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s u m m a r y

An intercomparison of different approaches for the construction and calibration of lumped conceptual
rainfall-runoff models is made based on two case studies with unrelated meteorological and hydrological
characteristics located in two regions, Belgium and Kenya. While a model with pre-fixed ‘‘one-size-fits-
all’’ model structure is traditionally used in lumped conceptual rainfall-runoff modeling, this paper shows
the advantages of model structure inference from data or field evidence in a case-specific and step-wise
way using non-commensurable measures derived from observed series. The step-wise model structure
identification method does not lead to higher accuracy than the traditional approach when evaluated
using common statistical criteria like the Nash–Sutcliffe efficiency. The method is, however, favorable
to produce a well-balanced calibration obtaining accurate results for a wide range of runoff properties:
total flows, quick and slow subflows, cumulative volumes, peak flows, low flows, frequency distributions
of peak and low flows, changes in quick flows for given changes in rainfall. It furthermore is shown that
model performance evaluation procedures that account for the flow residual serial dependency and
homoscedasticity are preferred. Explicit evaluation of model results for peak and/or low flow extremes
and changes in these extremes make the models useful for impact investigations on such hydrological
extremes.

� 2014 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Rainfall-runoff modelers have to face problems of data limita-
tion. As a consequence of this limitation, they have to cope with
several difficulties in model calibration. These include problems re-
lated to model overparameterization, model parameter identifica-
tion, and – when existing modeling softwares are applied – the
validity of pre-defined process conceptualizations (Gupta and
Sorooshian, 1983; Beven, 1993; Jakeman and Hornberger, 1993;
Uhlenbrock et al., 1999; Perrin et al., 2001; among many others).
There are several researchers who recently proposed solutions to
meet one or more of these difficulties. Solutions range from the
use of parsimonious conceptual models (to overcome the identifi-
cation problem) to flexibility in setting the model structure (in-
stead of using a pre-fixed model structure), the use of automated
calibration methods and advanced or multiple objectives. Klemeš

(1983), Sivapalan et al. (2003) and Savenije (2009) are among the
authors who explain why ‘‘top-down’’ or ‘‘downward’’ methods
can compare favourably with the traditional approach based on
parameter optimization of a given model with pre-fixed model
structure. In top-down or downward methods, the model structure
is adjusted or inferred from data or from field evidence. The use of
multiple working hypotheses for testing of model alternatives was
also promoted by Clark et al. (2011). Recent developments in this
direction include the flexible box models of Wagener et al.
(2001) and the modular approach by Fenicia et al. (2006, 2007).
Other researchers developed advanced automated numerical
parameter optimization methods (e.g. Duan et al., 1992; Vrugt
et al., 2003) and/or calibration strategies based on multi-objectives
where tradeoffs are made among different criteria (e.g. Gupta et al.,
1998; Yapo et al., 1998; Boyle et al., 2000; Madsen, 2000; Madsen
et al., 2002; Zhang et al., 2010). One of the challenges in this re-
spect is the integration of ‘‘soft’’/‘‘qualitative’’ data or expert
knowledge in the model building and calibration process. Seibert
and McDonnell (2000) proposed to include expert knowledge as
soft data in automatic calibration procedures by means of fuzzy
measures of model performance. Also Bormann (2011) used soft
data (in the form of knowledge on surface shaping of a catchment)
to verify and revise model parameterization. Question remains
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how far one should go in including such expert knowledge, given
that it is subjective, hence difficult to objectify. Interesting is the
conclusion by Madsen et al. (2002) that the use of generic search
algorithms where user intervention is required only for the defini-
tion of appropriate multi-objective numerical measures compare
favourably with methods that require more user intervention
and include subjective rules for trading off objectives.

This paper contributes to the above mentioned research
challenges on the use of a top-down approach, the use of (tradeoff
between) multiple objectives and the optimal use of expert knowl-
edge. It starts from the approach presented by Willems (2014).
This is a top-down approach to set a parsimonious lumped concep-
tual rainfall-runoff model based on a multi-step model structure
identification and calibration process. The approach aims to obtain
a model valid for unbiased simulation of hourly or daily rainfall
runoff for different components of flow and time scales that makes
it applicable for studying hydrological extremes. In Willems (this
isue), the approach was presented and demonstrated for a case
study (Molenbeek river, Dender basin) in Belgium. Although the re-
sults were accurate for that case study, and several advantages of
the method postulated, comparison was not made with other
methods. In this paper, the added value of the method is quanti-
fied. It is tested whether the step-wise model identification and
calibration procedure has advantages in comparison with tradi-
tional approaches that involve model calibration of all parameters
(of a pre-fixed model structure) based on overall goodness-of-fit
optimization. In addition, the use of multiple objectives and the
importance to account for the statistical assumptions and require-
ments on independency and homoscedasticity of the model resid-
uals is tested. This is done for two case studies in two regions with
highly different meteorological and hydrological characteristics:
the catchment of the Grote Nete river in Belgium, and the catch-
ment of the Nyando river in the upper Nile basin in Kenya.

The paper is organized as follows. Section 2 outlines the meth-
ods applied for testing the added value of the various aspects of the
approach by Willems (2014). Section 3 introduces the two study
catchments, followed by Section 4 with the results of the methods
applied to these two catchments. Final conclusion and discussions
are provided in Section 5.

2. Methods

2.1. Step-wise model identification and calibration

The top-down procedure for lumped conceptual rainfall-runoff
model building presented by Willems (2014) is hereafter denoted
‘‘VHM approach’’, according to a Dutch abbreviation. The final
rainfall-runoff model obtained by that procedure is called VHM
model.

The different VHM submodel process equations are identified
and calibrated based on multiple subsets of non-commensurable
information derived from river flow series by means of a number
of sequential time series processing tasks. These include separation
of the hourly or daily river flow series into subflows, split of the
series in nearly independent quick and slow flow hydrograph peri-
ods, and the extraction of approx. independent peak and low flows.
Next to the separate identification of the subflow recessions and
related routing submodels, equations describing quick and slow
runoff sub-responses and soil water storage are derived from the
river flow and rainfall time series data. The model building and cal-
ibration, moreover, account for the statistical assumptions and
requirements on independency and homoscedasticity of the model
residuals. Model performance evaluation is based on peak and slow
flow volumes as well as extreme high and low flow statistics, fol-
lowing the method of Willems (2009).

Whereas the final number of model parameters depends on the
model structure identification process, the model structures
obtained for the case studies in Willems (2014) and in this paper
involve 24 calibration parameters among which 21 model param-
eters and 3 initial conditions. They can be split in four groups based
on the four VHM submodels: the storage submodel, the overland
flow submodel, the interflow submodel and the routing models.

While full details on the VHM approach can be found in
Willems (2014), a summary is provided hereafter.

In the first step, the (soil water) storage submodel is identified.
An equation is fitted to the empirically derived relationship be-
tween the event-based fraction of rainfall contributing to storage
and the relative storage level (relative soil saturation level). Events
are defined by splitting the observed river flow time series in ap-
prox. independent flow hydrographs based on hydrological inde-
pendence criteria. For each of these events, the rainfall fraction
contributing to storage can be empirically computed as the rest
fraction after subtracting the observed event-based river flow
volume and evapotranspiration volume from the rainfall model
input volume. The temporal variations in storage volume can be
empirically assessed by cumulating in time the event-based rain-
fall fractions contributing to storage and subtracting the evapo-
transpiration volumes. In the case studies, linear or exponential
relationships were identified between the time-variable rainfall
fraction to storage (fU) and the storage level u:

fU ¼ aU;1 þ aU;2
u

umax
in case of a linear model ð1Þ

fU ¼ aU;1 exp aU;2
u

umax

� �aU;3
� �

in case of an exponential model

ð2Þ

The (actual) evapotranspiration (ea) is assessed from the poten-
tial evapotranspiration (ep) model input. In the case studies, the
following parsimonious linear relationship between ea and ep was
considered:

ea ¼
u

uevap
ep when u < uevap and ea ¼ ep otherwise ð3Þ

The storage submodel thus involves 4 or 5 calibration parame-
ters aU,1, aU,2, aU,3, umax and uevap and 1 initial condition for the stor-
age u, hereafter denoted as uini. Model parameters are calibrated by
optimizing simulated versus empirical event-based storage vol-
umes, after BC transformation (see Section 2.2) to account for the
heteroscedasticity in the volume residuals. This can be done visu-
ally in the scatterplot of simulated versus empirical values after BC
transformation, or numerically by minimizing the mean squared
residual value.

