is a 28 kDa pleiotropic cytokine related to
the interleukin-6 family [189,190]. Its receptor (OSMR) is a signal
transduction receptor for IL-6-type cytokines [117]. OSM contrib-
utes to inflammation and tissue remodeling and is involved in
regulating growth, differentiation, gene expression, and immune
response [117,191,192]. Detected in several inflammatory processes
in the oral cavity, such as chronic periodontitis [193,194] and epi-
thelialized apical periodontitis lesions [123], OSM is part of their
cytokine network [112].

OSM mRNA presence in dental pulp tissue was demonstrated
in vitro, showing an increased expression (2.36 times) during in-
flammatory processes, compared to clinically healthy pulp. This
adipokine was identified in the cytoplasm of odontoblasts, fibro-
blasts, inflammatory cells, and endothelial cells; therefore, the
cytosol of these cells is a reservoir of OSM, which might be released
during certain stages of inflammation [46]. Moreover, neutrophils
are potent cellular sources of OSM biosynthesis and release under
inflammatory conditions [113,114], and bacterial LPS induces its
expression in dendritic cells [115]. OSM alone can stimulate IL-6
production, or act synergistically to increase the production of
matrix metalloproteinases (MMP-1, MMP-8, MMP-13) and IL-6
[116,120,121], playing an important role in pulpal pathogenesis
[122,123,195—197]. Therefore, the expression of OSM in inflamed
pulp is induced directly by bacteria or indirectly by inflammatory
cytokines from resident cells [46].

OSM was shown to act on dental pulp stem cells (DPSCs) in
extracted supernumerary teeth, showing the potential to differ-
entiate into chondrogenic, adipogenic, and especially osteogenic
lineages, by increasing the production of bone morphogenetic
proteins BMP2, BMP4, BMP6, osteopontin, transcription factor
RUNX2, and alkaline phosphatase [118]. This demonstrates the
potential of this adipokine for stimulation of DPSC differentiation.

3.7. Visfatin

Visfatin, also known as nicotinamide phosphoribosyltransfer-
ase (Nampt), or as pre-B cell colony enhancing factor, is a 52 kDa
adipokine identified in 2005 [2] secreted predominantly by adi-
pose tissue and in low levels by neutrophils in response to en-
dotoxins via TLR4. It plays a crucial role in regulating the
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production of proinflammatory cytokines, contributing to various
inflammatory disorders [124,125]. Though the specific receptor for
visfatin is not yet identified [16], some of its actions have been
ascribed to its intrinsic Nampt enzymatic activity [127,128]. It is
believed to show proinflammatory activity through the production
of IL-1B, TNF-a, IL-6, and co-stimulatory molecules in CD14+
monocytes [124].

Visfatin, strongly proinflammatory by promoting the expression
of cell adhesion molecules such as ICAM-1 and VCAM-1 [129], in-
creases neutrophil inflammatory response. It inhibits the apoptosis
of these cells in a dose-dependent manner by decreasing the ac-
tivity of caspase-3 and 8 [124], enhancing oxidative burst activity,
and reactive oxygen species (ROS) generation [16].

Visfatin may be involved in cellular senescence in several tis-
sues, including the dental pulp [47,126]. However, it protects the
retina from senescence, suggesting that its effect is tissue-
dependent. Cellular senescence is characterized by reduced alka-
line phosphatase activity, indicating impaired regeneration of
injured pulp tissue [47,198], telomere damage in vascular endo-
thelial cells [47], irreversible growth arrest, and acquisition of the
senescence-associated secretory phenotype (SASP) [126,199].

Upon acquiring the SASP phenotype, the cells secrete inflam-
matory cytokines, chemokines, growth factors, MMPs (MMP-1,
MMP-3, MMP-10) [200], and enzymes with autocrine/paracrine
activity [198,201], which causes tissue remodelling and local
inflammation [47,201]. Hence, at the pulp level, DNA damage
induced by oxidative stress through SASP creates a chronic in-
flammatory microenvironment, causing visible inflammatory pa-
thologies such as pulpitis and fibrosis, and pulpal aging. A visfatin
inhibitor (FK866) diminished this response in the dental pulp [126],
not only by annulling its effect, but also by other independent
mechanisms, such as the inhibition of oxidative stress produced by
ROS and decreased expression of SASP-producing genes. Thus,
FK866 interrupts the aging process through anti-inflammatory,
anti-tumorigenic, and antioxidant mechanisms [126,202]. Studies
should be continued on visfatin as a possible therapeutic target,
and on its inhibitor, that can decrease the aging of dental pulp
tissues and maintain its viability [47].

