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Societal Impact Statement
Plants and fungi have provided, or inspired, key pharmaceuticals for global health 
challenges, including cancer, heart disease, dementia, and malaria, and are valued as 
traditional medicines worldwide. Global demand for medicinal plants and fungi has 
threatened certain species, contributing to biodiversity loss and depletion of natural 
resources that are important for the health of humanity. We consider the evolving 
role of plants and fungi in global healthcare as new challenges to human health and 
to biodiversity arise. We present current and emerging scientific approaches, to un-
cover and preserve nature-based health solutions for the future, through harmoniza-
tion with biodiversity conservation strategies.
Summary
Non-communicable diseases, including cardiovascular disease, cancer, and diabetes, are 
the main causes of deaths globally, and communicable diseases such as malaria and tu-
berculosis affect billions of people. Plants and fungi have provided key pharmaceuticals 
in our armory against these global health challenges, while in some regions of the world, 
they continue to have a central role in healthcare systems as traditional medicines. 
Consequently, global demand for plants and fungi in healthcare has threatened certain 
medicinal species, and is a driving factor in biodiversity loss. Yet the future of therapeu-
tics from nature is evolving. Scientific advances are enabling the untapped potential of 
the world's plants and fungi to be explored for their medicinal value, and to reveal other 
roles they may have for improving health and well-being; this demonstrates the value 
of natural capital as an incentive for biodiversity conservation. Emerging technologies 
also offer new hope for safeguarding essential medicines for the future, by revealing 
more sustainable solutions for sourcing key natural products. This review discusses 
recent developments and future approaches for the discovery of natural products as 
medicines, for health and well-being, and strategies to harmonize the therapeutic use of 
biodiversity with its proactive conservation through nature-based solutions.

K E Y W O R D S

biosynthetic pathways, drug discovery, herbal medicine, medicinal plants, pharmaceutical, 
phylogenetics, threatened species, well-being

1  | INTRODUC TION

Non-communicable diseases, including heart disease, stroke, cancer, 
diabetes, and chronic lung disease, are responsible for almost 70% 
of deaths globally (World Health Organization [WHO], 2016). In ad-
dition, deaths due to dementias have more than doubled between 
2000 and 2016, making it the 5th leading cause of deaths world-
wide in 2016 (WHO, 2019a). There are global programmes that aim 
to address these and other health challenges such as the WHO’s 
Sustainable Development Goals (SDGs). SDG 3, to ensure healthy 
lives and promote well-being for all at all ages, aligns with the WHO's 
13th General Programme of Work to achieve universal health cover-
age (UHC), address health emergencies, and promote healthier pop-
ulations (WHO, 2019b). Despite some progress for SDG3 targets for 
particular communicable diseases, including global declines in HIV 
and tuberculosis (TB) incidence, TB is still a leading cause of ill health 

and death. Drug-resistant TB remains a threat, and progress in malaria 
control appears to have slowed (WHO, 2018a). TB and other poten-
tially life-threatening bacterial infections occur against a backdrop of 
emerging antibiotic resistance (Woolhouse et al., 2016), which is an es-
calating threat to global health and food security. For these, and other 
diseases, drugs derived from plants and fungi are fundamental in our 
armory against global health challenges (Dauncey & Howes, 2020).

Plants and fungi have provided, or inspired, many pharmaceuticals 
(commonly referred to as drugs; Notes S1 and Table S1) in the WHO's 
Model List of Essential Medicines, including therapeutics for infec-
tions (e.g. artemether, penicillins), cancer (e.g. vincristine, etoposide), 
pain (e.g. aspirin, morphine), heart disease (e.g. digoxin, warfarin), 
and immunomodulation (e.g. ciclosporin) (WHO, 2019c). However, at 
least half of the world's population lacks full coverage of essential 
health services (WHO, 2020a) and traditional medicines, primarily 
prepared from plants, remain important for healthcare. Indeed, of the 
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estimated 350,000 vascular plant species known to science (WCVP, 
2020), 7% (c. 26,000) have documented medicinal use (MPNS, 2020). 
Today, plants and fungi are embedded in global healthcare systems 
as sources of pharmaceuticals (Newman & Cragg, 2020a) or as tra-
ditional/complementary medicines, and are often associated with 
cultural and social significance (WHO, 2019d). It is therefore unsur-
prising that global demand for natural product medicines threatens 
the survival of certain species and is a driver of biodiversity loss.

Furthermore, many medicinal species are used by people in the 
region of origin, who have been their primary custodians and often 
hold unparalleled local knowledge. Scientists, governments, and 
other stakeholders must establish functional and equitable agree-
ments to ensure that with respect to therapeutics from nature, there 
is compliance with the Nagoya Protocol and associated Access and 
Benefit Sharing legislation and consideration of the value and origins 
of any specimens collected (Pérez-Escobar et al., 2020).

It is not the intention of this review to discuss the efficacy and 
safety of natural products as medicines, or their impact on public 
health. Rather, we consider how the interactions between people, 
plants, and fungi have revealed new understanding of the role and 
preservation of natural resources for medicines, health, and well-be-
ing. We also discuss recent advances in natural product medicines 
discovery, and the role of plants and fungi in human health and 
well-being, particularly in the context of strategies to harmonize 
the therapeutic use of biodiversity with its proactive conservation 
through nature-based solutions.

2  | THE E VOLUTION AND CURRENT 
STATUS OF THER APEUTIC S FROM NATURE

2.1 | Global health challenges

Plants and fungi are the source of some of our most important 
drugs, including those so chemically complex (e.g. the anticancer 
drugs vincristine and vinblastine from the Madagascar periwinkle 
[Catharanthus roseus (L.) G.Don] (Howes, 2018)) that they may never 
have been discovered without natural product research. It has been 
suggested that prospecting nature to find new drugs is unneces-
sary because the number of different biological functions would 
not equate to the millions of chemically distinct natural molecules, 
and because ligands for specific molecular targets are likely to be 
found in many different species (Tulp & Bohlin, 2002). However, the 
remarkable chemical diversity of plants and fungi, and their impres-
sive capability to synthesize highly complex novel compounds with 
'drug-likeness' properties (Harvey, Edrada-Ebel, & Quinn, 2015; Jia, 
Li, Hao, & Yang, 2020; Koehn & Carter, 2005), provide substantial 
evidence that new drugs may still be discovered amongst the esti-
mated 350,000 known vascular plant species, and estimated 2.2–3.8 
million fungal species, many of which remain chemically unexplored 
(Dauncey & Howes, 2020; Harvey et al., 2015; 2017; Hawksworth 
& Lücking, 2017). Indeed, there has been some criticism from in-
dustry and academia of the focus on high-throughput screening of 

synthetic compounds for drug discovery, whilst natural products are 
regarded as yielding higher 'hit rates' (Amirkia & Heinrich, 2015).