In the second step, the submodel for the ‘‘quickest flow’’ sub-
flow component is identified. This submodel is hereafter called
overland flow (OF) submodel because it is expected that the quick-
est flow for most catchment consists for a large fraction of the
overland flow (surface runoff). Two main conceptual processes
are considered: overland flow by saturation excess and by
infiltration excess. The saturation excess submodel is identified
by analyzing the type of relationship between the event-based
fraction of rainfall contributing to overland flow and the relative
storage level (relative soil saturation level). The temporal
variations in relative storage level are obtained in the first step,
while the event-based fractions of rainfall contributing to overland
flow are empirically assessed from the event-based overland flow
volumes. The latter volumes are derived from the split of the
observed river flow series in overland flow, interflow and slow flow
components using a numerical filter technique.
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In the case studies, exponential relationships were identified for
the overland flow saturation excess submodel:

fOF ¼ aOF;1 exp aOF;2
u

umax

� �
ð4Þ

where fOF is the time-variable rainfall fraction to overland flow.
In a next step it is tested whether the infiltration excess process

can the identified from the available data. This is done by testing
whether the fOF residuals (after considering the overland flow sat-
uration excess process) depend on the antecedent rainfall s. In the
case studies, a power relationship (or a linear relationship in a log–
log scale) was identified for the overland flow infiltration excess
submodel:

lnðfOFÞ � ln aOF;1 exp aOF;2
u

umax

� �� �
¼ aOF;3 lnðsÞ or :

f OF ¼ aOF;1 exp aOF;2
u

umax

� �
saOF;3 ð5Þ

The overland flow submodel thus involves 3 calibration param-
eters (when infiltration excess is included; 2 if it is excluded) aOF,1,
aOF,2, aOF,3 and the antecedent period sp,OF for calculation of the
antecedent rainfall. These parameters are calibrated by optimizing
event-based simulated versus empirical (i.e., filter based) overland
flow volumes, after BC transformation.

In the third step, the interflow (IF) submodel is identified along
similar lines as the overland flow submodel. It involves 4 calibra-
tion parameters (when infiltration excess is included) aIF,1, aIF,2,
aIF,3 and the antecedent period sp,IF for calculation of the anteced-
ent rainfall s:

fIF ¼ aIF;1 exp aIF;2
u

umax

� �
saIF;3 ð6Þ

When infiltration excess is excluded, aOF,3 is zero.
The rainfall remaining (the rainfall that does not contribute to

storage, hence evapotranspiration, or overland flow, or interflow,
will contribute to the slow flow (SF) runoff component. Opposed
to the SF, the sum of the overland and interflow is hereafter de-
noted quick flow (QF).

In the final step, the routing submodels for slow flow, interflow
and overland flow are based on the linear reservoir equation with
reservoir constants kSF, kIF and kOF. These constants are estimates as
part of the subflow separation (filter) process (see Willems, 2009).
Initial conditions for these reservoirs are the initial slow flow and
the initial interflow. Also these are assessed as part of the subflow
separation process. The initial overland flow could in the case stud-
ies be taken zero.

2.2. Model performance evaluation

Overall hydrological model performance is traditionally evalu-
ated by the Nash–Sutcliffe (NS) model efficiency (Nash and
Sutcliffe, 1970) or by the root mean squared error (RMSE) of model
residuals. They represent the combined effect of the model bias
(mean model residual error, ME) and the model random uncer-
tainty (standard deviation of model residual errors). The NS or
RMSE statistic has the disadvantage that it does not account for
the heteroscedasticity of the model residuals and the serial depen-
dence of the model residuals (Vrugt et al., 2005; Neumann and
Gujer, 2008; Willems, 2009), whereas rainfall-runoff model resid-
uals often have a temporal correlation structure and are often
non-stationary (Mantovan and Todini, 2006). The importance to
consider the heteroscedasticity and serial dependence of the model
residuals when defining objective functions has been shown before
by several authors (e.g. Sorooshian and Dracup, 1980; Sorooshian,
1981; Xu, 2001; Kelly and Krzysztofowicz, 1997; Montanari and

Brath, 2004; Vrugt et al., 2005; Mantovan and Todini, 2006;
Neumann and Gujer, 2008; Kavetski et al., 2011). Other
disadvantages of the classical NS or RMSE statistics are that they
may be strongly influenced by potential time shifts between the
simulated and observed runoff values, whereas small time shifts
may not pose a problem. It moreover may be useful that next to
the accuracy of the total runoff flows, also the runoff subflows
are evaluated, as well as the model performance for different
subperiods or flow conditions (Boyle et al., 2000; Madsen, 2000;
Madsen et al., 2002; Wagener et al., 2001; Willems, 2014).

To meet the above-mentioned disadvantages of the classical NS
or RMSE statistics and recommendations, the model performance
is in this study evaluated following the guidelines proposed by
Willems (2009):

– Apply a Box-Cox (BC) transformation (BCðqÞ ¼ qk�1
k ; Box and Cox,

1964) to the observed and simulated runoff flows q, such that
the RMSE of the model residuals becomes approximately con-
stant or independent on the runoff value (homoscedastic resid-
uals). This transformation can – depending on its parameter
value k – cover a wide range of weak to strong transformations.
The parameter k needs to be calibrated in order to reach homo-
scedasticity in the model residuals.

– Select approx. independent values from the runoff series. This is
done by splitting the runoff series in quick and slow flow
events, using independence criteria, as explained in Willems
(2009; 2014). These criteria are the independency period
p, the fraction f and the minimum peak height qlim. Two subse-
quent peak events are considered nearly independent when (i)
the time span of the decreasing limb between the two peaks is
larger than p, (ii) when the runoff drops down – in between the
two events – to a value lower than a fraction f of the highest of
the two peak flows, and (iii) the highest of the two peak flows is
higher than qlim. After splitting the runoff series in events, one
value is selected from each event (e.g. the peak flows defined
as the maximum flows during the quick flow events, the low
flows as the minima during the slow flow events, the event-
based runoff volumes). This method moreover allows evalua-
tion of the peak flows, low flows and event volumes.

– Separate the observed flow values in the quick, inter and slow
runoff components using the numerical filter method presented
in Willems (2009; 2014). This separation is based on the
recession constants of the subflows that are estimated from
the observed flow series (kOF for overland flow, kIF for interflow,
kSF for slow flow), and estimates of the mean long-term frac-
tions of the quick flow over the total flow (wQF) and of the over-
land flow over the quick flow (wOF). The subflow separation
results allow individual evaluation of the model subflow results.

Based on these guidelines, the model goodness-of-fit statistics
of Table 1 are computed in this study.

For the peak flows, next to their evaluation at the model simu-
lation time step, flow – duration – frequency (QDF) relationships
are also checked. The following steps are applied to derive these
QDF relationships based on the observed and simulated runoff
series:

– Repeat the following steps for a set of aggregation times.
– The time series are aggregated using a moving average proce-

dure (length of the moving window is the aggregation time).
– The aggregated series are split in independent quick flow events

and independent peak flows are extracted from the series (using
the same procedure as discussed before).

– Statistical extreme value analysis is carried out on the extracted
peak flows. An extreme value distribution is calibrated to the
peak flows.
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– Obtain peak flows for given return periods (empirical or based
on the calibrated distribution).

The following aggregation levels are considered in this study: 1,
6, 12, 24, 72, 120, 240 and 360 times the simulation time step.
Given that the peak flows correspond to a partial-duration-series,
the standard Generalized Pareto Distribution (GPD) is calibrated
to the data. The calibration is done based on the method of
weighed regression in Q–Q plots (Willems et al., 2007). After
calibration of the GPDs to the data for all aggregation times,
relationships are fitted between the distribution parameters and
aggregation time. This is done using the method presented in Taye
and Willems (2011).

2.3. Evaluation of the VHM approach

The VHM top-down approach is different from classical ap-
proaches for lumped conceptual rainfall-runoff modeling in the
following four main aspects:

(1) The model equations are not pre-defined, but identified in a
case-specific way. Model assumptions thus are tested explic-
itly based on empirical data.

(2) Model calibration is done in a step-wise way. Subsets of
model parameters (related to individual model component
or submodels) are identified and optimized based on subsets
of additional information derived from the time series pro-
cessing results.