4. Therapeutic potential

It is evident that adipokines are closely related to pulp inflam-
matory mechanisms and thereby useful in regenerative procedures
and vital pulp therapy, as they actively participate in cell differen-
tiation, mineralization, angiogenesis, and modulation of the im-
mune system [30,41].

Although many adipokines promote inflammation, leptin was
demonstrated in vivo to promote pulp regeneration [41] depending
on the type of tissue [47]. Leptin, applied directly to exposed rat
pulp tissue in vivo, induces mineralization and dentin bridging,
protecting the dentin-pulp complex [41]. This could be dose-
dependent, since leptin, when applied through a collagen scaf-
fold, showed a favorable inflammatory response and a greater ca-
pacity to induce angiogenesis, odontogenic differentiation, and
mineralization at concentrations of 10 mmol/L, than at concentra-
tions of 1 mmol/L [41].

In rats, leptin improved the gene expression of collagen types |
and III when applied topically on wounds, stimulating collagen
synthesis [203]. Additionally, it has been determined that the
exogenous application of leptin by intraperitoneal injections in rats
provides a therapeutic effect by decreasing burn-induced inflam-
mation. This inhibits the passage of neutrophils, which are
responsible for the release of substances that destroy normal cells
and dissolve the connective tissue [204], indicating the possible use
of leptin in pulp regeneration.
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Adiponectin also has high potential for the regeneration of
dental tissues, despite the limited information available. In dental
pulp, its increase promotes dentin mineralization by inducing the
expression of DSPP [43] and generating a suitable environment for
the formation of dentin bridges, thereby providing protection
against pulp exposure [77]. This mineralization could be com-
plemented with that of leptin and both adipokines could be used
together for clinical application, while considering their proangio-
genic effects [63,64,78,145].

A benefit of adiponectin, in PDL cells, is the ability to accelerate
wound closure. This was demonstrated in vitro, by removing the first
layers of PDL cells and directly applying adiponectin (3 ug/ml). This
resulted in accelerated healing as adiponectin increased cell prolif-
eration and the expression of certain growth factors and extracel-
lular matrix, which underscores its favorable role in periodontal
homeostasis and soft and hard tissue healing [34]. Although not yet
clinically applied in pulp therapy, these data suggest that if adipo-
nectin was placed on exposed pulp, it could have a similar favorable
action, especially considering the results of a previously mentioned
study [43] that demonstrated mineralization of pulp tissue.

Contrarily, evidence indicates that ghrelin promotes the syn-
thesis and secretion of dentin and enamel matrices, as it is present
in odontoblasts and ameloblasts during tooth development and
after eruption [40,50]. Hence, it influences hard tissue mineraliza-
tion in the tooth, and could be used when mineralized tissue for-
mation is required in the form of dentin bridges, as in direct pulp
protection. However, GH and ghrelin promote the proliferation and
differentiation of primary osteoblasts and inhibit their apoptosis
[108,109,205], suggesting that they could help form bone tissue in
large periapical lesions.

OSM functions as an inflammatory mediator [112] and acts with
other cytokines and MMPs to amplify the inflammatory cycle [46].
However, the capacity of OSM to induce differentiation of DPSCs
towards chondrogenic, adipogenic, and osteogenic lineages (in
conjunction with BMP2, BMP4, BMP6) have been demonstrated
in vitro, showing its potential in developing craniofacial regenera-
tive therapies and alveolar bone regeneration [118,119]. Therefore,
it is important to clarify the conditions necessary to clinically apply
this adipokine in regenerative endodontics [118].