Of 185 small molecule drugs approved for cancer (1981–2019), 65% 
were natural product derived or inspired (Newman & Cragg, 2020a). 
Recent advances in cancer therapeutics include the antileukaemia drug 
omacetaxine (homoharringtonine), originally from Cephalotaxus spp. 
(Cragg & Pezzuto, 2016; Howes, 2018), and ingenol mebutate, a top-
ically-applied medicine for actinic keratosis, originally from milkweed 
(Euphorbia peplus L.) sap (Berman, 2012; Dauncey & Howes, 2020; 
Newman & Cragg, 2020a; Ogbourne & Parsons, 2014). These and 
other plant-derived drugs remain important in cancer therapeutics 
today (Howes, 2018). Yet the benefits to humanity of natural product 
derived drugs have not been without impact on biodiversity (Box 1).

Chronic obstructive pulmonary disease (COPD) is a leading cause 
of death globally (WHO, 2016); smoking and air pollution are contrib-
uting factors (WHO, 2020b). Pharmaceuticals derived from plant alka-
loids are used to support smoking cessation, including nicotine originally 
from tobacco (Nicotiana tabacum L.) and varenicline, designed from the 
laburnum (Laburnum anagyroides Medik.) alkaloid, cytisine (Dauncey & 
Howes, 2020; Niaura, Jones, & Kirkpatrick, 2006). The Solanaceae al-
kaloid atropine was the basis for antimuscarinic drugs (e.g. tiotropium) 
for COPD (Moulton & Fryer, 2011). A 'green infrastructure' (urban veg-
etation) is predicted to improve urban air quality (Hewitt, Ashworth, & 
MacKenzie, 2020), with potential impact on human health, however, for-
ests and certain plantations (e.g. oil palm [Elaeis guineensis Jacq.]) are the 
largest global emitters of biogenic volatile organic compounds (bVOCs), 
including monoterpenes and their precursor isoprenes, which can influ-
ence ground-level ozone formation. More research is needed to under-
stand the complex interactions among bVOCs, ecosystems, and climatic 
factors, and the long-term effects on human health and well-being.

Two drugs specifically developed for dementia symptoms are 
derived from plant alkaloids: galantamine, originally discovered in 
snowdrop (Galanthus woronowii Losinsk.) bulbs, and rivastigmine, 
developed from physostigmine, an alkaloid from calabar beans 
(Physostigma venenosum Balf.) (Howes & Perry, 2011). Since 2002, 
every drug developed for Alzheimer's disease, the most common 
form of dementia, has failed in clinical trials (Crow, 2018), and those 
showing promise are unlikely to be sufficiently cost-effective for 
widespread clinical implementation in the foreseeable future. Despite 
some promising natural product drug candidates (Howes, 2013; 
Williams, Sorribas, & Howes, 2011), the urgent need remains to dis-
cover new strategies to prevent or delay dementia, including greater 
consideration of therapeutic and nutraceutical interventions. Certain 
plant oils may alleviate behavioral and psychological symptoms 
of dementia (e.g. agitation) and may also influence cognition, and 
benefit quality-of-life (Abuhamdah et al., 2008; Burns et al., 2011; 
Elliott et al., 2007; Huang et al., 2008; Okello & Howes, 2018; Press-
Sandler, Freud, Volkov, Peleg, & Press, 2016). Emerging data suggest 
that particular dietary components or nutraceuticals may reduce 
or prevent cognitive decline (Howes, Perry, Vásquez-Londoño, & 
Perry, 2020), emphasizing the necessity for future research on how 
plants and fungi as medicines, nutraceuticals, or dietary components 
may benefit humanity by promoting healthy aging.
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For diabetes, recent advances include the development of sodi-
um-dependent glucose transporter (SGLT)-1/2 inhibitor drugs (e.g. so-
tagliflozin approved in the EU in 2019), based on the dihydrochalcone 
phloretin 2 -́O-glucoside (Newman & Cragg, 2020a), which occurs in 
plants such as apples (Malus domestica (Suckow) Borkh.) (Simmonds & 
Howes, 2016). Other current strategies for prevention or management 
of diabetes and cardiovascular disease are underpinned by healthy 
diets (WHO, 2020c) to help prevent obesity and reduce disease risk 
(WHO, 2017, 2018b). Dietary approaches to address malnutrition, 
obesity and other health challenges must be aligned with strategies 
for food security (Ulian et al., 2020), and with research to understand 
the impact of climate change on the nutritional and medicinal value of 
plants and fungi, and the potential consequences for long-term human 
health (Borrell et al., 2020). The benefits of plants to human health 

may be even more extensive than simply providing medicines and a 
healthy diet; recent evidence links green spaces to positive effects on 
human health, including obesity reduction, improved mental health, 
mood and other indicators of well-being (Buck, 2016; Burton, 2014; 
Whear et al., 2014). With respect to public health, trees, and urban 
nature may promote health and social well-being by removing air pol-
lution, reducing stress, encouraging physical activity, and promoting 
social ties and community (Turner-Skoff & Cavender, 2019).

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a 
major concern to human health and was subject to 1,253 patents 
between 1976 and 2010 (Oldham, Hall, & Forero, 2013). Some plant 
constituents (e.g. sophoradiol) are active against drug-resistant 
strains of M. tuberculosis and show additive effects with anti-TB 
pharmaceuticals (Lu et al., 2020). A promising area of research is 

BOX 1 Drug discovery from Taxus spp.