(3) Model calibration is based on a model performance evalua-
tion procedure that accounts for the influence of serial flow
dependency and flow residual heteroscedasticity.

(4) Model performance evaluation explicitly involves testing the
accuracy of peak and slow flow volumes as well as extreme
high and low flow statistics, such that the model becomes
applicable for simulation and analysis of hydrological
extremes.

In order to evaluate the added value of these four features of the
VHM approach, comparison is made with a number of traditional
lumped conceptual modeling and model calibration methods.
The four aspects above mentioned are evaluated as follows:

(1) Comparison is made with a traditional approach where
modeling software with pre-defined model equations is
applied. This is done for two models, NAM and PDM, which

are commonly applied in the hydrological and water engi-
neering practice and literature world wide, often in combi-
nation with the hydrodynamic river modeling software
MIKE11 (for NAM; DHI, 2007) and InfoWorks-RS (for PDM;
Innovyze, 2011). In Flanders, these two softwares are
applied as standard in support of river management and
engineering. Section 2.4 gives a description of the NAM
and PDM model structures and shows how these differ/com-
pare with the VHM concept.

(2) Comparison is made of the VHM step-wise model calibration
method with the traditional method where all model param-
eters are calibrated in a single overall model optimization
step by means of numerical optimization.

(3) The objective function considered for the numerical optimi-
zation in (2) is changed to study the influence of the serial
flow dependency and flow residual heteroscedasticity.

(4) Model performance evaluation is compared after changes to
the objective function to include/exclude model goodness-fit
criteria for peak and low flows and/or cumulative flow
volumes.

These evaluations can be seen as a sensitivity analysis of results
to the assumptions and choices made in the VHM approach.

2.4. Comparison of NAM, PDM and VHM model structures

Details on the NAM model can be found in DHI (2007), Madsen
(2000) and Nielsen and Hansen (1973). The Probability Distributed
Model (PDM) has been developed by the Centre for Ecology and
Hydrology (Moore, 1985, 2007). Brief descriptions of both model
structures are hereafter given. Note that we did not follow the ori-
ginal descriptions and symbols used by the model developers, but
that we converted these to equations and parameter symbols that
are similar to the ones used for VHM. This would allow easy com-
parison between the different model concepts and structures. In
Fig. 1, the NAM and PDM model structure have been converted
to a representation similar to the one used for VHM.

The NAM model considers two storage reservoirs: surface stor-
age s (with storage capacity smax) and soil water storage u (capacity
umax). The surface storage reservoir is filled by rainfall input (areal
catchment rainfall) and emptied by potential evapotranspiration ep

and by reservoir throughflow ci (contribution to interflow). When
the surface storage capacity is exceeded (s > smax) the surface reser-
voir overflow volume is separated into a contribution cs to overland
flow and a contribution to infiltration. The separation between

Table 1
Statistics considered for the model performance evaluation.

Statistic Description Type of evaluation

NS-TF Nash–Sutcliffe model efficiency based on
total runoff flows

Simulated versus observed flows

NS-SF Nash–Sutcliffe model efficiency based on
baseflows

Simulated versus filter-based flows

NS-IF Nash–Sutcliffe model efficiency based on
interflows

Simulated versus filter-based flows

NS-OF Nash–Sutcliffe model efficiency based on
overland flows

Simulated versus filter-based flows

NS-QF Nash–Sutcliffe model efficiency based on
quick flows

Simulated versus filter-based flows

WB-TF Water balance error on total runoff flows Simulated versus observed flows; water balance error computed as the relative error based on the cumulative
volumes over the full simulation period

WB-SF Water balance error on baseflows Simulated versus filter-based flows
WB-IF Water balance error on interflows Simulated versus filter-based flows
WB-OF Water balance error on overland flows Simulated versus filter-based flows
PFE Peak flow mean squared error based on

total runoff flows
Simulated versus observed flows, after BC-transformation with k = 0.25

LFE Low flow mean squared error based on
total runoff flows

Simulated versus observed flows, after BC-transformation with k = 0.25
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these two is time variable and depends on the overland runoff
coefficient fs, which in a linear function of the relative soil satura-
tion level u/umax:

fs ¼ /
u

umax
ð7Þ

where u is the overland runoff coefficient during maximum soil
saturation.

NAM provides the option to consider a threshold value utr,s for
the soil water storage, below which the overland flow becomes
zero. In that case, Eq. (7) is changed as follows:

fs ¼ /
u� utr;s

umax � utr;s
ð8Þ

The soil storage reservoir is filled by the contribution cu to soil
storage and emptied by actual evapotranspiration ea, which is a
fraction of ep, depending on the relative soil saturation level:

ea ¼
u

uevap
ep ð9Þ

The separation between the contribution to soil storage and the
contribution cg to groundwater percolation is time variable and de-
pends on the groundwater runoff coefficient fg, which also is a lin-
ear function of u:

fg ¼
u� utr;g

umax � utr;g
ð10Þ

The threshold value utr,g is the soil water storage below which
the groundwater runoff becomes zero.

The contribution to soil storage is calculated as rest fraction:

cu ¼ csþgþu � cs � cg ð11Þ

The overland flow ys is obtained after routing of cs through two
linear reservoirs in series, with recession constants ks,1 and ks,2. The
inflow yi is produced by routing of ci through the two overland flow
routing reservoirs, where ci is the outflow from the surface storage
reservoir with recession constant ki reduced by a fraction fi that lin-
early depends on u:

fi ¼
u� utr;i

umax � utr;i
ð12Þ

where utr,i is the threshold value for the soil water storage below
which the interflow becomes zero.

The slow flow or baseflow yg is finally obtained by routing of cg

through a third groundwater reservoir with recession constant kg.
While VHM and NAM consider one single (lumped) soil storage

reservoir, PDM considers a probability distribution to represent the
spatial variability in soil storage capacity. A collection of storage
reservoirs is considered (for different parts of the catchment) each
with their own storage capacity. However, after assuming a spe-
cific type of probability distribution, and after some recalculations
of the PDM model equations, we show below that the general PDM
model structure does not differ that strong from VHM and NAM.

The basic version of PDM only considers two subflows: quick
and slow flows. In an initial PDM model step, actual evapotranspi-
ration ea is subtracted from the rainfall input. This ea depends (as
was the case also for VHM and NAM) on the potential evapotrans-
piration ep and the soil saturation level, but using a non-linear
power equation with exponent be:

ea ¼ ep 1� umax � u
umax

� �be
 !

ð13Þ

Note that when be = 1 this evapotranspiration model becomes
equal to the one used in NAM.

From the effective rainfall x-ea, one part will contribute to quick
flow, while the other part will contribute to soil storage. Both the
contributions to quick and slow flow, c1 and c2, depend on the soil
saturation level. The remaining rainfall fraction will contribute to
soil storage, hence this last fraction will close the water balance.

The groundwater recharge depends on the soil storage by
means of a power law:

c2 ¼
1
kg
ðu� utr;gumaxÞbg ð14Þ

Please note that this equation approaches a linear reservoir
model for bg = 1, while it represents a non-linear reservoir for
bg<>1. The parameter kg is the groundwater recharge recession
constant, and utr,g a threshold value for the soil storage below
which the groundwater recharge becomes zero. Such threshold va-
lue is also considered in NAM.

After subtraction of the actual evapotranspiration and the
groundwater recharge from the rainfall input, the rainfall part
remaining can be calculated:

c1þu ¼ x� ea � c2 ð15Þ

Fig. 1. Model structures of NAM (left) and PDM (right).
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of which a fraction f1 contributes to quick flow:

c1 ¼ c1þuf1 ð16Þ

The relationship between this fraction f1 and the soil storage de-
pends on the type of probability distribution representing the spa-
tial variability in soil storage capacity cp. For the Pareto
distribution, which is frequently used (also for the study catch-
ments in this paper), the following relationship is considered:

f1 ¼ 1� cp;max � cp

cp;max � cp;min

� �b

; or; when cp;min ¼ 0 :

f 1 ¼ 1� 1� cp

cp;max

� �b

ð17Þ

For that Pareto distribution, the following relationship exists
between cp and the lumped soil storage capacity umax considered
in NAM and VHM:

c ¼ cmax 1� 1� u
umax

� � 1
bþ1

 !
ð18Þ

cp;max ¼ umaxðbþ 1Þ ð19Þ

For the quick flow routing, two linear reservoirs in series are ap-
plied (recession constants kQF,1 and kQF,2) together with additional
time shift to the runoff results. For the slow flow routing, one linear
reservoir is considered (recession constant kSF).