The therapeutic potential of chemerin is not yet clear, due to its
dual effect (proinflammatory and anti-inflammatory). However,
since it has been found within the odontogenic process, it could be
assumed to be of great importance for dental tissue engineering
[91]. Contrarily, it has been shown that in pulp fibroblasts, its re-
ceptor ChemR23 has affinity for resolvin E1 as a ligand, which al-
lows an anti-inflammatory effect in the early stages of pulpitis
[44,98]. The mechanism by which this effect is achieved is the
suppression of the proinflammatory activity of pulp fibroblasts
[44]. It must be considered that this latter cell can remove the
survival signals, normalize the chemokine gradients, and facilitate
the apoptosis of the infiltrating leukocytes or their elimination
through the lymphatics; by inhibiting these functions of the
fibroblast, the regeneration of the pulp tissue would be favored
[206]. Additionally, chemerin exhibits potent angiogenic effects
and can induce the production of MMP-2 and MMP-9 and key cell
survival and angiogenic cascades in endothelial cells [99].

5. Future perspectives

The use of different adipokines as biomarkers to determine the
health status of patients has been proposed. A study focused on the
potential of visfatin to predict mortality in critically ill patients and
found it to be strongly associated with disease severity and organ
failure. Hence, it could also be used as a biomarker to determine the
presence of pulp degradation in future research [207].
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A main concern while applying adipokine-based pulp regener-
ation techniques is obtaining them. Fat auto-transplantation tech-
niques are widely used in aesthetic procedures and have shown
potential for wound healing [208]. Recently, it was demonstrated
that adipose tissue obtained from lipoaspirates, using the Coleman
or Shippert technique, employing centrifugation and sedimenta-
tion processes, contains significant amounts of adipokines, such as
leptin and adiponectin, and growth factors relevant to wound
healing [208,209]. Therefore, lipoaspirates could be extracted and
cryopreserved for potential endodontic therapeutic uses without
significant loss of their biological activity [208].

The biological mechanisms of regulation and adaptation of
adipokines can be systematically exploited for pulp therapy. Leptin
secretion increases during the day [210,211], while that of adipo-
nectin, resistin, and visfatin, during the night [212,213]. Moreover,
modifications in the sleep schedule [214] and diet [215] can
desynchronize the circadian rhythm, which increases leptin pro-
duction when it is usually low [216]. Thus, by combining treatment
with an adequate diet, sleep rhythm, and application period, it
would be possible to stimulate/inhibit adipokine secretion at
defined times to enhance the desired therapeutic effect.

Conversely, many cells can adapt to extreme conditions [217], and
adipocytes exposed to heat shock modify the production of adipo-
kines as an adaptive response [218]. It has been shown that when the
temperature is raised to 41 °C, production of leptin increases and that
of adiponectin decreases as a compensatory measure. An increase in
leptin can protect the tissue against aggression by increasing energy,
tissue metabolism, and induction of apoptosis. Meanwhile, the
decrease in adiponectin is derived from protein synthesis reduction,
favoring the induction of the response to heat shock [58]. Contrarily,
low temperatures decrease leptin expression and increase adipo-
nectin expression [58]. Hence, the response of dental pulp cells to
heat shock could be similar to that of adipocytes, since the pulp
tissue is exposed to multiple thermal stimuli during mastication
[219,220] and dental procedures [221—223]. To date, no studies have
determined these possible changes in the expression of adipokines
in the dental pulp that could clarify their functions in physiological
and pathological states.

Finally, although proteomic profiling studies have identified
hundreds of adipokines in the secretome of adipose tissue [12—15]
and, recently, have even identified new adipokines [224], the hu-
man adipokinome has not yet been fully characterized [12].
Secretomics could unveil new biological, pathological, and ho-
meostasis mechanisms of adipokines in pulp tissue. Furthermore,
the precise mechanisms leading to the secretion of many adipo-
kines requires investigation.

6. Conclusion

Adipokines carry out several physiological and pathological
functions in the pulp tissue. Though scarcely studied with limited
understanding of their actions, they are potential therapeutic
agents to be researched in the management of inflammatory dis-
orders of the dentin-pulp complex and regenerative endodontics.
The use of agonists/antagonists modulating the expression of the
most studied adipokines may be promising in developing new
therapeutic agents; taking into consideration the available evi-
dence on their use and their unique characteristics and functions,
such as angiogenesis and reparative dentin formation, leptin and
adiponectin seem to be the best candidates for use as therapeutics.
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