Paclitaxel, originally from Pacific yew (Taxus brevifolia Nutt.) bark, was developed as an anticancer drug in the 1970s; thousands of 
trees were needed to obtain sufficient quantities for clinical use (Cragg & Pezzuto, 2016; Oberlies & Kroll, 2020). This contributed to 
a decline of around 30% in the populations within the last three generations, and the species is now Near Threatened (Thomas, 2013). 
Similarly, Asian yews T. chinensis (Pilg.) Rehder and T. mairei (Lemée & H.Lév.) S.Y.Hu have undergone significant population reduc-
tions as a result of their exploitation following paclitaxel discovery and are now Endangered and Vulnerable respectively (Thomas, 
Li, & Christian, 2020; Yang, Christian, & Li, 2013). In northwest India and western Nepal, exploitation led to a decline of up to 90% of 
Taxus populations, notably T. contorta Griff., which is also now Endangered (Thomas, 2011).
Knowledge embedded in taxonomy and chemistry enabled a more sustainable solution – precursor chemicals in the leaves and twigs 
of the common yew (T. baccata L.) were discovered, and could be used not only for semi-synthesis of paclitaxel, but also for the 
analogues docetaxel and cabazitaxel (Cragg & Pezzuto, 2016; Howes, 2018). Today, international policies (Williams et al., 2020) aim 
to protect biodiversity from such exploitation, but may also discourage research to discover new medicines that benefit humanity. 
Paclitaxel can be produced by plant cell cultures (Expósito et al., 2009) and in the future, paclitaxel yield could be further improved by 
synthetic biology applications. Although efforts to improve paclitaxel yields by heterologously expressing the biosynthetic pathway 
(Li et al., 2019) in other organisms are currently incomplete (all of the required genes are currently undetermined), such discoveries 
could provide new insights, strategies, and techniques to understand how paclitaxel is produced, paving the way to provide more 
sustainable sources of natural product medicines.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Taxus baccata L.

Photo credit: Dr Aljos Farjon
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the use of plants to produce vaccine antigens for TB; the secretory 
antigenic target (ESAT-6) in M. tuberculosis has been expressed in 
Brassica cretica Lam. via Agrobacterium-mediated transformation, in-
ducing an immune response in vivo (Saba et al., 2020). This suggests 
that plants could be used as sources of low-cost agriculturally pro-
duced vaccines, while fungal leads for TB also show promise.

2.2 | Fungi as sources of pharmaceuticals

Since the serendipitous discovery of penicillin from Penicillium rubens 
Biourge, fungi have provided humans with important bioactive com-
pounds, including the immunosuppressant ciclosporin, that allowed 
successful organ transplantation and the antihypercholesterolaemic 

statins (Hyde et al., 2019); and inspired drugs for Parkinson's dis-
ease (e.g. bromocriptine) (Dauncey & Howes, 2020), and for mul-
tiple sclerosis, such as fingolimod and its analogues (Newman & 
Cragg, 2020a). Since the twentieth century, prospecting fungal 
biodiversity has mostly been restricted to easy-to-grow soil moulds 
in high-throughput screens, which are not adapted to mimic the 
diverse conditions that trigger bioactive compound production 
(Keller, 2019). Genome analyses have identified an outstanding num-
ber of uncharacterized biosynthetic pathways in fungi (Kjærbølling 
et al., 2018; Nielsen et al., 2017), a largely untapped resource for 
drug discovery. Prospection of fungal biodiversity offers key advan-
tages over plants: collecting fungi is not detrimental to ecosystems 
as only a minuscule portion of mycelium is sampled. It even facilitates 
preserving biodiversity because sampled fungal strains, if cultured in 

BOX 2 Medicinal Species in Latin America

In Latin America there is high plant biodiversity, such as in the Amazon rainforest, the Andean Mountains, and the Central American 
tropical and subtropical forests (Galvez-Ranilla, Kwon, Apostolidis, & Shetty, 2010). The use of medicinal plants generally increases 
with the species richness of the local flora (De la Torre, Cerón, Balslev, & Borchsenius, 2012), yet it is estimated that fewer than 
25,000 plant species have been scientifically evaluated (Calixto, 2005). There are numerous threats to the long tradition of plant and 
fungal uses as medicines, foods, and in healing rituals (Bussmann & Sharon, 2006; Figure 1; Table S2); in 2019, the world witnessed 
destruction to the Amazon basin by fires (Borunda, 2020). Facing this situation, Latin American medicinal plant research needs to 
ensure impact in demonstrating the richness and potential of this natural resource to scientific and social sectors, whilst providing 
additional incentives to protect biodiversity.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conservation status of (A) plants in Latin America and (B) medicinal plants in Latin America currently assessed according to global 
IUCN Red List Categories and Criteria.

Medicinal use is recorded for 509 of the 13,289 Latin American species assessed for their global conservation status (IUCN, 2020), 
although those species assessed may not be a representative sample, e.g. more than one in ten those species assessed are cacti, 
a family for which all known species have been assessed. Of medicinal flora of this region, 14% are Extinct/Extinct in the Wild/
Threatened with Extinction, whereas 38% of the assessed Southern American flora are Extinct/Extinct in the Wild/Threatened with 
Extinction (see Figure above), which is consistent with the global pattern. Of the 280 fungi species currently assessed (IUCN, 2020), 
38 occur in Latin America, yet none of these are recorded as medicinal.
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laboratory conditions, can be conserved in biobanks in compliance 
with the Nagoya protocol and national legislation (Vu et al., 2019; 
Williams et al., 2020; CBD, 2020). Current prospection particularly 
focuses on endophytic (Newman & Cragg, 2020b) and sensu stricto 
marine fungi (Overy, Rämä, Oosterhuis, Walker, & Pang, 2019), but 
many other unexplored ecological niches deserve more interest, for 
example fungi associated with insects and arthropods.

Almost all clinically successful fungal-derived drugs possess 
some antimicrobial activity. Obvious examples include antibiotics 
(e.g. penicillins, cephalosporins); less obvious examples include ci-
closporin and lovastatin, which are potent antifungals, although 
their medical applications are in non-antimicrobial therapeutic 
areas (Qiao, Kontoyiannis, Wan, Li, & Liu, 2007; Yang et al., 2018). 
Many other fungal-derived drugs have antimicrobial and additional 
bioactivities (Malani, 2019; Prince et al., 2013; Yam et al., 2018). 
Research in this field offers hope for the escalating urgency to dis-
cover new antibiotics to address emerging antimicrobial drug re-
sistance. Indeed, the worryingly limited number of anti-TB agents 
has provided strong impetus for drug discovery, with fungi emerg-
ing as valuable sources of lead compounds; e.g. UT-800, which is 
derived from pleuromutilin, obtained from Pleurotus mutilus (Fr.) 
P.Kumm (Lemieux et al., 2018). Fungi yield many other compounds 
of interest for other diseases including diabetes, cancer, and cer-
tain viral infections (Hyde et al., 2019). Considering the urgency to 
address current and emerging health challenges such as the 2020 
global coronavirus (COVID-19) pandemic, and the long time-scale 
needed to discover and develop new medicines, bioactive fungal 
(and indeed plant) compounds should be investigated as potential 
pharmaceuticals as part of longer term research strategies to pro-
vide a wider repertoire of genuine therapeutic options when health 
emergencies arise.