2.5. Calibration strategies

The NAM and PDM models are in this study calibrated using a
manual calibration method that approaches the VHM calibration
method as close as possible. This means that the model simulation
results are optimized based on the model performance evaluation
approach described in Section 2.2. For the VHM model, the individ-
ual submodel equations are identified and calibrated using the
step-wise method outlined in Section 2.1. Question raises whether
an additional step where (after the initial step-wise calibration) all
model parameters are fine-tuned based on overall model perfor-
mance statistics would be useful (for the entire model, or for each
of the different submodels). Additional question raises on the
added value of the step-wise calibration and the consideration of
the heteroscedasticity and temporal serial dependence properties.

To answer these questions, the following parameter calibration
strategies were applied to the identified VHM model structure and
the model results compared:

� CAL1: Step-wise manual calibration by visual inspection of model
results, presented in Willems (2014) and outlined in Section 2.1.
� CAL2: Step-wise calibration with fine-tuning of the model

parameters by numerical optimization in each step (for each sub-
model). In each step (storage submodel, overland flow submodel,
interflow submodel), five or six parameters are optimized. The
objective function considered is the MSE of simulated versus fil-
ter-based volumes of storage, overland flow or interflow (event-
based and after BC-transformation with k = 0.25).
� CAL3: No step-wise approach. Overall calibration of all model

parameters by numerical optimization. NS-TF is considered as
objective function.
� CAL4: Idem CAL3 but WB-TF considered as objective function

instead of NS-TF.
� CAL5: Idem CAL3 but PFE considered as objective function

instead of NS-TF.
� CAL6: Idem CAL3 but objective function based on NS-TF, WBE

and PFE. The three statistics are as follows combined, using
the weighing factors of Table 5.

NS weight
1þ jðNS-TFÞ � 1j þ

WB weight
1þ jWB-TFj þ

PFE weight
1þ jPFEj ð20Þ

� CAL3b: Idem CAL3 but NS-TF calculated after BC-transformation
with k = 0.25.
� CAL3c: Idem CAL3 but NS-TF calculated based on peak flows

only.
� CAL3d: Idem CAL3 but NS-TF calculated based on peak flows

only, and after BC-transformation with k = 0.25 (this means
combining CAL3b and CAL3c).

For the numerical optimization in CAL3, CAL4, CAL5 and CAL6,
the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA)
of Vrugt et al. (2003) was applied. This algorithm consists of an
adaptive and evolutionary Markov Chain Monte Carlo sampler that
operates with a population of sample points divided into sub com-
plexes spread out over the feasible parameter space. By means of a
Bayesian method, the model parameters are treated as probabilis-
tic variables having a joint posterior probability density function
(pdf). This pdf captures the probabilistic beliefs about the parame-
ter set in light of the observed series. The posterior pdf is propor-
tional to the product of a likelihood function and the prior pdf. In
the algorithm, candidate points are generated using an adaptive
multinormal proposal distribution, with the mean identical to
the current draw in the sequence and the covariance matrix corre-
sponding to the structure induced by the sample points and the
complexes. The prior pdf summarizes information about the
parameter set before any data is collected. This initial information
consists of realistic lower and upper bounds on each of the feasible
parameter space. For this study, the bounds of each parameter
were identified making use of the numerical model proposal distri-
bution after different calibration studies, bringing realistic bounds
of parameters for each case (see Section 4).

3. Study catchments

3.1. Grote Nete river catchment Belgium

The catchment of the Grote Nete river is located in the North-
East of the Flanders region of Belgium. It is part of the larger Nete
basin with a temperate humid climate. It has a mean July temper-
ature of 16 �C and a mean January temperature of 2 �C. The annual
rainfall depth varies from 700 to 1000 mm. The Grote Nete catch-
ment has an area of 385 km2 and is relatively flat. The rivers in this
catchment are typical lowland rivers with a low discharge and
strong meandering. They originate from a dense network of ditches
that collects seepage water. The land use in the catchment is com-
posed of a mosaic of semi-natural, agricultural and urbanized
areas. The soils are predominantly sandy with high hydraulic con-
ductivity and intensively drained, which leads to strong interac-
tions between the seasonal groundwater fluctuations and the
river discharges.

The models were calibrated based on the hourly river flow data
downstream of the catchment at the flow gauging station Varen-
donk. The model calibration period covers the period 1/9/2002 –
31/12/2005, while the period 1/1/2006 – 31/12/2008 was consid-
ered for validation. There was no warming up period considered,
but the model initial conditions for soil storage and subflows were
estimated as part of the model calibration, and based on visual
inspection of the discharge (subflows) state at the initial time in
comparison with the temporal variation in subflows and soil
storage. Hourly areal rainfall estimates were obtained after
applying the Thiessen polygon method to the six rain gauges
located in and around the catchment. Potential evapotranspiration
data was acquired from the national meteorological station located
at Uccle, about 80 km west of the study area. It was estimated with
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a modified Penman method, calibrated for the local conditions in
Belgium (Bultot et al., 1983). Unlike rainfall data, these evaporation
data can be assumed to be the same for the entire watershed. Gi-
ven that snowfall rarely occurs in the region, this was not consid-
ered in this study.

3.2. Nyando river catchment Kenya

The Nyando river catchment is located in the Equatorial lakes
region in Western Kenya. It has a sub-humid climate with mean
annual temperature of 23 �C and mean annual rainfall varying from
1000 mm near Lake Victoria to over 1600 mm in the highlands. The
annual rainfall pattern shows no distinct dry season. It is tri-modal
with peaks during the long rains (March–May) and short rains
(October–December) with the third peak in August. The rainfall
is controlled by the northward and southward movement of the In-
ter-Tropical Convergence Zone. The Nyando catchment has an area
of about 3600 km2. Forestry and agriculture are the two predomi-
nant land use classes in the catchment. The soils are recent alluvial
medium to heavy clay soils of poor drainage and structure.

The models were calibrated based on the daily river flows
downstream of the catchment at Ahero bridge station. Five years
of daily data (1/1/1976 – 31/12/1980) were used for calibration
and the period 1/1/1986 – 31/12/1990 for validation. Model initial
conditions were estimated using the same method as for the Grote
Nete case. Weighted average rainfall was calculated using 38 sta-
tions in and around the catchment, while four stations were used
for the weighted average computation of potential evapotranspira-

tion. FAO Penman–Monteith method (Allen et al., 1998) with lim-
ited data (maximum and minimum temperature) was used for
estimating the potential evapotranspiration.

4. Results

4.1. Case-specific identified versus pre-defined model structure

After application of the step-wise manual VHM model structure
identification and calibration approach and calibration of the pre-
fixed NAM and PDM model structures to the Grote Nete and Nyan-
do cases, the model simulation results were evaluated based on the
following model evaluation plots:

– Time series plots of total runoff flow (see Fig. 2 for three
selected periods) and the subflows.

– Cumulative runoff flows (Fig. 3).
– Scatter plot of peak flows (Fig. 4) and low flows, after BC

transformation.
– Empirical extreme value distribution of peak flows (Fig. 5) and

low flows.

For the selection of the peak and low flows and the subflow sep-
aration of the observed flow series, the parameter values of Table 2
were considered.

Some model parameters, e.g. the soil moisture storage capacity,
have similar meaning in the different models, such that intercom-
parison of their calibration values could be made. This is illustrated
for the most important VHM, NAM and PDM model parameters

Fig. 2. Time series of total runoff flows: comparison of NAM, PDM and VHM results; Grote Nete case (top), Nyando case (bottom).
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and the Grote Nete case in Table 3. The umax parameter in NAM and
VHM has same meaning, and gives close values of 180 mm in NAM
and 220 in VHM. This value can be directly compared with the va-
lue of cp,max/(b + 1) in PDM, which is somewhat higher: 385 mm.
The recession constants were taken close to the empirical values
obtained after the filter application, which leads to identical values
for kSF in NAM and VHM. The kSF value in PDM is lower but this is
because the baseflow recession in PDM is also controlled by an-
other parameter kg, which takes a high value after calibration.
The kOF values are close in the three models, but slightly higher
in PDM because no interflow is simulated in that model. The higher
kOF value accounts for the slower interflow recession in compari-
son with the overland flow.

As can be seen in Figs. 2–5, the three models have similar per-
formance in terms of total flows, peak flows and cumulative vol-
umes. The NS-TF statistic has similar values for the calibration
period (Table 4), but for the validation period and the Grote Nete
case the PDM performance on the NS-TF index is better than for
VHM (0.75 against 0.61).

Whereas the model performance is similar for the three models,
further detailed investigation of the conceptual model structure
highlights some systematic differences. One of these differences
is shown in Fig. 6, based on the relationship between the overland
runoff coefficient and the relative soil moisture content. See
Willems (2014) for more details on how this relationship can
be derived from the observed model input series. The VHM

Fig. 3. Cumulative runoff volumes: comparison of NAM, PDM and VHM results; Grote Nete case (left), Nyando case (right).

Fig. 4. Peak runoff flows: comparison of NAM, PDM and VHM results; Grote Nete case (left), Nyando case (right).
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overland flow submodel equation is identified from the observa-
tions and filter results; linear in this case. Also the NAM model con-
siders a linear equation (see Section 2.4), while the PDM model
considers a power relation. While this leads to overestimations of
the higher quick runoff coefficients (Fig. 6), this does not necessar-
ily lead to a lower overall model performance. The NS-TF is even
highest for the PDM model in comparison with the other two mod-
els (Table 4). This means that the overestimation of the higher
quick runoff coefficients is not reflected in the NS-TF or is compen-
sated by biases in other components of the model.

When evaluating the models for their performance in reproduc-
ing the subflow components or submodel responses, one has to be
aware that the observations-based components or responses were
produced by a filter or model applied to the observed series. There
is obviously no guarantee that these match the actual flow compo-
nents (be they observable). One could argue that when a model
better represents the filter based flow components, this does not
mean that it is better in absolute term, but that it better matches
the hypotheses made to identify the flow components. In the case
of VHM, by construction, the model is expected to be better suited
to reproduce these flow components since it uses them for model
structure identification. However, the filtered subflows and identi-
fied subresponses provide additional information which is real, be-
cause identified directly from the data, but indeed based on
assumptions. The VHM model structure is based on the same
assumptions, and this guarantees that the information on the main
runoff subresponses obtained from the data is transferred consis-
tently to the model.

As shown before by Van Steenbergen and Willems (2012), a
model with a good overall runoff performance but with biases in
individual components might lead to biased impact results. Over-
estimated quick runoff coefficients might, for instance, lead to
overestimated impact results of climate change. This is for the
PDM model of the Grote Nete case proven in Fig. 7. That figure
makes intercomparison of observed versus simulated quantiles
based on the cumulative frequency distributions of the quick flow
changes (comparing any combination of two quick flow events se-
lected from the full time series) for different classes of rainfall
changes. See Van Steenbergen and Willems (2012) for a more de-
tailed description of this method. The slopes of the 90% quantiles
of relative quick flow change versus rainfall increase in Fig. 7 show
that the PDM model of the Grote Nete overestimates the impact of
rainfall changes. For the same quantiles, the NAM models of both
catchments underestimate the impact of the rainfall changes. The
bias is less for the VHM model. This shows the added value of
testing the model for its individual components; hence of the
case-specific identification of submodel structures. In both catch-
ments, the observations show that the overland runoff coefficient
depends in an approximate linear way on the soil saturation level
(Fig. 6). When the model structure is pre-fixed, the model structure
might be valid (as in the Grote Nete application is the case for
NAM), but might also be biased (as for the Grote Nete is the case
for PDM). When the individual submodel structures are not tested,
accurate model results might still be obtained after calibration,
but might lead to biased results when the model is used for
extrapolation.

4.2. Comparison of calibration strategies

For VHM, the different calibration methods presented in Sec-
tion 2.5 were applied to the Grote Nete and Nyando cases. The re-
sults are compared in this section in order to investigate the added
value of the step-wise manual calibration approach and the impor-
tance to consider the heteroscedasticity and serial dependence of
the model residuals.

Fig. 5. Empirical extreme value distribution of peak runoff flows: comparison of
NAM, PDM and VHM results; Grote Nete case (left), Nyando case (right).

Table 2
Parameters of the event and subflow separation algorithms.

Grote Nete case Nyando case

p 80 h 7 days
f 0.1 0.1
qlim 5 m3/s 10 m3/s
kOF 17 h 1 day
kIF 120 h 5 days
kSF 2100 h 30 days
wQF 0.7 0.45
wOF 0.6 0.6

Table 3
VHM, NAM and PDM parameter values after manual calibration (CAL1); Grote Nete
case.

NAM VHM PDM VHM

smax (mm) 5
umax (mm) 180 220 umax = cp,max/(b + 1) (mm) 385 220

cp,max (mm) 500
cp,min (mm) 90
be (�) 3

u (�) 0.1
B (�) 0.3

kSF (h) 2100 2100 kSF (h) 250 2100
kg (h) 9000
bg (�) 1

kIF (h) 120 120
kOF,1, kOF,2 (h) 20 17 kOF,1, kOF,2 (h) 25 17
utr,g/umax (�) 0.25 utr,g/umax (�) 0
utr,i/umax (�) 0.2
utr,s/umax (�) 0.12

Time delay (h) 4 0
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4.2.1. Numerical optimization settings
The numerical optimization for CAL3, CAL4, CAL5 and CAL6 by

the SCEM-UA algorithm requires the number of samples, number
of complexes and number of iterations to be specified. See Vrugt
et al. (2003) for more details on the definition and role of these
parameters. The specification on these parameters might affect
the performance of the optimization. In order to avoid that the
optimization results are affected by the algorithm parameter set-
tings, the sensitivity of the results after changes in the number of

complexes, number of samples and number of iterations was stud-
ied. The number of iterations was found to be the most sensitive
parameter together with the number of samples, whereas the
number of complexes obviously depends of the number of sam-
ples, taking into account that the number of samples per complex
should be sufficient in order to sample with sufficient resolution
the full distribution within the parameters bounds. The sensitivity
analysis led to the choice of 10 for the number of complexes, 500
for the number of samples to be considered in the proposed
parameter ranges, and 50,000 for the number of model iterations.
Fig. 8 illustrates the sensitivity analysis; it shows that convergence
is reached for the NSE optimization in the example case of CAL3c
for the Grote Nete case after more 20,000 iterations and more than
about 200 samples. Despite the careful selection of the prior
parameter ranges (see Table 6) and the settings of the SCEM-UA,
some influence of these ranges and settings might still be present.
For this reason, the results/statistics reported hereafter should not
be interpreted as exact, but used for analyzing the general trends/
changes from one (set of) method(s) to the other(s). This is how the
results are interpreted and summarized in this paper.

4.2.2. General evaluation
Tables 7 and 9 give for both cases (Grote Nete, Belgium, and

Nyando, Kenya) and for each calibration method an overview of
the model parameters obtained. The corresponding goodness-of-
fit statistics are for the calibration and validation periods provided
in Tables 8 and 10, and for the calibration period graphically visu-
alized in Figs. 9–11. It is graphically clarified in Fig. 10 that some
calibration methods show improved NS-TF statistic, but at the ex-
pense of reduced model performance for the model water balance
and/or subflows and/or flow extremes.

When comparing the manual, more time consuming and sub-
jective method (CAL1) with the method based on step-wise
numerical optimization (CAL2), the results show that both meth-
ods lead to high accuracy for all the evaluation statistics. In the
Grote Nete case, the manual approach leads to a highest model

Table 4
Goodness-of-fit statistics on total runoff flows: comparison of VHM, NAM and PDM results after manual calibration (CAL1); Grote Nete case (top), Nyando case (bottom) for
calibration and validation periods.