2.3 | Status of traditional and 
complementary medicines

Global use of herbal medicines – including herbal pharmaceuticals, 
dietary supplements, and functional foods – is booming. Expanding 
at a rate of about 6% per year, global sales may reach USD 130 billion 
by 2023; the largest component, herbal pharmaceuticals, generated 
about USD 51 billion of sales in 2017 (Marketwatch, 2019). Numerous 
factors drive growth, including the rising prevalence of chronic dis-
eases, and the search for therapies where conventional ones are lack-
ing. In Europe, including the UK, the status of herbal medicines with 
a 'well-established use' was harmonized by EU Directive 2004/24/
EC, such that herbal medicinal products must have a long tradition of 
medicinal use (at least 30 years, including 15 years in the European 
Union), and must meet required standards for safety and quality; for 
the latter, products must comply with European or other relevant 
pharmacopoeia monographs, but there is no requirement for efficacy 
(European Parliament & Council of the European Union, 2004). Also 
in 2004, the United States Food and Drug Administration launched 
a 'botanicals' pipeline for drugs, which can include plant and fungal 

materials; to date, only two botanical drugs have been approved by 
this route: sinecatechins and crofelemer, from tea (Camellia sinensis 
(L.) Kuntze) and dragon's blood (Croton lechleri Müll.Arg.) respectively 
(FDA, 2016). In some regions of the world, plants and certain fungi 
are used as traditional medicines, but are often not formally regulated 
by legislation, yet the WHO aims to strengthen the role such medi-
cines play in keeping populations healthy (WHO, 2013). These forms 
of traditional medicines usually contain mixtures of compounds, and 
are thus distinguished from pharmaceutical drugs containing a single 
active ingredient (Notes S1).

Historically, herbal medicines have played a central role in the 
health systems of countries where healthcare often involves a high 
proportion of out-of-pocket expenditure and recourse to private 
markets, including for medicines. For millions living in rural areas, 
traditional healers are their main health providers and source of 
medicines. The ratio of traditional healers to population in Africa 
is 80 times that of ‘conventional’ medical doctors, while up to 4 
billion people worldwide rely on herbal medicines as a primary 
source of healthcare (Ekor, 2013; WHO, 2013). In China, herbal 
medicines represent about 40% of all healthcare services delivered 
(Ekor, 2013).

For a long time, the WHO paid little attention to herbal med-
icines. Recent global efforts to promote UHC in the face of rising 
healthcare costs and squeezed budgets, have prompted reassess-
ment. Recognizing that ‘conventional’ pharmaceuticals are unaf-
fordable and inaccessible in many places while herbal medicines are 
readily available, affordable, and culturally acceptable, has led the 
WHO toward integrating Traditional and Complementary Medicine 
(T&CM) into healthcare systems (WHO, 2013, 2019d). There is par-
ticular interest in the prevention and management of lifestyle-re-
lated chronic diseases, and in meeting the health needs of ageing 
populations. The WHO took steps to address challenges linked to 
the quality, efficacy, safety, and standardization of herbal medicines 
(see section 4.2), (WHO, 2013), pledging ‘To support Member States 
in providing safe, qualified, and effective T&CM services and their 
appropriate integration into health systems for achieving UHC and 
the SDGs (Ghebreyesus, 2019). By 2018, 64% of all WHO Member 
States had implemented national regulations on herbal medicines, 
and 34 included traditional or herbal medicines in their National 
Essential Medicines Lists (medicines that satisfy the priority health-
care needs of the population) (WHO, 2019d). To illustrate these 
challenges, the main combination therapies for malaria are based 
on artemisinin (from Artemisia annua L.) or its derivatives to improve 
patient adherence and avoid acquired drug resistance; however, 
because there is a danger that uncontrolled use of artemisinin will 
encourage malaria-drug resistance, the WHO ruled not to support 
non-pharmaceutical forms (i.e. plant material) of A. annua for malaria 
(WHO, 2012).

The increasing coexistence of traditional and conventional 
‘scientific’ approaches to medicine in healthcare systems is not 
yet mirrored in research and development efforts. Challenges in-
clude finding new ways to pool and rationally collate all available 
knowledge about the use and science of medicinal plants and fungi, 
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separating genuine efficacy from hearsay, and enabling the identifi-
cation of potential new medicines. The global demand for naturally 
derived medicines also presents existential threats to some species.

3  | THRE ATENED MEDICINAL PL ANTS 
AND FUNGI

Only six medicinal fungi are assessed on the global International 
Union for Conservation of Nature (IUCN) Red List of Threatened 
Species; of these, one is threatened: eburiko (Fomitopsis officinalis 
(Batsch) Bondartsev & Singer), now possibly extinct in Spain, while 
the Chinese caterpillar fungus (Ophiocordyceps sinensis (Berk.) G.H. 

Sung, J.M. Sung, Hywel-Jones & Spatafora), a traditional Chinese 
medicine, is Vulnerable (IUCN, 2020). This highlights the impor-
tance of fungal biobanks and the need for their more systematic 
use to preserve fungal biodiversity. Many more medicinal plants 
have been assessed, reflecting the more extensive medicinal use 
of plants globally and the significant challenges in assessing fungi 
(Nic Lughadha et al., 2020). Of the 25,906 plant species with docu-
mented medicinal use (MPNS, 2020), all species that are not hybrids 
were analysed (WCVP, 2020), leaving 25,791 species remaining for 
analysis. Of these, 5,411 (21%) are represented by assessments on 
the IUCN Red List (IUCN, 2020). Of those assessed, 723 (13%) are 
categorized as threatened. Coverage of medicinal plants by IUCN 
Red List assessments is significantly higher than for plants with no 