Calibration period Validation period

VHM NAM PDM VHM NAM PDM

NS-TF (�) Obs 0.71 0.67 0.77 0.61 0.68 0.75
ME (m3/s) Obs 0.84 0.84 0.69 0.77 0.61 0.52
RMSE (m3/s) Obs 1.1 1.18 1.0 0.95 0.81 0.71
NS-QF (�) Filter 0.80 0.74 0.74 0.78 0.74 0.69
NS-SF (�) Filter 0.59 0.77 0.74 0.39 0.61 0.50
WB-TF (�) Obs �0.013 0.012 �0.0035 0.034 0.035 0.066
PFE (BC(m3/s), k = 0.25) Obs 0.104 �0.3442 �0.783 0.109 0.026 0.054
LFE (BC(m3/s), k = 0.25) Obs 0.303 0.310 0.402 0.060 0.166 0.322

NS-TF (�) Obs 0.57 0.54 0.54 0.35 0.41 0.36
ME (m3/s) Obs 0.52 0.04 0.57 3.42 4.92 3.55
RMSE (m3/s) Obs 12.92 13.25 13.26 26.38 26.08 27.1
NS-QF (�) Filter 0.49 0.36 0.4 0.33 0.39 0.17
NS-SF (�) Filter 0.47 0.68 0.46 0.22 0.34 0.29
WB-TF (�) Obs 0.034 0.002 0.028 0.24 0.23 0.17
PFE (BC(m3/s), k = 0.25) Obs 0.77 0.81 0.79 0.44 0.59 0.55
LFE (BC(m3/s), k = 0.25) Obs 0.56 0.3 0.45 2.86 2.59 3.03

Table 5
Weighing factors used in the goodness-of-fit evaluation.

CAL3, CAL3b, CAL3c, CAL3d CAL4 CAL5 CAL6

NS-TF 100 0 0 34
WB-TF 0 100 0 33
PFE 0 0 100 33

Fig. 6. Evaluation of quick flow runoff coefficient versus relative soil moisture
content: comparison of NAM, PDM and VHM results; Grote Nete case (top), Nyando
case (bottom).
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performance for almost all statistics; while for the Nyando case
CAL2 leads overall to slightly better NSE and WB results than
for CAL1. The peak and low flow errors are in both cases lower
for CAL1. The differences in goodness-of-fit statistics between
CAL1 and CAL2 are, however, limited when compared with the
other methods.

The method based on overall model optimization of NS-TF
(CAL3) leads to high model performance in total flows. This meth-
od obviously leads to the highest NS-TF among the methods CAL1,
CAL2 and CAL3. When results are evaluated at subflow level

(NS-SF, NS-IF, NS-OF), the step-wise approaches (CAL1 and CAL2)
obviously lead to a better agreement with the filter based subflows
in comparison with the methods based on numerical optimization.
As discussed in Section 4.1, this does not mean that these subflows
will be accurate in absolute terms. However, because the subflows
are extracted from the river flow observations as the main
components with an order of magnitude difference in response
time, they are considered indicative of the main subflow compo-
nents when conceptualized. For the CAL3 results, all subflow based
NS statistics even become negative. This means that the subflow

Fig. 7. Quantiles of relative change in peak flow in relation to rainfall increase: comparison of observations based changes, and NAM, PDM, VHM results; Grote Nete case
(top), Nyando case (bottom). The dots represent the results at 10%, 20%, . . ., 60% rainfall increase; the lines are based on linear regression of these results.
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model performance is very poor; it is lower than the zero NS value
obtained when the subflow would be assumed constant in time
and equal to the mean filter-based subflow value.

The step-wise approach in CAL1 and CAL2 guarantees that indi-
vidual submodels match the filter-based flow components. This is
not the case after numerical optimization of total flow perfor-
mance, as is illustrated in Figs. 12 and 13. Underestimations in
one model component can indeed be compensated by overestima-
tions in another component. Section 4.1 explained how this can
bias the impact results of scenario simulations with the model.
The underestimation in OF and BF compensated by overestimation
in IF (Figs. 12 and 13) leads for CAL3 to equal quality in the overall
total flow performance in comparison with CAL1, but to biased im-
pact results of rainfall increases. The comparison of observed ver-
sus simulated cumulative frequency distributions of the overland
flow changes for different classes of rainfall changes in Fig. 14
shows that the CAL3 parameter set underestimates the impact
of rainfall increases. This again demonstrates the importance to

obtain accurate submodel structures, underlying an accurate over-
all model performance for total flows.

Interestingly, for the Nyando case the LFE is lowest for the man-
ual method. Also the PFE is among the lowest for the manual meth-
od; it is only lower when automatic calibration methods are
applied that explicitly focus on the peak flows (CAL3c, CAL5). Also
for the Grote Nete case, peak and low flow performances are good
for the manual method. This is because they are explicitly taken
into account by this method. The peak flow performance is also
good for the methods CAL5 and CAL6 that consider this perfor-
mance explicitly in the numerical optimization. When the numer-
ical optimization is uniquely based on PFE (CAL5), it is trivial that
lowest PFE are obtained. This is, however, at the expense of worse
values for the other criteria. When the numerical optimization is
done after weighing the three statistics NS-TF, WB-TF and PFE
(CAL6), several model performance statistics become higher than
for CAL3, CAL4 and CAL5, which are uniquely based on one statis-
tic. Also the subflow related statistics in general improve for CAL6

Fig. 8. SCEM-UA convergence of the CAL3c objective function for the Grote Nete case, depending on the number of iterations and the number of samples. The number of
complexes was found to be less sensitive and was taken 10 for the results in this plot.

Table 6
Prior parameter ranges considered in the SCEM-UA optimization.

Grote Nete case Nyando case
After CAL1 Lower bound Upper bound After CAL1 Lower bound Upper bound

Storage submodel
umax (mm) 220 80 300 200 80 300
uevap (mm) 90 80 300 100 80 300
uini (mm) 120 80 300 100 80 300
aU,1 1.97 0 4 1.90 0 4
aU,2 0.99 0 3 0.20 0 3
aU,3 1.70 0 3 3.00 �4 4

Overland flow submodel
aOF,1 0.0150 0 20 0.0018 0 20
aOF,2 2.50 0 5 2.00 0 5
aOF,3 0.00 �3 3 1.00 �3 3
sp,OF (h (Grote Nete) or day (Nyando)) 50 0 72 1 1 3

Interflow submodel
aIF,1 0.0166 0 20 0.0041 0 20
aIF,2 2.80 0 3 2.50 0 3
aIF,3 0.00 �3 3 0.20 �3 3
sp,IF (h (Grote Nete) or day (Nyando)) 50 0 144 1 2 4

Routing submodels
kSF (h (Grote Nete) or day (Nyando)) 2100 0.8*kOF,CAL1 1.2*kOF,CAL1 30 0.8*kOF,CAL1 1.2*kOF,CAL1

kIF (h (Grote Nete) or day (Nyando)) 120 0.8*kIF,CAL1 1.2*kIF,CAL1 5 0.8*kIF,CAL1 1.2*kIF,CAL1

kOF (hour (Grote Nete) or day (Nyando)) 17 0.8*kSF,CAL1 1.2*kSF,CAL1 1 0.8*kSF,CAL1 1.2*kSF,CAL1

qSF(0) (m3/s) 1.00 – – 5.00 – –
qIF(0) (m3/s) 0.00 – – 0.00 – –
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in comparison with CAL3. They are, however, not so good as with
the step-wise methods (CAL1 and CAL2).

4.2.3. Importance to consider heteroscedasticity and serial dependence
Comparison of the statistics for CAL3 and CAL3b confirms that

consideration of the heteroscedasticity in the model residual errors
through the application of the BC-transformation leads to a better
model performance for the low flows and slow runoff subflows.
The BC-transformation avoids that more weight in given to the
peak flows in comparison with the low flows, due to the higher
uncertainty in the higher flow model results. For both the Grote
Nete and the Nyando case, the NS-SF strongly increases, the WB-
SF decreases and the LFE decreases from CAL3 to CAL3b. The same
is valid but to a lesser extent for the IF related statistics. This is at
the expense of a lower model performance for the peak flows: the

PFE increases from CAL3 to CAL3b in both cases. The NS-OF and
WB-OF do, however, not differ much between CAL3 and CAL3b.

Consideration of the serial dependence in the calculation of the
NS (see comparison of CAL3 and CAL3c) is expected to lead to a
better overall performance in the peak flows. This is because less
weight is given to the many strongly autocorrelated low flows in
the time series. Each event gets equal weights, independent on
the length of the low flow recession. The NS-OF and WB-OF
strongly improve for the Grote Nete case, whereas the PFE reduces
for the Nyando case. Surprisingly, the PFE increases for the Grote
Nete case. This might be due to the use of the NS statistic, which
opposed to CAL5 and CAL6, does not explicitly focus on the ex-
treme quantiles.

When both the heteroscedasticity in the model residual errors
and the serial dependence are addressed, more balanced results

Table 7
VHM parameter values after calibration; Grote Nete case.

CAL1 CAL2 CAL3 CAL3b CAL3c CAL3d CAL4 CAL5 CAL6

Storage submodel
umax (mm) 220 264 218 180 232 224 241 133 254
uevap (mm) 90 97 134 80 104 99 147 80 191
uini (mm) 120 242 109 90 116 112 121 67 127
aU,1 1.97 1.77 3.99 3.83 4.00 4.00 2.65 1.81 2.22
aU,2 0.99 1.50 1.25 1.22 1.26 1.27 1.62 1.08 0.54
aU,3 1.70 2.95 0.06 0.06 0.05 0.06 2.19 3.00 0.38

Overland flow submodel
aOF,1 0.0150 0.0282 0.0025 0.0025 0.0235 0.0225 0.0235 0.0054 0.0060
aOF,2 2.50 2.14 0.01 0.07 1.56 2.05 1.27 0.00 1.56
aOF,3 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sp,OF (h) 50 59 59 50 59 59 59 59 59

Interflow submodel
aIF,1 0.0166 0.0159 0.0492 0.0386 0.0608 0.0410 0.0237 0.0220 0.0291
aIF,2 2.80 2.48 2.08 2.38 1.69 1.96 1.20 3.00 2.54
aIF,3 0.00 �0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sp,IF (h) 50 22 22 22 22 22 22 22 22

Routing submodels
kSF (h) 2100 2100 2519 2226 1680 1680 2299 2520 2217
kIF (h) 120 120 121 100 144 144 118 104 128
kOF (h) 17 17 21 21 13 13 15 21 16
qSF(0) (m3/s) 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
qIF(0) (m3/s) 0.00 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

Table 8
Goodness-of-fit statistics for the different calibration methods; calibration and validation periods, Grote Nete case.

Based on direct observations
(Obs) or filter results

CAL1 CAL2 CAL3 CAL3b CAL3c CAL3d CAL4 CAL5 CAL6

Calibration period
NS-TF (�) Obs 0.71 0.46 0.84 0.82 0.68 0.59 0.45 0.67 0.82
NS-SF (�) Filter 0.59 0.16 �0.08 0.40 �0.23 0.07 �0.09 0.37 �0.14
NS-IF (�) Filter 0.71 0.61 �2.62 �2.31 �0.50 0.20 0.52 �0.23 �1.77
NS-OF (�) Filter 0.83 0.48 �0.17 �0.17 0.33 �0.07 0.39 �0.08 0.25
WB-TF (�) Obs 0.013 �0.189 �0.013 �0.018 �0.024 �0.015 0.000 �0.229 0.000
WB-SF (�) Filter 0.045 �0.234 0.294 0.178 0.334 0.275 �0.009 �0.248 0.300
WB-IF (�) Filter 0.031 0.006 �1.741 �1.336 �1.194 �0.721 0.221 �0.838 �1.472
WB-OF (�) Filter �0.003 �0.022 0.948 0.947 �0.051 �0.329 �0.079 0.888 0.657
PFE (BC(m3/s), k = 0.25) Obs 0.104 0.274 0.100 0.128 0.449 0.600 0.299 0.056 0.098
LFE (BC(m3/s), k = 0.25) Obs 0.303 0.547 0.160 0.152 0.331 0.274 0.241 0.633 0.160

Validation period
NS-TF (�) Obs 0.61 �0.07 0.65 0.67 0.34 0.31 0.20 0.27 0.63
NS-SF (�) Filter 0.39 �1.42 �0.11 0.50 0.07 0.39 �1.12 �0.82 �0.27
NS-IF (�) Filter 0.69 0.56 �4.96 �2.77 �1.47 �0.08 0.58 �1.03 �3.70
NS-OF(�) Filter 0.78 0.28 �0.28 �0.28 0.19 �0.17 0.15 �0.15 0.23
WB-TF (�) Obs �0.029 �0.271 �0.117 �0.114 �0.156 �0.136 �0.040 �0.303 �0.105
WB-SF (�) Filter 0.074 �0.308 0.174 0.018 0.170 0.105 �0.010 �0.317 0.186
WB-IF(�) Filter 0.091 �0.080 �1.817 �1.232 �1.241 �0.722 0.126 �0.947 �1.567
WB-OF (�) Filter 0.144 �0.107 0.942 0.941 �0.091 �0.327 �0.219 0.873 0.626
PFE (BC(m3/s), k = 0.25) Obs 0.109 0.386 0.073 0.079 0.478 0.545 0.275 0.080 0.087
LFE (BC(m3/s), k = 0.25) Obs 0.060 0.582 0.129 0.227 0.103 0.123 0.253 0.802 0.118
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are obtained for all statistics: the NS-TF statistic decreases
(from 0.838 to 0.678 for the Grote Nete, from 0.679 to 0.665 for
the Nyando) but all subflows improve when CAL3d is compared
with CAL3. Apart from unexpected increase in PFE for the Grote
Nete case, consideration of heteroscedasticity and serial
dependence in model residuals improves the automatic calibration
results.

4.2.4. Improved automatic versus step-wise calibration
If we call CAL3d the improved NS-TF based automatic calibra-

tion method, we can compare this improved automatic calibration
method with the step-wise manual (CAL1) and step-wise auto-
matic (CAL2) methods. We notice similar or better performance
for total runoff flows for the improved automatic calibration meth-
od versus the step-wise methods, but lower performances for the
NS of the subflows and for the hydrological extremes. Individual

subflow components might reach similar accuracy as the step-wise
method, depending on the selected objective function, but none of
the objective functions considered here allows to reach good
accuracy for all (quick and slow) runoff components. The NS-IF
decreased very strongly from values above 0.6 for any of the
step-wise methods to negative values for most of the automatic
methods. This is because only a limited fraction of the total flow
is determined by this component.

4.3. Comparison of QDF-curves

In previous sections, the VHM model and approach were evalu-
ated after comparison with pre-fixed model structures and other
calibration strategies, but the evaluation was limited to runoff
flows for the time step of the simulation and cumulative runoff
volumes over the entire simulation period. Given that the objec-

Table 9
VHM parameter values after calibration; Nyando case.

CAL1 CAL2 CAL3 CAL3b CAL3c CAL3d CAL4 CAL5 CAL6

Storage submodel
umax (mm) 200 299 300 299 300 300 259 278 231
uevap (mm) 100 286 281 272 292 286 169 298 181
uini (mm) 100 103 150 150 150 150 130 139 115
aU,1 1.90 2.63 1.97 1.96 1.95 2.03 2.62 2.11 1.94
aU,2 0.20 0.61 0.20 0.18 0.19 0.24 0.79 0.43 0.15
aU,3 3.00 0.17 2.88 2.99 2.99 1.53 1.88 2.94 2.33

Overland flow submodel
aOF,1 0.0018 0.0013 0.0026 0.0025 0.0027 0.0027 0.0156 0.0048 0.0042
aOF,2 2.00 2.81 0.13 0.17 0.13 2.83 1.65 0.22 2.29
aOF,3 1.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sp,OF (day) 1 3 1 1 1 1 1 1 1
Interflow submodel
aIF,1 0.0041 0.0028 0.0144 0.0078 0.0296 0.0123 0.0053 0.0422 0.0358
aIF,2 2.50 2.95 2.77 3.00 2.02 2.42 0.60 1.93 1.62
aIF,3 0.20 �0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sp,IF (day) 1 2 1 1 1 1 1 1 1

Routing submodels
kSF (day) 30 30 36 36 36 36 29 31 31
kIF (day) 5 5 5 5 4 4 5 4 6
kOF (day) 1 1 2 2 2 2 1 2 1
qSF(0) (m3/s) 5.00 5.00 4.90 4.90 4.90 4.90 4.90 4.90 4.90
qIF(0)(m3/s) 0.00 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 10
Goodness-of-fit statistics for the different calibration methods; calibration and validation periods, Nyando case.