BOX 3 Medicinal Species in South Africa

South Africa ranks amongst the top countries worldwide in terms of frequency of medicinal plant use, with approximately 27 mil-
lion individuals relying on traditional healthcare (Chen et al., 2016). A major concern is the overharvesting and unsustainable use of 
wild medicinal plants, resulting in biodiversity loss; e.g. Encephalartos woodii Sander is extinct in the wild (Mander, 1998; Van Wyk, 
Oudshoorn, & Gericke, 2013; Williams, Victor, & Crouch, 2013). The variation seen in numbers of species traded as medicinal plants 
between 1998 (700) and 2013 (350) may be due to reduced availability of plant species (Van Wyk & Prinsloo, 2018). Trade of bulbs, 
bark, and roots is particularly destructive, especially since plants are not replaced (Mander, 1998; Van Wyk et al., 2013); approxi-
mately 86% of harvested plant parts result in death of the plant (Mander, Ntuli, Diederichs, & Mavundla, 2007). Several South African 
medicinal plants are traded at traditional markets, and many are listed on the South African Red Data List as species of concern 
(Table S3).
South African government regulations and acts aim to control the overharvesting and biopiracy of indigenous biological resources. 
Examples include the National Environmental Management: Biodiversity Act 10 (2004), the National Biodiversity Strategy and Action 
Plan, and the National Biodiversity Framework, which all comply with the Convention on Biological Diversity. The National Environmental 
Management: Protected Areas Act 57 (2003) permits access to indigenous biological resources, if harvested sustainably. While there 
is a Traditional Health Practitioners Act 22 (2007), complementary/alternative medicines are not sufficiently regulated, which per-
haps allows for overharvesting and exploitation of these resources (Street, Stirk, & Van Staden, 2008; van Wyk & Prinsloo, 2018). 

Encephalartos woodii Sander

Photo credit: Royal Botanic Gardens, Kew
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reported medicinal use (Z = 54.3, p < .001). Therefore, the odds of 
a species being assessed for the IUCN Red List more than doubles 
if that species is reported to be medicinal (2.44×, 95% CI = [2.36, 
2.52]). This increased coverage of medicinal plants can be due in 
part to targeted efforts to assess medicinal plants and taxonomic 
groups sometimes considered to be rich in medicinal plants (e.g. 
Cactaceae) for the IUCN Red List (e.g. Allen et al., 2014; Goettsch 
et al., 2015).

On average, extinction risk to medicinal plants is lower than 
for plants with no reported medicinal use (Z = −40.4, p < .001). 
The odds of a species on the IUCN Red List being assessed as 
threatened are five times lower if the species is medicinal (0.187×, 
95% CI = [0.172, 0.202]). When considering all digitally available 
global assessments using data from ThreatSearch (BGCI, 2020), 
and not only those published on the global IUCN Red List, the 
total rises to 10,673 medicinal species assessed (42%), but the 
overall patterns are broadly similar to those seen on the IUCN 
Red List (Notes S2).

Conservation risks associated with exploitation of certain me-
dicinal species are well-documented (Figure 1), so the relatively 
low mean extinction risk to medicinal plants may seem surprising 
to the general reader. However, this low mean extinction risk is 
consistent with observations over two decades that ‘weedy’ and/
or introduced species are over-represented in traditional medic-
inal floras, and that availability is a key factor in explaining this 
(Stepp & Moerman, 2001; Hart et al., 2017). Low mean extinction 
risk for medicinal plants is also consistent with the fact that weeds 
are over-represented among plants that are the sources of mod-
ern drugs (Stepp, 2004), and a more recent report notes that the 
likelihood of development of an alkaloid into a medicinal product 

is considerably influenced by the abundance of the source species 
(Amirkia & Heinrich, 2014). This latter finding also supports the 
view that access and supply constraints represent a key obstacle 
to the development of natural products by the pharmaceutical in-
dustry (Harvey, 2008).

Availability as a key factor in determining which plants are rec-
ognized to be useful as medicines goes beyond the consideration 
of weedy or introduced plants and is supported by our finding that, 
overall, medicinal plants tend to have larger native ranges than spe-
cies not reported as medicinal (W = 1.13 × 109, p < .001) (Notes S2). 
Since native range size is the strongest predictor of extinction risk 
in plants (Darrah, Bland, Bachman, Clubbe, & Trias-Blasi, 2017; Nic 
Lughadha et al., 2018), the relatively low mean extinction risk of me-
dicinal plants is less surprising. Another factor, less easily quantified, is 
great human interest in medicinal plants (Petrovska, 2012), especially 
where plants are relied upon for primary healthcare (Barata et al., 
2016). Heightened interest often results in exploitation, but it may 
also motivate sustainable management of these natural resources 
(Ghorbani, Langenberger, Liu, Wehner, & Sauerborn, 2012; Senkoro, 
Shackleton, Voeks, & Ribeiro, 2019; Terer, Muasya, Dahdouh-Guebas, 
Ndiritu, & Triest, 2012).

Research to enhance survival prospects of medicinal species 
is frequent in regions where primary healthcare relies on plants 
(Boxes 2–4). Plant conservation literature often focuses on plants 
known only from a single country (national endemics), and on 
species assessed as threatened. Medicinal plant conservation lit-
erature de-emphasizes plant endemism, often focusing on main-
taining populations of medicinal plants within national borders, 
even if they thrive better elsewhere, with an emphasis on main-
taining genetic diversity that is not explicitly captured by current 

F I G U R E  1   Threat spectrum showing 
relative importance of different threats 
reported for medicinal plant species that 
have global assessments on the IUCN Red 
List of Threatened Species (IUCN, 2020)
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extinction risk classifications (Rivers, Brummit, Nic Lughadha, & 
Meagher, 2014). Such steps may enhance the continued supply 
of valuable medicinal compounds, and may reduce biodiversity 
loss since species not considered Threatened or Near Threatened 
facing a high risk of extinction in the wild under global IUCN Red 
List criteria may nonetheless be of conservation concern, and 
attract research and timely conservation intervention. Indeed, 
one in five of the Chinese medicinal plants considered highest 
priority for conservation are not assessed to be threatened fol-
lowing IUCN Red List criteria (Huang, Zhang, & Qin, 2020; Notes 
S3; Figure S1).