Based on direct observations
(Obs) or filter results

CAL1 CAL2 CAL3 CAL3b CAL3c CAL3d CAL4 CAL5 CAL6

Calibration period
NS-TF (�) Obs 0.57 0.62 0.68 0.64 0.65 0.67 0.52 0.01 0.65
NS-SF (�) Filter 0.47 0.72 �0.74 0.38 �0.64 0.27 0.05 �0.02 �1.08
NS-IF (�) Filter 0.72 0.61 �13.3 �3.69 �17.3 �3.58 �0.06 �40.0 �8.33
NS-OF (�) Filter 0.34 0.41 �0.16 �0.16 �0.16 0.26 0.33 �0.11 0.22
WB-TF (�) Obs 0.034 �0.094 �0.009 0.074 �0.123 �0.037 0.000 �0.644 0.000
WB-SF (�) Filter �0.030 �0.153 0.789 0.384 0.767 0.460 �0.056 0.570 0.869
WB-IF (�) Filter 0.135 �0.050 �3.852 �2.155 �4.413 �2.133 0.699 �6.611 �3.288
WB-OF (�) Filter 0.043 0.050 0.935 0.935 0.932 0.380 �0.285 0.871 0.450
PFE (BC(m3/s), k = 0.25) Obs 0.77 2.845 3.318 5.195 2.230 3.217 3.842 0.998 3.089
LFE (BC(m3/s), k = 0.25) Obs 0.56 0.786 1.771 0.689 2.011 1.006 2.944 2.161 1.832

Validation period
NS-TF (�) Obs 0.35 0.41 0.44 0.39 0.43 0.42 0.31 0.20 0.41
NS-SF (�) Filter 0.22 �0.11 0.41 0.29 0.406 0.37 �1.17 0.42 0.27
NS-IF (�) Filter 0.57 0.46 �3.88 �0.73 �4.84 �0.59 �0.01 11.8 �2.07
NS-OF(�) Filter 0.18 0.31 �0.08 �0.08 �0.07 0.15 0.24 �0.05 0.13
WB-TF (�) Obs 0.243 �0.297 �0.225 �0.166 �0.318 �0.243 �0.228 �0.754 �0.256
WB-SF (�) Filter 0.205 �0.573 0.261 �0.134 0.236 �0.034 �0.543 0.115 0.263
WB-IF (�) Filter 0.247 0.067 �3.316 �1.832 �3.736 �1.765 0.739 �5.642 �2.799
WB-OF (�) Filter 0.106 0.189 0.949 0.948 0.946 0.497 �0.037 0.898 0.547
PFE (BC(m3/s), k = 0.25) Obs 0.44 4.346 4.759 6.354 4.064 4.801 5.268 3.246 4.476
LFE (BC(m3/s), k = 0.25) Obs 2.86 14.015 11.861 11.651 13.080 12.037 10.802 14.971 12.533
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tives of the paper stated that the model results are tested ‘‘for a
wide range of flows and time scales’’ (see introduction section),
this section evaluates the VHM model performance in the form
of flow – duration – frequency (QDF) relationships.

Fig. 15 shows for the Grote Nete case the empirical and cali-
brated QDF-curves for the observed series versus the VHM simula-
tion results after CAL1, CAL3b, CAL4, CAL5 and CAL6. The figure
shows that VHM results after CAL1 match the observed flows well
for the full range of time scales between 1 h and 15 days. For CAL4
systematic deviations were found for the flow extremes at small
and high aggregation levels. The use of overall water balance as
the only objective function indeed prevents the robust identifica-
tion of parameters that control flow dynamics. QDF anomalies
were also found for other automatic or non-stepwise calibration

methods, except for the methods that explicitly account for the
peak flows during the calibration process (CAL5 and CAL6). No
need to explain that these deviations lead to biases when the mod-
el would be used for scenario investigations which involve model
extrapolations.

5. Discussion and conclusion

Intercomparison between different approaches for the con-
struction and calibration of lumped conceptual rainfall-runoff
models was made based on two case studies. Whereas the VHM
top-down approach is based on a step-wise model structure iden-
tification procedure, traditional approaches for lumped conceptual
rainfall-runoff modeling use a model with pre-fixed model

Fig. 9. Intercomparison of goodness-of-fit range for NS, WB and flow extremes related statistics; calibration period, Grote Nete case.

Fig. 10. Intercomparison of goodness-of-fit statistics for the different calibration methods; calibration period, Grote Nete case (darker background color for higher model
performance).
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structure, e.g. NAM, PDM. This paper has shown that the identifica-
tion of the model structure in a case-specific way does not lead to
higher accuracy than the traditional approach when using common
statistical criteria like the NS or MSE. These criteria evaluate the
overall runoff performance, but it is shown that they do not neces-

sarily reflect the model performance for high and low flow ex-
tremes, and submodels or subflows. Also Gupta et al. (2009) have
shown, after separation of the NS or MSE in three components rep-
resenting the correlation, the bias and a measure of variability, that
in order to maximize NS the total runoff variability has to be

Fig. 11. Intercomparison of goodness-of-fit range for NS, WB and flow extremes related statistics; calibration period, Nyando case.

Fig. 12. Evaluation of the rainfall fraction contributing to overland flow (left) and interflow (right) versus relative soil moisture content: comparison of CAL1 (top) and CAL3
(bottom); calibration period, Grote Nete case.

Fig. 13. Evaluation of baseflow (left) and interflow (right) results: comparison of CAL1 (top) and CAL3 (bottom) results; calibration period, Grote Nete case.
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underestimated. The proposed case-specific model structure iden-
tification procedure has advantages in this respect. In the Grote
Nete case, a linear submodel was identified for the overland runoff
coefficient based on the rainfall, PET and river flow observations.
When a pre-fixed exponential submodel structure was considered,
good overall model performance could be obtained after careful
model calibration, but the model results become biased when
extrapolated beyond the calibration range (e.g. impact simulation
of climate scenarios).

Another aspect studied is the added value of the step-wise
approach. When – for a fixed (prior identified) model-structure
– each submodel is optimized individually, this leads to a high
overall goodness-of-fit when considering all model performance
aspects (total flows, subflows, peak and low flows, peak flow
changes, QDF curves). One might consider the application of a
global optimization step after the initial step-wise procedure. In
this way, the full automatic and the manual step-wise calibration
procedures can be integrated by applying the automatic calibration
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Fig. 14. Evaluation of cumulative frequency distribution of relative change in overland flow for different classes of rainfall increase: comparison of CAL1 and CAL3 results;
calibration period, Grote Nete case.
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Fig. 15. Empirical and calibrated QDF-curves for observed versus VHM based runoff flows after CAL1, CAL3b, CAL4, CAL5 and CAL6; calibration period, Grote Nete case.
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procedures first to each of the submodels separately (when the
number of model parameters is limited) and afterwards to improve
the multi criteria applied to the overall model results. The initial
step would indeed define improved, more narrow parameter
bounds for the overall optimization. Another promising work in
that respect is the approach of Ajami et al. (2004) based on a mul-
ti-step automatic calibration scheme.

Obviously, the results of the numerical optimization strongly
depend on the goodness-of-fit statistic selected. When the optimi-
zation is uniquely based on the NS-TF, it might lead to an inaccu-
rate model structure. Also Gupta et al. (2009), Westerberg et al.
(2011), and others, clearly showed the limitations of the NS-TF cri-
terion. When model goodness-fit criteria are included for peak and
low flows, the models become far more useful for impact analysis
on hydrological extremes. This is important, for instance, when the
model is applied in support of climate change impact investiga-
tions on hydrological extremes. Climate change indeed tends to in-
crease the probability of such extremes.

The study moreover has shown that the influence of the serial
flow dependency and flow residual homoscedasticity plays an
important role in the model performance evaluation and calibra-
tion process. Consideration of heteroscedasticity and serial depen-
dence when defining the objective function for the automatic
model calibration leads to more balanced automatic calibration re-
sults with improved overall (total, quick and slow flow, peak and
low flow, quick flow change) model results. This might be at the
expense of some decrease in the total flow performance. We no-
ticed similar performance for total runoff flows and flow extremes
for the improved automatic calibration method versus the step-
wise methods.

Despite the several advancements of the VHM approach, many
problems in rainfall-runoff modeling still remain. Some submodels
still need to be optimized based on more than one parameter; still
leading to problems of ‘equifinality’. The decision on the most par-
simonious submodel for each step is in the VHM approach based
on expert judgment. Question is whether the submodel complexity
control can be automated. Schoups et al. (2008) show that struc-
tural risk minimization could be a promising technique to support
such control. The VHM approach moreover might be further ex-
tended with a larger set of multi-objectives considering peak dis-
charges, low flow minima, cumulative volumes, extreme value
statistics, etc. It moreover might be useful to test additional objec-
tive functions, such as the KGE criterion proposed by Gupta et al.
(2009), which is the shortest Euclidian distance for all individual
criteria from the ideal value.
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