4  | FUTURE DIREC TIONS TO HARNESS 
DISCOVERY, WELL-BEING AND 
CONSERVATION

4.1 | Predicting medicinal species

A fundamental, but often overlooked, obstacle complicates the use and 
conservation of medicinal plants: there are too many names applied to 
these plants and many of these names are ambiguous, employed in-
consistently through time and across different geographies (Dauncey, 
Irving, Allkin, & Robinson, 2016). The complexity and inconsistency in 

BOX 4 Medicinal Species in Ethiopia

Traditional plant remedies are important sources of therapeutics for nearly 80% of Ethiopians (Abebe & Ayehu, 1993), whilst about 
95% of traditional medicine preparations in Ethiopia are plant-derived (Demissew & Dagne, 2001; Lulekal, 2018). In Ethiopia, 1,093 
medicinal plants are documented, accounting for 18% of the country's flora, and about 3% of the medicinal plants are endemic 
(Esubalew, Belete, Lulekal, Gabriel, & Engidawork & E., Asres, E., 2017; Lulekal, 2018; Lulekal, Asfaw, Kelbessa, & Van Damme, 2012; 
Yineger, Kelbessa, Bekele, & Lulekal, 2008). Herbs (37%) represent the dominant form of Ethiopian medicinal plants, followed by 
shrubs (35%), trees (22%), and climbers (4%) (Lulekal, 2018).
About 80% of Ethiopian medicinal plants are harvested from the wild (29% for their root), with serious conservation implications 
(Lulekal, 2018). Medicinal plant harvest was reported as 56,000 tonnes per annum (Mander, Emana, Asfaw, & Busa, 2006). The most 
commonly sold Ethiopian medicinal plants include Hagenia abyssinica (Bruce) J.F.Gmel., Embelia schimperi Vatke, Ximenia americana L., 
Jatropha curcas L. and Tamarindus indica L. (Lulekal, 2018; Mander et al., 2006). There is comparatively poor documentation of Ethiopian 
medicinal fungi. Those described in the few Ethiopian ethnomycological documents include Termitomyces microcarpus (Berk. & Broome) 
R.Heim, T. clypeatus R.Heim and Laetiporus sulphureus (Bull.) Murrill (Woldegiorgis et al., 2015). Despite their value for healthcare and 
the economy, Ethiopian medicinal plants and fungi are subject to loss due to anthropogenic and environmental factors (Lulekal, 2018; 
Lulekal et al., 2012; Stévart et al., 2019). Future strategies to conserve this biodiversity could include promoting documentation 
of medicinal species and associated indigenous knowledge, in situ and ex situ conservation, and promotion of scientific research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tamarindus indica L.

Photo credit: Dr Gwilym P. Lewis
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the use of these names bedevils regulation, research, and attempts to 
count or analyse trends statistically (Allkin et al., 2017). Harmonization 
of medicinal plant (Allkin et al., 2017; MPNS, 2020) and fungal termi-
nologies will be fundamental to track past research, and to predict 
which plants and fungi will be important medicinally.

Large phylogenetic projects [e.g. Plant and Fungal Trees of Life 
(RBG Kew, 2020)] will enhance the ability to predict which plants 
and fungi potentially share chemical pathways, and thus have sim-
ilar medicinal properties. Rapid growth in available genetic data 
enables the development of an increasingly detailed picture of the 

BOX 5 Plant-based malaria therapeutics

Identification of new plant-based malaria therapeutics may be facilitated by phylogenetic approaches. These identify ‘hot zones’, 
such as Cinchoneae (Rubiaceae) and Rauvolfioideae (Apocynaceae), based on existing knowledge, thus focusing on potential active 
compounds. Some of these genera in the antimalarial ‘hot zones’, do not occur in malaria regions [e.g. Skytanthus (Apocynaceae)] 
(Flora do Brasil, 2020), so are not known by local people as potential malaria remedies (De Albuquerque et al., 2004; Silva et al., 2011). 
This makes it difficult to predict the impact of species loss on medicines, and therefore, health. As a result, many species will likely 
be lost before we know their potential medicinal value (Zhu et al., 2011).
The number of plants that have medicinal uses is under-estimated, due to the lack of ethnobotanical publications for some regions 
(Souza & Hawkins, 2017). Over 60 species used for malaria in Latin America are not cited at all in the published scientific literature, 
their use being documented only on herbarium specimen labels (William Milliken, unpublished data). Of the species used for malaria 
in Latin America, 32% are assessed on the IUCN Red List and 48% on ThreatSearch; of these, 6% and 7%, respectively, are threat-
ened, principally due to agriculture and logging.
Protecting locally threatened medicinal plants and fungi in areas where they are used may be more important than focusing on glob-
ally threatened species. This means considering plant habitats and their protection, rather than individual species. The Important 
Plant Areas criteria developed at Kew has incorporated culturally important species into site-based conservation prioritization 
(Darbyshire et al., 2017). Similarly, in malaria therapeutics, better collaboration between modern and traditional systems is also 
required (Willcox, 2011).
Meanwhile, for malaria prophylaxis, the saponin QS-21 from the soap bark tree (Quillaja saponaria Molina) is being developed as a 
vaccine adjuvant (Didierlaurent et al., 2017).

Cinchona pubescens Vahl bark

Photo credit: Laura Green/Royal Botanic Gardens, Kew
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phylogenetic distribution of medicinal species. Far from being ran-
domly distributed across the plant tree of life, genera containing 
traditionally used medicinal species show clustered patterns, which 
are also evident in the species from which clinically approved drugs 
are derived (Ernst et al., 2016; Pellicer et al., 2018; Saslis-Lagoudakis 
et al., 2012; Zhu et al., 2011). The phylogenetic clustering of species 
with medicinal uses has been explored in South American palms in 
which species with medicinal uses as a whole do not show phylo-
genetic clustering, while five of the seven different subcategories 
investigated show strong phylogenetic clustering (Cámara-Leret 
et al., 2017). Furthermore, community phylogenetic approaches to 
disentangle the potential drivers of similarity between different eth-
nofloras show that related plants from widely separated regions are 
often used for medicinal conditions in the same therapeutic areas 
(Saslis-Lagoudakis et al., 2012). These results, and the concentration 
of bioactive compounds within the clades highlighted, represent 
strong evidence to independently reveal medicinally useful spe-
cies, and thus for the potential of ethnobotanical datasets to inform 
bioprospecting.

Phylogenetic approaches at species and infraspecific levels also 
offer great potential for identifying the most appropriate sources 
for specific therapeutic molecules (Box 5). Bioprospecting in a phy-
logenetic context can also help identify appropriate alternatives to 
medicinal species under pressure from exploitation, but the fact 
that species known for their medicinal use tend to have large native 
ranges should be considered to avoid transferring pressures from 
them to more range-restricted species that may be intrinsically 
more susceptible to extinction. For example, the cytotoxic and an-
ti-tumor activities of Paris forrestii (Takht.) H.Li have led to it being 
a suggested substitute for its larger-ranged but over-exploited con-
gener P. polyphylla var. yunnanensis (Franch.) Hand.-Mazz. in tradi-
tional Chinese medicine (Wang et al., 2018). Although categorized 
as Least Concern on the global IUCN Red List (Chadburn, 2017), P. 
forrestii is assessed as Endangered within China (MEP & CAS, 2013; 
Qin et al., 2017). Nonetheless, its cultivation on a large scale is a 
factor that deems it an appropriate substitute (Wang et al., 2018). 
Phylogenetic analysis at the level of individuals and subpopulations 
within a single species may help pinpoint the factors determining 
chemical diversity within species, and thus accelerate discovery of 
medicines. In Cinchona calisaya Wedd., the most productive source 
of the antimalarial quinine, chemical diversity between individ-
uals has been demonstrated to be primarily driven by phylogeny 
(Maldonado et al., 2017).

4.2 | Future approaches for natural products 
as therapeutics

Advances in high-throughput screening, combinatorial chemistry, 
and molecular biology, and shifts in therapeutic strategies under-
pinned by the development of biological agents, combined with 
necessary legislation to protect biodiversity, have together con-
tributed to a decline in natural product drug discovery in recent 

decades (Harvey et al., 2015; Howes, 2018). Today, the role of 
plants and fungi in the development of medicines extends beyond 
revealing new active small molecules; their role in medicine is 
evolving. Drug repurposing is one approach, where drugs licensed 
for one therapeutic application are evaluated for their potential 
usefulness for others; for example, aspirin, originally based on 
salicylates from willow bark (Salix spp.) (Oketch-Rabah, Marles, 
Jordan, & Low Dog, 2019) is an analgesic, anti-inflammatory, anti-
pyretic, and anti-platelet drug, but it is now of interest for use 
in cancer therapeutics (Antoszczak, Markowska, Markowska, & 
Huczyński, 2020).

Naturally derived compounds used in pharmaceutical manufac-
ture include shikimic acid, sourced from star anise (Illicium verum 
Hook.f.), a precursor for semi-synthesis of the anti-influenza drug, 
oseltamivir (Patra et al., 2020). Future manufacturing of medicines 
could harness other plant and fungal molecules as precursors for drug 
synthesis to complement other therapeutic strategies for current 
and emerging global health challenges, such as the 2020 coronavi-
rus (COVID-19) pandemic. Furthermore, in 2003, traditional herbal 
medicines were used to help manage and contain severe acute re-
spiratory syndrome (SARS; another coronavirus) in China (Tilburt & 
Kaptchuk, 2008), although more studies are needed to further eval-
uate their observed effects, due to methodological issues with the 
clinical trials in which Chinese herbal medicines were evaluated for 
efficacy in SARS (Leung, 2007; Liu, Manheimer, Shi, & Gluud, 2004). 
In this context, the role of traditional medicines in global health chal-
lenges merits greater scrutiny, including their chemistry, pharmacol-
ogy, authentication, safety, and efficacy, with the latter evaluated in 
controlled clinical trials, to the level of standards comparable to those 
for pharmaceutical drugs.

The 'waste' or untapped potential of plants and fungi currently 
used in non-medical industries, could also yield rewards through 
provision of other molecules for medicines manufacture, and thus 
could contribute to SDG12 for sustainable management and efficient 
use of natural resources. A notable example is sisal (Agave sisalana 
Perrine): its leaves are a source of fiber used in the textile industry, 
yet the remaining waste is a source of steroidal compounds (e.g. 
hecogenin) which provides the starting material for producing around 
5% of global steroids for the pharmaceutical industry (Dauncey & 
Howes, 2020), making use of this natural resource more efficient.

5  | ADVANCES IN RESE ARCH 
TECHNOLOGY: HARMONIZ ATION FOR 
HUMANIT Y AND BIODIVERSIT Y

5.1 | Discovering molecules from nature

Limitations in analytical chemistry and computing technologies 
required for dereplication of complex plant and fungal extracts 
(to eliminate compounds previously studied) have been barri-
ers for drug discovery. Recent advances are resulting in striking 
changes. Community-wide contributions to data annotation (Wang 
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et al., 2016) enable rapid identification and discovery of natural 
products. Dereplication through molecular networking has emerged 
as such a means for rapid compound identification in complex mix-
tures through visualization of tandem mass spectra (MS/MS) data; 
the largest repository and data analysis tool for this approach is 
the Global Natural Products Social Molecular Networking (GNPS) 
(Quinn et al., 2017; Wang et al., 2016). Advances in mass spectrome-
try (MS) imaging, such as matrix assisted laser desorption ionization 
(MALDI-MS), desorption electrospray ionization (DESI-MSI), and 
laser ablation electrospray ionization (LAESI-MS) have expanded 
capabilities for in situ analyses of samples (Jarmusch & Cooks, 2014). 
Furthermore, applications of a droplet probe coupled to ultraper-
formance liquid chromatography-photodiode array-high resolution 
tandem mass spectrometry (UPLC-PDA-HRMS/MS) has enabled 
chromatographic separation of micro-extracts derived from her-
barium specimens without damaging them (Kao, Henkin, Soejarto, 
Kinghorn, & Oberlies, 2018).

Advances in nuclear magnetic resonance (NMR) spectroscopy 
include the Metabolomics and Dereplication by Two-dimensional 
Experiments (MADByTE) tool, which leverages heteronuclear sin-
gle quantum coherence (HSQC) spectroscopy and total correlated 
spectroscopy (TOCSY) data to construct spin systems of a com-
pound, and uses these features to generate association networks 
for analyses (Egan & Linington, 2019). In addition to applications of 
these new analytical techniques in drug discovery initiatives, explo-
ration of plant metabolite diversity has also proven useful to phy-
logenetic and evolutionary studies within genera and across larger 
groups of angiosperms (Ernst et al., 2019; Henz Ryen & Backlund, 
2019). Beyond advances in mass spectrometry and nuclear mag-
netic resonance, emerging technologies that unite the strengths of 
X-ray crystallography with electron microscopy are enabling crystal 
structures of tiny quantities of certain natural products in mixtures 
to be determined. A recent application of electron cryo-microscopy 
and microcrystal electron diffraction demonstrated the utility of 
this technique in structural determination of heterogeneous mix-
tures of natural products (Jones et al., 2018). Leveraging this and 
other advancing chemical technologies offers great potential to ob-
tain rapid analytical data from small (<1 mg) samples.

Never before have plant and fungal natural products been 
more accessible for scientific study. Government funded science 
agencies are availing their resources to scientific partners for in-
vestigation; e.g., the USA's National Cancer Institute (NCI) Program 
for Natural Product Discovery Prefractionated Library includes 
over 150,000 fractions of natural products available to scien-
tists (Thornburg et al., 2018). This library integrates biodiversity 
breadth and chemical diversity, with the full collection covered by 
existing ethical bioprospecting agreements. Combined with bet-
ter access to taxonomically diverse collections of plants and fungi 
(Paton et al., 2020), large chemical repositories of natural products, 
and robust ethical guidance for cultural data and plant genetic re-
sources, these recent advances in analytical chemistry could sup-
port finding new chemical blueprints for drug development across 
many fields of medicine.

5.2 | Advances in the biosynthetic pathways of 
medicinal molecules

The elucidation of biosynthetic pathways, combined with engi-
neered fungal/plant/bacterial cell factories, offer new strategies to 
produce bioactive compounds while preserving biodiversity. Linking 
biosynthetic genes to bioactive molecules is now possible, due to 
an increasing number of available genomes and transcriptomes, and 
the use of heterologous hosts (e.g. Aspergillus oryzae (Ahlb.) Cohn 
and yeast: Saccharomyces cerevisiae Meyen ex E.C. Hansen) (Harvey 
et al., 2018; Skellam, 2019). Such a strategy is commonly used in fun-
damental research and is promising for large-scale industrial produc-
tion (Hyde et al., 2019; Steiniger et al., 2017).

Genomic and biotechnological advances make fungal fermenta-
tion-based processes ideal to produce bioactive compounds from fungi 
and plants (Pyne, Narcross, & Martin, 2019). Yeast cell factories enable 
production of medicinally valuable plant alkaloids (Galanie et al., 2015; 
Srinivasan & Smolke, 2019), steroids (Rieck et al., 2019), and coumarins 
(Zhao et al., 2019). A successful example of this approach is the het-
erologous expression of the precursor artemisinic acid in yeast, with 
yields appropriate for industrial-scale production; it can be converted 
to the antimalarial artemisinin using a chemical source of singlet oxy-
gen (Paddon et al., 2013). Similarly in yeast, biosynthesis of the opium 
alkaloid cough suppressant noscapine was reconstructed using over 
30 genes from plants, bacteria, mammals and fungi (Li et al., 2018). 
Combining biosynthetic genes from different pathways in the same 
fungal host has also successfully produced new compounds with dif-
ferent or enhanced activities (Srinivasan & Smolke, 2019; Steiniger 
et al., 2017). Global demand for the herbal medicine rhodiola (Rhodiola 
rosea L.) and its compound salidroside, has resulted in this species 
and some varieties being threatened (BGCI, 2020). Elucidation of the 
salidroside biosynthetic pathway enabled its heterologous production 
in yeast and tobacco plants, offering future sustainable salidroside 
production (Torrens-Spence, Pluskal, Li, Carballo, & Weng, 2018). 
These examples illustrate the power of synthetic approaches to recon-
struct biosynthetic pathways of bioactive compounds, with potential 
to reduce exploitation of natural resources. While engineered yeast 
has been used to produce bioactive compounds, the use of filamen-
tous fungi such as Aspergillus species may be more promising as these 
fungi are already good secondary metabolite producers and they can 
accommodate genes from different organisms in order to produce 
compounds of interest (Frandsen et al., 2018). Mosses are also being 
developed as ‘cell factories’ for the production of plant compounds, 
with the obvious advantage of being more closely related to vascular 
plants (Reski, Parsons, & Decker, 2015).

Plant biosynthetic pathways for specialized metabolites are 
usually long and highly branched; their regulation is controlled by 
multiple regulatory elements, which are often poorly understood. 
Recent elucidation of the vinblastine pathway (Caputi et al., 2018; 
Qu et al., 2018; Tatsis et al., 2017) resulted in a paradigm shift in 
understanding specialized metabolism. Based on this example, 
the metabolic pathways of other indole alkaloids have been elu-
cidated, including ibogaine (Farrow et al., 2018, 2019) from iboga 
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(Tabernanthe iboga Baill.), which has been studied for its effects on 
drug addiction (Dauncey & Howes, 2020), and the antiarrhythmic 
ajmaline (Dang et al., 2018; Dang, Franke, Tatsis, & O'Connor, 2017) 
from snakeroot (Rauvolfia serpentina (L.) Benth. ex Kurz). These stud-
ies lay new foundations for future developments in synthetic biology 
applications, especially to uncover metabolic pathways for medici-
nallScy important indole alkaloids such as the antimalarial quinine.

Himalayan mayapple (Podophyllum hexandrum Royle) contains 
higher levels of podophyllotoxin than the American mayapple (P. pel-
tatum L.) so is the preferred source of this lignan for semi-synthesis of 
anticancer drugs (e.g. etoposide) (Howes, 2018). However, trade in P. 
hexandrum is restricted (CITES, 2019) because wild populations are 
under threat. Elucidation of the genes responsible for podophyllotoxin 
biosynthesis and reconstitution of the metabolic pathway in Nicotiana 
benthamiana Domin. opens new horizons for sustainable production 
in plants (Lau & Sattely, 2015; Schultz et al., 2019) or fungi. Production 
of bioactive compounds in engineered fungal strains is very appealing 
for sustainability and safety. The use of engineered food-grade fungi 
(e.g. Aspergillus oryzae) addresses the issue of wild-type fungi produc-
ing hazardous mycotoxins during fermentation (Marič et al., 2019). 
Producing new bioactive compounds in fungal ‘cell factories’ still re-
quires significant efforts to become more widespread and economi-
cally viable. One key challenge is to develop tools to allow accurate 
prediction of biosynthetic pathways and enzyme specificities. A more 
cost-effective approach could also be to integrate this knowledge into 
semi-synthesis strategies that combine precursors produced by fer-
mentation with chemical modifications (Sandargo et al., 2019).

6  | CONCLUSION

The future of therapeutics from nature is evolving as new challenges 
to human health and to biodiversity arise. Scientific evaluation of 
plants and fungi for their medicinal or other uses can demonstrate 
their value, providing additional incentives to protect global nat-
ural capital. In 2019, 1,955 and 1,886 new species of plants and 
fungi, respectively, were reported (Cheek, 2020); some may yield 
compounds useful to humanity (Cheek et al., 2018). Despite these 
discoveries, and the success of natural product drug discovery to 
provide essential pharmaceuticals, the full potential of the world's 
biodiversity remains heavily underexplored in the search for new 
medicines, and in the formation of strategies for our health and 
well-being. Advances in science and technology provide future op-
portunities to discover new molecules from nature, a plethora of 
metabolic pathways for their synthesis, and more sustainable ways 
to source them, underpinning potential solutions for global health 
challenges. These strategies, using biodiversity for inspiration, pro-
vide hope for increasing yields and safeguarding supplies of valu-
able medicines in the future.
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